SlideShare una empresa de Scribd logo
1 de 25
Differentiation Chap 9

Objective: How to find
Stationary Points
&
determine their nature
(maximum/minimum)
riazidan
The stationary points of a curve are the points where
the gradient is zero
e.g.

y = x3 − 3x2 − 9x

A local maximum
x

dy
=0
dx
x

A local minimum
The word local is usually omitted and the points called
maximum and minimum points.
e.g.1 Find the coordinates of the stationary points
on the curve y = x 3 − 3 x 2 − 9 x
y = x3 − 3x2 − 9x
Solution:

dy
⇒
= 3x2 − 6x − 9
dx
dy
⇒ 3 x 2 − 6 x − 9 = 0 ⇒ 3( x 2 − 2 x − 3) = 0
=0
dx
3( x − out + 1 = 0 ⇒ x = 3
Tip: Watch 3)( xfor )common factors or x = −1
x = 3 when finding )stationary points.
⇒ y = ( 3 3 − 3( 3) 2 − 9( 3)
= 27 − 27 − 27 = − 27
x = −1 ⇒ y = ( −1) 3 − 3( −1) 2 − 9( −1)
= −1 − 3 + 9 = 5
The stationary points are (3, -27) and ( -1, 5)
Exercises
Find the coordinates of the stationary points of the
following functions
2
1. y = x − 4 x + 5

2.

y = 2 x 3 + 3 x 2 − 12 x + 1

Solutions:
dy
1.
= 2x − 4

dx
dy
= 0 ⇒ 2x − 4 = 0
dx
⇒ x=2

x = 2 ⇒ y = ( 2) 2 − 4( 2) + 5 = 1
Ans: St. pt. is ( 2, 1)
y = 2 x 3 + 3 x 2 − 12 x + 1

2.
Solution:

dy
= 6 x 2 + 6 x − 12
dx

dy
= 0 ⇒ 6( x 2 + x − 2) = 0 ⇒ 6( x − 1)( x + 2) = 0
dx
⇒ x = 1 or x = −2
x = 1 ⇒ y = −6
x = −2 ⇒ y = 2( −2) 3 + 3( −2) 2 − 12( −2) + 1 = 21
Ans: St. pts. are ( 1, −6) and ( −2, 21 )
We need to be able to determine the nature of a
stationary point ( whether it is a max or a min ).
There are several ways of doing this. e.g.
On the left of
a maximum,
the gradient is
positive

+

On the right of
a maximum,
the gradient is
negative

−
So, for a max the gradients are
0 At the max
On the left of
On the right of
the max
the max

−

+

The opposite is true for a minimum

−

0

+

Calculating the gradients on the left and right of a
stationary point tells us whether the point is a max or a
min.
e.g.2 Find the coordinates of the stationary point of the
2
curve y = x − 4 x + 1 . Is the point a max or min?

− − − − − − (1)
y = x2 − 4x + 1
Solution:
dy
⇒
= 2x − 4
dx
dy
=0
⇒
2x − 4 = 0 ⇒ x = 2
dx
y = ( 2) 2 − 4( 2) + 1
⇒ y = −3
Substitute in (1):
dy
= 2(1) − 4 = − 2 < 0
On the left of x = 2 e.g. at x = 1,
dx
dy
On the right of x = 2 e.g. at x = 3,
= 2( 3) − 4 = 2 > 0
dx
+
−
⇒ ( 2, − 3) is a min
We have
0
Another method for determining the nature of a
stationary point.
e.g.3 Consider

y = x 3 + 3 x 2 − 9 x + 10

The gradient function
is given by

dy
= 3x2 + 6x − 9
dx

dy
dx

3
2
At the max of y = x + 3 x − 9 x + 10 the gradient is 0
but the gradient of the gradient is negative.
Another method for determining the nature of a
stationary point.
e.g.3 Consider

y = x 3 + 3 x 2 − 9 x + 10

The gradient function
is given by

dy
= 3x2 + 6x − 9
dx

dy
dx

At the min of

y = x 3 + 3 x 2 − 9 x + 10
the gradient of the
gradient is positive.

d2y

The notation for the gradient of the gradient is
dx 2
“d 2 y by d x squared”
e.g.3 ( continued ) Find the stationary points on the
curve y = x 3 + 3 x 2 − 9 x + 10 and distinguish between
the max and the min.
y = x 3 + 3 x 2 − 9 x + 10
Solution:

dy
d2y
2
⇒
= 3x + 6x − 9 ⇒
= 6x + 6
2
dx
dx
2
dy
2 d y
Stationary points:
= 0 ⇒ 3 x + 6 x −is called the
9=0
dx
dx 2 nd
2 derivative
⇒ 3( x 2 + 2 x − 3) = 0
⇒ 3( x + 3)( x − 1) = 0
⇒

x = −3 or x = 1

We now need to find the y-coordinates of the st. pts.
y = x 3 + 3 x 2 − 9 x + 10
x = −3 ⇒

y = ( −3) 3 + 3( −3) 2 − 9( −3) + 10 = 37

x =1

y = 1 + 3 − 9 + 10 = 5

⇒

To distinguish between max and min we use the 2nd
derivative, at the stationary points.

d2y
2

= 6x + 6

dx
d y
= 6( −3) + 6 = −12 < 0 ⇒ max at (−3, 37 )
At x = −3 ,
2
dx
2

At x = 1 ,

d2y
dx

2

= 6 + 6 = 12 > 0 ⇒ min at (1, 5)
SUMMARY
 To find stationary points, solve the equation
dy
=0
dx
 Determine the nature of the stationary points

•

either by finding the gradients on the left
and right of the stationary points

+

−
•

⇒ minimum

0

0

+

−

⇒

maximum

or by finding the value of the 2nd derivative
at the stationary points

d2y
dx

2

< 0 ⇒ max

d2y
dx

2

> 0 ⇒ min
Exercises
Find the coordinates of the stationary points of the
following functions, determine the nature of each
and sketch the functions.
3
2
3

2

y = x + 3x − 2
Ans. (0, − 2) is a min.

1.

(−2 , 2)
2.

y = x + 3x − 2

is a max.

y = 2 + 3x − x3

Ans. (−1, 0)

(1 , 4)

is a min.
is a max.

y = 2 + 3x − x3
The following slides contain repeats of
information on earlier slides, shown without
colour, so that they can be printed and
photocopied.
For most purposes the slides can be printed
as “Handouts” with up to 6 slides per sheet.
The stationary points of a curve are the points where
the gradient is zero
e.g.

y = x3 − 3x2 − 9x

A local maximum
x

dy
=0
dx
x

A local minimum
The word local is usually omitted and the points called
maximum and minimum points.
e.g.1 Find the coordinates of the stationary points
y = x3 − 3x2 − 9x
on the curve
Solution:

⇒
dy
=0
dx

⇒

y = x3 − 3x2 − 9x
dy
= 3x2 − 6x − 9
dx
3x2 − 6x − 9 = 0 ⇒

3( x 2 − 2 x − 3) = 0

3( x − 3)( x + 1) = 0 ⇒ x = 3 or x = −1
x = 3 ⇒ y = ( 3) 3 − 3( 3) 2 − 9( 3)
= 27 − 27 − 27 = − 27
x = −1 ⇒ y = ( −1) 3 − 3( −1) 2 − 9( −1)
= −1 − 3 + 9 = 5
The stationary points are (3, -27) and ( -1, 5)
Determining the nature of a Stationary Point
For a max we have
On the left of
the max

+

0

At the max

−

On the right of
the max

The opposite is true for a minimum

−

0

+

Calculating the gradients on the left and right
of a stationary point tells us whether the point
is a max or a min.
Another method for determining the nature of a
stationary point.
e.g. Consider

y

y = x 3 + 3 x 2 − 9 x + 10

The gradient function
is given by

dy
= 3x2 + 6x − 9
dx

dy
dx

3
2
At the max of y = x + 3 x − 9 x + 10 the gradient is
0, but the gradient of the gradient is negative.
y = x 3 + 3 x 2 − 9 x + 10
The gradient function
is given by

dy
= 3x2 + 6x − 9
dx

dy
dx

At the min of
y = x 3 + 3 x 2 − 9 x + 10
the gradient of the
gradient is positive.

d2y

The notation for the gradient of the gradient is
dx 2
“d 2 y by d x squared”
The gradient of the gradient is called the 2nd
derivative and is written as

d2y
dx 2
e.g. Find the stationary points on the curve
3
y = xand 3distinguish between the max
+ x 2 − 9 x + 10

and the=min.+ 3 x 2 − 9 x + 10
y x3
Solution:

dy
d2y
2
⇒
= 3x + 6x − 9 ⇒
= 6x + 6
2
dx
dx
dy
Stationary points:
= 0 ⇒ 3x2 + 6x − 9 = 0
dx
⇒ 3( x 2 + 2 x − 3) = 0
⇒ 3( x + 3)( x − 1) = 0
⇒

x = −3 or x = 1

We now need to find the y-coordinates of the st. pts.
y = x 3 + 3 x 2 − 9 x + 10
x = −3 ⇒

y = ( −3) 3 + 3( −3) 2 − 9( −3) + 10 = 37

x =1

y = 1 + 3 − 9 + 10 = 5

⇒

To distinguish between max and min we use the 2nd
derivative,
d2y
2

= 6x + 6

dx
d2y
At x = −3 , 2 = 6( −3) + 6 = −12 < 0 ⇒ max at (−3, 37 )
dx
At

x =1 ,

d2y
dx

2

= 6 + 6 = 12 > 0 ⇒ min at (1, 5)
SUMMARY
 To find stationary points, solve the equation
dy
=0
dx
 Determine the nature of the stationary points

•

either by finding the gradients on the left
and right of the stationary points
0
−
+
−
⇒ maximum
⇒ minimum +
0
• or by finding the value of the 2nd derivative
at the stationary points

d2y
dx

2

< 0 ⇒ max

d2y
dx

2

> 0 ⇒ min

Más contenido relacionado

La actualidad más candente

4.1 the chain rule
4.1 the chain rule4.1 the chain rule
4.1 the chain ruleAron Dotson
 
Limits and continuity powerpoint
Limits and continuity powerpointLimits and continuity powerpoint
Limits and continuity powerpointcanalculus
 
Math for Bus. and Eco. Chapter 2
Math for Bus. and Eco. Chapter 2Math for Bus. and Eco. Chapter 2
Math for Bus. and Eco. Chapter 2Mong Mara
 
5.3 integration by substitution dfs-102
5.3 integration by substitution dfs-1025.3 integration by substitution dfs-102
5.3 integration by substitution dfs-102Farhana Shaheen
 
solving quadratic equations by graphing
solving quadratic equations by graphingsolving quadratic equations by graphing
solving quadratic equations by graphingHind Al Awadi
 
Linear function and slopes of a line
Linear function and slopes of a lineLinear function and slopes of a line
Linear function and slopes of a lineJerlyn Fernandez
 
Lesson 27: Integration by Substitution (slides)
Lesson 27: Integration by Substitution (slides)Lesson 27: Integration by Substitution (slides)
Lesson 27: Integration by Substitution (slides)Matthew Leingang
 
INTEGRATION BY PARTS PPT
INTEGRATION BY PARTS PPT INTEGRATION BY PARTS PPT
INTEGRATION BY PARTS PPT 03062679929
 
5.1 Graphing Quadratic Functions
5.1 Graphing Quadratic Functions5.1 Graphing Quadratic Functions
5.1 Graphing Quadratic Functionshisema01
 
Lesson 14 b - parametric-1
Lesson 14 b - parametric-1Lesson 14 b - parametric-1
Lesson 14 b - parametric-1Jean Leano
 
Quadratic Equations in One Variables.pptx
Quadratic Equations in One Variables.pptxQuadratic Equations in One Variables.pptx
Quadratic Equations in One Variables.pptxpandavlogsbyJM
 
Continuous functions
Continuous functionsContinuous functions
Continuous functionssumanmathews
 
Differential calculus maxima minima
Differential calculus  maxima minimaDifferential calculus  maxima minima
Differential calculus maxima minimaSanthanam Krishnan
 
Modeling with Quadratics
Modeling with QuadraticsModeling with Quadratics
Modeling with QuadraticsPLeach
 
Lesson 14 a - parametric equations
Lesson 14 a - parametric equationsLesson 14 a - parametric equations
Lesson 14 a - parametric equationsJean Leano
 

La actualidad más candente (20)

4.1 the chain rule
4.1 the chain rule4.1 the chain rule
4.1 the chain rule
 
Limits and continuity powerpoint
Limits and continuity powerpointLimits and continuity powerpoint
Limits and continuity powerpoint
 
Math for Bus. and Eco. Chapter 2
Math for Bus. and Eco. Chapter 2Math for Bus. and Eco. Chapter 2
Math for Bus. and Eco. Chapter 2
 
5.3 integration by substitution dfs-102
5.3 integration by substitution dfs-1025.3 integration by substitution dfs-102
5.3 integration by substitution dfs-102
 
solving quadratic equations by graphing
solving quadratic equations by graphingsolving quadratic equations by graphing
solving quadratic equations by graphing
 
Linear function and slopes of a line
Linear function and slopes of a lineLinear function and slopes of a line
Linear function and slopes of a line
 
Lesson 10: The Chain Rule
Lesson 10: The Chain RuleLesson 10: The Chain Rule
Lesson 10: The Chain Rule
 
Lesson 27: Integration by Substitution (slides)
Lesson 27: Integration by Substitution (slides)Lesson 27: Integration by Substitution (slides)
Lesson 27: Integration by Substitution (slides)
 
Chain Rule
Chain RuleChain Rule
Chain Rule
 
Product rule
Product ruleProduct rule
Product rule
 
INTEGRATION BY PARTS PPT
INTEGRATION BY PARTS PPT INTEGRATION BY PARTS PPT
INTEGRATION BY PARTS PPT
 
5.1 Graphing Quadratic Functions
5.1 Graphing Quadratic Functions5.1 Graphing Quadratic Functions
5.1 Graphing Quadratic Functions
 
Lesson 14 b - parametric-1
Lesson 14 b - parametric-1Lesson 14 b - parametric-1
Lesson 14 b - parametric-1
 
Quadratic Equations in One Variables.pptx
Quadratic Equations in One Variables.pptxQuadratic Equations in One Variables.pptx
Quadratic Equations in One Variables.pptx
 
Rational equations
Rational equationsRational equations
Rational equations
 
Functions limits and continuity
Functions limits and continuityFunctions limits and continuity
Functions limits and continuity
 
Continuous functions
Continuous functionsContinuous functions
Continuous functions
 
Differential calculus maxima minima
Differential calculus  maxima minimaDifferential calculus  maxima minima
Differential calculus maxima minima
 
Modeling with Quadratics
Modeling with QuadraticsModeling with Quadratics
Modeling with Quadratics
 
Lesson 14 a - parametric equations
Lesson 14 a - parametric equationsLesson 14 a - parametric equations
Lesson 14 a - parametric equations
 

Destacado

IB Maths. Turning points. First derivative test
IB Maths. Turning points. First derivative testIB Maths. Turning points. First derivative test
IB Maths. Turning points. First derivative testestelav
 
Stationary Points Handout
Stationary Points HandoutStationary Points Handout
Stationary Points Handoutcoburgmaths
 
IB Maths.Turning points. Second derivative test
IB Maths.Turning points. Second derivative testIB Maths.Turning points. Second derivative test
IB Maths.Turning points. Second derivative testestelav
 
Schoenburg- AREA OF STUDY 2
Schoenburg- AREA OF STUDY 2Schoenburg- AREA OF STUDY 2
Schoenburg- AREA OF STUDY 2anicholls1234
 
Dynamics (full chapter)
Dynamics (full chapter)Dynamics (full chapter)
Dynamics (full chapter)Mohammed Ahmed
 
Kinematics displacement velocity graphs
Kinematics   displacement velocity graphsKinematics   displacement velocity graphs
Kinematics displacement velocity graphsMohammed Ahmed
 
Increasing decreasing functions
Increasing decreasing functionsIncreasing decreasing functions
Increasing decreasing functionsShaun Wilson
 
Numerical analysis stationary variables
Numerical analysis  stationary variablesNumerical analysis  stationary variables
Numerical analysis stationary variablesSHAMJITH KM
 

Destacado (20)

Stationary points
Stationary pointsStationary points
Stationary points
 
IB Maths. Turning points. First derivative test
IB Maths. Turning points. First derivative testIB Maths. Turning points. First derivative test
IB Maths. Turning points. First derivative test
 
Stationary Points Handout
Stationary Points HandoutStationary Points Handout
Stationary Points Handout
 
IB Maths.Turning points. Second derivative test
IB Maths.Turning points. Second derivative testIB Maths.Turning points. Second derivative test
IB Maths.Turning points. Second derivative test
 
C4 2012 june
C4 2012 juneC4 2012 june
C4 2012 june
 
C4 January 2012 QP
C4 January 2012 QPC4 January 2012 QP
C4 January 2012 QP
 
Simltaneous equations
Simltaneous equationsSimltaneous equations
Simltaneous equations
 
Schoenburg- AREA OF STUDY 2
Schoenburg- AREA OF STUDY 2Schoenburg- AREA OF STUDY 2
Schoenburg- AREA OF STUDY 2
 
C3 bronze 1
C3 bronze 1C3 bronze 1
C3 bronze 1
 
Kinematics
KinematicsKinematics
Kinematics
 
M1 January 2012 QP
M1 January 2012 QPM1 January 2012 QP
M1 January 2012 QP
 
C3 January 2012 QP
C3 January 2012 QPC3 January 2012 QP
C3 January 2012 QP
 
C3 2012 june
C3 2012 juneC3 2012 june
C3 2012 june
 
Dynamics (full chapter)
Dynamics (full chapter)Dynamics (full chapter)
Dynamics (full chapter)
 
Kinematics jan 27
Kinematics jan 27Kinematics jan 27
Kinematics jan 27
 
Kinematics displacement velocity graphs
Kinematics   displacement velocity graphsKinematics   displacement velocity graphs
Kinematics displacement velocity graphs
 
C4 EDEXCEL HELP
C4 EDEXCEL HELPC4 EDEXCEL HELP
C4 EDEXCEL HELP
 
dynamics text (M1)
dynamics text (M1)dynamics text (M1)
dynamics text (M1)
 
Increasing decreasing functions
Increasing decreasing functionsIncreasing decreasing functions
Increasing decreasing functions
 
Numerical analysis stationary variables
Numerical analysis  stationary variablesNumerical analysis  stationary variables
Numerical analysis stationary variables
 

Similar a Differentiation jan 21, 2014

C2 st lecture 4 handout
C2 st lecture 4 handoutC2 st lecture 4 handout
C2 st lecture 4 handoutfatima d
 
4.2 derivatives of logarithmic functions
4.2 derivatives of logarithmic functions4.2 derivatives of logarithmic functions
4.2 derivatives of logarithmic functionsdicosmo178
 
Algebra Revision.ppt
Algebra Revision.pptAlgebra Revision.ppt
Algebra Revision.pptAaronChi5
 
Sudėtingesnės trupmeninės lygtys
Sudėtingesnės trupmeninės lygtysSudėtingesnės trupmeninės lygtys
Sudėtingesnės trupmeninės lygtysLina Ša
 
Dividing polynomials
Dividing polynomialsDividing polynomials
Dividing polynomialsEducación
 
Straight-Line-Graphs-Final -2.pptx
Straight-Line-Graphs-Final -2.pptxStraight-Line-Graphs-Final -2.pptx
Straight-Line-Graphs-Final -2.pptxKviskvis
 
Engr 213 midterm 2b sol 2010
Engr 213 midterm 2b sol 2010Engr 213 midterm 2b sol 2010
Engr 213 midterm 2b sol 2010akabaka12
 
Antiderivatives nako sa calculus official
Antiderivatives nako sa calculus officialAntiderivatives nako sa calculus official
Antiderivatives nako sa calculus officialZerick Lucernas
 
maths Individual assignment on differentiation
maths Individual assignment on differentiationmaths Individual assignment on differentiation
maths Individual assignment on differentiationtenwoalex
 
Calculus First Test 2011/10/20
Calculus First Test 2011/10/20Calculus First Test 2011/10/20
Calculus First Test 2011/10/20Kuan-Lun Wang
 
Business Math Chapter 3
Business Math Chapter 3Business Math Chapter 3
Business Math Chapter 3Nazrin Nazdri
 
Factoring polynomials
Factoring polynomialsFactoring polynomials
Factoring polynomialsArvy Crescini
 

Similar a Differentiation jan 21, 2014 (20)

C2 st lecture 4 handout
C2 st lecture 4 handoutC2 st lecture 4 handout
C2 st lecture 4 handout
 
4.2 derivatives of logarithmic functions
4.2 derivatives of logarithmic functions4.2 derivatives of logarithmic functions
4.2 derivatives of logarithmic functions
 
Algebra Revision.ppt
Algebra Revision.pptAlgebra Revision.ppt
Algebra Revision.ppt
 
Sudėtingesnės trupmeninės lygtys
Sudėtingesnės trupmeninės lygtysSudėtingesnės trupmeninės lygtys
Sudėtingesnės trupmeninės lygtys
 
Gr 11 equations
Gr 11   equationsGr 11   equations
Gr 11 equations
 
Maths 301 key_sem_1_2009_2010
Maths 301 key_sem_1_2009_2010Maths 301 key_sem_1_2009_2010
Maths 301 key_sem_1_2009_2010
 
Quadraticequation
QuadraticequationQuadraticequation
Quadraticequation
 
Dividing polynomials
Dividing polynomialsDividing polynomials
Dividing polynomials
 
Straight-Line-Graphs-Final -2.pptx
Straight-Line-Graphs-Final -2.pptxStraight-Line-Graphs-Final -2.pptx
Straight-Line-Graphs-Final -2.pptx
 
Core 1 revision notes a
Core 1 revision notes aCore 1 revision notes a
Core 1 revision notes a
 
整卷
整卷整卷
整卷
 
Integration
IntegrationIntegration
Integration
 
Engr 213 midterm 2b sol 2010
Engr 213 midterm 2b sol 2010Engr 213 midterm 2b sol 2010
Engr 213 midterm 2b sol 2010
 
Antiderivatives nako sa calculus official
Antiderivatives nako sa calculus officialAntiderivatives nako sa calculus official
Antiderivatives nako sa calculus official
 
Calculus Final Exam
Calculus Final ExamCalculus Final Exam
Calculus Final Exam
 
maths Individual assignment on differentiation
maths Individual assignment on differentiationmaths Individual assignment on differentiation
maths Individual assignment on differentiation
 
Calculus First Test 2011/10/20
Calculus First Test 2011/10/20Calculus First Test 2011/10/20
Calculus First Test 2011/10/20
 
Business Math Chapter 3
Business Math Chapter 3Business Math Chapter 3
Business Math Chapter 3
 
Differentiation.pptx
Differentiation.pptxDifferentiation.pptx
Differentiation.pptx
 
Factoring polynomials
Factoring polynomialsFactoring polynomials
Factoring polynomials
 

Más de Mohammed Ahmed

Más de Mohammed Ahmed (7)

vectors
vectorsvectors
vectors
 
vectors
vectorsvectors
vectors
 
Moments
MomentsMoments
Moments
 
statics
staticsstatics
statics
 
Chap 3 3a to 3d
Chap 3 3a to 3dChap 3 3a to 3d
Chap 3 3a to 3d
 
C2 differentiation jan 22
C2 differentiation jan 22C2 differentiation jan 22
C2 differentiation jan 22
 
Trigonometric Functions and their Graphs
Trigonometric Functions and their GraphsTrigonometric Functions and their Graphs
Trigonometric Functions and their Graphs
 

Último

Micromeritics - Fundamental and Derived Properties of Powders
Micromeritics - Fundamental and Derived Properties of PowdersMicromeritics - Fundamental and Derived Properties of Powders
Micromeritics - Fundamental and Derived Properties of PowdersChitralekhaTherkar
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxNirmalaLoungPoorunde1
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introductionMaksud Ahmed
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3JemimahLaneBuaron
 
APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAssociation for Project Management
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityGeoBlogs
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...EduSkills OECD
 
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991RKavithamani
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdfssuser54595a
 
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxContemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxRoyAbrique
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon AUnboundStockton
 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxmanuelaromero2013
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptxVS Mahajan Coaching Centre
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfsanyamsingh5019
 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docxPoojaSen20
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdfSoniaTolstoy
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingTechSoup
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxGaneshChakor2
 
Concept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.CompdfConcept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.CompdfUmakantAnnand
 

Último (20)

Micromeritics - Fundamental and Derived Properties of Powders
Micromeritics - Fundamental and Derived Properties of PowdersMicromeritics - Fundamental and Derived Properties of Powders
Micromeritics - Fundamental and Derived Properties of Powders
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptx
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3
 
APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across Sectors
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activity
 
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
 
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxContemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon A
 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptx
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdf
 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docx
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy Consulting
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptx
 
Concept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.CompdfConcept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.Compdf
 

Differentiation jan 21, 2014

  • 1. Differentiation Chap 9 Objective: How to find Stationary Points & determine their nature (maximum/minimum) riazidan
  • 2. The stationary points of a curve are the points where the gradient is zero e.g. y = x3 − 3x2 − 9x A local maximum x dy =0 dx x A local minimum The word local is usually omitted and the points called maximum and minimum points.
  • 3. e.g.1 Find the coordinates of the stationary points on the curve y = x 3 − 3 x 2 − 9 x y = x3 − 3x2 − 9x Solution: dy ⇒ = 3x2 − 6x − 9 dx dy ⇒ 3 x 2 − 6 x − 9 = 0 ⇒ 3( x 2 − 2 x − 3) = 0 =0 dx 3( x − out + 1 = 0 ⇒ x = 3 Tip: Watch 3)( xfor )common factors or x = −1 x = 3 when finding )stationary points. ⇒ y = ( 3 3 − 3( 3) 2 − 9( 3) = 27 − 27 − 27 = − 27 x = −1 ⇒ y = ( −1) 3 − 3( −1) 2 − 9( −1) = −1 − 3 + 9 = 5 The stationary points are (3, -27) and ( -1, 5)
  • 4. Exercises Find the coordinates of the stationary points of the following functions 2 1. y = x − 4 x + 5 2. y = 2 x 3 + 3 x 2 − 12 x + 1 Solutions: dy 1. = 2x − 4 dx dy = 0 ⇒ 2x − 4 = 0 dx ⇒ x=2 x = 2 ⇒ y = ( 2) 2 − 4( 2) + 5 = 1 Ans: St. pt. is ( 2, 1)
  • 5. y = 2 x 3 + 3 x 2 − 12 x + 1 2. Solution: dy = 6 x 2 + 6 x − 12 dx dy = 0 ⇒ 6( x 2 + x − 2) = 0 ⇒ 6( x − 1)( x + 2) = 0 dx ⇒ x = 1 or x = −2 x = 1 ⇒ y = −6 x = −2 ⇒ y = 2( −2) 3 + 3( −2) 2 − 12( −2) + 1 = 21 Ans: St. pts. are ( 1, −6) and ( −2, 21 )
  • 6. We need to be able to determine the nature of a stationary point ( whether it is a max or a min ). There are several ways of doing this. e.g. On the left of a maximum, the gradient is positive + On the right of a maximum, the gradient is negative −
  • 7. So, for a max the gradients are 0 At the max On the left of On the right of the max the max − + The opposite is true for a minimum − 0 + Calculating the gradients on the left and right of a stationary point tells us whether the point is a max or a min.
  • 8. e.g.2 Find the coordinates of the stationary point of the 2 curve y = x − 4 x + 1 . Is the point a max or min? − − − − − − (1) y = x2 − 4x + 1 Solution: dy ⇒ = 2x − 4 dx dy =0 ⇒ 2x − 4 = 0 ⇒ x = 2 dx y = ( 2) 2 − 4( 2) + 1 ⇒ y = −3 Substitute in (1): dy = 2(1) − 4 = − 2 < 0 On the left of x = 2 e.g. at x = 1, dx dy On the right of x = 2 e.g. at x = 3, = 2( 3) − 4 = 2 > 0 dx + − ⇒ ( 2, − 3) is a min We have 0
  • 9. Another method for determining the nature of a stationary point. e.g.3 Consider y = x 3 + 3 x 2 − 9 x + 10 The gradient function is given by dy = 3x2 + 6x − 9 dx dy dx 3 2 At the max of y = x + 3 x − 9 x + 10 the gradient is 0 but the gradient of the gradient is negative.
  • 10. Another method for determining the nature of a stationary point. e.g.3 Consider y = x 3 + 3 x 2 − 9 x + 10 The gradient function is given by dy = 3x2 + 6x − 9 dx dy dx At the min of y = x 3 + 3 x 2 − 9 x + 10 the gradient of the gradient is positive. d2y The notation for the gradient of the gradient is dx 2 “d 2 y by d x squared”
  • 11. e.g.3 ( continued ) Find the stationary points on the curve y = x 3 + 3 x 2 − 9 x + 10 and distinguish between the max and the min. y = x 3 + 3 x 2 − 9 x + 10 Solution: dy d2y 2 ⇒ = 3x + 6x − 9 ⇒ = 6x + 6 2 dx dx 2 dy 2 d y Stationary points: = 0 ⇒ 3 x + 6 x −is called the 9=0 dx dx 2 nd 2 derivative ⇒ 3( x 2 + 2 x − 3) = 0 ⇒ 3( x + 3)( x − 1) = 0 ⇒ x = −3 or x = 1 We now need to find the y-coordinates of the st. pts.
  • 12. y = x 3 + 3 x 2 − 9 x + 10 x = −3 ⇒ y = ( −3) 3 + 3( −3) 2 − 9( −3) + 10 = 37 x =1 y = 1 + 3 − 9 + 10 = 5 ⇒ To distinguish between max and min we use the 2nd derivative, at the stationary points. d2y 2 = 6x + 6 dx d y = 6( −3) + 6 = −12 < 0 ⇒ max at (−3, 37 ) At x = −3 , 2 dx 2 At x = 1 , d2y dx 2 = 6 + 6 = 12 > 0 ⇒ min at (1, 5)
  • 13. SUMMARY  To find stationary points, solve the equation dy =0 dx  Determine the nature of the stationary points • either by finding the gradients on the left and right of the stationary points + − • ⇒ minimum 0 0 + − ⇒ maximum or by finding the value of the 2nd derivative at the stationary points d2y dx 2 < 0 ⇒ max d2y dx 2 > 0 ⇒ min
  • 14. Exercises Find the coordinates of the stationary points of the following functions, determine the nature of each and sketch the functions. 3 2 3 2 y = x + 3x − 2 Ans. (0, − 2) is a min. 1. (−2 , 2) 2. y = x + 3x − 2 is a max. y = 2 + 3x − x3 Ans. (−1, 0) (1 , 4) is a min. is a max. y = 2 + 3x − x3
  • 15.
  • 16. The following slides contain repeats of information on earlier slides, shown without colour, so that they can be printed and photocopied. For most purposes the slides can be printed as “Handouts” with up to 6 slides per sheet.
  • 17. The stationary points of a curve are the points where the gradient is zero e.g. y = x3 − 3x2 − 9x A local maximum x dy =0 dx x A local minimum The word local is usually omitted and the points called maximum and minimum points.
  • 18. e.g.1 Find the coordinates of the stationary points y = x3 − 3x2 − 9x on the curve Solution: ⇒ dy =0 dx ⇒ y = x3 − 3x2 − 9x dy = 3x2 − 6x − 9 dx 3x2 − 6x − 9 = 0 ⇒ 3( x 2 − 2 x − 3) = 0 3( x − 3)( x + 1) = 0 ⇒ x = 3 or x = −1 x = 3 ⇒ y = ( 3) 3 − 3( 3) 2 − 9( 3) = 27 − 27 − 27 = − 27 x = −1 ⇒ y = ( −1) 3 − 3( −1) 2 − 9( −1) = −1 − 3 + 9 = 5 The stationary points are (3, -27) and ( -1, 5)
  • 19. Determining the nature of a Stationary Point For a max we have On the left of the max + 0 At the max − On the right of the max The opposite is true for a minimum − 0 + Calculating the gradients on the left and right of a stationary point tells us whether the point is a max or a min.
  • 20. Another method for determining the nature of a stationary point. e.g. Consider y y = x 3 + 3 x 2 − 9 x + 10 The gradient function is given by dy = 3x2 + 6x − 9 dx dy dx 3 2 At the max of y = x + 3 x − 9 x + 10 the gradient is 0, but the gradient of the gradient is negative.
  • 21. y = x 3 + 3 x 2 − 9 x + 10 The gradient function is given by dy = 3x2 + 6x − 9 dx dy dx At the min of y = x 3 + 3 x 2 − 9 x + 10 the gradient of the gradient is positive. d2y The notation for the gradient of the gradient is dx 2 “d 2 y by d x squared”
  • 22. The gradient of the gradient is called the 2nd derivative and is written as d2y dx 2
  • 23. e.g. Find the stationary points on the curve 3 y = xand 3distinguish between the max + x 2 − 9 x + 10 and the=min.+ 3 x 2 − 9 x + 10 y x3 Solution: dy d2y 2 ⇒ = 3x + 6x − 9 ⇒ = 6x + 6 2 dx dx dy Stationary points: = 0 ⇒ 3x2 + 6x − 9 = 0 dx ⇒ 3( x 2 + 2 x − 3) = 0 ⇒ 3( x + 3)( x − 1) = 0 ⇒ x = −3 or x = 1 We now need to find the y-coordinates of the st. pts.
  • 24. y = x 3 + 3 x 2 − 9 x + 10 x = −3 ⇒ y = ( −3) 3 + 3( −3) 2 − 9( −3) + 10 = 37 x =1 y = 1 + 3 − 9 + 10 = 5 ⇒ To distinguish between max and min we use the 2nd derivative, d2y 2 = 6x + 6 dx d2y At x = −3 , 2 = 6( −3) + 6 = −12 < 0 ⇒ max at (−3, 37 ) dx At x =1 , d2y dx 2 = 6 + 6 = 12 > 0 ⇒ min at (1, 5)
  • 25. SUMMARY  To find stationary points, solve the equation dy =0 dx  Determine the nature of the stationary points • either by finding the gradients on the left and right of the stationary points 0 − + − ⇒ maximum ⇒ minimum + 0 • or by finding the value of the 2nd derivative at the stationary points d2y dx 2 < 0 ⇒ max d2y dx 2 > 0 ⇒ min