SlideShare una empresa de Scribd logo
1 de 31
Descargar para leer sin conexión
Arthur CHARPENTIER, Distortion in actuarial sciences




                         Distorting probabilities
                          in actuarial sciences
                                       Arthur Charpentier
                                            Université Rennes 1

                                arthur.charpentier@univ-rennes1.fr
                                http ://freakonometrics.blog.free.fr/




                               Univeristé Laval, Québec, Avril 2011


                                                                        1
Arthur CHARPENTIER, Distortion in actuarial sciences




1       Decision theory and distorted risk measures
Consider a preference ordering among risks, such that
1.                                          ˜ L    ˜ L         ˜     ˜
      is distribution based, i.e. if X Y , ∀X = X Y = Y , then X Y ; hence,
   we can write FX FY
2.    is total, reflexive and transitive,
3.    is continuous, i.e. ∀FX , FY and FZ such that FX FY      FZ , ∃λ, µ ∈ (0, 1)
   such that
                            λFX + (1 − λ)FZ             FY   µFX + (1 − µ)FZ .
4.      satisfies an independence axiom, i.e. ∀FX , FY and FZ , and ∀λ ∈ (0, 1),

                      FX        FY =⇒ λFX + (1 − λ)FZ           λFY + (1 − λ)FZ .

5.     satisfies an ordering axiom, ∀X and Y constant (i.e.
     P(X = x) = P(Y = y) = 1, FX FY =⇒ x ≤ y.


                                                                                    2
Arthur CHARPENTIER, Distortion in actuarial sciences




Theorem1
Ordering satisfies axioms 1-2-3-4-5 if and only if ∃u : R → R, continuous, strictly
increasing and unique (up to an increasing affine transformation) such that ∀FX and FY :

                       FX        FY      ⇔             u(x)dFX (x) ≤           u(x)dFY (x)
                                                   R                       R
                                         ⇔ E[u(X)] ≤ E[u(Y )].

But if we consider an alternative to the independence axiom
4’.   satisfies an dual independence axiom, i.e. ∀FX , FY and FZ , and ∀λ ∈ (0, 1),
                               −1          −1                             −1          −1
             FX       FY =⇒ [λFX + (1 − λ)FZ ]−1                       [λFY + (1 − λ)FZ ]−1 .
we (Yaari (1987)) obtain a dual representation theorem,
Theorem2
Ordering satisfies axioms 1-2-3-4’-5 if and only if ∃g : [0, 1] → R, continuous, strictly
increasing such that ∀FX and FY :

                         FX        FY ⇔            g(F X (x))dx ≤          g(F Y (x))dx
                                               R                       R


                                                                                                3
Arthur CHARPENTIER, Distortion in actuarial sciences




Standard axioms required on risque measures R : X → R,
                                 L
–    law invariance, X = Y =⇒ R(X) = R(Y )
–    increasing X ≥ Y =⇒ R(X) ≥ R(Y ),
–    translation invariance ∀k ∈ R, =⇒ R(X + k) = R(X) + k,
–    homogeneity ∀λ ∈ R+ , R(λX) = λ · R(X),
–    subadditivity R(X + Y ) ≤ R(X) + R(Y ),
–    convexity ∀β ∈ [0, 1], R(βλX + [1 − β]Y ) ≤ β · R(X) + [1 − β] · R(Y ).
– additivity for comonotonic risks ∀X and Y comonotonic,
  R(X + Y ) = R(X) + R(Y ),
– maximal correlation (w.r.t. measure µ) ∀X,

                                     R(X) = sup {E(X · U ) where U ∼ µ}

                                    ˜ ˜                            ˜ L
– strong coherence ∀X and Y , sup{R(X + Y )} = R(X) + R(Y ), where X = X
       ˜ L
  and Y = Y .


                                                                               4
Arthur CHARPENTIER, Distortion in actuarial sciences




Proposition1
If R is a monetary convex fonction, then the three statements are equivalent,
– R is strongly coherent,
– R is additive for comonotonic risks,
– R is a maximal correlation measure.
Proposition2
A coherente risk measure R is additive for comonotonic risks if and only if there exists a
decreasing positive function φ on [0, 1] such that
                                                            1
                                      R(X) =                    φ(t)F −1 (1 − t)dt
                                                        0

where F (x) = F(X ≤ x).
see Kusuoka (2001), i.e. R is a spectral risk measure.



                                                                                      5
Arthur CHARPENTIER, Distortion in actuarial sciences




Definition1
A distortion function is a function g : [0, 1] → [0, 1] such that g(0) = 0 and g(1) = 1.
For positive risks,
Definition1
Given distortion function g, Wang’s risk measure, denoted Rg , is
                                             ∞                                ∞
                    Rg (X) =                     g (1 − FX (x)) dx =              g F X (x) dx   (1)
                                         0                                0

Proposition1
Wang’s risk measure can be defined as
                                     1                                1
                                          −1
               Rg (X) =                  FX (1 − α) dg(α) =               VaR[X; 1 − α] dg(α).   (2)
                                 0                                0




                                                                                                 6
Arthur CHARPENTIER, Distortion in actuarial sciences




More generally (risks taking value in R)
Definition2
We call distorted risk measure
                                                            1
                                      R(X) =                    F −1 (1 − u)dg(u)
                                                        0

where g is some distortion function.
Proposition3
R(X) can be written
                                     +∞                                 0
                 R(X) =                   g(1 − F (x))dx −                  [1 − g(1 − F (x))]dx.
                                 0                                     −∞




                                                                                                    7
Arthur CHARPENTIER, Distortion in actuarial sciences




                      risk measures R                  distortion function g
                      VaR                              g (x) = I[x ≥ p]
                      Tail-VaR                         g (x) = min {x/p, 1}
                      PH                               g (x) = xp
                                                                             1/p
                      Dual Power                       g (x) = 1 − (1 − x)
                      Gini                             g (x) = (1 + p) x − px2
                      exponential transform            g (x) = (1 − px ) / (1 − p)

                        Table 1 – Standard risk measures, p ∈ (0, 1).




                                                                                     8
Arthur CHARPENTIER, Distortion in actuarial sciences




Here, it looks like risk measures can be seen as R(X) = Eg◦P (X).
Remark1
Let Q denote the distorted measure induced by g on P, denoted g ◦ P i.e.

                                      Q([a, +∞)) = g(P([a, +∞))).

Since g is increasing on [0, 1] Q is a capacity.
Example1
Consider function g(x) = xk . The PH - proportional hazard - risk measure is
                                            1                                ∞
                     R(X; k) =                  F −1 (1 − u)kuk−1 du =           [F (x)]k dx
                                        0                                0

If k is an integer [F (x)]k is the survival distribution of the minimum over k values.
Definition2
The Esscher risk measure with parameter h > 0 is Es[X; h], defined as
                                                 E[X exp(hX)]    d
                            Es[X; h] =                        =    ln MX (h).
                                                    MX (h)      dh


                                                                                               9
Arthur CHARPENTIER, Distortion in actuarial sciences




2      Archimedean copulas
Definition3
Let φ denote a decreasing function (0, 1] → [0, ∞] such that φ(1) = 0, and such that
φ−1 is d-monotone, i.e. for all k = 0, 1, · · · , d, (−1)k [φ−1 ](k) (t) ≥ 0 for all t. Define
the inverse (or quasi-inverse if φ(0) < ∞) as
                                 
                                  φ−1 (t) for 0 ≤ t ≤ φ(0)
                       φ−1 (t) =
                                  0               for φ(0) < t < ∞.

The function
              C(u1 , · · · , un ) = φ−1 (φ(u1 ) + · · · + φ(ud )), u1 , · · · , un ∈ [0, 1],
is a copula, called an Archimedean copula, with generator φ.
Let Φd denote the set of generators in dimension d.
Example2
The independent copula C ⊥ is an Archimedean copula, with generator φ(t) = − log t.

                                                                                               10
Arthur CHARPENTIER, Distortion in actuarial sciences




The upper Fréchet-Hoeffding copula, defined as the minimum componentwise,
M (u) = min{u1 , · · · , ud }, is not Archimedean (but can be obtained as the limit of
some Archimedean copulas).
Set λ(t) = exp[−φ(t)] (the multiplicative generator), then
                   C(u1 , ..., ud ) = λ−1 (λ(u1 ) · · · λ(ud )), ∀u1 , ..., ud ∈ [0, 1],
which can be written
              C(u1 , ..., ud ) = λ−1 (C ⊥ [λ(u1 ), . . . , λ(ud )]), ∀u1 , ..., ud ∈ [0, 1],

Note that it is possible to get an interpretation of that distortion of the
independence.
A large subclass of Archimedean copula in dimension d is the class of
Archimedean copulas obtained using the frailty approach.
Consider random variables X1 , · · · , Xd conditionally independent, given a latent
                                                                         Θ
factor Θ, a positive random variable, such that P (Xi ≤ xi |Θ) = Gi (x) where
Gi denotes a baseline distribution function.

                                                                                               11
Arthur CHARPENTIER, Distortion in actuarial sciences




The joint distribution function of X is given by
FX (x1 , · · · , xd ) =          E (P (X1 ≤ x1 , · · · , Xd ≤ Xd |Θ))
                                        d                                d
                                                                                    Θ
                           =     E           P (Xi ≤ xi |Θ)   =E             Gi (xi )
                                       i=1                           i=1
                                        d                                                d
                           =     E           exp [−Θ (− log Gi (xi ))]       =ψ −             log Gi (xi ) ,
                                       i=1                                              i=1

where ψ is the Laplace transform of the distribution of Θ, i.e.
ψ (t) = E (exp (−tΘ)) . Because the marginal distributions are given respectively
by
                    Fi (xi ) = P(Xi ≤ xi ) = ψ (− log Gi (xi )) ,
the copula of X is
                    −1                 −1
        C (u) = FX F1 (u1 ) , · · · , Fd (ud ) = ψ ψ −1 (u) + · · · + ψ −1 (ud )
This copula is an Archimedean copula with generator φ = ψ −1 (see e.g. Clayton
(1978), Oakes (1989), Bandeen-Roche & Liang (1996) for more details).

                                                                                                         12
Arthur CHARPENTIER, Distortion in actuarial sciences




3      Hierarchical Archimedean copulas
It is possible to look at C(u1 , · · · , ud ) defined as

    φ−1 [φ1 [φ−1 (φ2 [· · · φ−1 [φd−1 (u1 ) + φd−1 (u2 )] + · · · + φ2 (ud−1 ))] + φ1 (ud )]
     1        2              d−1

where φi are generators. C is a copula if φi ◦ φ−1 is the inverse of a Laplace
                                                i−1
transform. This copula is said to be a fully nested Archimedean (FNA) copula.
E.g. in dimension d = 5, we get

φ1 [φ1 (φ−1 [φ2 (φ−1 [φ3 (φ−1 [φ4 (u1 ) + φ4 (u2 )]) + φ3 (u3 )]) + φ2 (u4 )]) + φ1 (u5 )].
 −1
         2        3        4


It is also possible to consider partially nested Archimedean (PNA) copulas, e.g.
by coupling (U1 , U2 , U3 ), and (U4 , U5 ),

φ−1 [φ4 (φ−1 [φ1 (φ−1 [φ2 (u1 ) + φ2 (u2 )]) + φ1 (u3 )]) + φ4 (φ−1 [φ3 (u4 ) + φ3 (u5 )])]
 4        1        2                                             3

Again, it is a copula if φ2 ◦ φ−1 is the inverse of a Laplace transform, as well as
                               1
φ4 ◦ φ−1 and φ4 ◦ φ−1 .
      1             3


                                                                                               13
Arthur CHARPENTIER, Distortion in actuarial sciences




                                             φ1

                                     φ2                                   φ4

                               φ3                                   φ1

                         φ4                                   φ2                    φ3

                    U1        U2    U3      U4      U5   U1        U2    U3    U4        U5




Figure 1 – fully nested Archimedean copula, and partially nested Archimedean
copula.



                                                                                              14
Arthur CHARPENTIER, Distortion in actuarial sciences




It is also possible to consider

     φ−1 [φ3 (φ−1 [φ1 (u1 ) + φ1 (u2 ) + φ1 (u3 )]) + φ3 (φ−1 [φ2 (u4 ) + φ2 (u5 )])].
      3        1                                           2

if φ3 ◦ φ−1 and φ3 ◦ φ−1 are inverses of Laplace transform. Or
         1            2

      φ−1 [φ3 (φ−1 [φ1 (u1 ) + φ1 (u2 )] + φ3 (u3 ) + φ3 (φ−1 [φ2 (u4 ) + φ2 (u5 )])].
       3        1                                          2




                                                                                         15
Arthur CHARPENTIER, Distortion in actuarial sciences




                                      φ3                                  φ3

                             φ1                  φ2             φ1                  φ2

                    U1      U2      U3      U4        U5   U1        U2   U3   U4        U5




Figure 2 – Copules Archimédiennes hiérarchiques avec deux constructions dif-
férentes.




                                                                                              16
Arthur CHARPENTIER, Distortion in actuarial sciences




Example3
If φi ’s are Gumbel’s generators, with parameter θi , a sufficient condition for C to be a
FNA copula is that θi ’s increasing. Similarly if φi ’s are Clayton’s generators.
Again, an heuristic interpretation can be derived, see Hougaard (2000), with two
frailties Θ1 and Θ2 such that




                                                                                        17
Arthur CHARPENTIER, Distortion in actuarial sciences




4      Distorting copulas
Genest & Rivest (2001) extended the concept of Archimedean copulas
introducing the multivariate probability integral transformation (Wang, Nelsen &
Valdez (2005) called this the distorted copula, while Klement, Mesiar & Pap
(2005) or Durante & Sempi (2005) called this the transformed copula). Consider
a copula C. Let h be a continuous strictly concave increasing function
[0, 1] → [0, 1] satisfying h (0) = 0 and h (1) = 1, such that
              Dh (C) (u1 , · · · , ud ) = h−1 (C (h (u1 ) , · · · , h (ud ))), 0 ≤ ui ≤ 1
is a copula. Those functions will be called distortion functions.
Example4
A classical example is obtained when h is a power function, and when the power is the
inverse of an integer, hn (x) = x1/n , i.e.
                  Dhn (C) (u, v) = C n (u1/n , v 1/n ), 0 ≤ u, v ≤ 1 and n ∈ N.
Then this copula is the survival copula of the componentwise maxima : the copula of

                                                                                            18
Arthur CHARPENTIER, Distortion in actuarial sciences




(max{X1 , · · · , Xn }, max{Y1 , · · · , Yn }) is Dhn (C), where {(X1 , Y1 ), · · · , (Xn , Yn )}
is an i.i.d. sample, and the (Xi , Yi )’s have copula C.
A max-stable copula is a copula C such that ∀n ∈ N,
                                        1/n             1/n
                                C n (u1 , · · · , ud ) = C(u1 , · · · , ud ).

Example5
Let φ denote a convex decreasing function on (0, 1] such that φ(1) = 0, and define
C(u, v) = φ−1 (φ(u) + φ(v)) = Dexp[−φ] (C ⊥ ). This function is an Archimedean copula.
Example6
A distorted version of the comonontonic copula is the comonotonic copula,

                         h−1 [min{h(u1 ), · · · , h(ud )}] = min{u1 , · · · , ud }

Example7
Following the idea of Capéraà, Fougères & Genest (2000), it is possible to construct
Archimax copulas as distortions of max-stable copulas. In dimension d = 2, max-stable

                                                                                              19
Arthur CHARPENTIER, Distortion in actuarial sciences




copulas are characterized through a generator A such that
                                                          log(u)
                                C(u, v) = exp log(uv)A
                                                         log(uv)
Here consider φ an Archimedean generator, then Archimax copulas are defined as
                                                            φ(u)
                        C(u, v) = φ−1 [φ(u) + φ(v)]A
                                                         φ(u) + φ(v)

In the bivariate case, h need not be differentiable, and concavity is a sufficient
condition.




                                                                                20
Arthur CHARPENTIER, Distortion in actuarial sciences




With nonconcave distortion function, distorted copulas are semi-copulas, from
Bassan & Spizzichino (2001).
Definition4
Function S : [0, 1]d → [0, 1] is a semi-copula if 0 ≤ ui ≤ 1, i = 1, · · · , d,
                                         S(1, ..., 1, ui , 1, ..., 1) = ui ,                (3)
                                   S(u1 , ..., ui−1 , 0, ui+1 , ..., ud ) = 0,              (4)
and s → S(u1 , ..., ui−1 , s, ui+1 , ..., ud ) is increasing on [0, 1].
Let Hd denote the set of continuous strictly increasing functions [0, 1] → [0, 1]
such that h (0) = 0 and h (1) = 1, C ∈ C,
             Dh (C) (u1 , · · · , ud ) = h−1 (C (h (u1 ) , · · · , h (ud ))) , 0 ≤ ui ≤ 1
is a copula, called distorted copula.
Hd -copulas will be functions Dh (C) for some distortion function h and some
copula C.
d-increasingness of function Dh (C) is obtained when h ∈ Hd , i.e. h is continuous,

                                                                                            21
Arthur CHARPENTIER, Distortion in actuarial sciences




with h (0) = 0 and h (1) = 1, and such that h(k) (x) ≤ 0 for all x ∈ (0, 1) and
k = 2, 3, · · · , d (see Theorem 2.6 and 4.4 in Morillas (2005)).
As a corollary, note that if φ ∈ Φd , then h(x) = exp(−φ(x)) belongs to Hd .
Further, observe that for h, h ∈ Hd ,

           Dh◦h (C) (u1 , · · · , ud ) = (Dh ◦ Dh ) (C) (u1 , · · · , ud ) , 0 ≤ ui ≤ 1.

Again, it is possible to get an intuitive interpretation of that distortion.
Consider a max-stable copula C. Let X be a random vector such that X given Θ
                                          Θ
has copula C and P (Xi ≤ xi |Θ) = Gi (xi ) , i = 1, · · · , d.
Then, the (unconditional) joint distribution function of X is given by

 F (x)      =      E (P (X1 ≤ x1 , · · · , Xd ≤ xd |Θ))
            =      E (C (P (X1 ≤ xi |Θ) , · · · , P (Xd ≤ xd |Θ)))
                                        Θ               Θ
            =      E C G1 (x1 ) , · · · , Gd (xd )          = E C Θ (G1 (x1 ) , · · · , Gd (xd ))
            =      ψ (− log C (G1 (x1 ) , · · · , Gd (xd ))) ,

                                                                                                22
Arthur CHARPENTIER, Distortion in actuarial sciences




where ψ is the Laplace transform of the distribution of Θ, i.e.
ψ (t) = E (exp (−tΘ)), since C is a max-stable copula, i.e.
                                Θ                       Θ
                C G1 (x1 ) , · · · , Gd (xd )               = C Θ (G1 (x1 ) , · · · , Gd (xd )) .

The unconditional marginal distribution functions are Fi (xi ) = ψ (− log Gi (xi )),
and therefore

         CX (x1 , · · · , xd ) = ψ − log C exp −ψ −1 (x) , exp −ψ −1 (y)                            .

Note that since ψ −1 is completly montone, then h belongs to Hd .




                                                                                                        23
Arthur CHARPENTIER, Distortion in actuarial sciences




Remark2
It is possible to use distortion to obtain stronger tail dependence (with results that can be
related to C & Segers (2007)). Recall that
                                       C(u, u)              1 − C(u, u)
                          λL = lim             and λU = lim             .
                                   u→0   u              u→1    1−u
If h−1 is regularly varying in 0 with exponent α > 0, i.e. h−1 (t) ∼ L0 tα in 0, then
λL (Dh (C)) = [λL (C)]α .
If h−1 is regularly varying in 1 with exponent β > 0, i.e. 1 − h−1 (t) ∼ L0 [1 − t]β in 1,
then λU (Dh (C)) = 2 − [2 − λU (C)]β .




                                                                                         24
Arthur CHARPENTIER, Distortion in actuarial sciences




5      Application to multivariate risk measure
Wang (1996) proposed the risk measure based on distortion function
g(t) = Φ(Φ−1 (t) − λ), with λ ≥ 0 (to be convex).
Valdez (2009) suggested a multivariate distortion.




                                                                     25
Arthur CHARPENTIER, Distortion in actuarial sciences




6      Application to aging problems
Let T = (T1 , · · · , Td ) denote remaining lifetime, at time t = 0. Consider the
conditional distribution

                                (T1 , · · · , Td ) given T1 > t, · · · , Td > t

for some t > 0.
Let C denote the survival copula of T ,

                 P(T1 > t1 , · · · , Td > td ) = C(P(T1 > t1 ), · · · , P(T1 > tc )).

The survival copula of the conditional distribution is the copula of

                   (U1 , · · · , Ud ) given U1 < F 1 (t) , · · · ,underbraceF d (t)ud
                                                        u1

where (U1 , · · · , Ud ) has distribution C , and where Fi is the distribution of Ti

                                                                                        26
Arthur CHARPENTIER, Distortion in actuarial sciences




Let C be a copula and let U be a random vector with joint distribution function
C. Let u ∈ (0, 1]d be such that C(u) > 0. The lower tail dependence copula of C
at level u is defined as the copula, denoted Cu , of the joint distribution of U
conditionally on the event {U ≤ u} = {U1 ≤ u1 , · · · , Ud ≤ ud }.


6.1      Aging with Archimedean copulas

If C is a strict Archimedean copula with generator φ (i.e. φ(0) = ∞), then the
lower tail dependence copula relative to C at level u is given by the strict
Archimedean copula with generator φu defined by

                             φu (t) = φ(t · C(u)) − φ(C(u)), 0 ≤ t ≤ 1,

where C(u) = φ−1 [φ(u1 ) + · · · + φ(ud )] (see Juri & Wüthrich (2002) or C & Juri
(2007)).


                                                                               27
Arthur CHARPENTIER, Distortion in actuarial sciences




Example8
                                                           θ
Gumbel copulas have generator φ (t) = [− ln t] where θ ≥ 1. For any u ∈ (0, 1]d , the
corresponding conditional copula has generator
                                          θ
                           1/θ                                          θ                 θ
        φu (t) = M               − ln t       − M where M = [− ln u1 ] + · · · + [− ln ud ] .

Example9
Clayton copulas C have generator φ (t) = t−θ − 1 where θ > 0. Hence,

φu (t) = [t·C(u)]−θ −1−φ(C(u)) = t−θ ·C(u)−θ −1−[C(u)−θ −1] = C(u)−θ ·[t−θ −1],

hence φu (t) = C(u)−θ · φ(t). Since the generator of an Archimedean copula is unique
up to a multiplicative constant, φu is also the generator of Clayton copula, with
parameter θ.
Theorem3
Consider X with Archimedean copula, having a factor representation, and let ψ denote
the Laplace transform of the heterogeneity factor Θ. Let u ∈ (0, 1]d , then X given
       −1                                          −1                      −1
X ≤ FX (u) (in the pointwise sense, i.e. X1 ≤ F1 (u1 ), · · · ., Xd ≤ Fd (ud )) is an

                                                                                                28
Arthur CHARPENTIER, Distortion in actuarial sciences




Archimedean copula with a factor representation, where the factor has Laplace transform
                                               ψ t + ψ −1 (C(u))
                                      ψu (t) =                   .
                                                     C(u)


6.2      Aging with distorted copulas copulas
Recall that Hd -copulas are defined as

               Dh (C)(u1 , · · · , ud ) = h−1 (C(h(u1 ), · · · , h(ud ))), 0 ≤ ui ≤ 1,

where C is a copula, and h ∈ Hd is a d-distortion function.
Assume that there exists a positive random variable Θ, such that, conditionally
on Θ, random vector X = (X1 , · · · , Xd ) has copula C, which does not depend on
Θ. Assume moreover that C is in extreme value copula, or max-stable copula (see
e.g. Joe (1997)) : C xh , · · · , xh = C h (x1 , · · · , xd ) for all h ≥ 0. The following
                      1            d
result holds,
Lemma1

                                                                                         29
Arthur CHARPENTIER, Distortion in actuarial sciences




Let Θ be a random variable with Laplace transform ψ, and consider a random vector
X = (X1 , · · · , Xd ) such that X given Θ has copula C, an extreme value copula.
                                                                Θ
Assume that, for all i = 1, · · · , d, P (Xi ≤ xi |Θ) = Gi (xi ) where the Gi ’s are
distribution functions. Then X has copula
    CX (x1 , · · · , xd ) = ψ − log C exp −ψ −1 (x1 ) , · · · , exp −ψ −1 (xd )     ,
whose copula is of the form Dh (C) with h(·) = exp −ψ −1 (·) .
Theorem4
Let X be a random vector with an Hd -copula with a factor representation, let ψ denote
the Laplace transform of the heterogeneity factor Θ, C denote the underlying copula, and
Gi ’s the marginal distributions.
                                                   −1
Let u ∈ (0, 1]d , then, the copula of X given X ≤ FX (u) is
                             −1                      −1
CX,u (x) = ψu − log Cu exp −ψu (x1 ) , · · · , exp −ψu (xd )                = Dhu (Cu )(x),
                        −1
where hu (·) = exp −ψu (·) , and where
– ψu is the Laplace transform defined as ψu (t) = ψ (t + α) /ψ (α) where
  α = − log (C (u∗ )), u∗ = exp −ψ −1 (ui ) for all i = 1, · · · , d. Hence, ψu is the
                         i

                                                                                        30
Arthur CHARPENTIER, Distortion in actuarial sciences




                                    −1
  Laplace transform of Θ given X ≤ FX (u),
                     −1                Θ
– P Xi ≤ xi |X ≤ FX (u) , Θ = Gi (xi ) for all i = 1, · · · , d, where

                                          C (u∗ , u∗ , · · · , Gi (xi ) , · · · , u∗ )
                                              1     2                              d
                               Gi (xi ) =                                              ,
                                            C (u∗ , u∗ , · · · , u∗ , · · · , u∗ )
                                                  1     2          i            d

– and Cu is the following copula
                                      C G1 G1 −1 (x1 ) , · · · , Gd Gd −1 (xd )
                       Cu (x) =                  −1                           −1           .
                                        C    G1 F1      (u1 ) , · · ·   , Gd Fd    (ud )




                                                                                               31

Más contenido relacionado

La actualidad más candente (20)

Berlin
BerlinBerlin
Berlin
 
Slides sales-forecasting-session2-web
Slides sales-forecasting-session2-webSlides sales-forecasting-session2-web
Slides sales-forecasting-session2-web
 
Lundi 16h15-copules-charpentier
Lundi 16h15-copules-charpentierLundi 16h15-copules-charpentier
Lundi 16h15-copules-charpentier
 
Slides compiegne
Slides compiegneSlides compiegne
Slides compiegne
 
Slides univ-van-amsterdam
Slides univ-van-amsterdamSlides univ-van-amsterdam
Slides univ-van-amsterdam
 
Slides erasmus
Slides erasmusSlides erasmus
Slides erasmus
 
Slides ihp
Slides ihpSlides ihp
Slides ihp
 
Slides edf-1
Slides edf-1Slides edf-1
Slides edf-1
 
100 things I know
100 things I know100 things I know
100 things I know
 
Slides dauphine
Slides dauphineSlides dauphine
Slides dauphine
 
Sildes buenos aires
Sildes buenos airesSildes buenos aires
Sildes buenos aires
 
Proba stats-r1-2017
Proba stats-r1-2017Proba stats-r1-2017
Proba stats-r1-2017
 
Quantile and Expectile Regression
Quantile and Expectile RegressionQuantile and Expectile Regression
Quantile and Expectile Regression
 
Slides risk-rennes
Slides risk-rennesSlides risk-rennes
Slides risk-rennes
 
Slides lausanne-2013-v2
Slides lausanne-2013-v2Slides lausanne-2013-v2
Slides lausanne-2013-v2
 
Slides smart-2015
Slides smart-2015Slides smart-2015
Slides smart-2015
 
Slides erm
Slides ermSlides erm
Slides erm
 
NONLINEAR DIFFERENCE EQUATIONS WITH SMALL PARAMETERS OF MULTIPLE SCALES
NONLINEAR DIFFERENCE EQUATIONS WITH SMALL PARAMETERS OF MULTIPLE SCALESNONLINEAR DIFFERENCE EQUATIONS WITH SMALL PARAMETERS OF MULTIPLE SCALES
NONLINEAR DIFFERENCE EQUATIONS WITH SMALL PARAMETERS OF MULTIPLE SCALES
 
Slides irisa
Slides irisaSlides irisa
Slides irisa
 
Slides lln-risques
Slides lln-risquesSlides lln-risques
Slides lln-risques
 

Destacado

Conflict4 securingoil-100104005640-phpapp02
Conflict4 securingoil-100104005640-phpapp02Conflict4 securingoil-100104005640-phpapp02
Conflict4 securingoil-100104005640-phpapp02Philippe Porta
 
A+guide+for+employers+what+to+do+if+a+worker+is+injured
A+guide+for+employers+what+to+do+if+a+worker+is+injuredA+guide+for+employers+what+to+do+if+a+worker+is+injured
A+guide+for+employers+what+to+do+if+a+worker+is+injuredPhilippe Porta
 
Measuring progress of the green economy
Measuring progress of the green economyMeasuring progress of the green economy
Measuring progress of the green economyPhilippe Porta
 
Herbertsmith energymarketrk2012-120401164817-phpapp02
Herbertsmith energymarketrk2012-120401164817-phpapp02Herbertsmith energymarketrk2012-120401164817-phpapp02
Herbertsmith energymarketrk2012-120401164817-phpapp02Philippe Porta
 

Destacado (7)

Conflict4 securingoil-100104005640-phpapp02
Conflict4 securingoil-100104005640-phpapp02Conflict4 securingoil-100104005640-phpapp02
Conflict4 securingoil-100104005640-phpapp02
 
A+guide+for+employers+what+to+do+if+a+worker+is+injured
A+guide+for+employers+what+to+do+if+a+worker+is+injuredA+guide+for+employers+what+to+do+if+a+worker+is+injured
A+guide+for+employers+what+to+do+if+a+worker+is+injured
 
Eu ohas-report2007
Eu ohas-report2007Eu ohas-report2007
Eu ohas-report2007
 
25 june 2012 er day
25 june 2012   er day25 june 2012   er day
25 june 2012 er day
 
Measuring progress of the green economy
Measuring progress of the green economyMeasuring progress of the green economy
Measuring progress of the green economy
 
Herbertsmith energymarketrk2012-120401164817-phpapp02
Herbertsmith energymarketrk2012-120401164817-phpapp02Herbertsmith energymarketrk2012-120401164817-phpapp02
Herbertsmith energymarketrk2012-120401164817-phpapp02
 
Agnathan (By: J.Q)
Agnathan (By: J.Q)Agnathan (By: J.Q)
Agnathan (By: J.Q)
 

Similar a Slides 110406105147-phpapp01

Intro probability 2
Intro probability 2Intro probability 2
Intro probability 2Phong Vo
 
Finance Enginering from Columbia.pdf
Finance Enginering from Columbia.pdfFinance Enginering from Columbia.pdf
Finance Enginering from Columbia.pdfCarlosLazo45
 
Introduction to Stochastic calculus
Introduction to Stochastic calculusIntroduction to Stochastic calculus
Introduction to Stochastic calculusAshwin Rao
 
Distributionworkshop 2.pptx
Distributionworkshop 2.pptxDistributionworkshop 2.pptx
Distributionworkshop 2.pptxnagalakshmig4
 
GradStudentSeminarSept30
GradStudentSeminarSept30GradStudentSeminarSept30
GradStudentSeminarSept30Ryan White
 
Multivariate Distributions, an overview
Multivariate Distributions, an overviewMultivariate Distributions, an overview
Multivariate Distributions, an overviewArthur Charpentier
 
Actuarial Science Reference Sheet
Actuarial Science Reference SheetActuarial Science Reference Sheet
Actuarial Science Reference SheetDaniel Nolan
 
Statistics (1): estimation Chapter 3: likelihood function and likelihood esti...
Statistics (1): estimation Chapter 3: likelihood function and likelihood esti...Statistics (1): estimation Chapter 3: likelihood function and likelihood esti...
Statistics (1): estimation Chapter 3: likelihood function and likelihood esti...Christian Robert
 
Slides econometrics-2018-graduate-4
Slides econometrics-2018-graduate-4Slides econometrics-2018-graduate-4
Slides econometrics-2018-graduate-4Arthur Charpentier
 
ON OPTIMALITY OF THE INDEX OF SUM, PRODUCT, MAXIMUM, AND MINIMUM OF FINITE BA...
ON OPTIMALITY OF THE INDEX OF SUM, PRODUCT, MAXIMUM, AND MINIMUM OF FINITE BA...ON OPTIMALITY OF THE INDEX OF SUM, PRODUCT, MAXIMUM, AND MINIMUM OF FINITE BA...
ON OPTIMALITY OF THE INDEX OF SUM, PRODUCT, MAXIMUM, AND MINIMUM OF FINITE BA...UniversitasGadjahMada
 
Higher-Order (F, α, β, ρ, d) –Convexity for Multiobjective Programming Problem
Higher-Order (F, α, β, ρ, d) –Convexity for Multiobjective Programming ProblemHigher-Order (F, α, β, ρ, d) –Convexity for Multiobjective Programming Problem
Higher-Order (F, α, β, ρ, d) –Convexity for Multiobjective Programming Probleminventionjournals
 
Hybrid Atlas Models of Financial Equity Market
Hybrid Atlas Models of Financial Equity MarketHybrid Atlas Models of Financial Equity Market
Hybrid Atlas Models of Financial Equity Markettomoyukiichiba
 

Similar a Slides 110406105147-phpapp01 (20)

Slides ensae 8
Slides ensae 8Slides ensae 8
Slides ensae 8
 
Slides ensae-2016-8
Slides ensae-2016-8Slides ensae-2016-8
Slides ensae-2016-8
 
Intro probability 2
Intro probability 2Intro probability 2
Intro probability 2
 
Finance Enginering from Columbia.pdf
Finance Enginering from Columbia.pdfFinance Enginering from Columbia.pdf
Finance Enginering from Columbia.pdf
 
Introduction to Stochastic calculus
Introduction to Stochastic calculusIntroduction to Stochastic calculus
Introduction to Stochastic calculus
 
Distributionworkshop 2.pptx
Distributionworkshop 2.pptxDistributionworkshop 2.pptx
Distributionworkshop 2.pptx
 
Mcgill3
Mcgill3Mcgill3
Mcgill3
 
GradStudentSeminarSept30
GradStudentSeminarSept30GradStudentSeminarSept30
GradStudentSeminarSept30
 
Multivariate Distributions, an overview
Multivariate Distributions, an overviewMultivariate Distributions, an overview
Multivariate Distributions, an overview
 
Slides erm-cea-ia
Slides erm-cea-iaSlides erm-cea-ia
Slides erm-cea-ia
 
Slides erm-cea-ia
Slides erm-cea-iaSlides erm-cea-ia
Slides erm-cea-ia
 
Actuarial Science Reference Sheet
Actuarial Science Reference SheetActuarial Science Reference Sheet
Actuarial Science Reference Sheet
 
Statistics (1): estimation Chapter 3: likelihood function and likelihood esti...
Statistics (1): estimation Chapter 3: likelihood function and likelihood esti...Statistics (1): estimation Chapter 3: likelihood function and likelihood esti...
Statistics (1): estimation Chapter 3: likelihood function and likelihood esti...
 
Distributions
DistributionsDistributions
Distributions
 
Slides econometrics-2018-graduate-4
Slides econometrics-2018-graduate-4Slides econometrics-2018-graduate-4
Slides econometrics-2018-graduate-4
 
ON OPTIMALITY OF THE INDEX OF SUM, PRODUCT, MAXIMUM, AND MINIMUM OF FINITE BA...
ON OPTIMALITY OF THE INDEX OF SUM, PRODUCT, MAXIMUM, AND MINIMUM OF FINITE BA...ON OPTIMALITY OF THE INDEX OF SUM, PRODUCT, MAXIMUM, AND MINIMUM OF FINITE BA...
ON OPTIMALITY OF THE INDEX OF SUM, PRODUCT, MAXIMUM, AND MINIMUM OF FINITE BA...
 
MUMS: Bayesian, Fiducial, and Frequentist Conference - Statistical Sparsity, ...
MUMS: Bayesian, Fiducial, and Frequentist Conference - Statistical Sparsity, ...MUMS: Bayesian, Fiducial, and Frequentist Conference - Statistical Sparsity, ...
MUMS: Bayesian, Fiducial, and Frequentist Conference - Statistical Sparsity, ...
 
CLIM Fall 2017 Course: Statistics for Climate Research, Statistics of Climate...
CLIM Fall 2017 Course: Statistics for Climate Research, Statistics of Climate...CLIM Fall 2017 Course: Statistics for Climate Research, Statistics of Climate...
CLIM Fall 2017 Course: Statistics for Climate Research, Statistics of Climate...
 
Higher-Order (F, α, β, ρ, d) –Convexity for Multiobjective Programming Problem
Higher-Order (F, α, β, ρ, d) –Convexity for Multiobjective Programming ProblemHigher-Order (F, α, β, ρ, d) –Convexity for Multiobjective Programming Problem
Higher-Order (F, α, β, ρ, d) –Convexity for Multiobjective Programming Problem
 
Hybrid Atlas Models of Financial Equity Market
Hybrid Atlas Models of Financial Equity MarketHybrid Atlas Models of Financial Equity Market
Hybrid Atlas Models of Financial Equity Market
 

Más de Philippe Porta

Chiffres cles 2011 amts
Chiffres cles 2011 amtsChiffres cles 2011 amts
Chiffres cles 2011 amtsPhilippe Porta
 
Guide direccte version-2-002_2012-09-21_
Guide direccte version-2-002_2012-09-21_Guide direccte version-2-002_2012-09-21_
Guide direccte version-2-002_2012-09-21_Philippe Porta
 
Economie verte numerique
Economie verte numeriqueEconomie verte numerique
Economie verte numeriquePhilippe Porta
 
Cogeo médiation fehap ccn 51
Cogeo   médiation fehap ccn 51Cogeo   médiation fehap ccn 51
Cogeo médiation fehap ccn 51Philippe Porta
 
Cogeo news 13 juillet 2012
Cogeo news 13 juillet 2012Cogeo news 13 juillet 2012
Cogeo news 13 juillet 2012Philippe Porta
 
Cogeo news 29 juin 2012
Cogeo news 29 juin 2012Cogeo news 29 juin 2012
Cogeo news 29 juin 2012Philippe Porta
 
Green economy unep report final dec2011
Green economy unep report final dec2011Green economy unep report final dec2011
Green economy unep report final dec2011Philippe Porta
 
The business case for the green economy
The business case for the green economyThe business case for the green economy
The business case for the green economyPhilippe Porta
 
Insee stratégie nationale dd 2010 2013
Insee stratégie nationale dd 2010 2013Insee stratégie nationale dd 2010 2013
Insee stratégie nationale dd 2010 2013Philippe Porta
 
Insee economie verte en france
Insee   economie verte en franceInsee   economie verte en france
Insee economie verte en francePhilippe Porta
 
La fonction rh fiche de lecture du cnam
La fonction rh   fiche de lecture du cnamLa fonction rh   fiche de lecture du cnam
La fonction rh fiche de lecture du cnamPhilippe Porta
 
State of green business report 2012
State of green business report 2012State of green business report 2012
State of green business report 2012Philippe Porta
 
Guide meilleuresinnovations2011
Guide meilleuresinnovations2011Guide meilleuresinnovations2011
Guide meilleuresinnovations2011Philippe Porta
 
Flexibilite responsable depasser_dualisme_du_marche_du_travail
Flexibilite responsable depasser_dualisme_du_marche_du_travailFlexibilite responsable depasser_dualisme_du_marche_du_travail
Flexibilite responsable depasser_dualisme_du_marche_du_travailPhilippe Porta
 
Economie verte numérique innovation 2011
Economie verte numérique innovation 2011Economie verte numérique innovation 2011
Economie verte numérique innovation 2011Philippe Porta
 
Deloitte zero impact_monitor_2012
Deloitte zero impact_monitor_2012Deloitte zero impact_monitor_2012
Deloitte zero impact_monitor_2012Philippe Porta
 
Documentation française le numérique au service de l'économie verte
Documentation française   le numérique au service de l'économie verteDocumentation française   le numérique au service de l'économie verte
Documentation française le numérique au service de l'économie vertePhilippe Porta
 
Présence de la chine au kz
Présence de la chine au kzPrésence de la chine au kz
Présence de la chine au kzPhilippe Porta
 
Guide étude sectorielle
Guide étude sectorielleGuide étude sectorielle
Guide étude sectoriellePhilippe Porta
 
Conferencesolvabilit2ia2011 13106513506574-phpapp01-110714085354-phpapp01
Conferencesolvabilit2ia2011 13106513506574-phpapp01-110714085354-phpapp01Conferencesolvabilit2ia2011 13106513506574-phpapp01-110714085354-phpapp01
Conferencesolvabilit2ia2011 13106513506574-phpapp01-110714085354-phpapp01Philippe Porta
 

Más de Philippe Porta (20)

Chiffres cles 2011 amts
Chiffres cles 2011 amtsChiffres cles 2011 amts
Chiffres cles 2011 amts
 
Guide direccte version-2-002_2012-09-21_
Guide direccte version-2-002_2012-09-21_Guide direccte version-2-002_2012-09-21_
Guide direccte version-2-002_2012-09-21_
 
Economie verte numerique
Economie verte numeriqueEconomie verte numerique
Economie verte numerique
 
Cogeo médiation fehap ccn 51
Cogeo   médiation fehap ccn 51Cogeo   médiation fehap ccn 51
Cogeo médiation fehap ccn 51
 
Cogeo news 13 juillet 2012
Cogeo news 13 juillet 2012Cogeo news 13 juillet 2012
Cogeo news 13 juillet 2012
 
Cogeo news 29 juin 2012
Cogeo news 29 juin 2012Cogeo news 29 juin 2012
Cogeo news 29 juin 2012
 
Green economy unep report final dec2011
Green economy unep report final dec2011Green economy unep report final dec2011
Green economy unep report final dec2011
 
The business case for the green economy
The business case for the green economyThe business case for the green economy
The business case for the green economy
 
Insee stratégie nationale dd 2010 2013
Insee stratégie nationale dd 2010 2013Insee stratégie nationale dd 2010 2013
Insee stratégie nationale dd 2010 2013
 
Insee economie verte en france
Insee   economie verte en franceInsee   economie verte en france
Insee economie verte en france
 
La fonction rh fiche de lecture du cnam
La fonction rh   fiche de lecture du cnamLa fonction rh   fiche de lecture du cnam
La fonction rh fiche de lecture du cnam
 
State of green business report 2012
State of green business report 2012State of green business report 2012
State of green business report 2012
 
Guide meilleuresinnovations2011
Guide meilleuresinnovations2011Guide meilleuresinnovations2011
Guide meilleuresinnovations2011
 
Flexibilite responsable depasser_dualisme_du_marche_du_travail
Flexibilite responsable depasser_dualisme_du_marche_du_travailFlexibilite responsable depasser_dualisme_du_marche_du_travail
Flexibilite responsable depasser_dualisme_du_marche_du_travail
 
Economie verte numérique innovation 2011
Economie verte numérique innovation 2011Economie verte numérique innovation 2011
Economie verte numérique innovation 2011
 
Deloitte zero impact_monitor_2012
Deloitte zero impact_monitor_2012Deloitte zero impact_monitor_2012
Deloitte zero impact_monitor_2012
 
Documentation française le numérique au service de l'économie verte
Documentation française   le numérique au service de l'économie verteDocumentation française   le numérique au service de l'économie verte
Documentation française le numérique au service de l'économie verte
 
Présence de la chine au kz
Présence de la chine au kzPrésence de la chine au kz
Présence de la chine au kz
 
Guide étude sectorielle
Guide étude sectorielleGuide étude sectorielle
Guide étude sectorielle
 
Conferencesolvabilit2ia2011 13106513506574-phpapp01-110714085354-phpapp01
Conferencesolvabilit2ia2011 13106513506574-phpapp01-110714085354-phpapp01Conferencesolvabilit2ia2011 13106513506574-phpapp01-110714085354-phpapp01
Conferencesolvabilit2ia2011 13106513506574-phpapp01-110714085354-phpapp01
 

Último

Stock Market Brief Deck (Under Pressure).pdf
Stock Market Brief Deck (Under Pressure).pdfStock Market Brief Deck (Under Pressure).pdf
Stock Market Brief Deck (Under Pressure).pdfMichael Silva
 
WhatsApp 📞 Call : 9892124323 ✅Call Girls In Chembur ( Mumbai ) secure service
WhatsApp 📞 Call : 9892124323  ✅Call Girls In Chembur ( Mumbai ) secure serviceWhatsApp 📞 Call : 9892124323  ✅Call Girls In Chembur ( Mumbai ) secure service
WhatsApp 📞 Call : 9892124323 ✅Call Girls In Chembur ( Mumbai ) secure servicePooja Nehwal
 
Solution Manual for Financial Accounting, 11th Edition by Robert Libby, Patri...
Solution Manual for Financial Accounting, 11th Edition by Robert Libby, Patri...Solution Manual for Financial Accounting, 11th Edition by Robert Libby, Patri...
Solution Manual for Financial Accounting, 11th Edition by Robert Libby, Patri...ssifa0344
 
Log your LOA pain with Pension Lab's brilliant campaign
Log your LOA pain with Pension Lab's brilliant campaignLog your LOA pain with Pension Lab's brilliant campaign
Log your LOA pain with Pension Lab's brilliant campaignHenry Tapper
 
High Class Call Girls Nashik Maya 7001305949 Independent Escort Service Nashik
High Class Call Girls Nashik Maya 7001305949 Independent Escort Service NashikHigh Class Call Girls Nashik Maya 7001305949 Independent Escort Service Nashik
High Class Call Girls Nashik Maya 7001305949 Independent Escort Service NashikCall Girls in Nagpur High Profile
 
TEST BANK For Corporate Finance, 13th Edition By Stephen Ross, Randolph Weste...
TEST BANK For Corporate Finance, 13th Edition By Stephen Ross, Randolph Weste...TEST BANK For Corporate Finance, 13th Edition By Stephen Ross, Randolph Weste...
TEST BANK For Corporate Finance, 13th Edition By Stephen Ross, Randolph Weste...ssifa0344
 
The Economic History of the U.S. Lecture 30.pdf
The Economic History of the U.S. Lecture 30.pdfThe Economic History of the U.S. Lecture 30.pdf
The Economic History of the U.S. Lecture 30.pdfGale Pooley
 
Pooja 9892124323 : Call Girl in Juhu Escorts Service Free Home Delivery
Pooja 9892124323 : Call Girl in Juhu Escorts Service Free Home DeliveryPooja 9892124323 : Call Girl in Juhu Escorts Service Free Home Delivery
Pooja 9892124323 : Call Girl in Juhu Escorts Service Free Home DeliveryPooja Nehwal
 
High Class Call Girls Nagpur Grishma Call 7001035870 Meet With Nagpur Escorts
High Class Call Girls Nagpur Grishma Call 7001035870 Meet With Nagpur EscortsHigh Class Call Girls Nagpur Grishma Call 7001035870 Meet With Nagpur Escorts
High Class Call Girls Nagpur Grishma Call 7001035870 Meet With Nagpur Escortsranjana rawat
 
Booking open Available Pune Call Girls Talegaon Dabhade 6297143586 Call Hot ...
Booking open Available Pune Call Girls Talegaon Dabhade  6297143586 Call Hot ...Booking open Available Pune Call Girls Talegaon Dabhade  6297143586 Call Hot ...
Booking open Available Pune Call Girls Talegaon Dabhade 6297143586 Call Hot ...Call Girls in Nagpur High Profile
 
The Economic History of the U.S. Lecture 21.pdf
The Economic History of the U.S. Lecture 21.pdfThe Economic History of the U.S. Lecture 21.pdf
The Economic History of the U.S. Lecture 21.pdfGale Pooley
 
The Economic History of the U.S. Lecture 20.pdf
The Economic History of the U.S. Lecture 20.pdfThe Economic History of the U.S. Lecture 20.pdf
The Economic History of the U.S. Lecture 20.pdfGale Pooley
 
Vip Call US 📞 7738631006 ✅Call Girls In Sakinaka ( Mumbai )
Vip Call US 📞 7738631006 ✅Call Girls In Sakinaka ( Mumbai )Vip Call US 📞 7738631006 ✅Call Girls In Sakinaka ( Mumbai )
Vip Call US 📞 7738631006 ✅Call Girls In Sakinaka ( Mumbai )Pooja Nehwal
 
06_Joeri Van Speybroek_Dell_MeetupDora&Cybersecurity.pdf
06_Joeri Van Speybroek_Dell_MeetupDora&Cybersecurity.pdf06_Joeri Van Speybroek_Dell_MeetupDora&Cybersecurity.pdf
06_Joeri Van Speybroek_Dell_MeetupDora&Cybersecurity.pdfFinTech Belgium
 
VIP Call Girls Service Dilsukhnagar Hyderabad Call +91-8250192130
VIP Call Girls Service Dilsukhnagar Hyderabad Call +91-8250192130VIP Call Girls Service Dilsukhnagar Hyderabad Call +91-8250192130
VIP Call Girls Service Dilsukhnagar Hyderabad Call +91-8250192130Suhani Kapoor
 
Call Girls Koregaon Park Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Koregaon Park Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Koregaon Park Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Koregaon Park Call Me 7737669865 Budget Friendly No Advance Bookingroncy bisnoi
 
20240429 Calibre April 2024 Investor Presentation.pdf
20240429 Calibre April 2024 Investor Presentation.pdf20240429 Calibre April 2024 Investor Presentation.pdf
20240429 Calibre April 2024 Investor Presentation.pdfAdnet Communications
 
02_Fabio Colombo_Accenture_MeetupDora&Cybersecurity.pptx
02_Fabio Colombo_Accenture_MeetupDora&Cybersecurity.pptx02_Fabio Colombo_Accenture_MeetupDora&Cybersecurity.pptx
02_Fabio Colombo_Accenture_MeetupDora&Cybersecurity.pptxFinTech Belgium
 
Dividend Policy and Dividend Decision Theories.pptx
Dividend Policy and Dividend Decision Theories.pptxDividend Policy and Dividend Decision Theories.pptx
Dividend Policy and Dividend Decision Theories.pptxanshikagoel52
 

Último (20)

Stock Market Brief Deck (Under Pressure).pdf
Stock Market Brief Deck (Under Pressure).pdfStock Market Brief Deck (Under Pressure).pdf
Stock Market Brief Deck (Under Pressure).pdf
 
WhatsApp 📞 Call : 9892124323 ✅Call Girls In Chembur ( Mumbai ) secure service
WhatsApp 📞 Call : 9892124323  ✅Call Girls In Chembur ( Mumbai ) secure serviceWhatsApp 📞 Call : 9892124323  ✅Call Girls In Chembur ( Mumbai ) secure service
WhatsApp 📞 Call : 9892124323 ✅Call Girls In Chembur ( Mumbai ) secure service
 
Solution Manual for Financial Accounting, 11th Edition by Robert Libby, Patri...
Solution Manual for Financial Accounting, 11th Edition by Robert Libby, Patri...Solution Manual for Financial Accounting, 11th Edition by Robert Libby, Patri...
Solution Manual for Financial Accounting, 11th Edition by Robert Libby, Patri...
 
Log your LOA pain with Pension Lab's brilliant campaign
Log your LOA pain with Pension Lab's brilliant campaignLog your LOA pain with Pension Lab's brilliant campaign
Log your LOA pain with Pension Lab's brilliant campaign
 
High Class Call Girls Nashik Maya 7001305949 Independent Escort Service Nashik
High Class Call Girls Nashik Maya 7001305949 Independent Escort Service NashikHigh Class Call Girls Nashik Maya 7001305949 Independent Escort Service Nashik
High Class Call Girls Nashik Maya 7001305949 Independent Escort Service Nashik
 
TEST BANK For Corporate Finance, 13th Edition By Stephen Ross, Randolph Weste...
TEST BANK For Corporate Finance, 13th Edition By Stephen Ross, Randolph Weste...TEST BANK For Corporate Finance, 13th Edition By Stephen Ross, Randolph Weste...
TEST BANK For Corporate Finance, 13th Edition By Stephen Ross, Randolph Weste...
 
The Economic History of the U.S. Lecture 30.pdf
The Economic History of the U.S. Lecture 30.pdfThe Economic History of the U.S. Lecture 30.pdf
The Economic History of the U.S. Lecture 30.pdf
 
Pooja 9892124323 : Call Girl in Juhu Escorts Service Free Home Delivery
Pooja 9892124323 : Call Girl in Juhu Escorts Service Free Home DeliveryPooja 9892124323 : Call Girl in Juhu Escorts Service Free Home Delivery
Pooja 9892124323 : Call Girl in Juhu Escorts Service Free Home Delivery
 
Veritas Interim Report 1 January–31 March 2024
Veritas Interim Report 1 January–31 March 2024Veritas Interim Report 1 January–31 March 2024
Veritas Interim Report 1 January–31 March 2024
 
High Class Call Girls Nagpur Grishma Call 7001035870 Meet With Nagpur Escorts
High Class Call Girls Nagpur Grishma Call 7001035870 Meet With Nagpur EscortsHigh Class Call Girls Nagpur Grishma Call 7001035870 Meet With Nagpur Escorts
High Class Call Girls Nagpur Grishma Call 7001035870 Meet With Nagpur Escorts
 
Booking open Available Pune Call Girls Talegaon Dabhade 6297143586 Call Hot ...
Booking open Available Pune Call Girls Talegaon Dabhade  6297143586 Call Hot ...Booking open Available Pune Call Girls Talegaon Dabhade  6297143586 Call Hot ...
Booking open Available Pune Call Girls Talegaon Dabhade 6297143586 Call Hot ...
 
The Economic History of the U.S. Lecture 21.pdf
The Economic History of the U.S. Lecture 21.pdfThe Economic History of the U.S. Lecture 21.pdf
The Economic History of the U.S. Lecture 21.pdf
 
The Economic History of the U.S. Lecture 20.pdf
The Economic History of the U.S. Lecture 20.pdfThe Economic History of the U.S. Lecture 20.pdf
The Economic History of the U.S. Lecture 20.pdf
 
Vip Call US 📞 7738631006 ✅Call Girls In Sakinaka ( Mumbai )
Vip Call US 📞 7738631006 ✅Call Girls In Sakinaka ( Mumbai )Vip Call US 📞 7738631006 ✅Call Girls In Sakinaka ( Mumbai )
Vip Call US 📞 7738631006 ✅Call Girls In Sakinaka ( Mumbai )
 
06_Joeri Van Speybroek_Dell_MeetupDora&Cybersecurity.pdf
06_Joeri Van Speybroek_Dell_MeetupDora&Cybersecurity.pdf06_Joeri Van Speybroek_Dell_MeetupDora&Cybersecurity.pdf
06_Joeri Van Speybroek_Dell_MeetupDora&Cybersecurity.pdf
 
VIP Call Girls Service Dilsukhnagar Hyderabad Call +91-8250192130
VIP Call Girls Service Dilsukhnagar Hyderabad Call +91-8250192130VIP Call Girls Service Dilsukhnagar Hyderabad Call +91-8250192130
VIP Call Girls Service Dilsukhnagar Hyderabad Call +91-8250192130
 
Call Girls Koregaon Park Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Koregaon Park Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Koregaon Park Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Koregaon Park Call Me 7737669865 Budget Friendly No Advance Booking
 
20240429 Calibre April 2024 Investor Presentation.pdf
20240429 Calibre April 2024 Investor Presentation.pdf20240429 Calibre April 2024 Investor Presentation.pdf
20240429 Calibre April 2024 Investor Presentation.pdf
 
02_Fabio Colombo_Accenture_MeetupDora&Cybersecurity.pptx
02_Fabio Colombo_Accenture_MeetupDora&Cybersecurity.pptx02_Fabio Colombo_Accenture_MeetupDora&Cybersecurity.pptx
02_Fabio Colombo_Accenture_MeetupDora&Cybersecurity.pptx
 
Dividend Policy and Dividend Decision Theories.pptx
Dividend Policy and Dividend Decision Theories.pptxDividend Policy and Dividend Decision Theories.pptx
Dividend Policy and Dividend Decision Theories.pptx
 

Slides 110406105147-phpapp01

  • 1. Arthur CHARPENTIER, Distortion in actuarial sciences Distorting probabilities in actuarial sciences Arthur Charpentier Université Rennes 1 arthur.charpentier@univ-rennes1.fr http ://freakonometrics.blog.free.fr/ Univeristé Laval, Québec, Avril 2011 1
  • 2. Arthur CHARPENTIER, Distortion in actuarial sciences 1 Decision theory and distorted risk measures Consider a preference ordering among risks, such that 1. ˜ L ˜ L ˜ ˜ is distribution based, i.e. if X Y , ∀X = X Y = Y , then X Y ; hence, we can write FX FY 2. is total, reflexive and transitive, 3. is continuous, i.e. ∀FX , FY and FZ such that FX FY FZ , ∃λ, µ ∈ (0, 1) such that λFX + (1 − λ)FZ FY µFX + (1 − µ)FZ . 4. satisfies an independence axiom, i.e. ∀FX , FY and FZ , and ∀λ ∈ (0, 1), FX FY =⇒ λFX + (1 − λ)FZ λFY + (1 − λ)FZ . 5. satisfies an ordering axiom, ∀X and Y constant (i.e. P(X = x) = P(Y = y) = 1, FX FY =⇒ x ≤ y. 2
  • 3. Arthur CHARPENTIER, Distortion in actuarial sciences Theorem1 Ordering satisfies axioms 1-2-3-4-5 if and only if ∃u : R → R, continuous, strictly increasing and unique (up to an increasing affine transformation) such that ∀FX and FY : FX FY ⇔ u(x)dFX (x) ≤ u(x)dFY (x) R R ⇔ E[u(X)] ≤ E[u(Y )]. But if we consider an alternative to the independence axiom 4’. satisfies an dual independence axiom, i.e. ∀FX , FY and FZ , and ∀λ ∈ (0, 1), −1 −1 −1 −1 FX FY =⇒ [λFX + (1 − λ)FZ ]−1 [λFY + (1 − λ)FZ ]−1 . we (Yaari (1987)) obtain a dual representation theorem, Theorem2 Ordering satisfies axioms 1-2-3-4’-5 if and only if ∃g : [0, 1] → R, continuous, strictly increasing such that ∀FX and FY : FX FY ⇔ g(F X (x))dx ≤ g(F Y (x))dx R R 3
  • 4. Arthur CHARPENTIER, Distortion in actuarial sciences Standard axioms required on risque measures R : X → R, L – law invariance, X = Y =⇒ R(X) = R(Y ) – increasing X ≥ Y =⇒ R(X) ≥ R(Y ), – translation invariance ∀k ∈ R, =⇒ R(X + k) = R(X) + k, – homogeneity ∀λ ∈ R+ , R(λX) = λ · R(X), – subadditivity R(X + Y ) ≤ R(X) + R(Y ), – convexity ∀β ∈ [0, 1], R(βλX + [1 − β]Y ) ≤ β · R(X) + [1 − β] · R(Y ). – additivity for comonotonic risks ∀X and Y comonotonic, R(X + Y ) = R(X) + R(Y ), – maximal correlation (w.r.t. measure µ) ∀X, R(X) = sup {E(X · U ) where U ∼ µ} ˜ ˜ ˜ L – strong coherence ∀X and Y , sup{R(X + Y )} = R(X) + R(Y ), where X = X ˜ L and Y = Y . 4
  • 5. Arthur CHARPENTIER, Distortion in actuarial sciences Proposition1 If R is a monetary convex fonction, then the three statements are equivalent, – R is strongly coherent, – R is additive for comonotonic risks, – R is a maximal correlation measure. Proposition2 A coherente risk measure R is additive for comonotonic risks if and only if there exists a decreasing positive function φ on [0, 1] such that 1 R(X) = φ(t)F −1 (1 − t)dt 0 where F (x) = F(X ≤ x). see Kusuoka (2001), i.e. R is a spectral risk measure. 5
  • 6. Arthur CHARPENTIER, Distortion in actuarial sciences Definition1 A distortion function is a function g : [0, 1] → [0, 1] such that g(0) = 0 and g(1) = 1. For positive risks, Definition1 Given distortion function g, Wang’s risk measure, denoted Rg , is ∞ ∞ Rg (X) = g (1 − FX (x)) dx = g F X (x) dx (1) 0 0 Proposition1 Wang’s risk measure can be defined as 1 1 −1 Rg (X) = FX (1 − α) dg(α) = VaR[X; 1 − α] dg(α). (2) 0 0 6
  • 7. Arthur CHARPENTIER, Distortion in actuarial sciences More generally (risks taking value in R) Definition2 We call distorted risk measure 1 R(X) = F −1 (1 − u)dg(u) 0 where g is some distortion function. Proposition3 R(X) can be written +∞ 0 R(X) = g(1 − F (x))dx − [1 − g(1 − F (x))]dx. 0 −∞ 7
  • 8. Arthur CHARPENTIER, Distortion in actuarial sciences risk measures R distortion function g VaR g (x) = I[x ≥ p] Tail-VaR g (x) = min {x/p, 1} PH g (x) = xp 1/p Dual Power g (x) = 1 − (1 − x) Gini g (x) = (1 + p) x − px2 exponential transform g (x) = (1 − px ) / (1 − p) Table 1 – Standard risk measures, p ∈ (0, 1). 8
  • 9. Arthur CHARPENTIER, Distortion in actuarial sciences Here, it looks like risk measures can be seen as R(X) = Eg◦P (X). Remark1 Let Q denote the distorted measure induced by g on P, denoted g ◦ P i.e. Q([a, +∞)) = g(P([a, +∞))). Since g is increasing on [0, 1] Q is a capacity. Example1 Consider function g(x) = xk . The PH - proportional hazard - risk measure is 1 ∞ R(X; k) = F −1 (1 − u)kuk−1 du = [F (x)]k dx 0 0 If k is an integer [F (x)]k is the survival distribution of the minimum over k values. Definition2 The Esscher risk measure with parameter h > 0 is Es[X; h], defined as E[X exp(hX)] d Es[X; h] = = ln MX (h). MX (h) dh 9
  • 10. Arthur CHARPENTIER, Distortion in actuarial sciences 2 Archimedean copulas Definition3 Let φ denote a decreasing function (0, 1] → [0, ∞] such that φ(1) = 0, and such that φ−1 is d-monotone, i.e. for all k = 0, 1, · · · , d, (−1)k [φ−1 ](k) (t) ≥ 0 for all t. Define the inverse (or quasi-inverse if φ(0) < ∞) as   φ−1 (t) for 0 ≤ t ≤ φ(0) φ−1 (t) =  0 for φ(0) < t < ∞. The function C(u1 , · · · , un ) = φ−1 (φ(u1 ) + · · · + φ(ud )), u1 , · · · , un ∈ [0, 1], is a copula, called an Archimedean copula, with generator φ. Let Φd denote the set of generators in dimension d. Example2 The independent copula C ⊥ is an Archimedean copula, with generator φ(t) = − log t. 10
  • 11. Arthur CHARPENTIER, Distortion in actuarial sciences The upper Fréchet-Hoeffding copula, defined as the minimum componentwise, M (u) = min{u1 , · · · , ud }, is not Archimedean (but can be obtained as the limit of some Archimedean copulas). Set λ(t) = exp[−φ(t)] (the multiplicative generator), then C(u1 , ..., ud ) = λ−1 (λ(u1 ) · · · λ(ud )), ∀u1 , ..., ud ∈ [0, 1], which can be written C(u1 , ..., ud ) = λ−1 (C ⊥ [λ(u1 ), . . . , λ(ud )]), ∀u1 , ..., ud ∈ [0, 1], Note that it is possible to get an interpretation of that distortion of the independence. A large subclass of Archimedean copula in dimension d is the class of Archimedean copulas obtained using the frailty approach. Consider random variables X1 , · · · , Xd conditionally independent, given a latent Θ factor Θ, a positive random variable, such that P (Xi ≤ xi |Θ) = Gi (x) where Gi denotes a baseline distribution function. 11
  • 12. Arthur CHARPENTIER, Distortion in actuarial sciences The joint distribution function of X is given by FX (x1 , · · · , xd ) = E (P (X1 ≤ x1 , · · · , Xd ≤ Xd |Θ)) d d Θ = E P (Xi ≤ xi |Θ) =E Gi (xi ) i=1 i=1 d d = E exp [−Θ (− log Gi (xi ))] =ψ − log Gi (xi ) , i=1 i=1 where ψ is the Laplace transform of the distribution of Θ, i.e. ψ (t) = E (exp (−tΘ)) . Because the marginal distributions are given respectively by Fi (xi ) = P(Xi ≤ xi ) = ψ (− log Gi (xi )) , the copula of X is −1 −1 C (u) = FX F1 (u1 ) , · · · , Fd (ud ) = ψ ψ −1 (u) + · · · + ψ −1 (ud ) This copula is an Archimedean copula with generator φ = ψ −1 (see e.g. Clayton (1978), Oakes (1989), Bandeen-Roche & Liang (1996) for more details). 12
  • 13. Arthur CHARPENTIER, Distortion in actuarial sciences 3 Hierarchical Archimedean copulas It is possible to look at C(u1 , · · · , ud ) defined as φ−1 [φ1 [φ−1 (φ2 [· · · φ−1 [φd−1 (u1 ) + φd−1 (u2 )] + · · · + φ2 (ud−1 ))] + φ1 (ud )] 1 2 d−1 where φi are generators. C is a copula if φi ◦ φ−1 is the inverse of a Laplace i−1 transform. This copula is said to be a fully nested Archimedean (FNA) copula. E.g. in dimension d = 5, we get φ1 [φ1 (φ−1 [φ2 (φ−1 [φ3 (φ−1 [φ4 (u1 ) + φ4 (u2 )]) + φ3 (u3 )]) + φ2 (u4 )]) + φ1 (u5 )]. −1 2 3 4 It is also possible to consider partially nested Archimedean (PNA) copulas, e.g. by coupling (U1 , U2 , U3 ), and (U4 , U5 ), φ−1 [φ4 (φ−1 [φ1 (φ−1 [φ2 (u1 ) + φ2 (u2 )]) + φ1 (u3 )]) + φ4 (φ−1 [φ3 (u4 ) + φ3 (u5 )])] 4 1 2 3 Again, it is a copula if φ2 ◦ φ−1 is the inverse of a Laplace transform, as well as 1 φ4 ◦ φ−1 and φ4 ◦ φ−1 . 1 3 13
  • 14. Arthur CHARPENTIER, Distortion in actuarial sciences φ1 φ2 φ4 φ3 φ1 φ4 φ2 φ3 U1 U2 U3 U4 U5 U1 U2 U3 U4 U5 Figure 1 – fully nested Archimedean copula, and partially nested Archimedean copula. 14
  • 15. Arthur CHARPENTIER, Distortion in actuarial sciences It is also possible to consider φ−1 [φ3 (φ−1 [φ1 (u1 ) + φ1 (u2 ) + φ1 (u3 )]) + φ3 (φ−1 [φ2 (u4 ) + φ2 (u5 )])]. 3 1 2 if φ3 ◦ φ−1 and φ3 ◦ φ−1 are inverses of Laplace transform. Or 1 2 φ−1 [φ3 (φ−1 [φ1 (u1 ) + φ1 (u2 )] + φ3 (u3 ) + φ3 (φ−1 [φ2 (u4 ) + φ2 (u5 )])]. 3 1 2 15
  • 16. Arthur CHARPENTIER, Distortion in actuarial sciences φ3 φ3 φ1 φ2 φ1 φ2 U1 U2 U3 U4 U5 U1 U2 U3 U4 U5 Figure 2 – Copules Archimédiennes hiérarchiques avec deux constructions dif- férentes. 16
  • 17. Arthur CHARPENTIER, Distortion in actuarial sciences Example3 If φi ’s are Gumbel’s generators, with parameter θi , a sufficient condition for C to be a FNA copula is that θi ’s increasing. Similarly if φi ’s are Clayton’s generators. Again, an heuristic interpretation can be derived, see Hougaard (2000), with two frailties Θ1 and Θ2 such that 17
  • 18. Arthur CHARPENTIER, Distortion in actuarial sciences 4 Distorting copulas Genest & Rivest (2001) extended the concept of Archimedean copulas introducing the multivariate probability integral transformation (Wang, Nelsen & Valdez (2005) called this the distorted copula, while Klement, Mesiar & Pap (2005) or Durante & Sempi (2005) called this the transformed copula). Consider a copula C. Let h be a continuous strictly concave increasing function [0, 1] → [0, 1] satisfying h (0) = 0 and h (1) = 1, such that Dh (C) (u1 , · · · , ud ) = h−1 (C (h (u1 ) , · · · , h (ud ))), 0 ≤ ui ≤ 1 is a copula. Those functions will be called distortion functions. Example4 A classical example is obtained when h is a power function, and when the power is the inverse of an integer, hn (x) = x1/n , i.e. Dhn (C) (u, v) = C n (u1/n , v 1/n ), 0 ≤ u, v ≤ 1 and n ∈ N. Then this copula is the survival copula of the componentwise maxima : the copula of 18
  • 19. Arthur CHARPENTIER, Distortion in actuarial sciences (max{X1 , · · · , Xn }, max{Y1 , · · · , Yn }) is Dhn (C), where {(X1 , Y1 ), · · · , (Xn , Yn )} is an i.i.d. sample, and the (Xi , Yi )’s have copula C. A max-stable copula is a copula C such that ∀n ∈ N, 1/n 1/n C n (u1 , · · · , ud ) = C(u1 , · · · , ud ). Example5 Let φ denote a convex decreasing function on (0, 1] such that φ(1) = 0, and define C(u, v) = φ−1 (φ(u) + φ(v)) = Dexp[−φ] (C ⊥ ). This function is an Archimedean copula. Example6 A distorted version of the comonontonic copula is the comonotonic copula, h−1 [min{h(u1 ), · · · , h(ud )}] = min{u1 , · · · , ud } Example7 Following the idea of Capéraà, Fougères & Genest (2000), it is possible to construct Archimax copulas as distortions of max-stable copulas. In dimension d = 2, max-stable 19
  • 20. Arthur CHARPENTIER, Distortion in actuarial sciences copulas are characterized through a generator A such that log(u) C(u, v) = exp log(uv)A log(uv) Here consider φ an Archimedean generator, then Archimax copulas are defined as φ(u) C(u, v) = φ−1 [φ(u) + φ(v)]A φ(u) + φ(v) In the bivariate case, h need not be differentiable, and concavity is a sufficient condition. 20
  • 21. Arthur CHARPENTIER, Distortion in actuarial sciences With nonconcave distortion function, distorted copulas are semi-copulas, from Bassan & Spizzichino (2001). Definition4 Function S : [0, 1]d → [0, 1] is a semi-copula if 0 ≤ ui ≤ 1, i = 1, · · · , d, S(1, ..., 1, ui , 1, ..., 1) = ui , (3) S(u1 , ..., ui−1 , 0, ui+1 , ..., ud ) = 0, (4) and s → S(u1 , ..., ui−1 , s, ui+1 , ..., ud ) is increasing on [0, 1]. Let Hd denote the set of continuous strictly increasing functions [0, 1] → [0, 1] such that h (0) = 0 and h (1) = 1, C ∈ C, Dh (C) (u1 , · · · , ud ) = h−1 (C (h (u1 ) , · · · , h (ud ))) , 0 ≤ ui ≤ 1 is a copula, called distorted copula. Hd -copulas will be functions Dh (C) for some distortion function h and some copula C. d-increasingness of function Dh (C) is obtained when h ∈ Hd , i.e. h is continuous, 21
  • 22. Arthur CHARPENTIER, Distortion in actuarial sciences with h (0) = 0 and h (1) = 1, and such that h(k) (x) ≤ 0 for all x ∈ (0, 1) and k = 2, 3, · · · , d (see Theorem 2.6 and 4.4 in Morillas (2005)). As a corollary, note that if φ ∈ Φd , then h(x) = exp(−φ(x)) belongs to Hd . Further, observe that for h, h ∈ Hd , Dh◦h (C) (u1 , · · · , ud ) = (Dh ◦ Dh ) (C) (u1 , · · · , ud ) , 0 ≤ ui ≤ 1. Again, it is possible to get an intuitive interpretation of that distortion. Consider a max-stable copula C. Let X be a random vector such that X given Θ Θ has copula C and P (Xi ≤ xi |Θ) = Gi (xi ) , i = 1, · · · , d. Then, the (unconditional) joint distribution function of X is given by F (x) = E (P (X1 ≤ x1 , · · · , Xd ≤ xd |Θ)) = E (C (P (X1 ≤ xi |Θ) , · · · , P (Xd ≤ xd |Θ))) Θ Θ = E C G1 (x1 ) , · · · , Gd (xd ) = E C Θ (G1 (x1 ) , · · · , Gd (xd )) = ψ (− log C (G1 (x1 ) , · · · , Gd (xd ))) , 22
  • 23. Arthur CHARPENTIER, Distortion in actuarial sciences where ψ is the Laplace transform of the distribution of Θ, i.e. ψ (t) = E (exp (−tΘ)), since C is a max-stable copula, i.e. Θ Θ C G1 (x1 ) , · · · , Gd (xd ) = C Θ (G1 (x1 ) , · · · , Gd (xd )) . The unconditional marginal distribution functions are Fi (xi ) = ψ (− log Gi (xi )), and therefore CX (x1 , · · · , xd ) = ψ − log C exp −ψ −1 (x) , exp −ψ −1 (y) . Note that since ψ −1 is completly montone, then h belongs to Hd . 23
  • 24. Arthur CHARPENTIER, Distortion in actuarial sciences Remark2 It is possible to use distortion to obtain stronger tail dependence (with results that can be related to C & Segers (2007)). Recall that C(u, u) 1 − C(u, u) λL = lim and λU = lim . u→0 u u→1 1−u If h−1 is regularly varying in 0 with exponent α > 0, i.e. h−1 (t) ∼ L0 tα in 0, then λL (Dh (C)) = [λL (C)]α . If h−1 is regularly varying in 1 with exponent β > 0, i.e. 1 − h−1 (t) ∼ L0 [1 − t]β in 1, then λU (Dh (C)) = 2 − [2 − λU (C)]β . 24
  • 25. Arthur CHARPENTIER, Distortion in actuarial sciences 5 Application to multivariate risk measure Wang (1996) proposed the risk measure based on distortion function g(t) = Φ(Φ−1 (t) − λ), with λ ≥ 0 (to be convex). Valdez (2009) suggested a multivariate distortion. 25
  • 26. Arthur CHARPENTIER, Distortion in actuarial sciences 6 Application to aging problems Let T = (T1 , · · · , Td ) denote remaining lifetime, at time t = 0. Consider the conditional distribution (T1 , · · · , Td ) given T1 > t, · · · , Td > t for some t > 0. Let C denote the survival copula of T , P(T1 > t1 , · · · , Td > td ) = C(P(T1 > t1 ), · · · , P(T1 > tc )). The survival copula of the conditional distribution is the copula of (U1 , · · · , Ud ) given U1 < F 1 (t) , · · · ,underbraceF d (t)ud u1 where (U1 , · · · , Ud ) has distribution C , and where Fi is the distribution of Ti 26
  • 27. Arthur CHARPENTIER, Distortion in actuarial sciences Let C be a copula and let U be a random vector with joint distribution function C. Let u ∈ (0, 1]d be such that C(u) > 0. The lower tail dependence copula of C at level u is defined as the copula, denoted Cu , of the joint distribution of U conditionally on the event {U ≤ u} = {U1 ≤ u1 , · · · , Ud ≤ ud }. 6.1 Aging with Archimedean copulas If C is a strict Archimedean copula with generator φ (i.e. φ(0) = ∞), then the lower tail dependence copula relative to C at level u is given by the strict Archimedean copula with generator φu defined by φu (t) = φ(t · C(u)) − φ(C(u)), 0 ≤ t ≤ 1, where C(u) = φ−1 [φ(u1 ) + · · · + φ(ud )] (see Juri & Wüthrich (2002) or C & Juri (2007)). 27
  • 28. Arthur CHARPENTIER, Distortion in actuarial sciences Example8 θ Gumbel copulas have generator φ (t) = [− ln t] where θ ≥ 1. For any u ∈ (0, 1]d , the corresponding conditional copula has generator θ 1/θ θ θ φu (t) = M − ln t − M where M = [− ln u1 ] + · · · + [− ln ud ] . Example9 Clayton copulas C have generator φ (t) = t−θ − 1 where θ > 0. Hence, φu (t) = [t·C(u)]−θ −1−φ(C(u)) = t−θ ·C(u)−θ −1−[C(u)−θ −1] = C(u)−θ ·[t−θ −1], hence φu (t) = C(u)−θ · φ(t). Since the generator of an Archimedean copula is unique up to a multiplicative constant, φu is also the generator of Clayton copula, with parameter θ. Theorem3 Consider X with Archimedean copula, having a factor representation, and let ψ denote the Laplace transform of the heterogeneity factor Θ. Let u ∈ (0, 1]d , then X given −1 −1 −1 X ≤ FX (u) (in the pointwise sense, i.e. X1 ≤ F1 (u1 ), · · · ., Xd ≤ Fd (ud )) is an 28
  • 29. Arthur CHARPENTIER, Distortion in actuarial sciences Archimedean copula with a factor representation, where the factor has Laplace transform ψ t + ψ −1 (C(u)) ψu (t) = . C(u) 6.2 Aging with distorted copulas copulas Recall that Hd -copulas are defined as Dh (C)(u1 , · · · , ud ) = h−1 (C(h(u1 ), · · · , h(ud ))), 0 ≤ ui ≤ 1, where C is a copula, and h ∈ Hd is a d-distortion function. Assume that there exists a positive random variable Θ, such that, conditionally on Θ, random vector X = (X1 , · · · , Xd ) has copula C, which does not depend on Θ. Assume moreover that C is in extreme value copula, or max-stable copula (see e.g. Joe (1997)) : C xh , · · · , xh = C h (x1 , · · · , xd ) for all h ≥ 0. The following 1 d result holds, Lemma1 29
  • 30. Arthur CHARPENTIER, Distortion in actuarial sciences Let Θ be a random variable with Laplace transform ψ, and consider a random vector X = (X1 , · · · , Xd ) such that X given Θ has copula C, an extreme value copula. Θ Assume that, for all i = 1, · · · , d, P (Xi ≤ xi |Θ) = Gi (xi ) where the Gi ’s are distribution functions. Then X has copula CX (x1 , · · · , xd ) = ψ − log C exp −ψ −1 (x1 ) , · · · , exp −ψ −1 (xd ) , whose copula is of the form Dh (C) with h(·) = exp −ψ −1 (·) . Theorem4 Let X be a random vector with an Hd -copula with a factor representation, let ψ denote the Laplace transform of the heterogeneity factor Θ, C denote the underlying copula, and Gi ’s the marginal distributions. −1 Let u ∈ (0, 1]d , then, the copula of X given X ≤ FX (u) is −1 −1 CX,u (x) = ψu − log Cu exp −ψu (x1 ) , · · · , exp −ψu (xd ) = Dhu (Cu )(x), −1 where hu (·) = exp −ψu (·) , and where – ψu is the Laplace transform defined as ψu (t) = ψ (t + α) /ψ (α) where α = − log (C (u∗ )), u∗ = exp −ψ −1 (ui ) for all i = 1, · · · , d. Hence, ψu is the i 30
  • 31. Arthur CHARPENTIER, Distortion in actuarial sciences −1 Laplace transform of Θ given X ≤ FX (u), −1 Θ – P Xi ≤ xi |X ≤ FX (u) , Θ = Gi (xi ) for all i = 1, · · · , d, where C (u∗ , u∗ , · · · , Gi (xi ) , · · · , u∗ ) 1 2 d Gi (xi ) = , C (u∗ , u∗ , · · · , u∗ , · · · , u∗ ) 1 2 i d – and Cu is the following copula C G1 G1 −1 (x1 ) , · · · , Gd Gd −1 (xd ) Cu (x) = −1 −1 . C G1 F1 (u1 ) , · · · , Gd Fd (ud ) 31