SlideShare una empresa de Scribd logo
1 de 12
Transmission Line Constraints
Thermal limitations
• Excessive temperature may result in expansion
and resultant sag of conductors causing
decreased clearance to ground. Temperature
extremes also reduces mechanical strength of
aluminum.
• Since thermal time constants are large, it is useful
to distinguish between steady state and transient
thermal ratings.
• Function of i) ambient temperature, ii) Wind
conditions, iii)Condition of conductor, iv)
Conductor type and v) ground clearance.
• ACSR (aluminum conductor steel reinforced) Moose
Conductor (520 mm2): For an ambient temperature of
40 degree C, and a maximum conductor temperature of
75 degree C, ampacity is 700 A (approx.). Typically, two
moose conductors form a bundle of 400 kV line so that
the total ampacity is 1400A for such a line.
• For AAAC (all aluminum alloy conductor) of 520 mm2 :
With an ambient temperature of 40 degree C, and a
maximum conductor temperature of 85 degree C,
ampacity is 850 A (approx.) for a 400 kV line.
• Thermal ratings are a strong function of ambient
conditions (wind flows, solar radiation) and absorption
and emmisivity of the conductor material.
• Evaluate the actual ampacity during real time operation
(season to season, day to day or hour to hour).
Dielectric Limits
• Exceeding dielectric limits (maximum electric field strength)
results in failure of insulation, causing faults.
• Electric fields may be excessive (due to overvoltage) under
low loading conditions on long ac transmission lines
Ferranti Effect) or during abnormal conditions like lightning
strokes.
• Deviation of voltages beyond certain limits can also be
considered to be an unacceptable compromise on the
quality of power being supplied to consumers. Low or high
voltages can also damage electrical equipments.
• Given a nominal voltage rating, a steady state overvoltage
of about 10% is often permissible. Shunt reactors
(inductors) are often connected in shunt on transmission
lines to prevent overvoltages under low loading. If
permanently connected to a line, however, they may
excessively reduce the voltages during heavy load
conditions.
• . Voltages and reactive power demand of transmission
lines are affected by: line parameters, length of line
and power transfer
• Line Parameters: Line parameters are dependent on the
conductor dimensions and relative placement. The
surge impedance of most overhead lines is around 250-
350 ohms whereas it is 30-50 ohms for cables.
• Typical positive sequence inductance and capacitance
parameters for a 400 kV overhead line: L =
1.044mH/km, C = 12 nF/km. For EHV lines , X/R ratio is
large. The resistance per unit length of this line =
0.0296 ohm / km.
• For a 400 kV paper-insulated lead-covered(PILC)
cable, typical positive sequence parameters are: L =
0.78 mH/km, C = 0.95 uF/km.
Voltage variation in
AC transmission line
Important results for lossless lines such as EHV lines:
• Voltage profile along the line is flat only if R= Zc is connected at
receiving end (SIL). Under this situation, there is no demand of
reactive power from either sending or receiving ends. Loads are
decided by consumers and not by a system operator. As such, this
exact condition is practically never met although it is ideal.
• If voltage at both ends is maintained at 1.0 pu, the voltage tends to
sag as we move towards the midpoint if Ps > SIL. The line absorbs
reactive power. If Ps < SIL, voltage swells and the line generates
reactive power.
• For a line which has one end maintained at 1.0 pu but kept open-
circuited at the other end, overvoltage will be evident at the open
end. All these effects are very prominent for long lines.
• Cables have very high SIL. The current at SIL
usually exceeds the thermal rating of a cable.
Therefore a cable is invariably loaded below its SIL.
Cables, therefore, generate reactive power and
usually voltages can be very high at low loading
levels, especially for long lengths. Besides this,
cables are much costlier than overhead lines and
are more "unforgiving" towards overloads.
Therefore, cables of lengths exceeding 30-40km
are rarely used for ac transmission.
• Due to voltage problems, underwater cable
transmission and bulk transfer over very long
distances is carried out using DC transmission
technology.
Line Loadability in AC lines
• For preventing over voltages at light loads, it is necessary to have
devices for absorbing reactive power (e.g. shunt reactors) not only at
either end of a long line but even at intermediate points.
• Generators connected at the ends of the line have limited reactive
power absorption capability as defined by their capability curves. If
transmission redundancy exists (i.e., parallel transmission paths
exist), then a very lightly loaded long line may be tripped to avoid
overvoltage. However, this may be detrimental to system security if
some additional line trippings take place due to faults.
• If shunt reactors are permanently connected, they result in large sags
in the voltage under heavy loading conditions. Moreover, reactive
power demanded by long transmission lines under these situations
may be excessive and may lead to system-wide low voltage
conditions.
• Compensation by connecting (lumped) capacitors in series
and shunt effectively reduce the line reactance and
increase the shunt susceptance, thereby decreasing the
surge impedance. Thus the effective SIL of a capacitor
compensated line is higher than an uncompensated line.
This increases the loadability of a long line.
• Since total conductor cross-sectional area for EHV lines is
mainly decided by electric field considerations (corona),
these lines have large thermal capabilities, much in excess
of the SIL. For long EHV lines, one cannot deviate much
from SIL due to voltage constraints. Therefore, the thermal
limit of a long EHV line is not the key limiting factor.
However, thermal limit is the main limiting factor for short
lines (< 100 km) where voltage constraints are not violated
even for large deviations from SIL.
Summary
• Power transfer capability of a ac line is
restricted by thermal and voltage constraints.
• Short lines are limited by thermal constraints.
• Long lines are limited by voltage constraints.
Stability constraints are also important for
long ac lines.

Más contenido relacionado

La actualidad más candente

Gcsc gto thyristor controlled series capacitor
Gcsc   gto thyristor controlled series capacitorGcsc   gto thyristor controlled series capacitor
Gcsc gto thyristor controlled series capacitor
LEOPAUL23
 
Objectives of shunt compensation
Objectives of shunt compensationObjectives of shunt compensation
Objectives of shunt compensation
Ayyarao T S L V
 
power quality conditioners
power quality conditionerspower quality conditioners
power quality conditioners
mamodiya
 
An introduction to FACTS
An introduction to FACTSAn introduction to FACTS
An introduction to FACTS
Ayyarao T S L V
 
Power system protection
Power system protectionPower system protection
Power system protection
Anu Priya
 

La actualidad más candente (20)

POWER SYSTEM PLANNING AND DESIGN. DESIGN OF EHV TRANSMISSION LINES & BUNDLED ...
POWER SYSTEM PLANNING AND DESIGN. DESIGN OF EHV TRANSMISSION LINES & BUNDLED ...POWER SYSTEM PLANNING AND DESIGN. DESIGN OF EHV TRANSMISSION LINES & BUNDLED ...
POWER SYSTEM PLANNING AND DESIGN. DESIGN OF EHV TRANSMISSION LINES & BUNDLED ...
 
FACTS DEVICES
FACTS DEVICESFACTS DEVICES
FACTS DEVICES
 
Protection of transmission lines (distance)
Protection of transmission lines (distance)Protection of transmission lines (distance)
Protection of transmission lines (distance)
 
Series & shunt compensation and FACTs Devices
Series & shunt compensation and FACTs DevicesSeries & shunt compensation and FACTs Devices
Series & shunt compensation and FACTs Devices
 
power factor correction soham+niraj
power factor correction soham+nirajpower factor correction soham+niraj
power factor correction soham+niraj
 
FACTS DEVICES AND POWER SYSTEM STABILITY ppt
FACTS DEVICES AND POWER SYSTEM STABILITY pptFACTS DEVICES AND POWER SYSTEM STABILITY ppt
FACTS DEVICES AND POWER SYSTEM STABILITY ppt
 
Capacitive voltage transformer (1)
Capacitive voltage transformer (1)Capacitive voltage transformer (1)
Capacitive voltage transformer (1)
 
Power System Control And Line Compensation
Power System Control And Line CompensationPower System Control And Line Compensation
Power System Control And Line Compensation
 
Gcsc gto thyristor controlled series capacitor
Gcsc   gto thyristor controlled series capacitorGcsc   gto thyristor controlled series capacitor
Gcsc gto thyristor controlled series capacitor
 
Comparison of ac and dc transmission
Comparison of ac and dc transmissionComparison of ac and dc transmission
Comparison of ac and dc transmission
 
Objectives of shunt compensation
Objectives of shunt compensationObjectives of shunt compensation
Objectives of shunt compensation
 
statcom
statcomstatcom
statcom
 
UNSYMMETRICAL FAULTS IN POWER SYSTEM
UNSYMMETRICAL FAULTS IN POWER SYSTEMUNSYMMETRICAL FAULTS IN POWER SYSTEM
UNSYMMETRICAL FAULTS IN POWER SYSTEM
 
power quality conditioners
power quality conditionerspower quality conditioners
power quality conditioners
 
Power Quality Measurement Devices & Monotoring
Power Quality Measurement Devices & MonotoringPower Quality Measurement Devices & Monotoring
Power Quality Measurement Devices & Monotoring
 
An introduction to FACTS
An introduction to FACTSAn introduction to FACTS
An introduction to FACTS
 
Sssc
SsscSssc
Sssc
 
BUSBAR PROTECTION
BUSBAR PROTECTIONBUSBAR PROTECTION
BUSBAR PROTECTION
 
Unit 5 Economic Load Dispatch and Unit Commitment
Unit 5 Economic Load Dispatch and Unit CommitmentUnit 5 Economic Load Dispatch and Unit Commitment
Unit 5 Economic Load Dispatch and Unit Commitment
 
Power system protection
Power system protectionPower system protection
Power system protection
 

Similar a Transmission Line Constraints

1502957304lectrure_1 [Autosaved].pptx
1502957304lectrure_1 [Autosaved].pptx1502957304lectrure_1 [Autosaved].pptx
1502957304lectrure_1 [Autosaved].pptx
Tajmun1
 

Similar a Transmission Line Constraints (20)

Conductor material and ferranti effect
Conductor material and ferranti effectConductor material and ferranti effect
Conductor material and ferranti effect
 
TRANSMISSION LINES and capacity.pdf
TRANSMISSION LINES and capacity.pdfTRANSMISSION LINES and capacity.pdf
TRANSMISSION LINES and capacity.pdf
 
TRANSMISSION LINES and capacity.pptx
TRANSMISSION LINES and capacity.pptxTRANSMISSION LINES and capacity.pptx
TRANSMISSION LINES and capacity.pptx
 
Comparison of AC and DC.pptx
Comparison of AC and DC.pptxComparison of AC and DC.pptx
Comparison of AC and DC.pptx
 
Bundle conductors in transmission line
Bundle conductors in transmission line Bundle conductors in transmission line
Bundle conductors in transmission line
 
Attachment thermal limit and stability limit
Attachment thermal limit and stability limitAttachment thermal limit and stability limit
Attachment thermal limit and stability limit
 
Surge impedance sil
Surge impedance silSurge impedance sil
Surge impedance sil
 
Modelling and Performance of transmission lines.pptx
Modelling and Performance of transmission lines.pptxModelling and Performance of transmission lines.pptx
Modelling and Performance of transmission lines.pptx
 
PPT_1_Electrical services_By group no. 1.pptx
PPT_1_Electrical services_By group no. 1.pptxPPT_1_Electrical services_By group no. 1.pptx
PPT_1_Electrical services_By group no. 1.pptx
 
PPT_1_Electrical services_By group no. 1.pptx
PPT_1_Electrical services_By group no. 1.pptxPPT_1_Electrical services_By group no. 1.pptx
PPT_1_Electrical services_By group no. 1.pptx
 
Chapter 2 transmission line parameters
Chapter 2  transmission line parametersChapter 2  transmission line parameters
Chapter 2 transmission line parameters
 
Transmission and Distribution - Line parameters.pptx
Transmission and Distribution - Line parameters.pptxTransmission and Distribution - Line parameters.pptx
Transmission and Distribution - Line parameters.pptx
 
Chapter#5
Chapter#5Chapter#5
Chapter#5
 
Ch14 transmission line. Class 11 cbse ..
Ch14 transmission line. Class 11 cbse ..Ch14 transmission line. Class 11 cbse ..
Ch14 transmission line. Class 11 cbse ..
 
Comparative evaluation of hvdc
Comparative evaluation of hvdcComparative evaluation of hvdc
Comparative evaluation of hvdc
 
EHV.ppt
EHV.pptEHV.ppt
EHV.ppt
 
EE-4-I || 22419- EPT || CHAPTER 1- BASICS OF TRANSMISSION & DISTRIBUTION
EE-4-I || 22419- EPT || CHAPTER 1- BASICS OF TRANSMISSION & DISTRIBUTIONEE-4-I || 22419- EPT || CHAPTER 1- BASICS OF TRANSMISSION & DISTRIBUTION
EE-4-I || 22419- EPT || CHAPTER 1- BASICS OF TRANSMISSION & DISTRIBUTION
 
Transmission &amp; distribution of electrical power
Transmission &amp; distribution of electrical powerTransmission &amp; distribution of electrical power
Transmission &amp; distribution of electrical power
 
Types of transmission lines
Types of transmission linesTypes of transmission lines
Types of transmission lines
 
1502957304lectrure_1 [Autosaved].pptx
1502957304lectrure_1 [Autosaved].pptx1502957304lectrure_1 [Autosaved].pptx
1502957304lectrure_1 [Autosaved].pptx
 

Más de Ridwanul Hoque

Symmetrical Components and Sequence Networks
Symmetrical Components and Sequence NetworksSymmetrical Components and Sequence Networks
Symmetrical Components and Sequence Networks
Ridwanul Hoque
 
Current and Voltage Relation on a Transmission LIne
Current and Voltage Relation on a Transmission LIne Current and Voltage Relation on a Transmission LIne
Current and Voltage Relation on a Transmission LIne
Ridwanul Hoque
 

Más de Ridwanul Hoque (20)

Clinical Management of Covid-19 (Bangladesh)
Clinical Management of Covid-19 (Bangladesh)Clinical Management of Covid-19 (Bangladesh)
Clinical Management of Covid-19 (Bangladesh)
 
Enhanced Recovery After Colorectal Surgery
Enhanced Recovery After Colorectal SurgeryEnhanced Recovery After Colorectal Surgery
Enhanced Recovery After Colorectal Surgery
 
AC Distribution in Bangladesh (in a nutshell)
AC Distribution in Bangladesh (in a nutshell)AC Distribution in Bangladesh (in a nutshell)
AC Distribution in Bangladesh (in a nutshell)
 
Impedance Matching
Impedance MatchingImpedance Matching
Impedance Matching
 
Equipment and Stability Constraints : System Operation
Equipment and Stability Constraints : System OperationEquipment and Stability Constraints : System Operation
Equipment and Stability Constraints : System Operation
 
Power System Control
Power System ControlPower System Control
Power System Control
 
Issues in Interconnections
Issues in InterconnectionsIssues in Interconnections
Issues in Interconnections
 
Hydro Power Plant
Hydro Power PlantHydro Power Plant
Hydro Power Plant
 
Steam Power Plant and Rankine Cycles
Steam Power Plant and Rankine CyclesSteam Power Plant and Rankine Cycles
Steam Power Plant and Rankine Cycles
 
Steam Power Plant
Steam Power PlantSteam Power Plant
Steam Power Plant
 
AC Distribution System in Bangladesh
AC Distribution System in BangladeshAC Distribution System in Bangladesh
AC Distribution System in Bangladesh
 
Power System Stability
Power System StabilityPower System Stability
Power System Stability
 
Economic Operation of Power System
Economic Operation of Power SystemEconomic Operation of Power System
Economic Operation of Power System
 
Unsymmetrical Fault
Unsymmetrical FaultUnsymmetrical Fault
Unsymmetrical Fault
 
Symmetrical Components and Sequence Networks
Symmetrical Components and Sequence NetworksSymmetrical Components and Sequence Networks
Symmetrical Components and Sequence Networks
 
Symmetrical Fault
Symmetrical FaultSymmetrical Fault
Symmetrical Fault
 
Power Flow Solution
Power Flow SolutionPower Flow Solution
Power Flow Solution
 
Current and Voltage Relation on a Transmission LIne
Current and Voltage Relation on a Transmission LIne Current and Voltage Relation on a Transmission LIne
Current and Voltage Relation on a Transmission LIne
 
Per Unit Systems
Per Unit SystemsPer Unit Systems
Per Unit Systems
 
Strain Gauges
Strain GaugesStrain Gauges
Strain Gauges
 

Último

VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
dharasingh5698
 
Call Girls in Netaji Nagar, Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Netaji Nagar, Delhi 💯 Call Us 🔝9953056974 🔝 Escort ServiceCall Girls in Netaji Nagar, Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Netaji Nagar, Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
Call Girls In Bangalore ☎ 7737669865 🥵 Book Your One night Stand
Call Girls In Bangalore ☎ 7737669865 🥵 Book Your One night StandCall Girls In Bangalore ☎ 7737669865 🥵 Book Your One night Stand
Call Girls In Bangalore ☎ 7737669865 🥵 Book Your One night Stand
amitlee9823
 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
ssuser89054b
 
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak HamilCara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Kandungan 087776558899
 
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
dollysharma2066
 

Último (20)

chapter 5.pptx: drainage and irrigation engineering
chapter 5.pptx: drainage and irrigation engineeringchapter 5.pptx: drainage and irrigation engineering
chapter 5.pptx: drainage and irrigation engineering
 
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
 
UNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its PerformanceUNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its Performance
 
Block diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.pptBlock diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.ppt
 
Thermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.pptThermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.ppt
 
Work-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptxWork-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptx
 
Intro To Electric Vehicles PDF Notes.pdf
Intro To Electric Vehicles PDF Notes.pdfIntro To Electric Vehicles PDF Notes.pdf
Intro To Electric Vehicles PDF Notes.pdf
 
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
 
Call Girls in Netaji Nagar, Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Netaji Nagar, Delhi 💯 Call Us 🔝9953056974 🔝 Escort ServiceCall Girls in Netaji Nagar, Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Netaji Nagar, Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
 
Call Girls In Bangalore ☎ 7737669865 🥵 Book Your One night Stand
Call Girls In Bangalore ☎ 7737669865 🥵 Book Your One night StandCall Girls In Bangalore ☎ 7737669865 🥵 Book Your One night Stand
Call Girls In Bangalore ☎ 7737669865 🥵 Book Your One night Stand
 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
 
Thermal Engineering Unit - I & II . ppt
Thermal Engineering  Unit - I & II . pptThermal Engineering  Unit - I & II . ppt
Thermal Engineering Unit - I & II . ppt
 
Design For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the startDesign For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the start
 
Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Booking
 
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
 
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak HamilCara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
 
Booking open Available Pune Call Girls Pargaon 6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Pargaon  6297143586 Call Hot Indian Gi...Booking open Available Pune Call Girls Pargaon  6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Pargaon 6297143586 Call Hot Indian Gi...
 
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced LoadsFEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
 
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
 
(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7
(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7
(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7
 

Transmission Line Constraints

  • 2. Thermal limitations • Excessive temperature may result in expansion and resultant sag of conductors causing decreased clearance to ground. Temperature extremes also reduces mechanical strength of aluminum. • Since thermal time constants are large, it is useful to distinguish between steady state and transient thermal ratings. • Function of i) ambient temperature, ii) Wind conditions, iii)Condition of conductor, iv) Conductor type and v) ground clearance.
  • 3. • ACSR (aluminum conductor steel reinforced) Moose Conductor (520 mm2): For an ambient temperature of 40 degree C, and a maximum conductor temperature of 75 degree C, ampacity is 700 A (approx.). Typically, two moose conductors form a bundle of 400 kV line so that the total ampacity is 1400A for such a line. • For AAAC (all aluminum alloy conductor) of 520 mm2 : With an ambient temperature of 40 degree C, and a maximum conductor temperature of 85 degree C, ampacity is 850 A (approx.) for a 400 kV line. • Thermal ratings are a strong function of ambient conditions (wind flows, solar radiation) and absorption and emmisivity of the conductor material. • Evaluate the actual ampacity during real time operation (season to season, day to day or hour to hour).
  • 4. Dielectric Limits • Exceeding dielectric limits (maximum electric field strength) results in failure of insulation, causing faults. • Electric fields may be excessive (due to overvoltage) under low loading conditions on long ac transmission lines Ferranti Effect) or during abnormal conditions like lightning strokes. • Deviation of voltages beyond certain limits can also be considered to be an unacceptable compromise on the quality of power being supplied to consumers. Low or high voltages can also damage electrical equipments. • Given a nominal voltage rating, a steady state overvoltage of about 10% is often permissible. Shunt reactors (inductors) are often connected in shunt on transmission lines to prevent overvoltages under low loading. If permanently connected to a line, however, they may excessively reduce the voltages during heavy load conditions.
  • 5. • . Voltages and reactive power demand of transmission lines are affected by: line parameters, length of line and power transfer • Line Parameters: Line parameters are dependent on the conductor dimensions and relative placement. The surge impedance of most overhead lines is around 250- 350 ohms whereas it is 30-50 ohms for cables. • Typical positive sequence inductance and capacitance parameters for a 400 kV overhead line: L = 1.044mH/km, C = 12 nF/km. For EHV lines , X/R ratio is large. The resistance per unit length of this line = 0.0296 ohm / km. • For a 400 kV paper-insulated lead-covered(PILC) cable, typical positive sequence parameters are: L = 0.78 mH/km, C = 0.95 uF/km.
  • 6. Voltage variation in AC transmission line Important results for lossless lines such as EHV lines: • Voltage profile along the line is flat only if R= Zc is connected at receiving end (SIL). Under this situation, there is no demand of reactive power from either sending or receiving ends. Loads are decided by consumers and not by a system operator. As such, this exact condition is practically never met although it is ideal. • If voltage at both ends is maintained at 1.0 pu, the voltage tends to sag as we move towards the midpoint if Ps > SIL. The line absorbs reactive power. If Ps < SIL, voltage swells and the line generates reactive power. • For a line which has one end maintained at 1.0 pu but kept open- circuited at the other end, overvoltage will be evident at the open end. All these effects are very prominent for long lines.
  • 7. • Cables have very high SIL. The current at SIL usually exceeds the thermal rating of a cable. Therefore a cable is invariably loaded below its SIL. Cables, therefore, generate reactive power and usually voltages can be very high at low loading levels, especially for long lengths. Besides this, cables are much costlier than overhead lines and are more "unforgiving" towards overloads. Therefore, cables of lengths exceeding 30-40km are rarely used for ac transmission. • Due to voltage problems, underwater cable transmission and bulk transfer over very long distances is carried out using DC transmission technology.
  • 8.
  • 9. Line Loadability in AC lines • For preventing over voltages at light loads, it is necessary to have devices for absorbing reactive power (e.g. shunt reactors) not only at either end of a long line but even at intermediate points. • Generators connected at the ends of the line have limited reactive power absorption capability as defined by their capability curves. If transmission redundancy exists (i.e., parallel transmission paths exist), then a very lightly loaded long line may be tripped to avoid overvoltage. However, this may be detrimental to system security if some additional line trippings take place due to faults. • If shunt reactors are permanently connected, they result in large sags in the voltage under heavy loading conditions. Moreover, reactive power demanded by long transmission lines under these situations may be excessive and may lead to system-wide low voltage conditions.
  • 10. • Compensation by connecting (lumped) capacitors in series and shunt effectively reduce the line reactance and increase the shunt susceptance, thereby decreasing the surge impedance. Thus the effective SIL of a capacitor compensated line is higher than an uncompensated line. This increases the loadability of a long line. • Since total conductor cross-sectional area for EHV lines is mainly decided by electric field considerations (corona), these lines have large thermal capabilities, much in excess of the SIL. For long EHV lines, one cannot deviate much from SIL due to voltage constraints. Therefore, the thermal limit of a long EHV line is not the key limiting factor. However, thermal limit is the main limiting factor for short lines (< 100 km) where voltage constraints are not violated even for large deviations from SIL.
  • 11.
  • 12. Summary • Power transfer capability of a ac line is restricted by thermal and voltage constraints. • Short lines are limited by thermal constraints. • Long lines are limited by voltage constraints. Stability constraints are also important for long ac lines.