SlideShare una empresa de Scribd logo
1 de 51
Video Coding  For  Compression . . .   and Beyond   Bernd Girod I nformation Systems Laboratory Department of Electrical Engineering Stanford University   Compression
Bit Consumption of US Households Bit equivalent, assuming state-of-the-art compression, year 2000  [Source: UC Berkeley: How much Information] 0.0003% Internet 0.6% Video games 3.3% Home video 0.0002% Magazines 0.0002% Books 0.0003% Newspaper 0.4% Recorded Music 1.7% Radio 94% Television ~230 Exabyte/year Total for 70M households
Desirable Compression Ratios DSL ~200 kbps ~  1,000 : 1 Dial-up modem,  wireless link  ~ 20 kbps ~  10,000 : 1 ITU-R 601 166 Mbps SDTV broadcasting  ~2 Mbps ~  100 : 1 CIF QCIF
Outline ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Outline ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
“ It has been customary in the past to transmit successive complete images of the transmitted picture.”  [...] “ In accordance with this invention, this difficulty is avoided by transmitting only the difference between successive images of the object.”
Motion-Compensated Hybrid Coding Standards:   H.261 , MPEG-1, MPEG-2,  H.263 , MPEG-4, H.264/AVC Video in Entropy Coding Deq./Inv. Transform Motion- Compensated Predictor Control Data Quant. Transf. coeffs Motion Data 0 Intra/Inter Coder Control Decoder Motion Estimator Transform/ Quantizer -
Motion-Compensated Hybrid Coding Standards:   H.261 , MPEG-1, MPEG-2,  H.263 ,   MPEG-4,  H.264/AVC Video in ¼-pixel accuracy Entropy Coding Deq./Inv. Transform Motion- Compensated Predictor Control Data Quant. Transf. coeffs Motion Data 0 Intra/Inter Coder Control Decoder Motion Estimator Transform/ Quantizer -
Motion-Compensated Hybrid Coding Standards:   H.261 , MPEG-1,   MPEG-2,   H.263 , MPEG-4,  H.264/AVC Video in Entropy Coding Deq./Inv. Transform Motion- Compensated Predictor Control Data Quant. Transf. coeffs Motion Data 0 Intra/Inter Coder Control Decoder Motion Estimator Transform/ Quantizer - Adaptive block sizes . . .
Motion-Compensated Hybrid Coding Standards:   H.261 , MPEG-1, MPEG-2,   H.263 , MPEG-4,  H.264/AVC Video in Entropy Coding Deq./Inv. Transform Motion- Compensated Predictor Control Data Quant. Transf. coeffs Motion Data 0 Intra/Inter Coder Control Decoder Motion Estimator Transform/ Quantizer - Multiple Past Reference Frames
Motion-Compensated Hybrid Coding Standards:   H.261 , MPEG-1, MPEG-2,   H.263 ,  MPEG-4,  H.264/AVC Video in Generalized B-Frames Entropy Coding Deq./Inv. Transform Motion- Compensated Predictor Control Data Quant. Transf. coeffs Motion Data 0 Intra/Inter Coder Control Decoder Motion Estimator Transform/ Quantizer -
Rate-Distortion Optimized Coder Control ,[object Object],[object Object],Total distortion Total bit-rate Distortion for block  i Rate for block  i Lagrangian cost for block  i
Multiple Reference Frames in H.264/AVC Mobile & Calendar (CIF, 30 fps) 0 1 2 3 4 26 27 28 29 30 31 32 33 34 35 36 37 38 R [Mbit/s] PSNR Y [dB] PBB... with generalized B pictures  PBB... with classic B pictures  PPP... with 5 previous references  PPP... with 1 previous reference  ~15%
Multiple Reference Frames in H.264/AVC Mobile & Calendar (CIF, 30 fps) 0 1 2 3 4 26 27 28 29 30 31 32 33 34 35 36 37 38 R [Mbit/s] PSNR Y [dB] PBB... with generalized B pictures  PBB... with classic B pictures  PPP... with 5 previous references  PPP... with 1 previous reference  >25%
Multiple Reference Frames in H.264/AVC Mobile & Calendar (CIF, 30 fps) 0 1 2 3 4 26 27 28 29 30 31 32 33 34 35 36 37 38 R [Mbit/s] PSNR Y [dB] PBB... with generalized B pictures  PBB... with classic B pictures  PPP... with 5 previous references  PPP... with 1 previous reference  ~40%
Outline ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Surprising Success of ITU-T Rec. H.263 ?? What H.263 was developed for . . .  Analog videophone . . . and what is was used for.  Internet video streaming
Internet Video Streaming ,[object Object],[object Object],[object Object],Streaming client DSL dial-up modem Media Server Internet wireless
Fine Granular Scalability (FGS) ,[object Object],[object Object],~2dB gap   Base layer 20 kbps Enhancement layer variable bit-rate Efficiency gap
Wavelet Video Coder Temporal Wavelet Transform Spatial  Wavelet Transform LLL LLH LH LH Original video frames Embedded Quantization & Entropy Coding ,[object Object],7 6 5 4 3 2 1 0 H H H H H H H H H H H H H H H H H H
Lifting P U Even Frames Synthesis: Odd Frames Low Band High Band P U Even Frames Analysis: Odd Frames Low Band High Band Motion Compensation [Secker & Taubman, 2001]  [Popescu & Bottreau, 2001]
MC Wavelet Coding vs. H.264/AVC 2.0 1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 36 34 32 30 28 26 24 22 20 38 Luminance PSNR (dB) bit-rate (Mbps) Scalable MC 5/3 Wavelet Non-scalable H.264/AVC ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[Taubman & Secker, VCIP 2003] courtesy D. Taubman
Wavelet Synthesis with Lossy Motion Vector MC Wavelet Transform Motion Estimator Embedded Encoding Embedded Encoding Decoder Decoder Inverse Wavelet Transform Video in Video out [Taubman & Secker, ICIP03] Minimize J=D+  R Minimize J=D+  R
R-D Performance with Lossy Motion Vector [Taubman & Secker, VCIP 2003] courtesy D. Taubman Bit - Rate (kbps) Video PSNR (dB) 0 200 400 600 800 1000 1200 24 26 28 30 32 34 36 38 40 Embedded wavelet coefficients Lossless motion Non-embedded single-rate Embedded wavelet coefficients Lossy motion CIF Foreman
Outline ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Priority Encoding Transmission (PET) information symbols block of packets [Albanese, Blömer,  Edmonds, Luby, Sudan, 19 96] [Davis & Danskin, 1996] [Horn, Stuhlmuller, Link, Girod, 1999] [Puri, Ramchandran, 1999] [Mohr, Riskin, Ladner, 2000] [Stankovic, Hamzaoui, Xiong, 2002]  [Chou, Wang, Padmanabhan, 2003] . . .  and many more . . .  … redundancy symbols enhancement layer base layer Reed-Solomon  codeword K N-K packet network
Packet Delay Jitter and Loss delay     pdf loss lead-time loss probability lead-time loss probability
Smart Prefetching Idea:  Send more important packets earlier to allow for more retransmissions Server Client Internet [Podolsky, McCanne, Vetterli 2000] [Miao, Ortega 2000] [Chou, Miao 2001] Request  stream Rate-distortion preamble Packet Schedule Video packets Updated Packet Schedule Updated Packet Schedule Updated Packet Schedule Updated Packet Schedule
Rate-Distortion Preamble ,[object Object],[object Object],[object Object],[object Object],P P I I B B B P P P I I B B B P … … …
Rate-Distortion Preamble ,[object Object],[object Object],[object Object],[object Object],P B P P I I B B P P I I B B B P … … … For video:     d n  must be made “ state-dependent” to  accurately capture  concealment
Markov Decision Tree for One Packet ...  N  transmission    opportunities before    deadline send: 1 ack: 1 0 0 0 send: 1 0 send: 1 0 ack: 1 0 1 0 1 0 0 1 1 1 0 0 0 0 t current t current +  t t current +2  t Action Observation “ Policy“ minimizing J = D +   R
R-D Optimized Streaming Performance ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],PSNR [dB] Bit-Rate [kbps] ~50 %
Naive Coding Questions ,[object Object],[object Object]
Digitally Enhanced Analog Transmission ,[object Object],[object Object],[object Object],Analog Channel (uncoded) Wyner- Ziv Encoder Digital Channel Wyner- Ziv Decoder Side info
Forward Error Protection of Compressed Video ,[object Object],Any Old Video Encoder Video Decoder with Error Concealment Error-Prone channel S S’ Analog channel (uncoded) [Aaron, Rane, Girod, ICIP 2003] Wyner-Ziv Decoder A  S * Wyner-Ziv Encoder A   Wyner-Ziv Decoder B  S ** Wyner-Ziv Encoder B
Wyner-Ziv MPEG Codec [Rane, Aaron, Girod, VCIP 2004] Channel Slepian-Wolf Encoder Wyner-Ziv Encoder ED T -1 Q -1 + MC S * MPEG Encoder main S Side  information MPEG Encoder coarse T -1 q -1 ED + MC S’ R-S Decoder Reconstructed Frame at Encoder MPEG Encoder coarse R-S Encoder
Graceful Degradation with Forward Error Protection Main Stream @ 1.092 Mbps FEC (n,k) = (40,36)   FEC bitrate = 120 Kbps Total = 1.2 Mbps WZ Stream  @ 270 Kbps FEP (n,k) = (52,36) WZ bitrate = 120 Kbps Total = 1.2 Mbps
Visual Comparison of Degradation at Same PSNR With FEC 1 Mbps + 120 kbps (38.32 db) Foreman 50 CIF frames @ symbol error rate = 4 x 10 -4 With FEP 1 Mbps + 120 kbps (38.78 db)
Superior Robustness of FEP With FEC 1 Mbps + 120 kbps (33.03 db) Foreman 50 CIF frames @ symbol error rate = 10 -3 With FEP 1 Mbps + 120 kbps (38.40 db)
Lossy Compression with Side Information Source Encoder Decoder Source Encoder Decoder [Wyner, Ziv, 1976]  For mse distortion and Gaussian statistics,  rate-distortion functions of the two systems are the  same .
Ultra-Low-Complexity Video Coding Interframe Decoder Intraframe Encoder K’ Interpolation/ Extrapolation Key frames K Conventional Intraframe coding Conventional Intraframe decoding X’ Scalar Quantizer Turbo Encoder Buffer WZ frames X Turbo Decoder Request bits Slepian-Wolf Codec Reconstruction Y [Aaron, Zhang, Girod, Asilomar 2002] [Aaron, Rane, Zhang, Girod, DCC 2003]
R-D Performance  Ultra-Low-Complexity Video Coder ,[object Object],[object Object],[object Object],[object Object],8 dB 3 dB
Ultra-Low-Complexity Video Coder H263+ Intraframe Coding  330 kbps, 32.9 dB  Wyner-Ziv Codec   274 kbps, 39.0 dB
Ultra-Low-Complexity Video Coder H263+ I-B-I-B  276 kbps, 41.8 dB Wyner-Ziv Codec   274 kbps, 39.0 dB
Stanford Camera Array Courtesy Marc Levoy,  Stanford Computer Graphics Lab
Stanford Camera Array Courtesy Marc Levoy,  Stanford Computer Graphics Lab
Light Field Compression Rate:  0.11 bpp PSNR 39.9 dB  Rate:  0.11 bpp PSNR  37.4 dB  Wyner-Ziv, Pixel-Domain   JPEG-2000
Conclusions ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Acknowledgments Anne M. Aaron Jacob Chakareski  Philip A. Chou J=D+  R Markus Flierl Sang-eun Han Mark Kalman Marc Levoy Yi Liang  Shantanu Rane  David Rebollo-Monedero Andrew Secker David Taubman Thomas Wiegand Xiaoqing Zhu Rui Zhang
Progress is a wonderful thing, if only it would stop . . .  Robert Musil
 

Más contenido relacionado

La actualidad más candente

Advances in Network-adaptive Video Streaming
Advances in Network-adaptive Video StreamingAdvances in Network-adaptive Video Streaming
Advances in Network-adaptive Video Streaming
Videoguy
 
Digital Video Course Section 1
Digital Video Course  Section 1Digital Video Course  Section 1
Digital Video Course Section 1
ericlsnider
 
product_data_sheet0900aecd807197da
product_data_sheet0900aecd807197daproduct_data_sheet0900aecd807197da
product_data_sheet0900aecd807197da
aniruddh Tyagi
 

La actualidad más candente (20)

Serial Digital Interface (SDI), From SD-SDI to 24G-SDI, Part 2
Serial Digital Interface (SDI), From SD-SDI to 24G-SDI, Part 2Serial Digital Interface (SDI), From SD-SDI to 24G-SDI, Part 2
Serial Digital Interface (SDI), From SD-SDI to 24G-SDI, Part 2
 
Introduction To Video Compression
Introduction To Video CompressionIntroduction To Video Compression
Introduction To Video Compression
 
Analog TV Systems/Digital TV Systems/3DTV
Analog TV Systems/Digital TV Systems/3DTVAnalog TV Systems/Digital TV Systems/3DTV
Analog TV Systems/Digital TV Systems/3DTV
 
An Introduction to Video Principles-Part 1
An Introduction to Video Principles-Part 1   An Introduction to Video Principles-Part 1
An Introduction to Video Principles-Part 1
 
Digital audio
Digital audioDigital audio
Digital audio
 
A glance-at-voip
A glance-at-voipA glance-at-voip
A glance-at-voip
 
Advances in Network-adaptive Video Streaming
Advances in Network-adaptive Video StreamingAdvances in Network-adaptive Video Streaming
Advances in Network-adaptive Video Streaming
 
Designing an 4K/UHD1 HDR OB Truck as 12G-SDI or IP-based
Designing an 4K/UHD1 HDR OB Truck as 12G-SDI or IP-basedDesigning an 4K/UHD1 HDR OB Truck as 12G-SDI or IP-based
Designing an 4K/UHD1 HDR OB Truck as 12G-SDI or IP-based
 
Digital Video Course Section 1
Digital Video Course  Section 1Digital Video Course  Section 1
Digital Video Course Section 1
 
DAB Radio
DAB RadioDAB Radio
DAB Radio
 
Integrating Sound level meter
Integrating Sound level meterIntegrating Sound level meter
Integrating Sound level meter
 
Practical Applications of Digital Audio Networking
Practical Applications of Digital Audio NetworkingPractical Applications of Digital Audio Networking
Practical Applications of Digital Audio Networking
 
Video Compression, Part 2-Section 1, Video Coding Concepts
Video Compression, Part 2-Section 1, Video Coding Concepts Video Compression, Part 2-Section 1, Video Coding Concepts
Video Compression, Part 2-Section 1, Video Coding Concepts
 
An Introduction to HDTV Principles-Part 4
An Introduction to HDTV Principles-Part 4An Introduction to HDTV Principles-Part 4
An Introduction to HDTV Principles-Part 4
 
Hdmi Bit Rate Calculator
Hdmi Bit Rate CalculatorHdmi Bit Rate Calculator
Hdmi Bit Rate Calculator
 
IPTV Codec & Packeting
IPTV Codec & PacketingIPTV Codec & Packeting
IPTV Codec & Packeting
 
SDI to IP 2110 Transition Part 1
SDI to IP 2110 Transition Part 1SDI to IP 2110 Transition Part 1
SDI to IP 2110 Transition Part 1
 
Latest Technologies in Production & Broadcasting
Latest  Technologies in Production & BroadcastingLatest  Technologies in Production & Broadcasting
Latest Technologies in Production & Broadcasting
 
product_data_sheet0900aecd807197da
product_data_sheet0900aecd807197daproduct_data_sheet0900aecd807197da
product_data_sheet0900aecd807197da
 
Image aquation
Image aquationImage aquation
Image aquation
 

Similar a Barcelona keynote web

Video Conferencing : Fundamentals and Application
Video Conferencing : Fundamentals and ApplicationVideo Conferencing : Fundamentals and Application
Video Conferencing : Fundamentals and Application
Videoguy
 
Video Coding Standard
Video Coding StandardVideo Coding Standard
Video Coding Standard
Videoguy
 
Introduction to Video Compression Techniques - Anurag Jain
Introduction to Video Compression Techniques - Anurag JainIntroduction to Video Compression Techniques - Anurag Jain
Introduction to Video Compression Techniques - Anurag Jain
Videoguy
 
Video Compression Technology
Video Compression TechnologyVideo Compression Technology
Video Compression Technology
Tong Teerayuth
 
MPEG4 codec for Access Grid
MPEG4 codec for Access GridMPEG4 codec for Access Grid
MPEG4 codec for Access Grid
Videoguy
 
MPEG4 codec for Access Grid
MPEG4 codec for Access GridMPEG4 codec for Access Grid
MPEG4 codec for Access Grid
Videoguy
 
2005 06-12-vitale-emgsession-videopreservation
2005 06-12-vitale-emgsession-videopreservation2005 06-12-vitale-emgsession-videopreservation
2005 06-12-vitale-emgsession-videopreservation
Pptblog Pptblogcom
 

Similar a Barcelona keynote web (20)

H263.ppt
H263.pptH263.ppt
H263.ppt
 
Video Conferencing : Fundamentals and Application
Video Conferencing : Fundamentals and ApplicationVideo Conferencing : Fundamentals and Application
Video Conferencing : Fundamentals and Application
 
Video Coding Standard
Video Coding StandardVideo Coding Standard
Video Coding Standard
 
Introduction to Video Compression Techniques - Anurag Jain
Introduction to Video Compression Techniques - Anurag JainIntroduction to Video Compression Techniques - Anurag Jain
Introduction to Video Compression Techniques - Anurag Jain
 
Video Compression Technology
Video Compression TechnologyVideo Compression Technology
Video Compression Technology
 
MPEG4 codec for Access Grid
MPEG4 codec for Access GridMPEG4 codec for Access Grid
MPEG4 codec for Access Grid
 
MPEG4 codec for Access Grid
MPEG4 codec for Access GridMPEG4 codec for Access Grid
MPEG4 codec for Access Grid
 
2022_3_Digital Transmission Fundamental.ppt
2022_3_Digital Transmission Fundamental.ppt2022_3_Digital Transmission Fundamental.ppt
2022_3_Digital Transmission Fundamental.ppt
 
hdtv ppt slide
hdtv ppt slidehdtv ppt slide
hdtv ppt slide
 
85 videocompress
85 videocompress85 videocompress
85 videocompress
 
Beginning of dtv
Beginning of dtvBeginning of dtv
Beginning of dtv
 
Digital Video And Compression
Digital Video And CompressionDigital Video And Compression
Digital Video And Compression
 
2005 06-12-vitale-emgsession-videopreservation
2005 06-12-vitale-emgsession-videopreservation2005 06-12-vitale-emgsession-videopreservation
2005 06-12-vitale-emgsession-videopreservation
 
Aruna Ravi - M.S Thesis
Aruna Ravi - M.S ThesisAruna Ravi - M.S Thesis
Aruna Ravi - M.S Thesis
 
Video Compression Basics - MPEG2
Video Compression Basics - MPEG2Video Compression Basics - MPEG2
Video Compression Basics - MPEG2
 
Robust Watermarking of Video Streams
Robust Watermarking of Video StreamsRobust Watermarking of Video Streams
Robust Watermarking of Video Streams
 
Digital Earth Station
Digital Earth Station  Digital Earth Station
Digital Earth Station
 
[Nov./2010] Adaptive Video Streaming over Wireless LAN with ns-2
[Nov./2010] Adaptive Video Streaming over Wireless LAN with ns-2 [Nov./2010] Adaptive Video Streaming over Wireless LAN with ns-2
[Nov./2010] Adaptive Video Streaming over Wireless LAN with ns-2
 
LiveVBR presentation at VQEG NORM.pdf
LiveVBR presentation at VQEG NORM.pdfLiveVBR presentation at VQEG NORM.pdf
LiveVBR presentation at VQEG NORM.pdf
 
48233737 low-power-vlsi-design
48233737 low-power-vlsi-design48233737 low-power-vlsi-design
48233737 low-power-vlsi-design
 

Más de Pptblog Pptblogcom (20)

Adventure lecture
Adventure lectureAdventure lecture
Adventure lecture
 
Cni3 11-29
Cni3 11-29Cni3 11-29
Cni3 11-29
 
Cni mc donough_preservation
Cni mc donough_preservationCni mc donough_preservation
Cni mc donough_preservation
 
Chapter9
Chapter9Chapter9
Chapter9
 
Cgu demo
Cgu demoCgu demo
Cgu demo
 
Cac sv4
Cac sv4Cac sv4
Cac sv4
 
Broadcasting video
Broadcasting videoBroadcasting video
Broadcasting video
 
Bb feb2005
Bb feb2005Bb feb2005
Bb feb2005
 
Barwick video-trial
Barwick video-trialBarwick video-trial
Barwick video-trial
 
Att naruc vrs presentation 2-12
Att naruc vrs presentation   2-12Att naruc vrs presentation   2-12
Att naruc vrs presentation 2-12
 
Atee2006
Atee2006Atee2006
Atee2006
 
Aoevideo
AoevideoAoevideo
Aoevideo
 
111203 filmed hunter
111203 filmed hunter111203 filmed hunter
111203 filmed hunter
 
060320 mmtf presentation
060320 mmtf presentation060320 mmtf presentation
060320 mmtf presentation
 
150
150150
150
 
11 streaming
11 streaming11 streaming
11 streaming
 
09a video compstream_intro_trd_23-nov-2005v0_2
09a video compstream_intro_trd_23-nov-2005v0_209a video compstream_intro_trd_23-nov-2005v0_2
09a video compstream_intro_trd_23-nov-2005v0_2
 
5.1.seyler
5.1.seyler5.1.seyler
5.1.seyler
 
05 presentation
05 presentation05 presentation
05 presentation
 
4 4 bopardikar_concealment
4 4 bopardikar_concealment4 4 bopardikar_concealment
4 4 bopardikar_concealment
 

Barcelona keynote web

  • 1. Video Coding For Compression . . . and Beyond Bernd Girod I nformation Systems Laboratory Department of Electrical Engineering Stanford University Compression
  • 2. Bit Consumption of US Households Bit equivalent, assuming state-of-the-art compression, year 2000 [Source: UC Berkeley: How much Information] 0.0003% Internet 0.6% Video games 3.3% Home video 0.0002% Magazines 0.0002% Books 0.0003% Newspaper 0.4% Recorded Music 1.7% Radio 94% Television ~230 Exabyte/year Total for 70M households
  • 3. Desirable Compression Ratios DSL ~200 kbps ~ 1,000 : 1 Dial-up modem, wireless link ~ 20 kbps ~ 10,000 : 1 ITU-R 601 166 Mbps SDTV broadcasting ~2 Mbps ~ 100 : 1 CIF QCIF
  • 4.
  • 5.
  • 6. “ It has been customary in the past to transmit successive complete images of the transmitted picture.” [...] “ In accordance with this invention, this difficulty is avoided by transmitting only the difference between successive images of the object.”
  • 7. Motion-Compensated Hybrid Coding Standards: H.261 , MPEG-1, MPEG-2, H.263 , MPEG-4, H.264/AVC Video in Entropy Coding Deq./Inv. Transform Motion- Compensated Predictor Control Data Quant. Transf. coeffs Motion Data 0 Intra/Inter Coder Control Decoder Motion Estimator Transform/ Quantizer -
  • 8. Motion-Compensated Hybrid Coding Standards: H.261 , MPEG-1, MPEG-2, H.263 , MPEG-4, H.264/AVC Video in ¼-pixel accuracy Entropy Coding Deq./Inv. Transform Motion- Compensated Predictor Control Data Quant. Transf. coeffs Motion Data 0 Intra/Inter Coder Control Decoder Motion Estimator Transform/ Quantizer -
  • 9. Motion-Compensated Hybrid Coding Standards: H.261 , MPEG-1, MPEG-2, H.263 , MPEG-4, H.264/AVC Video in Entropy Coding Deq./Inv. Transform Motion- Compensated Predictor Control Data Quant. Transf. coeffs Motion Data 0 Intra/Inter Coder Control Decoder Motion Estimator Transform/ Quantizer - Adaptive block sizes . . .
  • 10. Motion-Compensated Hybrid Coding Standards: H.261 , MPEG-1, MPEG-2, H.263 , MPEG-4, H.264/AVC Video in Entropy Coding Deq./Inv. Transform Motion- Compensated Predictor Control Data Quant. Transf. coeffs Motion Data 0 Intra/Inter Coder Control Decoder Motion Estimator Transform/ Quantizer - Multiple Past Reference Frames
  • 11. Motion-Compensated Hybrid Coding Standards: H.261 , MPEG-1, MPEG-2, H.263 , MPEG-4, H.264/AVC Video in Generalized B-Frames Entropy Coding Deq./Inv. Transform Motion- Compensated Predictor Control Data Quant. Transf. coeffs Motion Data 0 Intra/Inter Coder Control Decoder Motion Estimator Transform/ Quantizer -
  • 12.
  • 13. Multiple Reference Frames in H.264/AVC Mobile & Calendar (CIF, 30 fps) 0 1 2 3 4 26 27 28 29 30 31 32 33 34 35 36 37 38 R [Mbit/s] PSNR Y [dB] PBB... with generalized B pictures PBB... with classic B pictures PPP... with 5 previous references PPP... with 1 previous reference ~15%
  • 14. Multiple Reference Frames in H.264/AVC Mobile & Calendar (CIF, 30 fps) 0 1 2 3 4 26 27 28 29 30 31 32 33 34 35 36 37 38 R [Mbit/s] PSNR Y [dB] PBB... with generalized B pictures PBB... with classic B pictures PPP... with 5 previous references PPP... with 1 previous reference >25%
  • 15. Multiple Reference Frames in H.264/AVC Mobile & Calendar (CIF, 30 fps) 0 1 2 3 4 26 27 28 29 30 31 32 33 34 35 36 37 38 R [Mbit/s] PSNR Y [dB] PBB... with generalized B pictures PBB... with classic B pictures PPP... with 5 previous references PPP... with 1 previous reference ~40%
  • 16.
  • 17. Surprising Success of ITU-T Rec. H.263 ?? What H.263 was developed for . . . Analog videophone . . . and what is was used for. Internet video streaming
  • 18.
  • 19.
  • 20.
  • 21. Lifting P U Even Frames Synthesis: Odd Frames Low Band High Band P U Even Frames Analysis: Odd Frames Low Band High Band Motion Compensation [Secker & Taubman, 2001] [Popescu & Bottreau, 2001]
  • 22.
  • 23. Wavelet Synthesis with Lossy Motion Vector MC Wavelet Transform Motion Estimator Embedded Encoding Embedded Encoding Decoder Decoder Inverse Wavelet Transform Video in Video out [Taubman & Secker, ICIP03] Minimize J=D+  R Minimize J=D+  R
  • 24. R-D Performance with Lossy Motion Vector [Taubman & Secker, VCIP 2003] courtesy D. Taubman Bit - Rate (kbps) Video PSNR (dB) 0 200 400 600 800 1000 1200 24 26 28 30 32 34 36 38 40 Embedded wavelet coefficients Lossless motion Non-embedded single-rate Embedded wavelet coefficients Lossy motion CIF Foreman
  • 25.
  • 26. Priority Encoding Transmission (PET) information symbols block of packets [Albanese, Blömer, Edmonds, Luby, Sudan, 19 96] [Davis & Danskin, 1996] [Horn, Stuhlmuller, Link, Girod, 1999] [Puri, Ramchandran, 1999] [Mohr, Riskin, Ladner, 2000] [Stankovic, Hamzaoui, Xiong, 2002] [Chou, Wang, Padmanabhan, 2003] . . . and many more . . . … redundancy symbols enhancement layer base layer Reed-Solomon codeword K N-K packet network
  • 27. Packet Delay Jitter and Loss delay     pdf loss lead-time loss probability lead-time loss probability
  • 28. Smart Prefetching Idea: Send more important packets earlier to allow for more retransmissions Server Client Internet [Podolsky, McCanne, Vetterli 2000] [Miao, Ortega 2000] [Chou, Miao 2001] Request stream Rate-distortion preamble Packet Schedule Video packets Updated Packet Schedule Updated Packet Schedule Updated Packet Schedule Updated Packet Schedule
  • 29.
  • 30.
  • 31. Markov Decision Tree for One Packet ... N transmission opportunities before deadline send: 1 ack: 1 0 0 0 send: 1 0 send: 1 0 ack: 1 0 1 0 1 0 0 1 1 1 0 0 0 0 t current t current +  t t current +2  t Action Observation “ Policy“ minimizing J = D +  R
  • 32.
  • 33.
  • 34.
  • 35.
  • 36. Wyner-Ziv MPEG Codec [Rane, Aaron, Girod, VCIP 2004] Channel Slepian-Wolf Encoder Wyner-Ziv Encoder ED T -1 Q -1 + MC S * MPEG Encoder main S Side information MPEG Encoder coarse T -1 q -1 ED + MC S’ R-S Decoder Reconstructed Frame at Encoder MPEG Encoder coarse R-S Encoder
  • 37. Graceful Degradation with Forward Error Protection Main Stream @ 1.092 Mbps FEC (n,k) = (40,36) FEC bitrate = 120 Kbps Total = 1.2 Mbps WZ Stream @ 270 Kbps FEP (n,k) = (52,36) WZ bitrate = 120 Kbps Total = 1.2 Mbps
  • 38. Visual Comparison of Degradation at Same PSNR With FEC 1 Mbps + 120 kbps (38.32 db) Foreman 50 CIF frames @ symbol error rate = 4 x 10 -4 With FEP 1 Mbps + 120 kbps (38.78 db)
  • 39. Superior Robustness of FEP With FEC 1 Mbps + 120 kbps (33.03 db) Foreman 50 CIF frames @ symbol error rate = 10 -3 With FEP 1 Mbps + 120 kbps (38.40 db)
  • 40. Lossy Compression with Side Information Source Encoder Decoder Source Encoder Decoder [Wyner, Ziv, 1976] For mse distortion and Gaussian statistics, rate-distortion functions of the two systems are the same .
  • 41. Ultra-Low-Complexity Video Coding Interframe Decoder Intraframe Encoder K’ Interpolation/ Extrapolation Key frames K Conventional Intraframe coding Conventional Intraframe decoding X’ Scalar Quantizer Turbo Encoder Buffer WZ frames X Turbo Decoder Request bits Slepian-Wolf Codec Reconstruction Y [Aaron, Zhang, Girod, Asilomar 2002] [Aaron, Rane, Zhang, Girod, DCC 2003]
  • 42.
  • 43. Ultra-Low-Complexity Video Coder H263+ Intraframe Coding 330 kbps, 32.9 dB Wyner-Ziv Codec 274 kbps, 39.0 dB
  • 44. Ultra-Low-Complexity Video Coder H263+ I-B-I-B 276 kbps, 41.8 dB Wyner-Ziv Codec 274 kbps, 39.0 dB
  • 45. Stanford Camera Array Courtesy Marc Levoy, Stanford Computer Graphics Lab
  • 46. Stanford Camera Array Courtesy Marc Levoy, Stanford Computer Graphics Lab
  • 47. Light Field Compression Rate: 0.11 bpp PSNR 39.9 dB Rate: 0.11 bpp PSNR 37.4 dB Wyner-Ziv, Pixel-Domain JPEG-2000
  • 48.
  • 49. Acknowledgments Anne M. Aaron Jacob Chakareski Philip A. Chou J=D+  R Markus Flierl Sang-eun Han Mark Kalman Marc Levoy Yi Liang Shantanu Rane David Rebollo-Monedero Andrew Secker David Taubman Thomas Wiegand Xiaoqing Zhu Rui Zhang
  • 50. Progress is a wonderful thing, if only it would stop . . . Robert Musil
  • 51.