SlideShare una empresa de Scribd logo
1 de 64
Descargar para leer sin conexión
Beams and Frames
 beam theory can be used to solve simple
beams
complex beams with many cross section
changes are solvable but lengthy
many 2-d and 3-d frame structures are
better modeled by beam theory
One Dimensional Problems
px
StretchContract
u(x)
v(x)
kx + P(x=l)=0
du
dx
kx + P(x)=0
d4v
dx4
Variable can be scalar field like
temperature, or vector field like
displacement.
For dynamic loading, the variable can
be time dependent
The geometry of the problem is three dimensional, but the
variation of variable is one dimensional
Element Formulation
– assume the displacement w is a cubic polynomial in
L = Length
I = Moment of Inertia of
the cross sectional area
E = Modulus of Elsaticity
v = v(x) deflection of the
neutral axis
θ= dv/dx slope of the
elastic curve (rotation of
the section
F = F(x) = shear force
M= M(x) = Bending
moment about Z-axis
a1, a2, a3, a4 are the undetermined coefficients
2 3
1 2 3 4v(x) a a x a x a x= + + +
`
1 1
x 0
2 2
x L
dv
x 0, v(0) v ;
dx
dv
x L, v(L) v ;
dx
=
=
= = = θ
= = = θ
{ } { }
1 1
2 22 3 2
3 3
4 4
a a
a a
v(x) 1 x x x ; (x) 0 1 2x 3x
a a
a a
   
   
   
θ=   
   
      
i 1
i 2
2 3
j 3
2
j 4
v 1 0 0 0 a
0 1 0 0 a
v a1 L L L
a0 1 2L 3L
    
    θ    
=    
    
    θ    
 Applying these boundary conditions, we get
Substituting coefficients ai back into the original equation
for v(x) and rearranging terms gives
1
1 1 2 1
3 1 1 2 22
{d} [P(x)]{a}
{a} [P(x)] {d}
a v ; a
1
a ( 3v 2L 3v L )
L
−
=
=
= = θ
= − − θ + − θ
{ }
1
22 3
3
4
a
a
v(x) 1 x x x
a
a
 
 
 
=  
 
  
 The interpolation function or shape function is given by
2 3 2 3
1 12 3 2
2 3 2 3
2 22 3 2
3x 2x 2x x
v(x) (1 )v (x )
L L L L
3x 2x x x
( )v ( )
L L L L
= − + + − + θ
+ − + − + θ
[ ]
1
1
1 2 3 4
2
2
v
L
v N (x) N (x) N (x) N (x) [N]{d}
v
L
 
 θ 
= 
 
 θ 
strain for a beam in bending is defined by the curvature, so
 Hence
2 2
2 2
du d v d [N]
y {d} y[B]{d}
dx dx dx
ε= = = =
{ } { }
{ } [ ]{ }
{ } [ ]{ }
{ } [ ] { }
{ } [ ] [ ][ ]{ }
e
e
e
T
e
v
Te
v
T Te 2
v
Internal virtual energy U = dv
substitute E in above eqn.
U = E dv
= y B d
U = d B E B d y dv
δ δ ε σ
σ= ε
δ δ ε ε
δ ε δ
δ δ
∫
∫
∫
3 2 3 2 2 3 3 2
12x 6 6x 4 6 12x 6x 2
[B]
L L L L L L L h
 
= − − − −  
{ } [ ] [ ][ ] { } { } [ ] { } [ ] { } { }
{ } { }
[ ] [ ][ ]
{ } [ ] { } [ ] { } { }
e eFrom virtual work principle U W
T TT T T2 ed ( B E B y dv d d N b dv N p dv P
y y
e e sv v
eK U F
e e
where
T 2K B D B y dv Element stiffness matrix
e
ev
T T eF N b dv N p ds P Total nodal force vector
e y y
e sv
δ =δ
 
 δ =δ + +∫ ∫ ∫
 
 
 ⇒ =
 
  =∫ 
+ +=∫ ∫
{ } { } { } [ ] { }
{ } { } { } [ ] { }
{ } { } { }
e e
T T Te
b y
v v
T T Te
s y
s s
TTe e e
c
External virtual workdue to body force
w = d(x) b dv d N b dv
External virtual work due to surface force
w = d(x) p dv d N p ds
External virtual work due to nodal forces
w d P , P
δ δ =δ
δ δ =δ
δ =δ
∫ ∫
∫ ∫
{ }yi i yj= P , M ,P ,....
the stiffness matrix [k] is defined
To compute equivalent nodal force vector
for the loading shown
{ } [ ] { }
[ ]
T
e y
s
y
y
2 3 2 3 2 3 2 3
2 3 2 2 3 2
F N p ds
From similar triangles
p w w
; p x; ds = 1 dx
x L L
3x 2x 2x x 3x 2x x x
N (1 ) (x ) ( ) ( )
L L L L L L L L
=
= = ⋅
 
= − + − + − − + 
 
∫
w
x
py
L
( )
L
T 2 T
V
A 0
2 2
3
2 2
[k] [B] E[B]dV dAy E [B] [B]dx
12 6L 12 6L
6L 4L 6L 2LEI
12 6L 12 6LL
6L 2L 6L 4L
= =
− 
 −
 =
− − − 
 
− 
∫ ∫ ∫
{ } [ ] { }
{ }
T
e y
s
2 3
2 3
22 3
2
e 2 3
L
2 3
22 3
2
F N p ds
3wL3x 2x
(1 )
20L L
wL2x x
(x )
wx 30L L
F dx
7wLL3x 2x
( )
20L L
wLx x
( )
20L L
=
   
−− +   
   
   −− +       
−=    
    −−
   
   
   − +
     
∫
∫
+ve directions
vi vj
qi qj
w
Equivalent nodal force due to
Uniformly distributed load w
v1
v2
v3
θ1 θ2
θ3
v4
v3
Member end forces
1
1
2
2
1
1
2
2
For element 1
V 12 18 -12 18 0 70
M 18 36 -18 18 0 70
1555.6
V -12 -18 12 -18 0 70
18 18 -18 36 0.00249 139.6M
V
M
V
M
−      
       −      =     
      
      − −     
 
 
 
= 
 
  
12 18 -12 18 0 46.53
18 36 -18 18 0.00249 139.6
1555.6
-12 -18 12 -18 0.01744 46.53
18 18 -18 36 0.007475 0
−    
     −     =   
−     
     −    
70
70
70
139.6
46.53 46.53
139.6 0
v1 v2 v3
θ1 θ2
θ3
v1 θ1 v2 θ2
v2 θ2 v3 θ3
1
1
2 5
2
3
3
V 12 6 -12 6
M 6 4 -6 2
V -12 -6 12+12 -6+6 -12 6
8x10
M 6 2 -6+6 4+4 -6 2
-12 -6V
M
 
 
 
  
= 
 
 
 
  
1
1
2
2
3
3
1 1 2 3
2 3
5
v
v
12 -6 v
6 2 -6 4
Boundary condition
v , ,v ,v 0
Loading Condition
M 1000; M 1000
8 2
8x10
2
  
   θ
  
    
  
θ  
  
  
θ      
θ =
=− =
{ } [ ]{ }
2
3
4
2
5 4
3
1000
4 1000.0
4 -2 1000 2.679x101
-2 8 1000.028*8x10 4.464x10
Final member end forces
f k d {FEMS}
−
−
θ −    
=     θ     
 θ − −      
= =      θ        
= +
1
1 5
2
4
2
For element 1
0V 0 12 6 -12 6 1285.92
0M 0 6 4 -6 2 428.64
8X10
0V 0 -12 -6 12 -6 1285.92
0 6 2 -6 4 857.28M 2.679x10−
−      
       −       =+ =      
      
       −−      
1
4
1 5
2
4
2
0V 6000 12 6 -12 6 6856.8
M 1000 6 4 -6 2 2.679x10 856.96
8X10
V 6000 -12 -6 12 -6 0 51
1000 6 2 -6 4M 4.464x10
−
−




 
  
      
       −      =+ =     
      
      −      
43.2
0
 
 
 
 
 
  
1285.92
428.64
1285.92
857.28
6856.8 5143.2
856.96 0
Find slope at joint 2 and deflection at
joint 3. Also find member end forces
1
1
20 KN 20kN/m
10kN 10kN
10kN- m 10kN- m
60kN- m
60kN- m
60kN 60kN
v1
q1 q2 q3
v2
v3
EI EI
20 KN 20kN/m
Guided Support
2m 2m 6m
EI=2 x 104kN-m2
10kN- m
10kN
70kN
50kN- m
60kN- m
60kN
2
2
3
Global coordinates
Fixed end reactions (FERs)
Action/loads at global
coordinates
1 1
4
1 1
3
2 2
2 2
1 1 2 2
For element 1
f v12 24 -12 24
m 24 64 -24 321X10
f -12 -24 12 -24 v4
24 32 -24 64m
v v
For el
    
     θ    =   
    
    θ    
θ θ
1 1
4
1 1
3
2 2
2 2
2 2 3 3
ement 2
f v12 36 -12 36
m 36 144 -36 721X10
f -12 -36 12 -36 v6
36 72 -36 144m
v v
    
     θ    =   
    
    θ    
θ θ
7/15/2016 26
1
1
2
2
3
3
F 1875 3750 -1875 3750
M 3750 10000 -3750 5000
F -1875 -3750 1875+555.56 -3750+1666.67 -555.56 1666.67
M
F
M
 
 
 
  
= 
 
 
 
  
3750 5000 -3750+1666.67 10000+6666.67 -1666.67 3333.33
-555.56 -1666.67 555.56 -1666.67
1666.67
1
1
2
2
3
3
1 1 2 3
2 3
v
v
v
3333.332 -1666.67 6666.67
Boundary condition
v , ,v , 0
Loading Condition
M 50; F 60
16666.67 -1666.67
-1666.67 555.56
  
   θ
  
    
  
θ  
  
  
θ      
θ θ =
=− =−
 
 
 
{ } [ ]{ }
2
3
2
3
50
v 60
555.56 1666.67 50 0.0197141
v 1666.67 16666.67 60 0.167146481481.5
Final member end forces
f k d {FEMS}
θ −   
=   
−  
θ − −      
=       − −     
= +
1
4
1
3
2
2
For element 1
f 10 12 24 -12 24 0 63.93
m 10 24 64 -24 32 0 88.571X10
f 10 -12 -24 12 -24 0 83.934
10 24 32 -24 64 0.019714 207.1m
−      
       −      =+ =     
      
      − − −     
1
4
1
3
2
2
4
For element 2
f 60 12 36 -12 36 0
m 60 36 144 -36 72 0.0197141X10
f 60 -12 -36 12 -36 0.167146
60 36 72 -36 144 0m
 
 
 
 
 
  
      
      −     = +     
−     
     −    
120
207.14
0
152.85
 
  
  
=  
  
    
{ } [ ]{ }
If f ' member end forces in local coordinates then
f' k' q'=
3 3 3 3
3 3 3 3
3 3 3 3
3 3 3 3
AE AE
0 0 0 0
L L
12EI 6EI 12EI 6EI
0 0
L L L L
6EI 4EI 6EI 2EI
0 0
L L L L[k]
AE AE
0 0 0 0
L L
12EI 6EI 12EI 6EI
0 0
L L L L
6EI 2EI 6EI 4EI
0 0
L L L L
 
− 
 
 −
 
 
 −
 =
 
− 
 
 
− − − 
 
 −
  
'
1 1 2
'
2 1 2
'
3 3
At node i
q q cos q sin
q q sin q cos
q q
l cos ; m sin
= θ + θ
= − θ + θ
=
= θ = θ
{ } 1 2 3 4 5 6q {q ,q ,q ,q ,q ,q }
are forces in global coordinate direction
=
{ } { }
[ ] [ ] [ ][ ]T
using conditions q' [L]{q}; and f' [L]{f}
Stiffness matrix for an arbitrarily oriented beam element is given by
k L k' L
= =
=
a
a’ q
f = GJ/l
qxi’ fi
qxj’ fj
Grid Elements
xi i
xj j
JG JG
q fL L
q fJG JG
L L
 
−     
=     
    −
  
{ } [ ]{ }
If f ' member end forces in local coordinates then
f' k' q'=
3 3 3 3
3 3 3 3
3 3 3 3
3 3 3 3
GJ GJ
0 0 0 0
L L
12EI 6EI 12EI 6EI
0 0
L L L L
6EI 4EI 6EI 2EI
0 0
L L L L
GJ GJ
0 0 0 0
L L
12EI 6EI 12EI 6EI
0 0
L L L L
6EI 2EI 6EI 4EI
0 0
L L L L
 
− 
 
 −
 
 
 −
 
 
− 
 
 
− − − 
 
 −
  
[ ]
C 0 -s 0 0 0
0 1 0 0 0 0
-s 0 c 0 0 0
L
0 0 0 c 0 -s
0 0 0 0 1 0
0 0 0 --s 0 c
 



= 




[ ] [ ] [ ][ ]T
k L k' L








=

Beam element for 3D analysis
if axial load is tensile, results from beam
elements are higher than actual ⇒ results
are conservative
if axial load is compressive, results are less
than actual
– size of error is small until load is about 25% of
Euler buckling load
for 2-d, can use rotation matrices to get
stiffness matrix for beams in any
orientation
to develop 3-d beam elements, must also
add capability for torsional loads about the
axis of the element, and flexural loading in
x-z plane
to derive the 3-d beam element, set up the
beam with the x axis along its length, and y
and z axes as lateral directions
torsion behavior is added by superposition
of simple strength of materials solution
JG
L
JG
L
JG
L
JG
L
T
T
xi
xj
i
j
−
−
















=






φ
φ
J = torsional moment about x axis
G = shear modulus
L = length
φxi, φxj are nodal degrees of freedom of
angle of twist at each end
Ti, Tj are torques about the x axis at each
end
flexure in x-z plane adds another stiffness
matrix like the first one derived
superposition of all these matrices gives a
12 × 12 stiffness matrix
to orient a beam element in 3-d, use 3-d
rotation matrices
for beams long compared to their cross
section, displacement is almost all due to
flexure of beam
for short beams there is an additional lateral
displacement due to transverse shear
some FE programs take this into account,
but you then need to input a shear
deformation constant (value associated with
geometry of cross section)
limitations:
– same assumptions as in conventional beam and
torsion theories
⇒no better than beam analysis
– axial load capability allows frame analysis, but
formulation does not couple axial and lateral
loading which are coupled nonlinearly
– analysis does not account for
» stress concentration at cross section changes
» where point loads are applied
» where the beam frame components are connected
Finite Element Model
Element formulation exact for beam spans
with no intermediate loads
– need only 1 element to model any such
member that has constant cross section
for distributed load, subdivide into several
elements
need a node everywhere a point load is
applied
need nodes where frame members connect,
where they change direction, or where the
cross section properties change
for each member at a common node, all
have the same linear and rotational
displacement
boundary conditions can be restraints on
linear displacements or rotation
simple supports restrain only linear
displacements
built in supports restrain rotation also
– restrain vertical and horizontal displacements
of nodes 1 and 3
– no restraint on rotation of nodes 1 and 3
– need a restraint in x direction to prevent rigid
body motion, even if all forces are in y
direction
 cantilever beam
– has x and y linear displacements and rotation of node 1
fixed
point loads are idealized loads
– structure away from area of application
behaves as though point loads are applied
only an exact formulation when there are no
loads along the span
– for distributed loads, can get exact solution
everywhere else by replacing the distributed
load by equivalent loads and moments at the
nodes
Computer Input Assistance
preprocessor will usually have the same
capabilities as for trusses
a beam element consists of two node
numbers and associated material and
physical properties
material properties:
– modulus of elasticity
– if dynamic or thermal analysis, mass density
and thermal coefficient of expansion
physical properties:
– cross sectional area
– 2 area moments of inertia
– torsion constant
– location of stress calculation point
boundary conditions:
– specify node numbers and displacement
components that are restrained
loads:
– specify by node number and load components
– most commercial FE programs allows
application of distributed loads but they use
and equivalent load/moment set internally
Analysis Step
small models and carefully planned element
and node numbering will save you from
bandwidth or wavefront minimization
potential for ill conditioned stiffness matrix
due to axial stiffness >> flexural stiffness
(case of long slender beams)
Output Processing and Evaluation
graphical output of deformed shape usually
uses only straight lines to represent
members
you do not see the effect of rotational
constraints on the deformed shape of each
member
to check these, subdivide each member and
redo the analysis
 most FE codes do not make graphical
presentations of beam stress results
– user must calculate some of these from the stress
values returned
 for 2-d beams, you get a normal stress normal to
the cross section and a transverse shear acting on
the face of the cross section
– normal stress has 2 components
» axial stress
» bending stress due to moment
– expect the maximum normal stress to be at the
top or bottom of the cross section
– transverse shear is usually the average
transverse load/area
» does not take into account any variation across the
section
3-d beams
– normal stress is combination of axial stress,
flexural stress from local y- and z- moments
– stress due to moment is linear across a section,
the combination is usually highest at the
extreme corners of the cross section
– may also have to include the effects of torsion
» get a 2-d stress state which must be evaluated
– also need to check for column buckling

Más contenido relacionado

La actualidad más candente

6 stress on trusses
6 stress on trusses6 stress on trusses
6 stress on trusses
aero103
 

La actualidad más candente (20)

Chapter 5 failure theories final
Chapter 5  failure theories finalChapter 5  failure theories final
Chapter 5 failure theories final
 
Approximate Methods
Approximate MethodsApproximate Methods
Approximate Methods
 
Lec9 finite element_beam_structures 1
Lec9 finite element_beam_structures 1Lec9 finite element_beam_structures 1
Lec9 finite element_beam_structures 1
 
6 stress on trusses
6 stress on trusses6 stress on trusses
6 stress on trusses
 
ME6603 - FINITE ELEMENT ANALYSIS UNIT - I NOTES AND QUESTION BANK
ME6603 - FINITE ELEMENT ANALYSIS UNIT - I NOTES AND QUESTION BANKME6603 - FINITE ELEMENT ANALYSIS UNIT - I NOTES AND QUESTION BANK
ME6603 - FINITE ELEMENT ANALYSIS UNIT - I NOTES AND QUESTION BANK
 
Module 9, Spring 2020.pdf
Module 9, Spring 2020.pdfModule 9, Spring 2020.pdf
Module 9, Spring 2020.pdf
 
Finite Element Analysis - UNIT-2
Finite Element Analysis - UNIT-2Finite Element Analysis - UNIT-2
Finite Element Analysis - UNIT-2
 
L04 5.pdf (trusses)
L04 5.pdf (trusses)L04 5.pdf (trusses)
L04 5.pdf (trusses)
 
Lec.5 strength design method rectangular sections 1
Lec.5   strength design method rectangular sections  1Lec.5   strength design method rectangular sections  1
Lec.5 strength design method rectangular sections 1
 
Shear Force and Bending Moment Diagram
Shear Force and Bending Moment DiagramShear Force and Bending Moment Diagram
Shear Force and Bending Moment Diagram
 
Structural Theory II (Part 2/2)
Structural Theory II (Part 2/2)Structural Theory II (Part 2/2)
Structural Theory II (Part 2/2)
 
Finite Element Analysis - UNIT-3
Finite Element Analysis - UNIT-3Finite Element Analysis - UNIT-3
Finite Element Analysis - UNIT-3
 
0136023126 ism 06(1)
0136023126 ism 06(1)0136023126 ism 06(1)
0136023126 ism 06(1)
 
Stiffness matrix method of indeterminate Beam5
Stiffness matrix method of indeterminate Beam5Stiffness matrix method of indeterminate Beam5
Stiffness matrix method of indeterminate Beam5
 
structural analysis CE engg. solved ex.
structural analysis CE engg. solved ex.structural analysis CE engg. solved ex.
structural analysis CE engg. solved ex.
 
Solution manual for introduction to finite element analysis and design nam ...
Solution manual for introduction to finite element analysis and design   nam ...Solution manual for introduction to finite element analysis and design   nam ...
Solution manual for introduction to finite element analysis and design nam ...
 
Shear force and bending moment diagram
Shear force and bending moment diagramShear force and bending moment diagram
Shear force and bending moment diagram
 
Chapter 6
Chapter 6Chapter 6
Chapter 6
 
ME6603 - FINITE ELEMENT ANALYSIS UNIT - III NOTES AND QUESTION BANK
ME6603 - FINITE ELEMENT ANALYSIS UNIT - III NOTES AND QUESTION BANKME6603 - FINITE ELEMENT ANALYSIS UNIT - III NOTES AND QUESTION BANK
ME6603 - FINITE ELEMENT ANALYSIS UNIT - III NOTES AND QUESTION BANK
 
Unit 3 flexibility-anujajape
Unit 3 flexibility-anujajapeUnit 3 flexibility-anujajape
Unit 3 flexibility-anujajape
 

Similar a 2d beam element with combined loading bending axial and torsion

Perfect method for Frames
Perfect method for FramesPerfect method for Frames
Perfect method for Frames
andreslahe
 
Newton Raphson method for load flow analysis
Newton Raphson method for load flow analysisNewton Raphson method for load flow analysis
Newton Raphson method for load flow analysis
divyanshuprakashrock
 
Kittel c. introduction to solid state physics 8 th edition - solution manual
Kittel c.  introduction to solid state physics 8 th edition - solution manualKittel c.  introduction to solid state physics 8 th edition - solution manual
Kittel c. introduction to solid state physics 8 th edition - solution manual
amnahnura
 
Chapter 14 solutions_to_exercises(engineering circuit analysis 7th)
Chapter 14 solutions_to_exercises(engineering circuit analysis 7th)Chapter 14 solutions_to_exercises(engineering circuit analysis 7th)
Chapter 14 solutions_to_exercises(engineering circuit analysis 7th)
Maamoun Hennache
 
Solucionario Beer, Johnton, Mazurek y Eisenberg - Octava Edicion.pdf
Solucionario Beer, Johnton, Mazurek y Eisenberg - Octava Edicion.pdfSolucionario Beer, Johnton, Mazurek y Eisenberg - Octava Edicion.pdf
Solucionario Beer, Johnton, Mazurek y Eisenberg - Octava Edicion.pdf
AntonellaMeaurio
 
solucionario mecanica vectorial para ingenieros - beer & johnston (dinamica)...
solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica)...solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica)...
solucionario mecanica vectorial para ingenieros - beer & johnston (dinamica)...
Sohar Carr
 

Similar a 2d beam element with combined loading bending axial and torsion (20)

Laplace equation
Laplace equationLaplace equation
Laplace equation
 
Stability
StabilityStability
Stability
 
Perfect method for Frames
Perfect method for FramesPerfect method for Frames
Perfect method for Frames
 
Beam.pdf
Beam.pdfBeam.pdf
Beam.pdf
 
Capitulo 4, 7ma edición
Capitulo 4, 7ma ediciónCapitulo 4, 7ma edición
Capitulo 4, 7ma edición
 
Newton Raphson method for load flow analysis
Newton Raphson method for load flow analysisNewton Raphson method for load flow analysis
Newton Raphson method for load flow analysis
 
Project_Report.pdf
Project_Report.pdfProject_Report.pdf
Project_Report.pdf
 
Lelt 240 semestre i-2021
Lelt   240 semestre i-2021Lelt   240 semestre i-2021
Lelt 240 semestre i-2021
 
Kittel c. introduction to solid state physics 8 th edition - solution manual
Kittel c.  introduction to solid state physics 8 th edition - solution manualKittel c.  introduction to solid state physics 8 th edition - solution manual
Kittel c. introduction to solid state physics 8 th edition - solution manual
 
Engineering Mechanics
Engineering MechanicsEngineering Mechanics
Engineering Mechanics
 
Chapter 14 solutions_to_exercises(engineering circuit analysis 7th)
Chapter 14 solutions_to_exercises(engineering circuit analysis 7th)Chapter 14 solutions_to_exercises(engineering circuit analysis 7th)
Chapter 14 solutions_to_exercises(engineering circuit analysis 7th)
 
Solucionario Beer, Johnton, Mazurek y Eisenberg - Octava Edicion.pdf
Solucionario Beer, Johnton, Mazurek y Eisenberg - Octava Edicion.pdfSolucionario Beer, Johnton, Mazurek y Eisenberg - Octava Edicion.pdf
Solucionario Beer, Johnton, Mazurek y Eisenberg - Octava Edicion.pdf
 
Lecture 7
Lecture 7Lecture 7
Lecture 7
 
Improving EV Lateral Dynamics Control Using Infinity Norm Approach with Close...
Improving EV Lateral Dynamics Control Using Infinity Norm Approach with Close...Improving EV Lateral Dynamics Control Using Infinity Norm Approach with Close...
Improving EV Lateral Dynamics Control Using Infinity Norm Approach with Close...
 
Lecture 11
Lecture 11Lecture 11
Lecture 11
 
2 classical field theories
2 classical field theories2 classical field theories
2 classical field theories
 
solucionario mecanica vectorial para ingenieros - beer & johnston (dinamica)...
solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica)...solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica)...
solucionario mecanica vectorial para ingenieros - beer & johnston (dinamica)...
 
Capitulo 12
Capitulo 12Capitulo 12
Capitulo 12
 
Cap 12
Cap 12Cap 12
Cap 12
 
Beam buckling
Beam bucklingBeam buckling
Beam buckling
 

Último

Hospital management system project report.pdf
Hospital management system project report.pdfHospital management system project report.pdf
Hospital management system project report.pdf
Kamal Acharya
 
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
AldoGarca30
 
Standard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayStandard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power Play
Epec Engineered Technologies
 
Integrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - NeometrixIntegrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - Neometrix
Neometrix_Engineering_Pvt_Ltd
 

Último (20)

A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptx
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptxA CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptx
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptx
 
Online electricity billing project report..pdf
Online electricity billing project report..pdfOnline electricity billing project report..pdf
Online electricity billing project report..pdf
 
Hospital management system project report.pdf
Hospital management system project report.pdfHospital management system project report.pdf
Hospital management system project report.pdf
 
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced LoadsFEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
 
Employee leave management system project.
Employee leave management system project.Employee leave management system project.
Employee leave management system project.
 
Thermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VThermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - V
 
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
 
School management system project Report.pdf
School management system project Report.pdfSchool management system project Report.pdf
School management system project Report.pdf
 
kiln thermal load.pptx kiln tgermal load
kiln thermal load.pptx kiln tgermal loadkiln thermal load.pptx kiln tgermal load
kiln thermal load.pptx kiln tgermal load
 
Standard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayStandard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power Play
 
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
COST-EFFETIVE  and Energy Efficient BUILDINGS ptxCOST-EFFETIVE  and Energy Efficient BUILDINGS ptx
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
 
Orlando’s Arnold Palmer Hospital Layout Strategy-1.pptx
Orlando’s Arnold Palmer Hospital Layout Strategy-1.pptxOrlando’s Arnold Palmer Hospital Layout Strategy-1.pptx
Orlando’s Arnold Palmer Hospital Layout Strategy-1.pptx
 
PE 459 LECTURE 2- natural gas basic concepts and properties
PE 459 LECTURE 2- natural gas basic concepts and propertiesPE 459 LECTURE 2- natural gas basic concepts and properties
PE 459 LECTURE 2- natural gas basic concepts and properties
 
A Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna MunicipalityA Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna Municipality
 
Block diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.pptBlock diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.ppt
 
Computer Networks Basics of Network Devices
Computer Networks  Basics of Network DevicesComputer Networks  Basics of Network Devices
Computer Networks Basics of Network Devices
 
Integrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - NeometrixIntegrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - Neometrix
 
Thermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.pptThermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.ppt
 
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
 
Online food ordering system project report.pdf
Online food ordering system project report.pdfOnline food ordering system project report.pdf
Online food ordering system project report.pdf
 

2d beam element with combined loading bending axial and torsion

  • 2.  beam theory can be used to solve simple beams complex beams with many cross section changes are solvable but lengthy many 2-d and 3-d frame structures are better modeled by beam theory
  • 3. One Dimensional Problems px StretchContract u(x) v(x) kx + P(x=l)=0 du dx kx + P(x)=0 d4v dx4 Variable can be scalar field like temperature, or vector field like displacement. For dynamic loading, the variable can be time dependent The geometry of the problem is three dimensional, but the variation of variable is one dimensional
  • 4. Element Formulation – assume the displacement w is a cubic polynomial in L = Length I = Moment of Inertia of the cross sectional area E = Modulus of Elsaticity v = v(x) deflection of the neutral axis θ= dv/dx slope of the elastic curve (rotation of the section F = F(x) = shear force M= M(x) = Bending moment about Z-axis a1, a2, a3, a4 are the undetermined coefficients 2 3 1 2 3 4v(x) a a x a x a x= + + +
  • 5. ` 1 1 x 0 2 2 x L dv x 0, v(0) v ; dx dv x L, v(L) v ; dx = = = = = θ = = = θ { } { } 1 1 2 22 3 2 3 3 4 4 a a a a v(x) 1 x x x ; (x) 0 1 2x 3x a a a a             θ=               i 1 i 2 2 3 j 3 2 j 4 v 1 0 0 0 a 0 1 0 0 a v a1 L L L a0 1 2L 3L          θ     =              θ    
  • 6.  Applying these boundary conditions, we get Substituting coefficients ai back into the original equation for v(x) and rearranging terms gives 1 1 1 2 1 3 1 1 2 22 {d} [P(x)]{a} {a} [P(x)] {d} a v ; a 1 a ( 3v 2L 3v L ) L − = = = = θ = − − θ + − θ { } 1 22 3 3 4 a a v(x) 1 x x x a a       =       
  • 7.  The interpolation function or shape function is given by 2 3 2 3 1 12 3 2 2 3 2 3 2 22 3 2 3x 2x 2x x v(x) (1 )v (x ) L L L L 3x 2x x x ( )v ( ) L L L L = − + + − + θ + − + − + θ [ ] 1 1 1 2 3 4 2 2 v L v N (x) N (x) N (x) N (x) [N]{d} v L    θ  =     θ 
  • 8. strain for a beam in bending is defined by the curvature, so  Hence 2 2 2 2 du d v d [N] y {d} y[B]{d} dx dx dx ε= = = = { } { } { } [ ]{ } { } [ ]{ } { } [ ] { } { } [ ] [ ][ ]{ } e e e T e v Te v T Te 2 v Internal virtual energy U = dv substitute E in above eqn. U = E dv = y B d U = d B E B d y dv δ δ ε σ σ= ε δ δ ε ε δ ε δ δ δ ∫ ∫ ∫ 3 2 3 2 2 3 3 2 12x 6 6x 4 6 12x 6x 2 [B] L L L L L L L h   = − − − −  
  • 9. { } [ ] [ ][ ] { } { } [ ] { } [ ] { } { } { } { } [ ] [ ][ ] { } [ ] { } [ ] { } { } e eFrom virtual work principle U W T TT T T2 ed ( B E B y dv d d N b dv N p dv P y y e e sv v eK U F e e where T 2K B D B y dv Element stiffness matrix e ev T T eF N b dv N p ds P Total nodal force vector e y y e sv δ =δ    δ =δ + +∫ ∫ ∫      ⇒ =     =∫  + +=∫ ∫ { } { } { } [ ] { } { } { } { } [ ] { } { } { } { } e e T T Te b y v v T T Te s y s s TTe e e c External virtual workdue to body force w = d(x) b dv d N b dv External virtual work due to surface force w = d(x) p dv d N p ds External virtual work due to nodal forces w d P , P δ δ =δ δ δ =δ δ =δ ∫ ∫ ∫ ∫ { }yi i yj= P , M ,P ,....
  • 10. the stiffness matrix [k] is defined To compute equivalent nodal force vector for the loading shown { } [ ] { } [ ] T e y s y y 2 3 2 3 2 3 2 3 2 3 2 2 3 2 F N p ds From similar triangles p w w ; p x; ds = 1 dx x L L 3x 2x 2x x 3x 2x x x N (1 ) (x ) ( ) ( ) L L L L L L L L = = = ⋅   = − + − + − − +    ∫ w x py L ( ) L T 2 T V A 0 2 2 3 2 2 [k] [B] E[B]dV dAy E [B] [B]dx 12 6L 12 6L 6L 4L 6L 2LEI 12 6L 12 6LL 6L 2L 6L 4L = = −   −  = − − −    −  ∫ ∫ ∫
  • 11. { } [ ] { } { } T e y s 2 3 2 3 22 3 2 e 2 3 L 2 3 22 3 2 F N p ds 3wL3x 2x (1 ) 20L L wL2x x (x ) wx 30L L F dx 7wLL3x 2x ( ) 20L L wLx x ( ) 20L L =     −− +           −− +        −=         −−            − +       ∫ ∫ +ve directions vi vj qi qj w Equivalent nodal force due to Uniformly distributed load w
  • 13.
  • 14.
  • 15.
  • 16.
  • 17.
  • 18.
  • 19. Member end forces 1 1 2 2 1 1 2 2 For element 1 V 12 18 -12 18 0 70 M 18 36 -18 18 0 70 1555.6 V -12 -18 12 -18 0 70 18 18 -18 36 0.00249 139.6M V M V M −              −      =                   − −            =       12 18 -12 18 0 46.53 18 36 -18 18 0.00249 139.6 1555.6 -12 -18 12 -18 0.01744 46.53 18 18 -18 36 0.007475 0 −          −     =    −           −     70 70 70 139.6 46.53 46.53 139.6 0
  • 20.
  • 21. v1 v2 v3 θ1 θ2 θ3 v1 θ1 v2 θ2 v2 θ2 v3 θ3
  • 22. 1 1 2 5 2 3 3 V 12 6 -12 6 M 6 4 -6 2 V -12 -6 12+12 -6+6 -12 6 8x10 M 6 2 -6+6 4+4 -6 2 -12 -6V M          =           1 1 2 2 3 3 1 1 2 3 2 3 5 v v 12 -6 v 6 2 -6 4 Boundary condition v , ,v ,v 0 Loading Condition M 1000; M 1000 8 2 8x10 2       θ            θ         θ       θ = =− = { } [ ]{ } 2 3 4 2 5 4 3 1000 4 1000.0 4 -2 1000 2.679x101 -2 8 1000.028*8x10 4.464x10 Final member end forces f k d {FEMS} − − θ −     =     θ       θ − −       = =      θ         = +
  • 23. 1 1 5 2 4 2 For element 1 0V 0 12 6 -12 6 1285.92 0M 0 6 4 -6 2 428.64 8X10 0V 0 -12 -6 12 -6 1285.92 0 6 2 -6 4 857.28M 2.679x10− −              −       =+ =                     −−       1 4 1 5 2 4 2 0V 6000 12 6 -12 6 6856.8 M 1000 6 4 -6 2 2.679x10 856.96 8X10 V 6000 -12 -6 12 -6 0 51 1000 6 2 -6 4M 4.464x10 − −                        −      =+ =                   −       43.2 0              1285.92 428.64 1285.92 857.28 6856.8 5143.2 856.96 0
  • 24. Find slope at joint 2 and deflection at joint 3. Also find member end forces 1 1 20 KN 20kN/m 10kN 10kN 10kN- m 10kN- m 60kN- m 60kN- m 60kN 60kN v1 q1 q2 q3 v2 v3 EI EI 20 KN 20kN/m Guided Support 2m 2m 6m EI=2 x 104kN-m2 10kN- m 10kN 70kN 50kN- m 60kN- m 60kN 2 2 3 Global coordinates Fixed end reactions (FERs) Action/loads at global coordinates
  • 25. 1 1 4 1 1 3 2 2 2 2 1 1 2 2 For element 1 f v12 24 -12 24 m 24 64 -24 321X10 f -12 -24 12 -24 v4 24 32 -24 64m v v For el           θ    =             θ     θ θ 1 1 4 1 1 3 2 2 2 2 2 2 3 3 ement 2 f v12 36 -12 36 m 36 144 -36 721X10 f -12 -36 12 -36 v6 36 72 -36 144m v v           θ    =             θ     θ θ
  • 26. 7/15/2016 26 1 1 2 2 3 3 F 1875 3750 -1875 3750 M 3750 10000 -3750 5000 F -1875 -3750 1875+555.56 -3750+1666.67 -555.56 1666.67 M F M          =           3750 5000 -3750+1666.67 10000+6666.67 -1666.67 3333.33 -555.56 -1666.67 555.56 -1666.67 1666.67 1 1 2 2 3 3 1 1 2 3 2 3 v v v 3333.332 -1666.67 6666.67 Boundary condition v , ,v , 0 Loading Condition M 50; F 60 16666.67 -1666.67 -1666.67 555.56       θ            θ         θ       θ θ = =− =−       { } [ ]{ } 2 3 2 3 50 v 60 555.56 1666.67 50 0.0197141 v 1666.67 16666.67 60 0.167146481481.5 Final member end forces f k d {FEMS} θ −    =    −   θ − −       =       − −      = +
  • 27. 1 4 1 3 2 2 For element 1 f 10 12 24 -12 24 0 63.93 m 10 24 64 -24 32 0 88.571X10 f 10 -12 -24 12 -24 0 83.934 10 24 32 -24 64 0.019714 207.1m −              −      =+ =                   − − −      1 4 1 3 2 2 4 For element 2 f 60 12 36 -12 36 0 m 60 36 144 -36 72 0.0197141X10 f 60 -12 -36 12 -36 0.167146 60 36 72 -36 144 0m                           −     = +      −           −     120 207.14 0 152.85         =          
  • 28.
  • 29. { } [ ]{ } If f ' member end forces in local coordinates then f' k' q'= 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 AE AE 0 0 0 0 L L 12EI 6EI 12EI 6EI 0 0 L L L L 6EI 4EI 6EI 2EI 0 0 L L L L[k] AE AE 0 0 0 0 L L 12EI 6EI 12EI 6EI 0 0 L L L L 6EI 2EI 6EI 4EI 0 0 L L L L   −     −      −  =   −      − − −     −   
  • 30. ' 1 1 2 ' 2 1 2 ' 3 3 At node i q q cos q sin q q sin q cos q q l cos ; m sin = θ + θ = − θ + θ = = θ = θ { } 1 2 3 4 5 6q {q ,q ,q ,q ,q ,q } are forces in global coordinate direction =
  • 31. { } { } [ ] [ ] [ ][ ]T using conditions q' [L]{q}; and f' [L]{f} Stiffness matrix for an arbitrarily oriented beam element is given by k L k' L = = =
  • 32. a a’ q f = GJ/l qxi’ fi qxj’ fj Grid Elements xi i xj j JG JG q fL L q fJG JG L L   −      =          −   
  • 33.
  • 34. { } [ ]{ } If f ' member end forces in local coordinates then f' k' q'= 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 GJ GJ 0 0 0 0 L L 12EI 6EI 12EI 6EI 0 0 L L L L 6EI 4EI 6EI 2EI 0 0 L L L L GJ GJ 0 0 0 0 L L 12EI 6EI 12EI 6EI 0 0 L L L L 6EI 2EI 6EI 4EI 0 0 L L L L   −     −      −     −      − − −     −   
  • 35. [ ] C 0 -s 0 0 0 0 1 0 0 0 0 -s 0 c 0 0 0 L 0 0 0 c 0 -s 0 0 0 0 1 0 0 0 0 --s 0 c      =      [ ] [ ] [ ][ ]T k L k' L         = 
  • 36. Beam element for 3D analysis
  • 37.
  • 38.
  • 39.
  • 40. if axial load is tensile, results from beam elements are higher than actual ⇒ results are conservative if axial load is compressive, results are less than actual – size of error is small until load is about 25% of Euler buckling load
  • 41. for 2-d, can use rotation matrices to get stiffness matrix for beams in any orientation to develop 3-d beam elements, must also add capability for torsional loads about the axis of the element, and flexural loading in x-z plane
  • 42. to derive the 3-d beam element, set up the beam with the x axis along its length, and y and z axes as lateral directions torsion behavior is added by superposition of simple strength of materials solution JG L JG L JG L JG L T T xi xj i j − −                 =       φ φ
  • 43. J = torsional moment about x axis G = shear modulus L = length φxi, φxj are nodal degrees of freedom of angle of twist at each end Ti, Tj are torques about the x axis at each end
  • 44. flexure in x-z plane adds another stiffness matrix like the first one derived superposition of all these matrices gives a 12 × 12 stiffness matrix to orient a beam element in 3-d, use 3-d rotation matrices
  • 45. for beams long compared to their cross section, displacement is almost all due to flexure of beam for short beams there is an additional lateral displacement due to transverse shear some FE programs take this into account, but you then need to input a shear deformation constant (value associated with geometry of cross section)
  • 46. limitations: – same assumptions as in conventional beam and torsion theories ⇒no better than beam analysis – axial load capability allows frame analysis, but formulation does not couple axial and lateral loading which are coupled nonlinearly
  • 47. – analysis does not account for » stress concentration at cross section changes » where point loads are applied » where the beam frame components are connected
  • 48. Finite Element Model Element formulation exact for beam spans with no intermediate loads – need only 1 element to model any such member that has constant cross section for distributed load, subdivide into several elements need a node everywhere a point load is applied
  • 49. need nodes where frame members connect, where they change direction, or where the cross section properties change for each member at a common node, all have the same linear and rotational displacement boundary conditions can be restraints on linear displacements or rotation
  • 50. simple supports restrain only linear displacements built in supports restrain rotation also
  • 51.
  • 52. – restrain vertical and horizontal displacements of nodes 1 and 3 – no restraint on rotation of nodes 1 and 3 – need a restraint in x direction to prevent rigid body motion, even if all forces are in y direction
  • 53.  cantilever beam – has x and y linear displacements and rotation of node 1 fixed
  • 54. point loads are idealized loads – structure away from area of application behaves as though point loads are applied
  • 55. only an exact formulation when there are no loads along the span – for distributed loads, can get exact solution everywhere else by replacing the distributed load by equivalent loads and moments at the nodes
  • 56.
  • 57. Computer Input Assistance preprocessor will usually have the same capabilities as for trusses a beam element consists of two node numbers and associated material and physical properties
  • 58. material properties: – modulus of elasticity – if dynamic or thermal analysis, mass density and thermal coefficient of expansion physical properties: – cross sectional area – 2 area moments of inertia – torsion constant – location of stress calculation point
  • 59. boundary conditions: – specify node numbers and displacement components that are restrained loads: – specify by node number and load components – most commercial FE programs allows application of distributed loads but they use and equivalent load/moment set internally
  • 60. Analysis Step small models and carefully planned element and node numbering will save you from bandwidth or wavefront minimization potential for ill conditioned stiffness matrix due to axial stiffness >> flexural stiffness (case of long slender beams)
  • 61. Output Processing and Evaluation graphical output of deformed shape usually uses only straight lines to represent members you do not see the effect of rotational constraints on the deformed shape of each member to check these, subdivide each member and redo the analysis
  • 62.  most FE codes do not make graphical presentations of beam stress results – user must calculate some of these from the stress values returned  for 2-d beams, you get a normal stress normal to the cross section and a transverse shear acting on the face of the cross section – normal stress has 2 components » axial stress » bending stress due to moment
  • 63. – expect the maximum normal stress to be at the top or bottom of the cross section – transverse shear is usually the average transverse load/area » does not take into account any variation across the section
  • 64. 3-d beams – normal stress is combination of axial stress, flexural stress from local y- and z- moments – stress due to moment is linear across a section, the combination is usually highest at the extreme corners of the cross section – may also have to include the effects of torsion » get a 2-d stress state which must be evaluated – also need to check for column buckling