5.1 Please solve a) and b) in pythonWinbugs. You can find the datas.pdf

R

5.1 Please solve a) and b) in python/Winbugs. You can find the dataset needed below: D H V 4.4 38 2 4.6 33 2.2 5 40 3 5.1 49 4.3 5.1 37 3 5.2 41 2.9 5.2 41 3.5 5.5 39 3.4 5.5 50 5 5.6 69 7.2 5.9 58 6.4 5.9 50 5.6 7.5 45 7.7 7.6 51 10.3 7.6 49 8 7.8 59 12.1 8 56 11.1 8.1 85 16.8 8.4 59 13.6 8.6 78 16.6 8.9 93 20.2 9.1 65 17 9.2 67 17.7 9.3 76 19.4 9.3 64 17.1 9.8 71 23.9 9.9 72 22 9.9 79 23.1 9.9 69 22.6 10.1 71 22 10.2 80 27 10.2 82 27 10.3 81 27.4 10.4 75 25.2 10.6 75 25.5 11 71 25.8 11.1 81 32.8 11.2 91 35.4 11.5 66 26 11.7 65 29 12 72 30.2 12.2 66 28.2 12.2 72 32.4 12.5 90 41.3 12.9 88 45.2 13 63 31.5 13.1 69 37.8 13.1 65 31.6 13.4 73 43.1 13.8 69 36.5 13.8 77 43.3 14.3 64 41.3 14.3 77 58.9 14.6 91 65.6 14.8 90 59.3 14.9 68 41.4 15.1 96 61.5 15.2 91 66.7 15.2 97 68.2 15.3 95 73.2 15.4 89 65.9 15.7 73 55.5 15.9 99 73.6 16 90 65.9 16.8 90 71.4 17.8 91 80.2 18.3 96 93.8 18.3 100 97.9 19.4 94 107 23.4 104 163.5 Spring23 HW 5.1. Pinus echinata (shortleaf pine) forests provided innumerable railroad ties for our nation's expanding railroad network in the late 19th and early 20th century. The wood is now used for general construction, exterior and interior finishing, and pulpwood. Volume is the most widely used measure of wood quantity and is often estimated in standing trees for the assessment of economic value or commercial utilization potential. Volume is usually estimated from such measurements as diameter and merchantable height. The proposed equation for volume is V=0D1H2 where D is the diameter at breast height (1.3m) and H is the merchantable height. Parameters 0,1 and 2 depend on the tree species while is multiplicative error with lognormal distribution with parameters =0 and 2. Bruce and Schumacher (1935) provided data on 70 shortleaf pine trees consisting of D (in), H (ft), and V (cubic ft). The dataset is in file shortleaf0.dat. (a)Set the model as logV=0+1logD+2logH+ where N(0,2). Estimate parameters 0,1 and 2 and provide their 95% credible intervals. (b)For D=15 in and H=89ft, estimate the mean volume and find 95% credible set. Hint. Be careful in (b), the model is for logV and the estimate and CS is needed for V..

5.1 Please solve a) and b) in python/Winbugs. You can find the dataset needed below:
D H V
4.4 38 2
4.6 33 2.2
5 40 3
5.1 49 4.3
5.1 37 3
5.2 41 2.9
5.2 41 3.5
5.5 39 3.4
5.5 50 5
5.6 69 7.2
5.9 58 6.4
5.9 50 5.6
7.5 45 7.7
7.6 51 10.3
7.6 49 8
7.8 59 12.1
8 56 11.1
8.1 85 16.8
8.4 59 13.6
8.6 78 16.6
8.9 93 20.2
9.1 65 17
9.2 67 17.7
9.3 76 19.4
9.3 64 17.1
9.8 71 23.9
9.9 72 22
9.9 79 23.1
9.9 69 22.6
10.1 71 22
10.2 80 27
10.2 82 27
10.3 81 27.4
10.4 75 25.2
10.6 75 25.5
11 71 25.8
11.1 81 32.8
11.2 91 35.4
11.5 66 26
11.7 65 29
12 72 30.2
12.2 66 28.2
12.2 72 32.4
12.5 90 41.3
12.9 88 45.2
13 63 31.5
13.1 69 37.8
13.1 65 31.6
13.4 73 43.1
13.8 69 36.5
13.8 77 43.3
14.3 64 41.3
14.3 77 58.9
14.6 91 65.6
14.8 90 59.3
14.9 68 41.4
15.1 96 61.5
15.2 91 66.7
15.2 97 68.2
15.3 95 73.2
15.4 89 65.9
15.7 73 55.5
15.9 99 73.6
16 90 65.9
16.8 90 71.4
17.8 91 80.2
18.3 96 93.8
18.3 100 97.9
19.4 94 107
23.4 104 163.5 Spring23 HW 5.1. Pinus echinata (shortleaf pine) forests provided
innumerable railroad ties for our nation's expanding railroad network in the late 19th and early
20th century. The wood is now used for general construction, exterior and interior finishing, and
pulpwood. Volume is the most widely used measure of wood quantity and is often estimated in
standing trees for the assessment of economic value or commercial utilization potential. Volume
is usually estimated from such measurements as diameter and merchantable height. The
proposed equation for volume is V=0D1H2 where D is the diameter at breast height (1.3m) and
H is the merchantable height. Parameters 0,1 and 2 depend on the tree species while is
multiplicative error with lognormal distribution with parameters =0 and 2. Bruce and
Schumacher (1935) provided data on 70 shortleaf pine trees consisting of D (in), H (ft), and V
(cubic ft). The dataset is in file shortleaf0.dat. (a)Set the model as logV=0+1logD+2logH+ where
N(0,2). Estimate parameters 0,1 and 2 and provide their 95% credible intervals. (b)For D=15 in
and H=89ft, estimate the mean volume and find 95% credible set. Hint. Be careful in (b), the
model is for logV and the estimate and CS is needed for V.

Recomendados

IRJET- Optimization of 1-Bit ALU using Ternary Logic por
IRJET- Optimization of 1-Bit ALU using Ternary LogicIRJET- Optimization of 1-Bit ALU using Ternary Logic
IRJET- Optimization of 1-Bit ALU using Ternary LogicIRJET Journal
20 vistas6 diapositivas
Gsp 215 Future Our Mission/newtonhelp.com por
Gsp 215 Future Our Mission/newtonhelp.comGsp 215 Future Our Mission/newtonhelp.com
Gsp 215 Future Our Mission/newtonhelp.comamaranthbeg8
11 vistas48 diapositivas
GSP 215 Doing by learn/newtonhelp.com por
GSP 215 Doing by learn/newtonhelp.comGSP 215 Doing by learn/newtonhelp.com
GSP 215 Doing by learn/newtonhelp.combellflower126
11 vistas48 diapositivas
GSP 215 Become Exceptional/newtonhelp.com por
GSP 215 Become Exceptional/newtonhelp.comGSP 215 Become Exceptional/newtonhelp.com
GSP 215 Become Exceptional/newtonhelp.combellflower148
14 vistas48 diapositivas
GSP 215 Perfect Education/newtonhelp.com por
GSP 215 Perfect Education/newtonhelp.comGSP 215 Perfect Education/newtonhelp.com
GSP 215 Perfect Education/newtonhelp.combellflower169
9 vistas48 diapositivas
Machine Learning and Stochastic Geometry: Statistical Frameworks Against Unce... por
Machine Learning and Stochastic Geometry: Statistical Frameworks Against Unce...Machine Learning and Stochastic Geometry: Statistical Frameworks Against Unce...
Machine Learning and Stochastic Geometry: Statistical Frameworks Against Unce...Koji Yamamoto
1.3K vistas102 diapositivas

Más contenido relacionado

Similar a 5.1 Please solve a) and b) in pythonWinbugs. You can find the datas.pdf

250903944 3 homework2010_3 por
250903944 3 homework2010_3250903944 3 homework2010_3
250903944 3 homework2010_3Jerry Snow
96 vistas1 diapositiva
Solution Manual Applied Statistics and Probability for Engineers 6th edition ... por
Solution Manual Applied Statistics and Probability for Engineers 6th edition ...Solution Manual Applied Statistics and Probability for Engineers 6th edition ...
Solution Manual Applied Statistics and Probability for Engineers 6th edition ...NetaLavi
9 vistas26 diapositivas
Robust Watermarking through Dual Band IWT and Chinese Remainder Theorem por
Robust Watermarking through Dual Band IWT and Chinese Remainder TheoremRobust Watermarking through Dual Band IWT and Chinese Remainder Theorem
Robust Watermarking through Dual Band IWT and Chinese Remainder TheoremjournalBEEI
13 vistas9 diapositivas
IRJET- VLSI Architecture for Reversible Radix-2 FFT Algorithm using Programma... por
IRJET- VLSI Architecture for Reversible Radix-2 FFT Algorithm using Programma...IRJET- VLSI Architecture for Reversible Radix-2 FFT Algorithm using Programma...
IRJET- VLSI Architecture for Reversible Radix-2 FFT Algorithm using Programma...IRJET Journal
94 vistas4 diapositivas
Developing digital signal clustering method using local binary pattern histog... por
Developing digital signal clustering method using local binary pattern histog...Developing digital signal clustering method using local binary pattern histog...
Developing digital signal clustering method using local binary pattern histog...IJECEIAES
11 vistas7 diapositivas
NG3S903 - Electronic Systems Engineering - Fault Modelling Techniques por
NG3S903 - Electronic Systems Engineering - Fault Modelling TechniquesNG3S903 - Electronic Systems Engineering - Fault Modelling Techniques
NG3S903 - Electronic Systems Engineering - Fault Modelling TechniquesChris Francis
366 vistas45 diapositivas

Similar a 5.1 Please solve a) and b) in pythonWinbugs. You can find the datas.pdf(20)

250903944 3 homework2010_3 por Jerry Snow
250903944 3 homework2010_3250903944 3 homework2010_3
250903944 3 homework2010_3
Jerry Snow96 vistas
Solution Manual Applied Statistics and Probability for Engineers 6th edition ... por NetaLavi
Solution Manual Applied Statistics and Probability for Engineers 6th edition ...Solution Manual Applied Statistics and Probability for Engineers 6th edition ...
Solution Manual Applied Statistics and Probability for Engineers 6th edition ...
NetaLavi9 vistas
Robust Watermarking through Dual Band IWT and Chinese Remainder Theorem por journalBEEI
Robust Watermarking through Dual Band IWT and Chinese Remainder TheoremRobust Watermarking through Dual Band IWT and Chinese Remainder Theorem
Robust Watermarking through Dual Band IWT and Chinese Remainder Theorem
journalBEEI13 vistas
IRJET- VLSI Architecture for Reversible Radix-2 FFT Algorithm using Programma... por IRJET Journal
IRJET- VLSI Architecture for Reversible Radix-2 FFT Algorithm using Programma...IRJET- VLSI Architecture for Reversible Radix-2 FFT Algorithm using Programma...
IRJET- VLSI Architecture for Reversible Radix-2 FFT Algorithm using Programma...
IRJET Journal94 vistas
Developing digital signal clustering method using local binary pattern histog... por IJECEIAES
Developing digital signal clustering method using local binary pattern histog...Developing digital signal clustering method using local binary pattern histog...
Developing digital signal clustering method using local binary pattern histog...
IJECEIAES11 vistas
NG3S903 - Electronic Systems Engineering - Fault Modelling Techniques por Chris Francis
NG3S903 - Electronic Systems Engineering - Fault Modelling TechniquesNG3S903 - Electronic Systems Engineering - Fault Modelling Techniques
NG3S903 - Electronic Systems Engineering - Fault Modelling Techniques
Chris Francis366 vistas
Efficient video compression using EZWT por IJERA Editor
Efficient video compression using EZWTEfficient video compression using EZWT
Efficient video compression using EZWT
IJERA Editor287 vistas
3to9.pdfOSCAIL Batchelor of Science (Hons) in Informatio.docx por gilbertkpeters11344
3to9.pdfOSCAIL Batchelor of Science (Hons) in Informatio.docx3to9.pdfOSCAIL Batchelor of Science (Hons) in Informatio.docx
3to9.pdfOSCAIL Batchelor of Science (Hons) in Informatio.docx
Reverse-Engineering a Proprietary Sound Sample Format por Andrew Bulhak
Reverse-Engineering a Proprietary Sound Sample FormatReverse-Engineering a Proprietary Sound Sample Format
Reverse-Engineering a Proprietary Sound Sample Format
Andrew Bulhak1.3K vistas
GSP 215 Effective Communication - tutorialrank.com por Bartholomew35
GSP 215  Effective Communication - tutorialrank.comGSP 215  Effective Communication - tutorialrank.com
GSP 215 Effective Communication - tutorialrank.com
Bartholomew3513 vistas
Statistical analysis of network data and evolution on GPUs: High-performance ... por Michael Stumpf
Statistical analysis of network data and evolution on GPUs: High-performance ...Statistical analysis of network data and evolution on GPUs: High-performance ...
Statistical analysis of network data and evolution on GPUs: High-performance ...
Michael Stumpf1.5K vistas
Chapter Eight(3) por bolovv
Chapter Eight(3)Chapter Eight(3)
Chapter Eight(3)
bolovv814 vistas
In this lab- we consider the problem of precision in numbers A) Intege.docx por PeterirMBowerv
In this lab- we consider the problem of precision in numbers A) Intege.docxIn this lab- we consider the problem of precision in numbers A) Intege.docx
In this lab- we consider the problem of precision in numbers A) Intege.docx
PeterirMBowerv2 vistas
GPUs for GEC Competition @ GECCO-2013 por Daniele Loiacono
GPUs for GEC Competition @ GECCO-2013GPUs for GEC Competition @ GECCO-2013
GPUs for GEC Competition @ GECCO-2013
Daniele Loiacono1.1K vistas

Más de rambagra74

5.3 Please solve 3. Spring 23 HW 5.3. An experiment was conducted (P.pdf por
5.3 Please solve 3. Spring 23 HW 5.3. An experiment was conducted (P.pdf5.3 Please solve 3. Spring 23 HW 5.3. An experiment was conducted (P.pdf
5.3 Please solve 3. Spring 23 HW 5.3. An experiment was conducted (P.pdframbagra74
2 vistas1 diapositiva
5.2 Par�s a Mosc�. En su programa de estudios de verano en el extr.pdf por
5.2 Par�s a Mosc�. En su programa de estudios de verano en el extr.pdf5.2 Par�s a Mosc�. En su programa de estudios de verano en el extr.pdf
5.2 Par�s a Mosc�. En su programa de estudios de verano en el extr.pdframbagra74
2 vistas1 diapositiva
5. �Cu�l de las siguientes no es una caracter�stica principal a cons.pdf por
5. �Cu�l de las siguientes no es una caracter�stica principal a cons.pdf5. �Cu�l de las siguientes no es una caracter�stica principal a cons.pdf
5. �Cu�l de las siguientes no es una caracter�stica principal a cons.pdframbagra74
2 vistas1 diapositiva
5. el objetivo principal de los �derechos� es permitir que el indivi.pdf por
5. el objetivo principal de los �derechos� es permitir que el indivi.pdf5. el objetivo principal de los �derechos� es permitir que el indivi.pdf
5. el objetivo principal de los �derechos� es permitir que el indivi.pdframbagra74
14 vistas1 diapositiva
5. �C�mo llamar�a a un docente responsable de ayudar a otros docente.pdf por
5. �C�mo llamar�a a un docente responsable de ayudar a otros docente.pdf5. �C�mo llamar�a a un docente responsable de ayudar a otros docente.pdf
5. �C�mo llamar�a a un docente responsable de ayudar a otros docente.pdframbagra74
2 vistas2 diapositivas
5. �Cu�l de los siguientes elementos debe incluirse en el gasto de p.pdf por
5. �Cu�l de los siguientes elementos debe incluirse en el gasto de p.pdf5. �Cu�l de los siguientes elementos debe incluirse en el gasto de p.pdf
5. �Cu�l de los siguientes elementos debe incluirse en el gasto de p.pdframbagra74
2 vistas1 diapositiva

Más de rambagra74(20)

5.3 Please solve 3. Spring 23 HW 5.3. An experiment was conducted (P.pdf por rambagra74
5.3 Please solve 3. Spring 23 HW 5.3. An experiment was conducted (P.pdf5.3 Please solve 3. Spring 23 HW 5.3. An experiment was conducted (P.pdf
5.3 Please solve 3. Spring 23 HW 5.3. An experiment was conducted (P.pdf
rambagra742 vistas
5.2 Par�s a Mosc�. En su programa de estudios de verano en el extr.pdf por rambagra74
5.2 Par�s a Mosc�. En su programa de estudios de verano en el extr.pdf5.2 Par�s a Mosc�. En su programa de estudios de verano en el extr.pdf
5.2 Par�s a Mosc�. En su programa de estudios de verano en el extr.pdf
rambagra742 vistas
5. �Cu�l de las siguientes no es una caracter�stica principal a cons.pdf por rambagra74
5. �Cu�l de las siguientes no es una caracter�stica principal a cons.pdf5. �Cu�l de las siguientes no es una caracter�stica principal a cons.pdf
5. �Cu�l de las siguientes no es una caracter�stica principal a cons.pdf
rambagra742 vistas
5. el objetivo principal de los �derechos� es permitir que el indivi.pdf por rambagra74
5. el objetivo principal de los �derechos� es permitir que el indivi.pdf5. el objetivo principal de los �derechos� es permitir que el indivi.pdf
5. el objetivo principal de los �derechos� es permitir que el indivi.pdf
rambagra7414 vistas
5. �C�mo llamar�a a un docente responsable de ayudar a otros docente.pdf por rambagra74
5. �C�mo llamar�a a un docente responsable de ayudar a otros docente.pdf5. �C�mo llamar�a a un docente responsable de ayudar a otros docente.pdf
5. �C�mo llamar�a a un docente responsable de ayudar a otros docente.pdf
rambagra742 vistas
5. �Cu�l de los siguientes elementos debe incluirse en el gasto de p.pdf por rambagra74
5. �Cu�l de los siguientes elementos debe incluirse en el gasto de p.pdf5. �Cu�l de los siguientes elementos debe incluirse en el gasto de p.pdf
5. �Cu�l de los siguientes elementos debe incluirse en el gasto de p.pdf
rambagra742 vistas
5. Un monedero tiene diez monedas, tres de las cuales son de veintic.pdf por rambagra74
5. Un monedero tiene diez monedas, tres de las cuales son de veintic.pdf5. Un monedero tiene diez monedas, tres de las cuales son de veintic.pdf
5. Un monedero tiene diez monedas, tres de las cuales son de veintic.pdf
rambagra743 vistas
5. para las siguientes preguntas, calcule el margen en d�lares y por.pdf por rambagra74
5. para las siguientes preguntas, calcule el margen en d�lares y por.pdf5. para las siguientes preguntas, calcule el margen en d�lares y por.pdf
5. para las siguientes preguntas, calcule el margen en d�lares y por.pdf
rambagra743 vistas
5. Los gerentes de ingenier�a ejercen control sobre los proyectos cu.pdf por rambagra74
5. Los gerentes de ingenier�a ejercen control sobre los proyectos cu.pdf5. Los gerentes de ingenier�a ejercen control sobre los proyectos cu.pdf
5. Los gerentes de ingenier�a ejercen control sobre los proyectos cu.pdf
rambagra742 vistas
5. La velocidad en el pa�s de Nanolandia siempre es estable. En 2018.pdf por rambagra74
5. La velocidad en el pa�s de Nanolandia siempre es estable. En 2018.pdf5. La velocidad en el pa�s de Nanolandia siempre es estable. En 2018.pdf
5. La velocidad en el pa�s de Nanolandia siempre es estable. En 2018.pdf
rambagra742 vistas
5. La siguiente informaci�n est� disponible para Henderson Compone.pdf por rambagra74
5. La siguiente informaci�n est� disponible para Henderson Compone.pdf5. La siguiente informaci�n est� disponible para Henderson Compone.pdf
5. La siguiente informaci�n est� disponible para Henderson Compone.pdf
rambagra742 vistas
5. In pea plants, purple flowers (P) are dominant over white flower.pdf por rambagra74
5.  In pea plants, purple flowers (P) are dominant over white flower.pdf5.  In pea plants, purple flowers (P) are dominant over white flower.pdf
5. In pea plants, purple flowers (P) are dominant over white flower.pdf
rambagra742 vistas
5. (Community events, 5 points) The Lower Bay State Road neighborhoo.pdf por rambagra74
5. (Community events, 5 points) The Lower Bay State Road neighborhoo.pdf5. (Community events, 5 points) The Lower Bay State Road neighborhoo.pdf
5. (Community events, 5 points) The Lower Bay State Road neighborhoo.pdf
rambagra743 vistas
44.) A firm uses backflush costing and values inventory using direct.pdf por rambagra74
44.) A firm uses backflush costing and values inventory using direct.pdf44.) A firm uses backflush costing and values inventory using direct.pdf
44.) A firm uses backflush costing and values inventory using direct.pdf
rambagra7410 vistas
41. La depreciaci�n del equipo de f�brica se informar� en el estad.pdf por rambagra74
41. La depreciaci�n del equipo de f�brica se informar� en el estad.pdf41. La depreciaci�n del equipo de f�brica se informar� en el estad.pdf
41. La depreciaci�n del equipo de f�brica se informar� en el estad.pdf
rambagra742 vistas
48. �Qu� funci�n de gesti�n implica medir los resultados, compararlo.pdf por rambagra74
48. �Qu� funci�n de gesti�n implica medir los resultados, compararlo.pdf48. �Qu� funci�n de gesti�n implica medir los resultados, compararlo.pdf
48. �Qu� funci�n de gesti�n implica medir los resultados, compararlo.pdf
rambagra742 vistas
41. �Cu�l de las siguientes organizaciones (como se discuti� en clas.pdf por rambagra74
41. �Cu�l de las siguientes organizaciones (como se discuti� en clas.pdf41. �Cu�l de las siguientes organizaciones (como se discuti� en clas.pdf
41. �Cu�l de las siguientes organizaciones (como se discuti� en clas.pdf
rambagra743 vistas
47. Crossing the Chasm se refiere a una nueva tecnolog�a que pasa .pdf por rambagra74
47. Crossing the Chasm se refiere a una nueva tecnolog�a que pasa .pdf47. Crossing the Chasm se refiere a una nueva tecnolog�a que pasa .pdf
47. Crossing the Chasm se refiere a una nueva tecnolog�a que pasa .pdf
rambagra742 vistas
40. Las limitaciones de las estrategias transnacionales incluyen tod.pdf por rambagra74
40. Las limitaciones de las estrategias transnacionales incluyen tod.pdf40. Las limitaciones de las estrategias transnacionales incluyen tod.pdf
40. Las limitaciones de las estrategias transnacionales incluyen tod.pdf
rambagra742 vistas
5) La afirmaci�n es que la proporci�n de muertes de ni�os por ahogam.pdf por rambagra74
5) La afirmaci�n es que la proporci�n de muertes de ni�os por ahogam.pdf5) La afirmaci�n es que la proporci�n de muertes de ni�os por ahogam.pdf
5) La afirmaci�n es que la proporci�n de muertes de ni�os por ahogam.pdf
rambagra742 vistas

Último

UWP OA Week Presentation (1).pptx por
UWP OA Week Presentation (1).pptxUWP OA Week Presentation (1).pptx
UWP OA Week Presentation (1).pptxJisc
88 vistas11 diapositivas
PLASMA PROTEIN (2).pptx por
PLASMA PROTEIN (2).pptxPLASMA PROTEIN (2).pptx
PLASMA PROTEIN (2).pptxMEGHANA C
68 vistas34 diapositivas
Psychology KS5 por
Psychology KS5Psychology KS5
Psychology KS5WestHatch
93 vistas5 diapositivas
AUDIENCE - BANDURA.pptx por
AUDIENCE - BANDURA.pptxAUDIENCE - BANDURA.pptx
AUDIENCE - BANDURA.pptxiammrhaywood
84 vistas44 diapositivas
Ch. 7 Political Participation and Elections.pptx por
Ch. 7 Political Participation and Elections.pptxCh. 7 Political Participation and Elections.pptx
Ch. 7 Political Participation and Elections.pptxRommel Regala
97 vistas11 diapositivas
231112 (WR) v1 ChatGPT OEB 2023.pdf por
231112 (WR) v1  ChatGPT OEB 2023.pdf231112 (WR) v1  ChatGPT OEB 2023.pdf
231112 (WR) v1 ChatGPT OEB 2023.pdfWilfredRubens.com
157 vistas21 diapositivas

Último(20)

UWP OA Week Presentation (1).pptx por Jisc
UWP OA Week Presentation (1).pptxUWP OA Week Presentation (1).pptx
UWP OA Week Presentation (1).pptx
Jisc88 vistas
PLASMA PROTEIN (2).pptx por MEGHANA C
PLASMA PROTEIN (2).pptxPLASMA PROTEIN (2).pptx
PLASMA PROTEIN (2).pptx
MEGHANA C68 vistas
Psychology KS5 por WestHatch
Psychology KS5Psychology KS5
Psychology KS5
WestHatch93 vistas
AUDIENCE - BANDURA.pptx por iammrhaywood
AUDIENCE - BANDURA.pptxAUDIENCE - BANDURA.pptx
AUDIENCE - BANDURA.pptx
iammrhaywood84 vistas
Ch. 7 Political Participation and Elections.pptx por Rommel Regala
Ch. 7 Political Participation and Elections.pptxCh. 7 Political Participation and Elections.pptx
Ch. 7 Political Participation and Elections.pptx
Rommel Regala97 vistas
EIT-Digital_Spohrer_AI_Intro 20231128 v1.pptx por ISSIP
EIT-Digital_Spohrer_AI_Intro 20231128 v1.pptxEIT-Digital_Spohrer_AI_Intro 20231128 v1.pptx
EIT-Digital_Spohrer_AI_Intro 20231128 v1.pptx
ISSIP369 vistas
11.30.23 Poverty and Inequality in America.pptx por mary850239
11.30.23 Poverty and Inequality in America.pptx11.30.23 Poverty and Inequality in America.pptx
11.30.23 Poverty and Inequality in America.pptx
mary850239160 vistas
Sociology KS5 por WestHatch
Sociology KS5Sociology KS5
Sociology KS5
WestHatch70 vistas
Scope of Biochemistry.pptx por shoba shoba
Scope of Biochemistry.pptxScope of Biochemistry.pptx
Scope of Biochemistry.pptx
shoba shoba133 vistas
Pharmaceutical Inorganic Chemistry Unit IVMiscellaneous compounds Expectorant... por Ms. Pooja Bhandare
Pharmaceutical Inorganic Chemistry Unit IVMiscellaneous compounds Expectorant...Pharmaceutical Inorganic Chemistry Unit IVMiscellaneous compounds Expectorant...
Pharmaceutical Inorganic Chemistry Unit IVMiscellaneous compounds Expectorant...
Ms. Pooja Bhandare93 vistas
When Sex Gets Complicated: Porn, Affairs, & Cybersex por Marlene Maheu
When Sex Gets Complicated: Porn, Affairs, & CybersexWhen Sex Gets Complicated: Porn, Affairs, & Cybersex
When Sex Gets Complicated: Porn, Affairs, & Cybersex
Marlene Maheu67 vistas
Create a Structure in VBNet.pptx por Breach_P
Create a Structure in VBNet.pptxCreate a Structure in VBNet.pptx
Create a Structure in VBNet.pptx
Breach_P75 vistas
The Open Access Community Framework (OACF) 2023 (1).pptx por Jisc
The Open Access Community Framework (OACF) 2023 (1).pptxThe Open Access Community Framework (OACF) 2023 (1).pptx
The Open Access Community Framework (OACF) 2023 (1).pptx
Jisc110 vistas
JiscOAWeek_LAIR_slides_October2023.pptx por Jisc
JiscOAWeek_LAIR_slides_October2023.pptxJiscOAWeek_LAIR_slides_October2023.pptx
JiscOAWeek_LAIR_slides_October2023.pptx
Jisc96 vistas
Use of Probiotics in Aquaculture.pptx por AKSHAY MANDAL
Use of Probiotics in Aquaculture.pptxUse of Probiotics in Aquaculture.pptx
Use of Probiotics in Aquaculture.pptx
AKSHAY MANDAL100 vistas

5.1 Please solve a) and b) in pythonWinbugs. You can find the datas.pdf

  • 1. 5.1 Please solve a) and b) in python/Winbugs. You can find the dataset needed below: D H V 4.4 38 2 4.6 33 2.2 5 40 3 5.1 49 4.3 5.1 37 3 5.2 41 2.9 5.2 41 3.5 5.5 39 3.4 5.5 50 5 5.6 69 7.2 5.9 58 6.4 5.9 50 5.6 7.5 45 7.7 7.6 51 10.3 7.6 49 8 7.8 59 12.1 8 56 11.1 8.1 85 16.8 8.4 59 13.6 8.6 78 16.6 8.9 93 20.2 9.1 65 17 9.2 67 17.7 9.3 76 19.4 9.3 64 17.1 9.8 71 23.9 9.9 72 22 9.9 79 23.1 9.9 69 22.6 10.1 71 22 10.2 80 27 10.2 82 27 10.3 81 27.4
  • 2. 10.4 75 25.2 10.6 75 25.5 11 71 25.8 11.1 81 32.8 11.2 91 35.4 11.5 66 26 11.7 65 29 12 72 30.2 12.2 66 28.2 12.2 72 32.4 12.5 90 41.3 12.9 88 45.2 13 63 31.5 13.1 69 37.8 13.1 65 31.6 13.4 73 43.1 13.8 69 36.5 13.8 77 43.3 14.3 64 41.3 14.3 77 58.9 14.6 91 65.6 14.8 90 59.3 14.9 68 41.4 15.1 96 61.5 15.2 91 66.7 15.2 97 68.2 15.3 95 73.2 15.4 89 65.9 15.7 73 55.5 15.9 99 73.6 16 90 65.9 16.8 90 71.4 17.8 91 80.2 18.3 96 93.8 18.3 100 97.9 19.4 94 107
  • 3. 23.4 104 163.5 Spring23 HW 5.1. Pinus echinata (shortleaf pine) forests provided innumerable railroad ties for our nation's expanding railroad network in the late 19th and early 20th century. The wood is now used for general construction, exterior and interior finishing, and pulpwood. Volume is the most widely used measure of wood quantity and is often estimated in standing trees for the assessment of economic value or commercial utilization potential. Volume is usually estimated from such measurements as diameter and merchantable height. The proposed equation for volume is V=0D1H2 where D is the diameter at breast height (1.3m) and H is the merchantable height. Parameters 0,1 and 2 depend on the tree species while is multiplicative error with lognormal distribution with parameters =0 and 2. Bruce and Schumacher (1935) provided data on 70 shortleaf pine trees consisting of D (in), H (ft), and V (cubic ft). The dataset is in file shortleaf0.dat. (a)Set the model as logV=0+1logD+2logH+ where N(0,2). Estimate parameters 0,1 and 2 and provide their 95% credible intervals. (b)For D=15 in and H=89ft, estimate the mean volume and find 95% credible set. Hint. Be careful in (b), the model is for logV and the estimate and CS is needed for V.