SlideShare una empresa de Scribd logo
1 de 12
Journal of Neuroscience Research 64:380 –391 (2001)




Structural Dynamics of Oligodendrocyte
Lysis by Perforin in Culture: Relevance to
Multiple Sclerosis
Rana Zeine,1* Wendy Cammer,2,3 Elisa Barbarese,4 Chau-Ching Liu,5 and
Cedric S. Raine1–3
1
  Department of Pathology (Neuropathology), Albert Einstein College of Medicine, Bronx, New York
2
  Department of Neurology, Albert Einstein College of Medicine, Bronx, New York
3
  Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York
4
  Departments of Neuroscience and Neurology, University of Connecticut Health Center, Farmington,
Connecticut
5
  Division of Rheumatology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania

The mechanism by which oligodendrocytes are de-                          Multiple Sclerosis (MS) is considered to be an auto-
pleted from active lesions in multiple sclerosis (MS) is          immune demyelinating disease of the central nervous sys-
not clear but many reports implicate a cytolytic pro-             tem (CNS) in which oligodendrocytes and myelin be-
cess. The most applied animal model for MS, chronic               come exposed to components of the immune system,
relapsing experimental autoimmune encephalomyelitis               including infiltrating T-cells, killer cells and soluble cyto-
(EAE), has been established in inbred strains of mice,            lytic factors (Brosnan and Raine, 1996; Pouly and Antel,
especially SJL and PL. Studies on oligodendrocytes                1999), and oligodendrocytes are selectively depleted from
from these strains in vitro have been hampered to date            lesions by as-yet-unrecognized mechanisms (Raine 1997a;
by an inability to grow these cells from mouse CNS                Lucchinetti et al., 1999). Numerous causes of injury to
tissue. We report here a successful method to culture             oligodendrocytes have been explored and proposed as
SJL mouse oligodendrocytes and have analyzed lysis                possible mechanisms underlying the damage to myelin in
of these cells in vitro mediated by the pore-forming              the MS lesion. Oligodendrocytes synthesize and maintain
protein, perforin, a candidate effector molecule in in-           CNS myelin and, depending on the nature of the insult,
flammatory demyelination. Cultures were exposed to                 are known to be susceptible to death via both apoptosis
murine perforin, 36 –72 hemolytic U, for up to 2.5 hr             and necrosis, (D’Souza et al., 1996; Ludwin, 1997; Merrill
and examined using the oligodendrocyte phenotypic                 and Scolding, 1999). Their documented susceptibility to
markers O4, galactocerebroside and myelin basic pro-              injury by components of the immune system renders them
tein (MBP), in addition to a membrane dye (DiI) and a             vulnerable to damage in the vicinity of immune responses.
marker of necrosis, propidium iodide, (PI). Cultures                     In active MS, some features of the lesion are sugges-
were imaged chronologically by phase contrast, immu-              tive of cytolytic damage (Prineas and McDonald, 1997;
nofluorescence, digital, light and electron microscopy.            Raine, 1997b), specifically oligodendrocyte swelling, cy-
Findings showed that the majority of oligodendrocytes             toplasmic vacuolation and myelin vesiculation (Suzuki et
were killed within 60 –90 min via pore expansion and              al., 1969; Rodriguez and Scheithauer, 1994; Genain et al.,
ultimately, membrane disruption. The structural fea-              1999; Raine et al., 1999). Although initial studies on
tures of the cellular damage comprised swelling of the            demyelination invoked serum factors (Raine, 1984; Ruijs
cell body, fenestration and fragmentation of mem-                 et al., 1990), subsequent studies emphasized damage to
branes and processes, cytoplasmic vacuolation and                 myelin and oligodendrocytes induced by lymphocytes and
breakdown of the nuclear envelope. Astrocytes in the              their soluble products (Selmaj and Raine, 1988; Ruijs et
same system were relatively resistant to cell lysis. The
above patterns of oligodendrocyte damage in SJL oli-
                                                                  Contract grant sponsor: National Multiple Sclerosis Society; Contract grant
godendrocytes were reminiscent of patterns in the MS              numbers: NMSS RG 1001-J-10, NMSS RG 2971, and NMSS RG 2843;
lesion, leaving us to conclude that perforin may play an          Contract grant sponsor: American Heart Association; Contract grant spon-
important role in the human disease. J. Neurosci. Res.            sor: HHS; Contract grant numbers: NS 08952, NS 11920, and NS 19943.
64:380 –391, 2001. © 2001 Wiley-Liss, Inc.                        *Correspondence to: Dr. Rana Zeine, Department of Pathology (Neuro-
                                                                  pathology), Albert Einstein College of Medicine, 1300 Morris Park Ave-
Key words: demyelination; cytotoxicity; autoimmunity;             nue, F-140, Bronx, NY 10461. E-mail: harkzen@aol.com
oligodendrocyte; perforin; experimental autoimmune en-            Received 13 November 2000; Revised 8 January 2001; Accepted 9 January
cephalomyelitis; multiple sclerosis                               2001

© 2001 Wiley-Liss, Inc.
Oligodendrocyte Lysis by Perforin          381

al., 1990; Selmaj et al., 1991a; Freedman et al., 1991; Antel    toplasmic damage that are reminiscent of the oligodendro-
et al., 1998; Dal Canto et al., 2000). Several lines of          cyte pathology encountered in MS lesions.
evidence support the hypothesis that oligodendrocyte pa-
thology and depletion from the CNS in MS may be                               METHODS AND MATERIALS
related to perforin-mediated lysis. This is particularly a       Animals
propos to lysis of human oligodendrocytes by human                     Lactating female SJL mice with newborn pups were ob-
T-cells that has been shown to occur in vitro via a pre-         tained from either Jackson Labs (Bar Harbor, ME) or Charles
dominantly perforin-based cytotoxicity mechanism (Zeine          River (Wilmington, MA), and housed in an AAALAC-
et al., 1998).                                                   accredited facility at the Albert Einstein College of Medicine.
       Perforin has been demonstrated in vivo in inflam-
matory lesions of a variety of autoimmune diseases (Liu et       Oligodendrocyte Cultures
al., 1996; Kappeler and Mueller, 2000). In the CNS,                     Oligodendrocyte-enriched cultures were prepared as de-
perforin expression has been detected in astrocytes in           scribed previously (Barbarese, 1991). Primary CNS cultures
normal brain tissue, and in astrocytes and infiltrating lym-      were obtained by dissociation from the cerebral hemispheres of
phocytes within demyelinative lesions of MS and its              1–3-day-old SJL mouse pups and plated onto poly-L-lysine-
model, experimental autoimmune encephalomyelitis                 coated tissue culture dishes (Nunc, Fisher Scientific, Pittsburgh,
(EAE) (Held et al., 1993; Gasque et al., 1998; Zeine et al.,     PA), for 12 days in Dulbecco’s modified Eagle’s medium
1999). Furthermore, perforin mRNA has been detected at           (DMEM) (Gibco BRL, Rockville, MD), supplemented with
elevated levels in the CSF of patients with MS (Matusevi-        10% newborn bovine serum (Gibco BRL). Enriched cultures of
cius et al., 1998; Kivisakk et al., 1999). This potent mem-      oligodendrocytes were obtained by mild trypsinization of the
branolytic molecule, perforin, is a 70 kD pore-forming           mixed cultures followed by depletion of adherent cells though
protein (PFP) that is stored within cytolytic granules of        differential adhesion to plastic substrata. Oligodendrocyte-
cytotoxic T-cells and natural killer (NK) cells (Liu et al.,     enriched populations were seeded onto 24-well plates at 1 105
1995a). Perforin-mediated cytotoxicity is a calcium-             cells per well and grown on either Thermanox plastic coverslips
dependent mechanism as calcium ions are required both            (Nunc) or glass D coverslips (Fisher), precoated with poly-L-
for effective granule exocytosis and for the appropriate         ornithine (Sigma, St. Louis, MO). Alternatively, Lab-Tek glass
perforin conformation. Mechanistically, perforin mono-           chamber slides (Nunc) were used. The feeding medium
mers released by killer cells bind to phosphorylcholine          (DMEM-N1-B104) was composed of a freshly prepared mix-
lipid moieties and insert into target cell membranes where       ture of DMEM/F12 (Gibco BRL), with pyruvic acid, HEPES,
they polymerize and assemble to form homopolymeric               albumin and the following N1 supplements: apo-transferrin
transmembrane pore structures (Tschopp et al., 1989;             (0.05 mg/ml), sodium selenite (30 nM) and biotin (10 ng/ml).
Ojcius et al., 1991a). These pores perturb membrane              Insulin (0.016 mg/ml), hydrocortisone (3.6 ng/ml), T3
permeability and result in target cell death by osmotic lysis,   (15 nM), -ME and gentamicin (0.5%) were also added, and the
a mechanism most closely related to necrosis.                    final mixture was supplemented with B104 neuroblastoma-
                                                                 conditioned medium in an 87:13 proportion. Chemicals and
       Among the mouse models of demyelination that
                                                                 hormones were obtained from Sigma, and B104 was supplied by
most closely mimic the human disease, those most applied
                                                                 Dr. Barbarese. The final composition of these cultures was ca.
to MS have been established in inbred mouse strains (SJL,        80% oligodendrocytes, 15% astrocytes and 5% microglia plus
PL), strains that are susceptible to remitting-relapsing         precursor cells.
forms of EAE (Brown et al., 1982; Cross et al., 1987). The
susceptibility of oligodendrocytes from mouse strains to         Perforin-Mediated Lysis
perforin-mediated lysis has never been examined because                 Adherent oligodendrocyte-enriched cultures were incu-
mouse oligodendrocytes have been difficult to culture. In         bated at 37°C with a preparation of the pore forming protein
the early 1990s, the susceptibility of rat oligodendrocytes      (PFP) perforin, provided by Dr. C.-C. Liu, in the range of
to perforin-mediated injury was described (Scolding et al.,      36 –72 hemolytic units (HU) in the presence of 2 mM Ca2 and
1990), and more recently, using a chromium-51 release            in a final volume of 400 l serum-free medium. Control cul-
cytotoxicity assay (Malipiero et al., 1997). To explore          tures received either Ca2 Cl2 alone or PFP alone. Cell lysis was
perforin-mediated CNS injury in a mouse model, we have           evaluated over a period of 2.5 hr by phase contrast microscopy,
developed a method to culture oligodendrocytes from SJL          indirect immuno-fluorescence, LM and EM, or time-lapse dig-
mice and have documented for the first time the selective         ital imaging.
effects of perforin on these cells using chronologic digital
techniques. For this, we have examined the kinetics of           Immunocytochemistry
perforin-induced osmotic lysis of oligodendrocytes and                 At 30 min intervals after exposure to perforin, propidium
have employed immunofluorescence, digital imaging and             iodide (PI) (50 g/ml), an indicator of membrane disruption,
light and electron microscopy (LM and EM), to define the          was added to duplicate cultures for 3 min and the cells washed
structural features of this process. Our analysis has revealed   in PBS (Sigma) and fixed in 4% paraformaldehyde at 4°C
that SJL mouse oligodendrocytes in vitro display several         overnight. Fixed cells were then rinsed in PBS and incubated
perforin-induced structural patterns of membrane and cy-         with the following primary antibodies for 1 hr at room temper-
382      Zeine et al.

ature: mouse monoclonal anti-galactocerebroside-GalC anti-               glutaraldehyde in Millonig’s buffer, pH 7.4. The cultures were
body (IgG3; Roche/Boehringer-Mannheim, Indianapolis, IN)                 then post-fixed for 45 min in 1% OsO4 in PBS, pH 7.4,
at 1:10 dilution; mouse monoclonal anti-O4 antibody (IgM;                dehydrated though a graded series of ethyl alcohol, washed in a
Roche/Boehringer-Mannheim) at 1:5 dilution; mouse mono-                  1:1 mixture of absolute alcohol and Epon 812, and embedded in
clonal anti-myelin basic protein-MBP antibody (IgG1; Roche/              Epon 812. After polymerization, the flat sheets of epoxy were
Boehringer-Mannheim) at 1:100 dilution. After gentle rinsing in          removed from the plastic coverslips. For sectioning perpendic-
PBS, coverslips were treated with the appropriate secondary              ular to the plane of growth, the blocks were re-embedded
antibodies for 1 hr at room temperature at 1:100 dilution:               end-on in capsules of fresh epoxy (Norton et al., 1983). One
FITC-conjugated goat anti-mouse IgG (Rockland, Gilberts-                 micron sections stained with toluidine blue were examined by
ville, PA), and FITC-conjugated goat anti-mouse IgM                      light microscopy and for electron microscopy, thin sections
(Rockland). The coverslips were washed and mounted on slides             were double-stained with uranium and lead salts, carbon-coated
using 50% glycerol containing the anti-fading agent, n-propyl            and scanned in an Hitachi H 600.
gallate (Sigma). The cells were viewed using a Nikon Optiphot
and an Olympus IX 70 inverted microscope, both equipped for                                      RESULTS
epifluorescence with filters for rhodamine and FITC.                       SJL Mouse Oligodendrocytes in Culture
DiI Membrane Staining and Imaging                                              Oligodendrocytes were successfully isolated from
      Living cells were labeled with a fluorescent lipidophilic           primary CNS cultures from newborn SJL mice and con-
membrane tracer, the long-chain dialkylcarbocyanine, DiI (Mo-            sisted of bipolar, tripolar and multipolar populations.
lecular Probes, Eugene, OR). Oligodendrocyte-enriched cul-               These cells differentiated and expressed the oligodendro-
tures were incubated with 10 M DiI for 2 hr at 37°C. The                 cyte markers, GalC (Fig. 1A), O4 (Fig. 1J) and MBP (Fig.
DiI-containing medium was then removed and the cells washed              1G). They extended multiple processes and elaborated flat
before exposure to perforin. Control cells and cells exposed to          membranes. These membrane sheets expanded with time
perforin were viewed under an Olympus IX 70 microscope.                  and covered larger areas, remaining intact and exhibiting
The temperature of the specimen was maintained at 37°C                   an homogeneous consistency and a well-demarcated edge
within an environmental chamber equipped with air and stage              (Figs. 1A,J and 2A). DiI revealed cytoplasmic ribs within
heaters (Olympus, Melville, NY). Images were collected at 0.5            the flat membrane veils (Fig. 2A). O4 and GalC gave
and 1 min intervals with a Censys-cooled CCD camera (Pho-                intense membrane staining (Fig. 1A,J), whereas MBP
tometrics, Tucson, AZ), and the light was shuttered (Ludl,               staining was more cytoplasmic, denser in perinuclear re-
Hawthorne, NY) between exposures. Software control was                   gions and diffuse over the membrane sheets (Fig. 1G).
provided by I.P. Lab Spectrum (Scanalytics, Fairfax, VA), and
deconvolution was performed at 80% to 90% haze reduction                 Perforin-Mediated Injury of SJL Mouse
with PowerHazebuster (Vaytek, Fairfield, IA) on a Macintosh               Oligodendrocytes
G3.                                                                            Oligodendrocyte-enriched cultures were exposed to
                                                                         36, 48, 60 and 72 HU of perforin in the presence of 2 mM
TUNEL Method                                                             Ca2 . Light and phase contrast microscopy showed swell-
      In some experiments, cell death by apoptosis was assessed          ing of the cells within 15 min and rearrangement of the
using the In Situ Cell Detection Kit with Fluorescein, (Enzo/            cytoplasm within 30 min of exposure. Examination of
Boehringer-Mannheim, Indianapolis, IN), according to the                 membrane integrity in living cells stained with DiI re-
manufacturer’s instructions.                                             vealed the formation and expansion of distinct membrane
                                                                         holes, probably the result of coalescence of multiple sub-
Dead Cell Ratio                                                          microscopic (15–20 nm) pores (Liu et al., 1995a), between
       The ratio of PI positive cells to total cells was calculated by   30 and 90 min after exposure to perforin (Fig. 2B,C). By
counting approximately 300 cells in each of seven randomly-              indirect immunofluorescence, the nuclei of dying and
selected low power fields. Cells were exposed to 72 HU of                 dead cells stained bright red with PI after exposure to PFP
perforin for 1.5 hr and then stained with PI and counted unfixed          for 0.5 hr (Fig. 1D,K), 1 hr (Fig. 1H), and 2.5 hr (Fig.
at 10 magnification.                                                      1F,I,L). The pattern of distribution of O4 and GalC re-
                                                                         vealed distortion of the cellular architecture suggestive of
Membrane Hole Expansion (Fenestration)                                   swelling of the cell body and fragmentation of membranes
       The size of membrane holes (fenestrae) was measured at            and processes seen by 30 min (Fig. 1C,K) Complete lysis
the LM level by manually tracing with I.P. Lab Spectrum                  most frequently involved reduction of the cytoplasm to
(Scanalytics), the areas of 16 individual fenestrae at each of 30        fragmented processes and droplets (Fig. 2D). At 2.5 hr,
time points. The rate of hole expansion was determined by                some cells could be found that had not proceeded though
plotting the average areas at each time point against time.              completion of osmotic lysis, but had arrested at a stage that
                                                                         exhibited marked swelling with abundant membrane holes
Light and Electron Microscopy                                            (Figs. 1E,L; 2C). These structural features of perforin-
      At 30 min intervals after exposure to perforin, monolayers         induced oligodendrocyte damage were also clearly dem-
of oligodendrocyte- enriched cells were fixed for 30 min di-              onstrated in experiments where cultures were fixed and
rectly on Thermanox coverslips by immersion in cold 2.5%                 stained with toluidine blue (Fig. 3). As compared to con-
Oligodendrocyte Lysis by Perforin             383




Fig. 1. Indirect immunofluorescence of oligodendrocytes in culture,       godendrocytes that are negative for PI. H: One hour PFP exposure. A
before and after exposure to PFP. A: Control culture. Two GalC-          group of MBP-positive , PI-positive oligodendrocytes can be seen.
positive oligodendrocytes are shown. B: Same field as (A), stained with   I: PFP exposure (2.5 hr). A group of MBP-positive/PI-positive oligo-
PI. Note lack of PI staining in control oligodendrocytes shown in (A).   dendrocytes. J: Control culture. Superimposition of O4 on a phase
C: Thirty-minute PFP exposure. Four oligodendrocytes stain positively    contrast image reveals a normal oligodendrocyte with a flattened mem-
for GalC. D: Same field as (C) showing PI positivity of the four          brane. K: Thirty minute PFP exposure. The pattern of O4 distribution
oligodendrocytes. E: PFP exposure (2.5 hr). A group of GalC-positive     suggests membrane fragmentation. The nucleus is slightly PI positive.
oligodendrocytes is shown. F: Same field as (E) showing PI positivity     L: PFP exposure (2.5 hr). O4 staining reveals multiple membrane holes
and distorted nuclei of the oligodendrocytes. G: Control culture.        and fragmentation. The nucleus is intensely positive for PI. Magnifi-
Superimposition of MBP and PI staining showing MBP-positive oli-         cation 450 in A–I; 700 in J–L.
384     Zeine et al.




                   Fig. 2. Living oligodendrocytes stained with DiI. A: Control oligodendrocyte. Note the well-
                   demarcated edge and homogeneous nature of the membranous veil of this oligodendrocyte.
                   B: Forty-five minute exposure to PFP. By DiI staining, distinct membrane holes are visible. C: Same
                   cell, 90 min exposure to PFP. The number and size of the holes have increased considerably.
                   D: End-Stage lysis. A collection of cytoplasmic fragments is arranged around a distorted nucleus.
                   Magnification 800.



trols (Fig. 3A–C), cells exposed to PFP for 60 min man-              areas of 16 individual fenestrae and the rate of expansion
ifested swelling, cytoplasmic disintegration and vacuola-            was determined from the slope of the plot of average areas
tion (Fig. 3D–F). The nuclei became asymmetrically                   against time (data not shown). For this particular cell,
distorted but did not exhibit signs of apoptosis (Figs. 1F,L,        fenestrae expanded at a rate of 55 m2/min over a period
3D–F). TUNEL staining revealed no increase in TUNEL                  of 5 min after which most ceased to change. This pattern
positive cells over control cultures (data not shown).               of cellular arrest was not uncommon and probably repre-
                                                                     sented death with incomplete lysis. Some oligodendro-
Rate of Membrane Fenestration                                        cytes that were fixed as late as 2.5 hr after exposure to
      With DiI staining, distinct holes (fenestrae) became           perforin exhibited a pattern of O4 distribution suggestive
visible by EM in the membranes of oligodendrocytes after             of numerous expanded fenestrae delineating vacuoles
exposure to perforin for 30 min. The progression of                  throughout the damaged cell (Fig. 1L).
fenestration was followed in one cell by time-lapse imag-
ing starting at 45 min and ending at 90 min (Figs. 2B–C).            Pattern of End-Stage Lysis
Images were collected at 30 sec intervals. Hole size was                  A more severe pattern of destruction was evident by
measured by tracing with I.P. Lab Spectrum software, the             LM in oligodendrocytes that proceeded rapidly to com-
Oligodendrocyte Lysis by Perforin             385




Fig. 3. Light microscopy of 1 micron toluidine blue-stained epoxy       swollen nucleus surrounded by cytoplasmic remnants (arrow) lies ad-
sections. A: Control culture. A flattened oligodendrocyte attached to    jacent to a cell with vacuolated cytoplasm. E: Sixty minutes PFP. Two
the substrate (arrow), lies next to an astrocyte. B: Control culture.   sick, vacuolated oligodendrocytes lie beneath a layer of astrocytes.
Three oligodendrocytes (arrows) lie on layer of astrocytic processes.   F: Sixty minutes PFP. A fragmented culture shows a layer of degen-
C: Control culture. A large flattened, healthy astrocyte with a single   erating oligodendrocytes overlying a layer of minimally affected astro-
nucleus is shown. D: Sixty minutes PFP. An oligodendrocyte with a       cytes. Magnification 750 in B; 1,000 in A,C–F.


plete lysis. Examples of such cells showed complete loss of             forin for 1.5 hr and then stained with PI. For each field, PI
all membrane veils and were captured by both immuno-                    images were superimposed on corresponding phase con-
fluorescence and DiI staining. Some were found displaying                trast micrograph and the cells counted unfixed. In cultures
PI positive nuclei associated with few GalC positive rem-               exposed to perforin, the ratio of PI-positive cells ranged
nants of cytoplasmic fragments and processes (data not                  between 42 and 100% (mean 77%, SD 24), whereas the
shown), whereas others presented as arrays of cytoplasmic               range in control cultures remained between 9 and 15%
fragments around an asymmetrically-enlarged and dis-                    (mean 11% , SD 2).
torted nucleus (Fig. 2D). This type of cellular fragmenta-
tion most probably represented end-stage osmotic lysis.                 Ultrastructural Features of Perforin-Induced
                                                                        Damage
Kinetics of Perforin-Mediated Lysis                                           By EM, the cytoplasm of normal oligodendrocytes in
       Experiments were repeated using either 36, 48, 60 or             vitro was more electron-dense than that of astrocytes,
72 HU of perforin. In all cases, the kinetics of perforin-              possessed short segments of rough ER and contained
induced injury proceeded systematically though cell swell-              microtubules but no intermediate filaments (Fig. 4A,B).
ing (15–30 min), membrane fenestration and expansion                    After perforin-induced injury, these cells became edema-
(30 –90 min), membrane fragmentation (30 –90 min), and                  tous and displayed extensive cytoplasmic vacuolation of
end-stage lysis (90 –150 min). As mentioned above, het-                 the cell body and processes within 30 min of exposure. On
erogeneity occurred in the extent of lysis achieved by                  occasion, oligodendrocytes featured an extremely large
individual cells under the same culture conditions, with some           single cytoplasmic vacuole, which most probably evolved
cells becoming arrested at a stage before end-stage lysis. In           from the confluence of several vacuoles during the process
most cells, however, death was complete within 3 hr.                    of osmotic lysis (Fig. 5A). Fragmentation of unit mem-
                                                                        branes and the presence of myelin-like formations were
Ratio of Cell Killing by Perforin                                       noted at the perimeter of such vacuoles (Fig. 5B). Another
     The ratio of PI-positive cells was calculated by                   change common to the cytoplasm of affected oligoden-
counting by LM approximately 300 cells in each of seven                 drocytes was evident at the 0.5 hr time-point, when
randomly-selected low power fields. For this, cultures                   formation of villus-like profiles, rich in microtubules, was
consisting of a mixture of early differentiating oligoden-              encountered (Fig. 4C). This appearance probably corre-
drocytes and astrocytes, were exposed to 72 HU of per-                  sponded to images seen by LM (Fig. 3D).
386      Zeine et al.




Fig. 4. EM of control cells and early perforin-induced cytoplasmic           30,000. C: Thirty minutes PFP. The cytoplasm of this oligodendro-
injury. A: Control culture. A normal oligodendrocyte lies to the left of   cyte protrudes as villus-like processes into the extracellular space. Note
an astrocyte. The cytoplasm of the oligodendrocyte is distinctly denser.   the numerous microtubules with the cell body and the villus-like
Magnification 12,000. B: Detail of the oligodendrocyte cytoplasm in         profiles (arrows). Magnification 75,000.
(A). Note the microtubules in cross section (arrows). Magnification
Oligodendrocyte Lysis by Perforin             387




Fig. 5. Ultrastructural patterns of membrane damage in oligodendro-     30,000. C: Sixty minutes PFP. End-stage lysis is seen in an oligo-
cytes exposed to PFP. A: Thirty minutes PFP. This oligodendrocyte     dendrocyte that has lost its cell membrane, cytoplasmic integrity and
has developed a large vacuole around the perimeter of which myelin-   intact nuclear membrane. Magnification 14,000. D: Detail of (C) to
like figures are located. Magnification 12,000. B: Detail from A to     show beginning disruption of the nuclear membrane. Magnification
show the lamellar patterns of the myelin droplets. Magnification         30,000.
388    Zeine et al.




                                                                                               Fig. 6. Sixty minutes PFP. Two
                                                                                               interdigitating, apparently healthy
                                                                                               astrocytes display an abundance of
                                                                                               intermediate filaments and ro-
                                                                                               settes of ribosomes. The nucleus
                                                                                               of the cell on the right is normal
                                                                                               and a hemidesmosome (typical of
                                                                                               subpial astrocytes) is indicated (ar-
                                                                                               row). Magnification 19,000.



      Oligodendrocytes examined after exposure to per-         of perforin exposure, cell membranes were lost and nu-
forin for 1 hr exhibited complete loss of the cell membrane    clear envelopes began to degenerate (Fig. 5C). This is the
with only remnants of cytoplasm remaining around the           first report demonstrating that SJL mouse oligodendro-
nucleus (Fig. 5C). In addition, evidence of degeneration of    cytes are susceptible to perforin-induced osmotic lysis, a
the nuclear envelope was noted (Fig. 5D). Similar pathol-      highly conserved, classical cell-death mechanism (Ojcius
ogy, albeit delayed and to a lesser degree, was seen in        et al., 1991a; Liu et al., 1995b) and this occurred at a dose
astrocytes in the same culture system but on most occa-        level similar to that which kills other eukaryotic cells.
sions, astrocytes were relatively resistant to damage and             Interestingly, oligodendrocyte changes observed
maintained a normal ultrastructure well into the experi-       here in vitro held much in common with appearances
mental period (Fig. 6).                                        described in MS lesions, ultrastructural studies of which
                     DISCUSSION                                have consistently documented that oligodendrocyte pa-
                                                               thology exhibits features suggestive of immune osmotic
      The mechanisms underlying oligodendrocyte deple-         lysis or necrosis (Prineas, 1985; Prineas and McDonald,
tion from the MS plaque remain to be clarified although
cytolytic mechanisms have repeatedly been implicated           1997). In contrast, evidence for oligodendrocyte apoptosis
(Raine, 1997b). One candidate molecule in this process is      in MS and EAE has been lacking or, at most, rare
the pore-forming membranolytic molecule, perforin, and         (D’Souza et al., 1996; Bonetti et al., 1997; Bonetti and
in this report, we have studied the effects of perforin on     Raine, 1997; Waldner et al., 1997). Perforin is a potent
oligodendrocytes cultured from a strain of mouse (SJL)         mediator of osmotic lysis and perforin-mediated cytotox-
most frequently applied to studies on MS and a strain from     icity is induced by killer T-cells (Lowin et al., 1994; Kagi
which oligodendrocytes have been difficult to grow in the       et al., 1994). The presence of killer cells and perforin in
past. Our results have shown that during normal develop-       demyelinative lesions of EAE and MS is well-known
ment in culture, oligodendrocytes extended processes and       (Selmaj et al., 1991b; Held et al., 1993; Olive, 1996; Rajan
elaborated flattened myelin-like membranes, as described        et al., 1996; Gasque et al., 1998; Zeine et al., 1999), and
previously for the murine system (Barry et al., 1996). After   a dual role has been proposed for these cell types whereby
exposure to perforin, the integrity of the membrane veils      injury to oligodendrocytes and neurons is detrimental
was compromised as microscopic fenestrae appeared and          whereas injury to immune cells is protective to the CNS
expanded rapidly, transforming the flat membrane sheets         (Battistini et al., 1995; Malipiero et al., 1997; Zhang et al.,
into a delicate lacework (Fig. 2B,C). The cell bodies          1997; Matsumoto et al., 1998; Murray et al., 1998; Zeine
swelled and the cytoplasm became vacuolated and dis-           et al., 1999). Most likely, the balance between the effector
rupted into fragments rich in microtubules. Within 60 min      and immunoregulatory arms of the immune response de-
Oligodendrocyte Lysis by Perforin       389

termines the magnitude of CNS damage inflicted by the             Kinase inhibitors block the mobilization and orientation of
perforin-based cytotoxicity pathway. In a study on MOG-          perforin-containing granules toward the contact zone
induced EAE in perforin knockout mice, oligodendrocyte           (Wei et al., 1998); and calreticulin blocks perforin lytic
pathology was not discussed.                                     activity by stabilizing target cell membranes (Fraser et al.,
       Ultrastructurally, injured oligodendrocytes in MS le-     2000). Thus, the development of strategies to block per-
sions appear swollen, with vacuolated cytoplasm and wid-         forin activity in vivo holds promise for rescuing oligoden-
ened, degenerating or ruptured membranes (Field and              drocyte targets during acute episodes of inflammatory de-
Raine, 1964; Perier and Gregoire, 1965; Prineas, 1985;
                   `            `                                myelination.
Rodriguez et al., 1993; Rodriguez and Scheithauer, 1994;                The observation that astrocytes were more resistant
Raine, 1997b; Raine et al., 1999). Previous studies have         than oligodendrocytes to perforin was not surprising con-
shown that myelin in acute lesions is transformed into           sidering their general resilience to disease. We and others
vesicular networks (Kirk, 1979; Lee et al., 1990; Rodri-         have shown the expression of perforin within the cyto-
guez and Scheithauer, 1994; Genain et al., 1999; Raine et        plasm of astrocytes in vivo and in culture (Gasque et al.,
al., 1999). In this study, some images of oligodendrocytes       1998; Zeine et al., 1999). Astrocytes are the only cells
and their membranes undergoing lysis by perforin-induced         known to harbor free cytosolic perforin, and they must
membrane fragmentation were reminiscent of changes               therefore have some protective mechanism to guard their
described in acute MS lesions (viz. Suzuki et al., 1969; Fig.    own membranes against perforin lysis. Furthermore, as-
11, loc.cit.; Rodriguez and Scheithauer, 1994; Fig. 4A,          trocytes may be a source of perforin in the CNS and may
loc.cit.; Raine, 1997b; Fig. 5, loc. cit.; Prineas and Mc-       play an effector or regulatory role during inflammation.
Donald, 1997; Fig. 13.35, loc. cit.; Raine et al., 1999; Figs.          Thus, we have shown that oligodendrocytes cultured
6 – 8, loc. cit.).                                               from the CNS of SJL mice are selectively vulnerable to
       The search for molecules that readily lyse oligoden-      cytolytic damage by perforin, and that early-stage cell lysis
drocytes has been difficult. Perforin-based cytotoxicity is       involves the formation of fenestrae in the cell membranes,
most akin to complement toxicity. Although the C9 com-           probably as a result of the coalescence of numerous sub-
ponent of complement is deposited in MS and EAE le-              microscopic perforin-induced pores and the influx of wa-
sions, some studies have shown that human oligodendro-           ter into the cell. Subsequently, cells either disintegrated
cytes are not sensitive to complement damage in culture          into cytoplasmic droplets, developed large cytoplasmic
(Zajicek et al., 1995). Combining antibodies with com-           vacuoles, formed disrupted membranous networks or be-
plement results in a reduction in the survival of oligoden-      came totally devoid of cell membrane - all these changes
drocytes in culture via a toxicity mechanism that can be         primary to nuclear disintegration. As stated above, many of
inhibited by the addition of normal immunoglobulins              these morphologic patterns have been described in MS
(Scolding et al., 1989; Scolding et al., 1990; Stangel et al.,   and EAE previously and are in support of oligodendrocyte
2000). It is most unlikely, however, that immunoglobulin         damage in MS being effected by a non-apoptotic process.
would be protective in the case of perforin-mediated lysis.      In ongoing studies on tissue from EAE and MS (Zeine et
We therefore reaffirm a unique role for perforin in irre-         al., in preparation), we have documented the upregulation
versible oligodendrocyte injury relevant to the pathogen-        of perforin by western blotting during acute exacerbations
esis of MS and extend previous findings by providing              and downregulation during remission. Perforin was
                                                                 present within infiltrating cytotoxic cells and astrocytes by
detailed timed images from oligodendrocytes undergoing           immunohistochemistry, and the extent of remyelination
osmotic lysis.                                                   correlated with the absence of perforin. Thus, in the series
       With regard to previous works on perforin-mediated        of molecular events leading to the formation of the MS
lysis, our results are in agreement with the findings of          lesion, it seems that a role for perforin may very well be
Jones et al. (1991) showing that “not all PI-positive cells      found at the acute end of the spectrum.
proceeded to lysis.” Thus, the possibility of sub-lethal
attack by perforin on individual cells remains open and                           ACKNOWLEDGMENTS
raises interest in the mechanism of resistance to perforin              We are indebted to Michael Cammer for expert
( Jiang et al., 1990; Ojcius et al., 1990, 1991b). Of ther-      technical assistance with digital imaging at the Analytical
apeutic relevance would be the conferring of resistance to       Imaging Facility of the Albert Einstein College of Medi-
selected target cells, e.g., oligodendrocytes, in EAE and        cine; to Dr. Hin Hark Gan of New York University and
MS. Such a prospect awaits the isolation of ‘L-protectin,’       Howard Hughes Medical Institute for discussion; to Dr.
a membrane-bound glycosylated molecule that interferes           Jorge Larocca of the Albert Einstein College of Medicine,
with perforin function in resistant target cell membranes        Department of Neurology, for advice; and to Patricia
(Liu et al., 1995b). Currently, some experience has been         Cobban-Bond for administrative assistance. This research
gained by blocking perforin-mediated lysis via four classes      was supported in part by grants from the National Multiple
of chemical reagents in vitro. Calcium chelators inhibit         Sclerosis Society of the USA (NMSS RG 1001-J-10
exocytosis and perforin binding to membranes (Liu et al.,        [CSR], NMSS RG 2971 [WC] and NMSS RG 2843
1995b); H -ATPase inhibitors raise the pH within cyto-           [EB]), the American Heart Association (CCL), and by
toxic granules leading to accelerated degradation of per-        HHS Grants NS 08952 (CSR), NS 11920 (CSR), and NS
forin (Kataoka et al., 1996; Zeine et al., 1998); MAP-           19943 (EB).
390       Zeine et al.

                           REFERENCES                                               Hengartner H, Golstein P. 1994. Fas and perforin pathways as major
Antel JP, McCrea E, Ladiwala U, Qin YF, Becher B. 1998. Non-MHC-                    mechanisms of T cell-mediated cytotoxicity. Science 265:528 –530.
  restricted cell-mediated lysis of human oligodendrocytes in vitro: relation     Kappeler A, Mueller C. 2000. The role of activated cytotoxic T-cells in
  with CD56 expression. J Immunol 160:1606 –1611.                                   inflammatory bowel disease. Histol Histopathol 15:167–172.
Barbarese E. 1991. Spatial distribution of myelin basic protein mRNA and          Kataoka T, Shinohara N, Takayama H, Takaku K, Kondo S, Yonehara S,
  polypeptide in quaking oligodendrocytes in culture. J Neurosci Res                Nagai K. 1996. Concanamycin A, a powerful tool for characterization and
  29:271–281.                                                                       estimation of contribution of perforin- and Fas-based lytic pathways in
Barry C, Pearson C, Barbarese E. 1996. Morphological organization of                cell-mediated cytotoxicity. J Immunol 156:3678 –3686.
  oligodendrocyte processes during development in culture and in vivo.            Kirk J. 1979. Pseudoviral hollow-cored vesicles in multiple sclerosis brain.
  Dev Neurosci 18:233–242.                                                          Acta Neuropathol (Berl) 48:63– 66.
Battistini L, Salvetti M, Ristori G, Falcone M, Raine CS, Brosnan CF.             Kivisakk P, Stawiarz L, Matusevicius D, Fredrikson S, Soderstrom M,
  1995. Gamma delta T cell receptor analysis supports a role for HSP 70             Hindmarsh T, Link H. 1999. High numbers of perforin mRNA express-
  selection of lymphocytes in multiple sclerosis lesions. Mol Med 1:554 –           ing CSF cells in multiple sclerosis patients with gadolinium-enhancing
  562.                                                                              brain MRI lesions. Acta Neurol Scand 100:18 –24.
Bonetti B, Pohl J, Gao YL, Raine CS. 1997. Cell death during autoimmune           Lee SC, Moore GR, Golenwsky G, Raine CS. 1990. Multiple sclerosis: a
  demyelination: effector but not target-cells are eliminated by apoptosis.         role for astroglia in active demyelination suggested by Class II MHC
  J Immunol 159:5733–5741.                                                          expression and ultrastructural study. J Neuropathol Exp Neurol 49:122–
Bonetti B, Raine CS. 1997. Multiple sclerosis: oligodendrocytes display cell        136.
  death-related molecules in situ but do not undergo apoptosis. Ann Neurol        Liu CC, Persechini PM, Young JD. 1995b. Perforin and lymphocyte-
  42:74 – 84.                                                                       mediated cytolysis. Immunol Rev 146:145–175.
Brosnan CF, Raine CS. 1996. Mechanisms of immune injury in multiple               Liu CC, Walsh CM, Young JD. 1995a. Perforin: structure and function.
  sclerosis. Brain Pathol 6:243–257.                                                Immunol Today 16:194 –201.
Brown A, McFarlin DE, Raine CS. 1982. Chronologic neuropathology of               Liu CC, Young LH, Young JD. 1996. Lymphocyte-mediated cytolysis and
  relapsing experimental allergic encephalomyelitis in the mouse. Lab Invest        disease. N Engl J Med 335:1651–1659.
  46:171–185.                                                                     Lowin B, Hahne M, Mattmann C, Tschopp J. 1994. Cytolytic T-cell
Cross A, McFarlin DE, McCarron RM, Raine CS. 1987. Adoptively-                      cytotoxicity is mediated through perforin and Fas lytic pathways. Nature
  transferred acute and chronic relapsing autoimmune encephalomyelitis in           370:650 – 652.
  the PL/J mouse with observations on altered pathology by intercurrent           Lucchinetti C, Bruck W, Parisi J, Scheithauer B, Rodriguez M, Lassmann
  infection. Lab Invest 57:499 – 412.                                               H. 1999. A quantitative analysis of oligodendrocytes in multiple sclerosis
D’Souza SD, Bonetti B, Balasingam V, Cashman NR, Barker PA, Troutt                  lesions. A study of 113 cases. Brain 122:2279 –2295.
  AB, Raine CS, Antel JP. 1996. Multiple sclerosis: Fas signaling in oligo-       Ludwin SK. 1997. The pathobiology of the oligodendrocyte. J Neuro-
  dendrocyte cell death. J Exp Med 184:2361–2370.                                   pathol Exp Neurol 56:111–124.
Dal Canto MC, Calenoff MA, Miller SD, Vanderlugt CL. 2000. Lympho-                Malipiero U, Frei K, Spanaus KS, Agresti C, Lassmann H, Hahne M,
  cytes from mice chronically infected with Theiler’s murine encephalo-             Tschopp J, Eugster HP, Fontana A. 1997. Myelin oligodendrocyte
  myelitis virus produce demyelination of organotypic cultures after stim-          glycoprotein-induced autoimmune encephalomyelitis is chronic/
  ulation with the major encephalitogenic epitope of myelin proteolipid             relapsing in perforin knockout mice, but monophasic in Fas- and Fas
  protein. Epitope spreading in TMEV infection has functional activity.             ligand-deficient lpr and gld mice. Eur J Immunol 27:3151–3160.
  J Neuroimmunol 104:79 – 84.                                                     Matsumoto Y, Kohyama K, Aikawa Y, Shin T, Kawazoe Y, Suzuki Y,
Field EJ, Raine CS. 1964. Examination of multiple sclerosis biopsy speci-           Tanuma N. 1998. Role of natural killer cells and TCR gamma delta
  men. (Abstract). Third Eur Reg Conf on EM. Prague Czech Acad Sci                  T-cells in acute autoimmune encephalomyelitis. Eur J Immunol 28:1681–
  ii:289 –290.                                                                      1688.
Fraser SA, Karimi R, Michalak M, Hudig D. 2000. Perforin lytic activity is        Matusevicius D, Kivisakk P, Navikas V, Soderstrom M, Fredrikson S, Link
  controlled by calreticulin. J Immunol 164:4150 – 4155.                            H. 1998. Interleukin-12 and perforin mRNA expression is augmented in
Freedman MS, Ruijs TC, Selin LK, Antel JP. 1991. Peripheral blood                   blood mononuclear cells in multiple sclerosis. Scand J Immunol 47:582–
  gamma-delta T-cells lyse fresh human brain-derived oligodendrocytes.              590.
  Ann Neurol 30:794 – 800.                                                        Merrill JE, Scolding NJ. 1999. Mechanisms of damage to myelin and
Gasque P, Jones J, Singhrao SK, Morgan B. 1998. Identification of an astrocyte       oligodendrocytes and their relevance to disease. Neuropathol Appl Neu-
  cell population from human brain that expresses perforin, a cytotoxic protein     robiol 25:435– 458.
  implicated in immune defense. J Exp Med 187:451– 460.                           Murray PD, McGavern DB, Lin X, Njenga MK, Leibowitz J, Pease LR,
Genain CP, Cannella B, Hauser SL, Raine CS. 1999. Identification of                  Rodriguez M. 1998. Perforin-dependent neurologic injury in a viral
  autoantibodies associated with myelin damage in multiple sclerosis. Nat           model of multiple sclerosis. J Neurosci 18:7306 –7314.
  Med 5:170 –175.                                                                 Norton WT, Farooq M, Fields KL, Raine CS. 1983. The long term culture
Held W, Meyermann R, Qin Y, Mueller C. 1993. Perforin and tumor                     of bulk-isolated bovine oligodendroglia from adult brain. Brain Res
  necrosis factor alpha in the pathogenesis of experimental allergic enceph-        270:295–310.
  alomyelitis: comparison of autoantigen induced and transferred disease in       Ojcius DM, Jiang SB, Persechini PM, Storch J, Young JD. 1990. Resis-
  Lewis rats. J Autoimmun 6:311–322.                                                tance to the pore-forming protein of cytotoxic T-cells: comparison of
Jiang SB, Ojcius DM, Persechini PM, Young JD. 1990. Resistance of                   target cell membrane rigidity. Mol Immunol 27:839 – 845.
  cytolytic lymphocytes to perforin-mediated killing. Inhibition of perforin      Ojcius DM, Muller S, Hasselkus-Light CS, Young JD, Jiang S. 1991b.
  binding activity by surface membrane proteins. J Immunol 144:998 –                Plasma membrane-associated proteins with the ability to partially inhibit
  1003.                                                                             perforin-mediated lysis. Immunol Lett 28:101–108.
Jones J, Frith S, Piddlesden S, Morgan BP, Compston DA, Campbell AK,              Ojcius DM, Persechini PM, Zheng LM, Notaroberto PC, Adeodato SC,
  Hallett MB. 1991. Imaging Ca2 changes in individual oligodendrocytes              Young JD. 1991a. Cytolytic and ion channel-forming properties of the N
  attacked by T-cell perforin. Immunology 74:572–577.                               terminus of lymphocyte perforin. Proc Natl Acad Sci USA 88:4621–
Kagi D, Vignaux F, Ledermann B, Burki K, Depraetere V, Nagata S,                    4625.
Oligodendrocyte Lysis by Perforin                  391

Olive C. 1996. Expression of the T cell receptor delta-chain repertoire in    Scolding NJ, Morgan BP, Campbell AK, Compston DA. 1990. Comple-
  mouse lymph node. Immunol Cell Biol 74:313–317.                               ment mediated serum cytotoxicity against oligodendrocytes: a comparison
Perier O, Gregoire A. 1965. Electron microscopic features of multiple
 `              `                                                               with other cells of the oligodendrocyte-type 2 astrocyte lineage. J Neurol
  sclerosis lesions. Brain 88:937–952.                                          Sci 97:155–162.
Pouly S, Antel JP. 1999. Multiple sclerosis and central nervous system        Selmaj K, Brosnan CF, Raine CS. 1991b. Colocalization of lymphocytes
  demyelination. J Autoimmun 13:297–306.                                        bearing gamma delta T-cell receptor and heat shock protein hsp65
Prineas JW. 1985. The neuropathology of multiple sclerosis. In: Vinken PJ,      oligodendrocytes in multiple sclerosis. Proc Natl Acad Sci USA 88:6452–
  Bruyn GW, Klawans GW, Koetsier JC, editors. Handbook of clinical              6456.
  neurology, Vol 47. Demyelinating diseases. Amsterdam: Elsevier. p 213–      Selmaj K, Cross AH, Farooq M, Brosnan CF, Raine CS. 1991a. Non-
  257.                                                                          specific oligodendrocyte cytotoxicity mediated by soluble products of
Prineas JW, McDonald W. 1997. Demyelinating diseases. In: Graham DI,            activated T-cell lines. J Neuroimmunol 35:261–271.
  Lantos PL, editors. Greenfield’s neuropathology. London: Arnold. p           Selmaj KW, Raine CS. 1988. Tumor necrosis factor mediates myelin and
  813– 896.                                                                     oligodendrocyte damage in vitro. Ann Neurol 23:339 –346.
Raine CS. 1984. Biology of disease. Analysis of autoimmune demyelina-         Stangel M, Compston A, Scolding NJ. 2000. Oligodendroglia are protected
  tion: its impact upon multiple sclerosis. Lab Invest 50:608 – 635.            from antibody-mediated complement injury by normal immunoglobulins
Raine CS. 1997a. The lesion in multiple sclerosis and chronic relapsing         (IVIg). J Neuroimmunol 103:195–201.
  allergic encephalomyelitis—a structural comparison. In: Raine CS, Mc-       Suzuki K, Andrews JM, Waltz JM, Terry RD. 1969. Ultrastructural studies
  Farland HF, Tourtellotte WW, editors. Multiple sclerosis: clinical and
                                                                                of multiple sclerosis. Lab Invest 20:444 – 454.
  pathogenic basis. London: Chapman and Hall. p 243–286.
                                                                              Tschopp J, Schafer S, Masson D, Peitsch MC, Heusser C. 1989. Phospho-
Raine CS. 1997b. The Norton lecture: a review of the oligodendrocyte in
                                                                                rylcholine acts as a Ca2 -dependent receptor molecule for lymphocyte
  the multiple sclerosis lesion. J Neuroimmunol 77:135–152.
                                                                                perforin. Nature 337:272–274.
Raine CS, Cannella B, Hauser SL, Genain CP. 1999. Demyelination in
                                                                              Waldner H, Sobel RA, Howard E, Kuchroo VK. 1997. Fas- and FasL-
  primate autoimmune encephalomyelitis and acute multiple sclerosis le-
                                                                                deficient mice are resistant to induction of autoimmune encephalomyeli-
  sions: a case for antigen-specific antibody mediation. Ann Neurol 46:
                                                                                tis. J Immunol 159:3100 –3103.
  144 –160.
Rajan AJ, Gao YL, Raine CS, Brosnan CF. 1996. A pathogenic role for           Wei S, Gamero AM, Liu JH, Daulton AA, Valkov NI, Trapani JA, Larner
  gamma delta T-cells in relapsing-remitting experimental allergic enceph-      AC, Weber MJ, Djeu JY. 1998. Control of lytic function by mitogen-
  alomyelitis in the SJL mouse. J Immunol 157:941–949.                          activated protein kinase/extracellular regulatory kinase 2 (ERK2) in a
Rodriguez M, Scheithauer B. 1994. Ultrastructure of multiple sclerosis.         human natural killer cell line: identification of perforin and granzyme B
  Ultrastruct Pathol 18:3–13.                                                   mobilization by functional ERK2. J Exp Med 187:1753–1765.
Rodriguez M, Scheithauer BW, Forbes G, Kelly PJ. 1993. Oligodendro-           Zajicek J, Wing M, Skepper J, Compston A. 1995. Human oligodendro-
  cyte injury is an early event in lesions of multiple sclerosis. Mayo Clin     cytes are not sensitive to complement. A study of CD59 expression in the
  Proc 68:627– 636.                                                             human central nervous system. Lab Invest 73:128 –138.
Ruijs TC, Freedman MS, Grenier YG, Olivier A, Antel JP. 1990. Human           Zeine R, Cannella B, Pitt D, Raine CS. 1999. Perforin expression in
  oligodendrocytes are susceptible to cytolysis by major histocompatibility     demyelinative lesions of multiple sclerosis, and a role for perforin in the
  complex class I-restricted lymphocytes. J Neuroimmunol 27:89 –97.             regulation of experimental autoimmune encephalomyelitis. J Neuro-
Ruijs TC, Olivier A, Antel JP. 1990. Serum cytotoxicity to human and rat        pathol Exp Neurol 58:564.
  oligodendrocytes in culture. Brain Res 517:99 –104.                         Zeine R, Pon R, Ladiwala U, Antel JP, Filion LG, Freedman MS.
Scolding NJ, Houston WA, Morgan BP, Campbell AK, Compston DA.                   1998. Mechanism of gamma delta T cell-induced human oligodendrocyte
  1989. Reversible injury of cultured rat oligodendrocytes by complement.       cytotoxicity: relevance to multiple sclerosis. J Neuroimmunol 87:49 – 61.
  Immunology 67:441– 446.                                                     Zhang B, Yamamura T, Kondo T, Fujiwara M, Tabira T. 1997. Regulation
Scolding NJ, Jones J, Compston DA, Morgan BP. 1990. Oligodendrocyte             of experimental autoimmune encephalomyelitis by natural killer (NK)
  susceptibility to injury by T-cell perforin. Immunology 70:6 –10.             cells. J Exp Med 186:1677–1687.

Más contenido relacionado

La actualidad más candente

Strauss_et_al_2015_with_supp (1)
Strauss_et_al_2015_with_supp (1)Strauss_et_al_2015_with_supp (1)
Strauss_et_al_2015_with_supp (1)Abigail Benkert
 
Paper 2_updated manuscript for thesis
Paper 2_updated manuscript for thesisPaper 2_updated manuscript for thesis
Paper 2_updated manuscript for thesisMelissa Benson
 
Shapero.ResearchProject.FinalDocument
Shapero.ResearchProject.FinalDocumentShapero.ResearchProject.FinalDocument
Shapero.ResearchProject.FinalDocumentHannah Shapero
 
Cytoo Stories YAP/TAZ
Cytoo Stories YAP/TAZCytoo Stories YAP/TAZ
Cytoo Stories YAP/TAZCYTOO
 
Presentacion del plegable biologia molecular
Presentacion del plegable biologia molecular Presentacion del plegable biologia molecular
Presentacion del plegable biologia molecular Laura0115
 
1-s2.0-S0006899315005375-main
1-s2.0-S0006899315005375-main1-s2.0-S0006899315005375-main
1-s2.0-S0006899315005375-mainAngela Xie
 
Cv marinus - list of publications
Cv marinus - list of publicationsCv marinus - list of publications
Cv marinus - list of publicationsMarinus Te Pas
 
Review paper ms 1 revised2
Review paper ms 1 revised2Review paper ms 1 revised2
Review paper ms 1 revised2lysanderborrero
 
Pten Deletion in Adult Neural Stem/Progenitor Cells Enhances Constitutive Neu...
Pten Deletion in Adult Neural Stem/Progenitor Cells Enhances Constitutive Neu...Pten Deletion in Adult Neural Stem/Progenitor Cells Enhances Constitutive Neu...
Pten Deletion in Adult Neural Stem/Progenitor Cells Enhances Constitutive Neu...johnohab
 
A Critical Role of Erythropoietin Receptor in Neurogenesis and Post-Stroke Re...
A Critical Role of Erythropoietin Receptor in Neurogenesis and Post-Stroke Re...A Critical Role of Erythropoietin Receptor in Neurogenesis and Post-Stroke Re...
A Critical Role of Erythropoietin Receptor in Neurogenesis and Post-Stroke Re...johnohab
 
CHRNG Poster Final
CHRNG Poster FinalCHRNG Poster Final
CHRNG Poster FinalWhitney Best
 

La actualidad más candente (19)

Strauss_et_al_2015_with_supp (1)
Strauss_et_al_2015_with_supp (1)Strauss_et_al_2015_with_supp (1)
Strauss_et_al_2015_with_supp (1)
 
ISX9 - Karthik Gopalakrishnan
ISX9 - Karthik GopalakrishnanISX9 - Karthik Gopalakrishnan
ISX9 - Karthik Gopalakrishnan
 
Paper 2_updated manuscript for thesis
Paper 2_updated manuscript for thesisPaper 2_updated manuscript for thesis
Paper 2_updated manuscript for thesis
 
Shapero.ResearchProject.FinalDocument
Shapero.ResearchProject.FinalDocumentShapero.ResearchProject.FinalDocument
Shapero.ResearchProject.FinalDocument
 
Cytoo Stories YAP/TAZ
Cytoo Stories YAP/TAZCytoo Stories YAP/TAZ
Cytoo Stories YAP/TAZ
 
Bordet-JPET-2007
Bordet-JPET-2007Bordet-JPET-2007
Bordet-JPET-2007
 
Presentacion del plegable biologia molecular
Presentacion del plegable biologia molecular Presentacion del plegable biologia molecular
Presentacion del plegable biologia molecular
 
1-s2.0-S0006899315005375-main
1-s2.0-S0006899315005375-main1-s2.0-S0006899315005375-main
1-s2.0-S0006899315005375-main
 
Scientifi c Journal of Multiple Sclerosis
Scientifi c Journal of Multiple SclerosisScientifi c Journal of Multiple Sclerosis
Scientifi c Journal of Multiple Sclerosis
 
MSc dissertation
MSc dissertationMSc dissertation
MSc dissertation
 
Cv marinus - list of publications
Cv marinus - list of publicationsCv marinus - list of publications
Cv marinus - list of publications
 
Review paper ms 1 revised2
Review paper ms 1 revised2Review paper ms 1 revised2
Review paper ms 1 revised2
 
Pten Deletion in Adult Neural Stem/Progenitor Cells Enhances Constitutive Neu...
Pten Deletion in Adult Neural Stem/Progenitor Cells Enhances Constitutive Neu...Pten Deletion in Adult Neural Stem/Progenitor Cells Enhances Constitutive Neu...
Pten Deletion in Adult Neural Stem/Progenitor Cells Enhances Constitutive Neu...
 
Rowitch, David
Rowitch, DavidRowitch, David
Rowitch, David
 
A Critical Role of Erythropoietin Receptor in Neurogenesis and Post-Stroke Re...
A Critical Role of Erythropoietin Receptor in Neurogenesis and Post-Stroke Re...A Critical Role of Erythropoietin Receptor in Neurogenesis and Post-Stroke Re...
A Critical Role of Erythropoietin Receptor in Neurogenesis and Post-Stroke Re...
 
DNA Methylation
DNA MethylationDNA Methylation
DNA Methylation
 
Thesis Sophie-Anne Lamour
Thesis Sophie-Anne LamourThesis Sophie-Anne Lamour
Thesis Sophie-Anne Lamour
 
Epigenetics
EpigeneticsEpigenetics
Epigenetics
 
CHRNG Poster Final
CHRNG Poster FinalCHRNG Poster Final
CHRNG Poster Final
 

Similar a Zeine et al. J. Neuroscience Research 2001

1 Phylogenetic Persp
1 Phylogenetic Persp1 Phylogenetic Persp
1 Phylogenetic PerspAlfonso Islas
 
Molecular markers of innate immunity
Molecular markers of innate immunityMolecular markers of innate immunity
Molecular markers of innate immunitymahdi zarei
 
Congenital sideroblastic anemic asociated with germline polimorphisms reducin...
Congenital sideroblastic anemic asociated with germline polimorphisms reducin...Congenital sideroblastic anemic asociated with germline polimorphisms reducin...
Congenital sideroblastic anemic asociated with germline polimorphisms reducin...MEDICINE VALE´S
 
Induced pluripotent stem cells
Induced pluripotent stem cells Induced pluripotent stem cells
Induced pluripotent stem cells punnu_malik
 
neuroinflammation
neuroinflammationneuroinflammation
neuroinflammationsarvesh022
 
Zeeuwen 2003-the human cystatin m
Zeeuwen 2003-the human cystatin mZeeuwen 2003-the human cystatin m
Zeeuwen 2003-the human cystatin mdrntcanh
 
Clinical Neurology and Neurosurgery
Clinical Neurology and NeurosurgeryClinical Neurology and Neurosurgery
Clinical Neurology and NeurosurgeryKaren Reyes
 
Heraud 2009 Neuro Image
Heraud 2009  Neuro ImageHeraud 2009  Neuro Image
Heraud 2009 Neuro Imageuvperson
 

Similar a Zeine et al. J. Neuroscience Research 2001 (20)

1 Phylogenetic Persp
1 Phylogenetic Persp1 Phylogenetic Persp
1 Phylogenetic Persp
 
Molecular markers of innate immunity
Molecular markers of innate immunityMolecular markers of innate immunity
Molecular markers of innate immunity
 
Medicina
Medicina Medicina
Medicina
 
Congenital sideroblastic anemic asociated with germline polimorphisms reducin...
Congenital sideroblastic anemic asociated with germline polimorphisms reducin...Congenital sideroblastic anemic asociated with germline polimorphisms reducin...
Congenital sideroblastic anemic asociated with germline polimorphisms reducin...
 
cronier 2004
cronier 2004cronier 2004
cronier 2004
 
Induced pluripotent stem cells
Induced pluripotent stem cells Induced pluripotent stem cells
Induced pluripotent stem cells
 
J Cell Sci 2005
J Cell Sci 2005J Cell Sci 2005
J Cell Sci 2005
 
wang2007.pdf
wang2007.pdfwang2007.pdf
wang2007.pdf
 
Herrmann STAT3 2008
Herrmann STAT3 2008Herrmann STAT3 2008
Herrmann STAT3 2008
 
neuroinflammation
neuroinflammationneuroinflammation
neuroinflammation
 
Zeeuwen 2003-the human cystatin m
Zeeuwen 2003-the human cystatin mZeeuwen 2003-the human cystatin m
Zeeuwen 2003-the human cystatin m
 
Brayner,2005
Brayner,2005Brayner,2005
Brayner,2005
 
Systemic lupus
Systemic lupusSystemic lupus
Systemic lupus
 
Vu-2015_tissue-plasticity-PNET
Vu-2015_tissue-plasticity-PNETVu-2015_tissue-plasticity-PNET
Vu-2015_tissue-plasticity-PNET
 
Vu-2015_tissue-plasticity-PNET
Vu-2015_tissue-plasticity-PNETVu-2015_tissue-plasticity-PNET
Vu-2015_tissue-plasticity-PNET
 
6926.full
6926.full6926.full
6926.full
 
Pathogenesis Essay
Pathogenesis EssayPathogenesis Essay
Pathogenesis Essay
 
Clinical Neurology and Neurosurgery
Clinical Neurology and NeurosurgeryClinical Neurology and Neurosurgery
Clinical Neurology and Neurosurgery
 
cronier 2007
cronier 2007cronier 2007
cronier 2007
 
Heraud 2009 Neuro Image
Heraud 2009  Neuro ImageHeraud 2009  Neuro Image
Heraud 2009 Neuro Image
 

Más de Rana ZEINE, MD, PhD, MBA

Zeine et al. customer service, management education 2014
Zeine et al. customer service, management education 2014Zeine et al. customer service, management education 2014
Zeine et al. customer service, management education 2014Rana ZEINE, MD, PhD, MBA
 
Zeine et al. External Adaptability of Higher Education Institutions The Use o...
Zeine et al. External Adaptability of Higher Education Institutions The Use o...Zeine et al. External Adaptability of Higher Education Institutions The Use o...
Zeine et al. External Adaptability of Higher Education Institutions The Use o...Rana ZEINE, MD, PhD, MBA
 
Zeine et al. Considerate Leadership in Medical and Higher Education 2014
Zeine et al. Considerate Leadership in Medical and Higher Education 2014Zeine et al. Considerate Leadership in Medical and Higher Education 2014
Zeine et al. Considerate Leadership in Medical and Higher Education 2014Rana ZEINE, MD, PhD, MBA
 
Zeine et al. External Adaptability (Agility) in HEd., Vancouver 2013
Zeine et al. External Adaptability (Agility) in HEd., Vancouver 2013Zeine et al. External Adaptability (Agility) in HEd., Vancouver 2013
Zeine et al. External Adaptability (Agility) in HEd., Vancouver 2013Rana ZEINE, MD, PhD, MBA
 
Zeine et al. Customer Service Focus and Mission Articulation in HEd., Oxford ...
Zeine et al. Customer Service Focus and Mission Articulation in HEd., Oxford ...Zeine et al. Customer Service Focus and Mission Articulation in HEd., Oxford ...
Zeine et al. Customer Service Focus and Mission Articulation in HEd., Oxford ...Rana ZEINE, MD, PhD, MBA
 
Zeine et al. Considerate Leadership in HEd., Oxford 2014
Zeine et al. Considerate Leadership in HEd., Oxford 2014Zeine et al. Considerate Leadership in HEd., Oxford 2014
Zeine et al. Considerate Leadership in HEd., Oxford 2014Rana ZEINE, MD, PhD, MBA
 
Zeine et al. 2011 Organizational Culture in Higher Education, in Kazeroony, H...
Zeine et al. 2011 Organizational Culture in Higher Education, in Kazeroony, H...Zeine et al. 2011 Organizational Culture in Higher Education, in Kazeroony, H...
Zeine et al. 2011 Organizational Culture in Higher Education, in Kazeroony, H...Rana ZEINE, MD, PhD, MBA
 
Zeine 2011 Changing Organizational Culture in Higher Education Institutions
Zeine 2011 Changing Organizational Culture in Higher Education InstitutionsZeine 2011 Changing Organizational Culture in Higher Education Institutions
Zeine 2011 Changing Organizational Culture in Higher Education InstitutionsRana ZEINE, MD, PhD, MBA
 
Zeine 2011 LinkedIn Use of Information Technology for Global Professional Net...
Zeine 2011 LinkedIn Use of Information Technology for Global Professional Net...Zeine 2011 LinkedIn Use of Information Technology for Global Professional Net...
Zeine 2011 LinkedIn Use of Information Technology for Global Professional Net...Rana ZEINE, MD, PhD, MBA
 
Zeine Seminar 2010, Cancer Associated Fibroblasts and Microvascular Prolifera...
Zeine Seminar 2010, Cancer Associated Fibroblasts and Microvascular Prolifera...Zeine Seminar 2010, Cancer Associated Fibroblasts and Microvascular Prolifera...
Zeine Seminar 2010, Cancer Associated Fibroblasts and Microvascular Prolifera...Rana ZEINE, MD, PhD, MBA
 
Peddinti, Zeine et al. Clinical Cancer Research 2007
Peddinti, Zeine et al. Clinical Cancer Research 2007Peddinti, Zeine et al. Clinical Cancer Research 2007
Peddinti, Zeine et al. Clinical Cancer Research 2007Rana ZEINE, MD, PhD, MBA
 
Zeine et al. Poster 2007 Cancer Associated Fibroblasts in Neuroblastoma
Zeine et al. Poster 2007 Cancer Associated Fibroblasts in NeuroblastomaZeine et al. Poster 2007 Cancer Associated Fibroblasts in Neuroblastoma
Zeine et al. Poster 2007 Cancer Associated Fibroblasts in NeuroblastomaRana ZEINE, MD, PhD, MBA
 
Zeine et al. Poster 2009 Tumor Stromal Interactions in Neuroblastoma Cancers
Zeine et al. Poster 2009 Tumor Stromal Interactions in Neuroblastoma CancersZeine et al. Poster 2009 Tumor Stromal Interactions in Neuroblastoma Cancers
Zeine et al. Poster 2009 Tumor Stromal Interactions in Neuroblastoma CancersRana ZEINE, MD, PhD, MBA
 

Más de Rana ZEINE, MD, PhD, MBA (20)

Zeine et al. customer service, management education 2014
Zeine et al. customer service, management education 2014Zeine et al. customer service, management education 2014
Zeine et al. customer service, management education 2014
 
Zeine et al. External Adaptability of Higher Education Institutions The Use o...
Zeine et al. External Adaptability of Higher Education Institutions The Use o...Zeine et al. External Adaptability of Higher Education Institutions The Use o...
Zeine et al. External Adaptability of Higher Education Institutions The Use o...
 
Zeine et al. Considerate Leadership in Medical and Higher Education 2014
Zeine et al. Considerate Leadership in Medical and Higher Education 2014Zeine et al. Considerate Leadership in Medical and Higher Education 2014
Zeine et al. Considerate Leadership in Medical and Higher Education 2014
 
Zeine women in medicine mar 19, 2015
Zeine women in medicine mar 19, 2015Zeine women in medicine mar 19, 2015
Zeine women in medicine mar 19, 2015
 
Zeine et al. External Adaptability (Agility) in HEd., Vancouver 2013
Zeine et al. External Adaptability (Agility) in HEd., Vancouver 2013Zeine et al. External Adaptability (Agility) in HEd., Vancouver 2013
Zeine et al. External Adaptability (Agility) in HEd., Vancouver 2013
 
Zeine et al. Customer Service Focus and Mission Articulation in HEd., Oxford ...
Zeine et al. Customer Service Focus and Mission Articulation in HEd., Oxford ...Zeine et al. Customer Service Focus and Mission Articulation in HEd., Oxford ...
Zeine et al. Customer Service Focus and Mission Articulation in HEd., Oxford ...
 
Zeine et al. Considerate Leadership in HEd., Oxford 2014
Zeine et al. Considerate Leadership in HEd., Oxford 2014Zeine et al. Considerate Leadership in HEd., Oxford 2014
Zeine et al. Considerate Leadership in HEd., Oxford 2014
 
Zeine et al. 2011 Organizational Culture in Higher Education, in Kazeroony, H...
Zeine et al. 2011 Organizational Culture in Higher Education, in Kazeroony, H...Zeine et al. 2011 Organizational Culture in Higher Education, in Kazeroony, H...
Zeine et al. 2011 Organizational Culture in Higher Education, in Kazeroony, H...
 
Zeine 2011 Changing Organizational Culture in Higher Education Institutions
Zeine 2011 Changing Organizational Culture in Higher Education InstitutionsZeine 2011 Changing Organizational Culture in Higher Education Institutions
Zeine 2011 Changing Organizational Culture in Higher Education Institutions
 
Zeine 2011 LinkedIn Use of Information Technology for Global Professional Net...
Zeine 2011 LinkedIn Use of Information Technology for Global Professional Net...Zeine 2011 LinkedIn Use of Information Technology for Global Professional Net...
Zeine 2011 LinkedIn Use of Information Technology for Global Professional Net...
 
Su, Lin, Zeine et. al. Am J OBGYN 2009
Su, Lin, Zeine et. al. Am J OBGYN 2009Su, Lin, Zeine et. al. Am J OBGYN 2009
Su, Lin, Zeine et. al. Am J OBGYN 2009
 
Zeine Seminar 2010, Cancer Associated Fibroblasts and Microvascular Prolifera...
Zeine Seminar 2010, Cancer Associated Fibroblasts and Microvascular Prolifera...Zeine Seminar 2010, Cancer Associated Fibroblasts and Microvascular Prolifera...
Zeine Seminar 2010, Cancer Associated Fibroblasts and Microvascular Prolifera...
 
Zeine et al. Modern Pathology 2009
Zeine et al. Modern Pathology 2009Zeine et al. Modern Pathology 2009
Zeine et al. Modern Pathology 2009
 
Peddinti, Zeine et al. Clinical Cancer Research 2007
Peddinti, Zeine et al. Clinical Cancer Research 2007Peddinti, Zeine et al. Clinical Cancer Research 2007
Peddinti, Zeine et al. Clinical Cancer Research 2007
 
Yang et al. Cancer Research 2007
Yang et al. Cancer Research 2007Yang et al. Cancer Research 2007
Yang et al. Cancer Research 2007
 
Zeine & Owens, J. Neuroimmunology 1992
Zeine & Owens, J. Neuroimmunology 1992Zeine & Owens, J. Neuroimmunology 1992
Zeine & Owens, J. Neuroimmunology 1992
 
Zeine & Owens, J. Neuroimmunology 1993
Zeine & Owens, J. Neuroimmunology 1993Zeine & Owens, J. Neuroimmunology 1993
Zeine & Owens, J. Neuroimmunology 1993
 
Zeine et al. J. Neuroimmunology 1993
Zeine et al. J. Neuroimmunology 1993Zeine et al. J. Neuroimmunology 1993
Zeine et al. J. Neuroimmunology 1993
 
Zeine et al. Poster 2007 Cancer Associated Fibroblasts in Neuroblastoma
Zeine et al. Poster 2007 Cancer Associated Fibroblasts in NeuroblastomaZeine et al. Poster 2007 Cancer Associated Fibroblasts in Neuroblastoma
Zeine et al. Poster 2007 Cancer Associated Fibroblasts in Neuroblastoma
 
Zeine et al. Poster 2009 Tumor Stromal Interactions in Neuroblastoma Cancers
Zeine et al. Poster 2009 Tumor Stromal Interactions in Neuroblastoma CancersZeine et al. Poster 2009 Tumor Stromal Interactions in Neuroblastoma Cancers
Zeine et al. Poster 2009 Tumor Stromal Interactions in Neuroblastoma Cancers
 

Último

Call Girl In Pune 👉 Just CALL ME: 9352988975 💋 Call Out Call Both With High p...
Call Girl In Pune 👉 Just CALL ME: 9352988975 💋 Call Out Call Both With High p...Call Girl In Pune 👉 Just CALL ME: 9352988975 💋 Call Out Call Both With High p...
Call Girl In Pune 👉 Just CALL ME: 9352988975 💋 Call Out Call Both With High p...chetankumar9855
 
Call Girls Hyderabad Just Call 8250077686 Top Class Call Girl Service Available
Call Girls Hyderabad Just Call 8250077686 Top Class Call Girl Service AvailableCall Girls Hyderabad Just Call 8250077686 Top Class Call Girl Service Available
Call Girls Hyderabad Just Call 8250077686 Top Class Call Girl Service AvailableDipal Arora
 
Call Girl in Indore 8827247818 {LowPrice} ❤️ (ahana) Indore Call Girls * UPA...
Call Girl in Indore 8827247818 {LowPrice} ❤️ (ahana) Indore Call Girls  * UPA...Call Girl in Indore 8827247818 {LowPrice} ❤️ (ahana) Indore Call Girls  * UPA...
Call Girl in Indore 8827247818 {LowPrice} ❤️ (ahana) Indore Call Girls * UPA...mahaiklolahd
 
Call Girls Mumbai Just Call 8250077686 Top Class Call Girl Service Available
Call Girls Mumbai Just Call 8250077686 Top Class Call Girl Service AvailableCall Girls Mumbai Just Call 8250077686 Top Class Call Girl Service Available
Call Girls Mumbai Just Call 8250077686 Top Class Call Girl Service AvailableDipal Arora
 
Top Rated Hyderabad Call Girls Erragadda ⟟ 9332606886 ⟟ Call Me For Genuine ...
Top Rated  Hyderabad Call Girls Erragadda ⟟ 9332606886 ⟟ Call Me For Genuine ...Top Rated  Hyderabad Call Girls Erragadda ⟟ 9332606886 ⟟ Call Me For Genuine ...
Top Rated Hyderabad Call Girls Erragadda ⟟ 9332606886 ⟟ Call Me For Genuine ...chandars293
 
Call Girls Ahmedabad Just Call 9630942363 Top Class Call Girl Service Available
Call Girls Ahmedabad Just Call 9630942363 Top Class Call Girl Service AvailableCall Girls Ahmedabad Just Call 9630942363 Top Class Call Girl Service Available
Call Girls Ahmedabad Just Call 9630942363 Top Class Call Girl Service AvailableGENUINE ESCORT AGENCY
 
Andheri East ) Call Girls in Mumbai Phone No 9004268417 Elite Escort Service ...
Andheri East ) Call Girls in Mumbai Phone No 9004268417 Elite Escort Service ...Andheri East ) Call Girls in Mumbai Phone No 9004268417 Elite Escort Service ...
Andheri East ) Call Girls in Mumbai Phone No 9004268417 Elite Escort Service ...Anamika Rawat
 
Premium Call Girls In Jaipur {8445551418} ❤️VVIP SEEMA Call Girl in Jaipur Ra...
Premium Call Girls In Jaipur {8445551418} ❤️VVIP SEEMA Call Girl in Jaipur Ra...Premium Call Girls In Jaipur {8445551418} ❤️VVIP SEEMA Call Girl in Jaipur Ra...
Premium Call Girls In Jaipur {8445551418} ❤️VVIP SEEMA Call Girl in Jaipur Ra...parulsinha
 
Top Rated Call Girls Kerala ☎ 8250092165👄 Delivery in 20 Mins Near Me
Top Rated Call Girls Kerala ☎ 8250092165👄 Delivery in 20 Mins Near MeTop Rated Call Girls Kerala ☎ 8250092165👄 Delivery in 20 Mins Near Me
Top Rated Call Girls Kerala ☎ 8250092165👄 Delivery in 20 Mins Near Mechennailover
 
Call Girls in Lucknow Just Call 👉👉7877925207 Top Class Call Girl Service Avai...
Call Girls in Lucknow Just Call 👉👉7877925207 Top Class Call Girl Service Avai...Call Girls in Lucknow Just Call 👉👉7877925207 Top Class Call Girl Service Avai...
Call Girls in Lucknow Just Call 👉👉7877925207 Top Class Call Girl Service Avai...adilkhan87451
 
Call Girls Varanasi Just Call 8250077686 Top Class Call Girl Service Available
Call Girls Varanasi Just Call 8250077686 Top Class Call Girl Service AvailableCall Girls Varanasi Just Call 8250077686 Top Class Call Girl Service Available
Call Girls Varanasi Just Call 8250077686 Top Class Call Girl Service AvailableDipal Arora
 
Call Girls Service Jaipur {9521753030 } ❤️VVIP BHAWNA Call Girl in Jaipur Raj...
Call Girls Service Jaipur {9521753030 } ❤️VVIP BHAWNA Call Girl in Jaipur Raj...Call Girls Service Jaipur {9521753030 } ❤️VVIP BHAWNA Call Girl in Jaipur Raj...
Call Girls Service Jaipur {9521753030 } ❤️VVIP BHAWNA Call Girl in Jaipur Raj...khalifaescort01
 
Models Call Girls In Hyderabad 9630942363 Hyderabad Call Girl & Hyderabad Esc...
Models Call Girls In Hyderabad 9630942363 Hyderabad Call Girl & Hyderabad Esc...Models Call Girls In Hyderabad 9630942363 Hyderabad Call Girl & Hyderabad Esc...
Models Call Girls In Hyderabad 9630942363 Hyderabad Call Girl & Hyderabad Esc...GENUINE ESCORT AGENCY
 
Mumbai ] (Call Girls) in Mumbai 10k @ I'm VIP Independent Escorts Girls 98333...
Mumbai ] (Call Girls) in Mumbai 10k @ I'm VIP Independent Escorts Girls 98333...Mumbai ] (Call Girls) in Mumbai 10k @ I'm VIP Independent Escorts Girls 98333...
Mumbai ] (Call Girls) in Mumbai 10k @ I'm VIP Independent Escorts Girls 98333...Ishani Gupta
 
Kollam call girls Mallu aunty service 7877702510
Kollam call girls Mallu aunty service 7877702510Kollam call girls Mallu aunty service 7877702510
Kollam call girls Mallu aunty service 7877702510Vipesco
 
Call Girls in Delhi Triveni Complex Escort Service(🔝))/WhatsApp 97111⇛47426
Call Girls in Delhi Triveni Complex Escort Service(🔝))/WhatsApp 97111⇛47426Call Girls in Delhi Triveni Complex Escort Service(🔝))/WhatsApp 97111⇛47426
Call Girls in Delhi Triveni Complex Escort Service(🔝))/WhatsApp 97111⇛47426jennyeacort
 
Independent Call Girls Service Mohali Sector 116 | 6367187148 | Call Girl Ser...
Independent Call Girls Service Mohali Sector 116 | 6367187148 | Call Girl Ser...Independent Call Girls Service Mohali Sector 116 | 6367187148 | Call Girl Ser...
Independent Call Girls Service Mohali Sector 116 | 6367187148 | Call Girl Ser...karishmasinghjnh
 
Andheri East ^ (Genuine) Escort Service Mumbai ₹7.5k Pick Up & Drop With Cash...
Andheri East ^ (Genuine) Escort Service Mumbai ₹7.5k Pick Up & Drop With Cash...Andheri East ^ (Genuine) Escort Service Mumbai ₹7.5k Pick Up & Drop With Cash...
Andheri East ^ (Genuine) Escort Service Mumbai ₹7.5k Pick Up & Drop With Cash...Anamika Rawat
 
Coimbatore Call Girls in Coimbatore 7427069034 genuine Escort Service Girl 10...
Coimbatore Call Girls in Coimbatore 7427069034 genuine Escort Service Girl 10...Coimbatore Call Girls in Coimbatore 7427069034 genuine Escort Service Girl 10...
Coimbatore Call Girls in Coimbatore 7427069034 genuine Escort Service Girl 10...chennailover
 
8980367676 Call Girls In Ahmedabad Escort Service Available 24×7 In Ahmedabad
8980367676 Call Girls In Ahmedabad Escort Service Available 24×7 In Ahmedabad8980367676 Call Girls In Ahmedabad Escort Service Available 24×7 In Ahmedabad
8980367676 Call Girls In Ahmedabad Escort Service Available 24×7 In AhmedabadGENUINE ESCORT AGENCY
 

Último (20)

Call Girl In Pune 👉 Just CALL ME: 9352988975 💋 Call Out Call Both With High p...
Call Girl In Pune 👉 Just CALL ME: 9352988975 💋 Call Out Call Both With High p...Call Girl In Pune 👉 Just CALL ME: 9352988975 💋 Call Out Call Both With High p...
Call Girl In Pune 👉 Just CALL ME: 9352988975 💋 Call Out Call Both With High p...
 
Call Girls Hyderabad Just Call 8250077686 Top Class Call Girl Service Available
Call Girls Hyderabad Just Call 8250077686 Top Class Call Girl Service AvailableCall Girls Hyderabad Just Call 8250077686 Top Class Call Girl Service Available
Call Girls Hyderabad Just Call 8250077686 Top Class Call Girl Service Available
 
Call Girl in Indore 8827247818 {LowPrice} ❤️ (ahana) Indore Call Girls * UPA...
Call Girl in Indore 8827247818 {LowPrice} ❤️ (ahana) Indore Call Girls  * UPA...Call Girl in Indore 8827247818 {LowPrice} ❤️ (ahana) Indore Call Girls  * UPA...
Call Girl in Indore 8827247818 {LowPrice} ❤️ (ahana) Indore Call Girls * UPA...
 
Call Girls Mumbai Just Call 8250077686 Top Class Call Girl Service Available
Call Girls Mumbai Just Call 8250077686 Top Class Call Girl Service AvailableCall Girls Mumbai Just Call 8250077686 Top Class Call Girl Service Available
Call Girls Mumbai Just Call 8250077686 Top Class Call Girl Service Available
 
Top Rated Hyderabad Call Girls Erragadda ⟟ 9332606886 ⟟ Call Me For Genuine ...
Top Rated  Hyderabad Call Girls Erragadda ⟟ 9332606886 ⟟ Call Me For Genuine ...Top Rated  Hyderabad Call Girls Erragadda ⟟ 9332606886 ⟟ Call Me For Genuine ...
Top Rated Hyderabad Call Girls Erragadda ⟟ 9332606886 ⟟ Call Me For Genuine ...
 
Call Girls Ahmedabad Just Call 9630942363 Top Class Call Girl Service Available
Call Girls Ahmedabad Just Call 9630942363 Top Class Call Girl Service AvailableCall Girls Ahmedabad Just Call 9630942363 Top Class Call Girl Service Available
Call Girls Ahmedabad Just Call 9630942363 Top Class Call Girl Service Available
 
Andheri East ) Call Girls in Mumbai Phone No 9004268417 Elite Escort Service ...
Andheri East ) Call Girls in Mumbai Phone No 9004268417 Elite Escort Service ...Andheri East ) Call Girls in Mumbai Phone No 9004268417 Elite Escort Service ...
Andheri East ) Call Girls in Mumbai Phone No 9004268417 Elite Escort Service ...
 
Premium Call Girls In Jaipur {8445551418} ❤️VVIP SEEMA Call Girl in Jaipur Ra...
Premium Call Girls In Jaipur {8445551418} ❤️VVIP SEEMA Call Girl in Jaipur Ra...Premium Call Girls In Jaipur {8445551418} ❤️VVIP SEEMA Call Girl in Jaipur Ra...
Premium Call Girls In Jaipur {8445551418} ❤️VVIP SEEMA Call Girl in Jaipur Ra...
 
Top Rated Call Girls Kerala ☎ 8250092165👄 Delivery in 20 Mins Near Me
Top Rated Call Girls Kerala ☎ 8250092165👄 Delivery in 20 Mins Near MeTop Rated Call Girls Kerala ☎ 8250092165👄 Delivery in 20 Mins Near Me
Top Rated Call Girls Kerala ☎ 8250092165👄 Delivery in 20 Mins Near Me
 
Call Girls in Lucknow Just Call 👉👉7877925207 Top Class Call Girl Service Avai...
Call Girls in Lucknow Just Call 👉👉7877925207 Top Class Call Girl Service Avai...Call Girls in Lucknow Just Call 👉👉7877925207 Top Class Call Girl Service Avai...
Call Girls in Lucknow Just Call 👉👉7877925207 Top Class Call Girl Service Avai...
 
Call Girls Varanasi Just Call 8250077686 Top Class Call Girl Service Available
Call Girls Varanasi Just Call 8250077686 Top Class Call Girl Service AvailableCall Girls Varanasi Just Call 8250077686 Top Class Call Girl Service Available
Call Girls Varanasi Just Call 8250077686 Top Class Call Girl Service Available
 
Call Girls Service Jaipur {9521753030 } ❤️VVIP BHAWNA Call Girl in Jaipur Raj...
Call Girls Service Jaipur {9521753030 } ❤️VVIP BHAWNA Call Girl in Jaipur Raj...Call Girls Service Jaipur {9521753030 } ❤️VVIP BHAWNA Call Girl in Jaipur Raj...
Call Girls Service Jaipur {9521753030 } ❤️VVIP BHAWNA Call Girl in Jaipur Raj...
 
Models Call Girls In Hyderabad 9630942363 Hyderabad Call Girl & Hyderabad Esc...
Models Call Girls In Hyderabad 9630942363 Hyderabad Call Girl & Hyderabad Esc...Models Call Girls In Hyderabad 9630942363 Hyderabad Call Girl & Hyderabad Esc...
Models Call Girls In Hyderabad 9630942363 Hyderabad Call Girl & Hyderabad Esc...
 
Mumbai ] (Call Girls) in Mumbai 10k @ I'm VIP Independent Escorts Girls 98333...
Mumbai ] (Call Girls) in Mumbai 10k @ I'm VIP Independent Escorts Girls 98333...Mumbai ] (Call Girls) in Mumbai 10k @ I'm VIP Independent Escorts Girls 98333...
Mumbai ] (Call Girls) in Mumbai 10k @ I'm VIP Independent Escorts Girls 98333...
 
Kollam call girls Mallu aunty service 7877702510
Kollam call girls Mallu aunty service 7877702510Kollam call girls Mallu aunty service 7877702510
Kollam call girls Mallu aunty service 7877702510
 
Call Girls in Delhi Triveni Complex Escort Service(🔝))/WhatsApp 97111⇛47426
Call Girls in Delhi Triveni Complex Escort Service(🔝))/WhatsApp 97111⇛47426Call Girls in Delhi Triveni Complex Escort Service(🔝))/WhatsApp 97111⇛47426
Call Girls in Delhi Triveni Complex Escort Service(🔝))/WhatsApp 97111⇛47426
 
Independent Call Girls Service Mohali Sector 116 | 6367187148 | Call Girl Ser...
Independent Call Girls Service Mohali Sector 116 | 6367187148 | Call Girl Ser...Independent Call Girls Service Mohali Sector 116 | 6367187148 | Call Girl Ser...
Independent Call Girls Service Mohali Sector 116 | 6367187148 | Call Girl Ser...
 
Andheri East ^ (Genuine) Escort Service Mumbai ₹7.5k Pick Up & Drop With Cash...
Andheri East ^ (Genuine) Escort Service Mumbai ₹7.5k Pick Up & Drop With Cash...Andheri East ^ (Genuine) Escort Service Mumbai ₹7.5k Pick Up & Drop With Cash...
Andheri East ^ (Genuine) Escort Service Mumbai ₹7.5k Pick Up & Drop With Cash...
 
Coimbatore Call Girls in Coimbatore 7427069034 genuine Escort Service Girl 10...
Coimbatore Call Girls in Coimbatore 7427069034 genuine Escort Service Girl 10...Coimbatore Call Girls in Coimbatore 7427069034 genuine Escort Service Girl 10...
Coimbatore Call Girls in Coimbatore 7427069034 genuine Escort Service Girl 10...
 
8980367676 Call Girls In Ahmedabad Escort Service Available 24×7 In Ahmedabad
8980367676 Call Girls In Ahmedabad Escort Service Available 24×7 In Ahmedabad8980367676 Call Girls In Ahmedabad Escort Service Available 24×7 In Ahmedabad
8980367676 Call Girls In Ahmedabad Escort Service Available 24×7 In Ahmedabad
 

Zeine et al. J. Neuroscience Research 2001

  • 1. Journal of Neuroscience Research 64:380 –391 (2001) Structural Dynamics of Oligodendrocyte Lysis by Perforin in Culture: Relevance to Multiple Sclerosis Rana Zeine,1* Wendy Cammer,2,3 Elisa Barbarese,4 Chau-Ching Liu,5 and Cedric S. Raine1–3 1 Department of Pathology (Neuropathology), Albert Einstein College of Medicine, Bronx, New York 2 Department of Neurology, Albert Einstein College of Medicine, Bronx, New York 3 Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 4 Departments of Neuroscience and Neurology, University of Connecticut Health Center, Farmington, Connecticut 5 Division of Rheumatology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania The mechanism by which oligodendrocytes are de- Multiple Sclerosis (MS) is considered to be an auto- pleted from active lesions in multiple sclerosis (MS) is immune demyelinating disease of the central nervous sys- not clear but many reports implicate a cytolytic pro- tem (CNS) in which oligodendrocytes and myelin be- cess. The most applied animal model for MS, chronic come exposed to components of the immune system, relapsing experimental autoimmune encephalomyelitis including infiltrating T-cells, killer cells and soluble cyto- (EAE), has been established in inbred strains of mice, lytic factors (Brosnan and Raine, 1996; Pouly and Antel, especially SJL and PL. Studies on oligodendrocytes 1999), and oligodendrocytes are selectively depleted from from these strains in vitro have been hampered to date lesions by as-yet-unrecognized mechanisms (Raine 1997a; by an inability to grow these cells from mouse CNS Lucchinetti et al., 1999). Numerous causes of injury to tissue. We report here a successful method to culture oligodendrocytes have been explored and proposed as SJL mouse oligodendrocytes and have analyzed lysis possible mechanisms underlying the damage to myelin in of these cells in vitro mediated by the pore-forming the MS lesion. Oligodendrocytes synthesize and maintain protein, perforin, a candidate effector molecule in in- CNS myelin and, depending on the nature of the insult, flammatory demyelination. Cultures were exposed to are known to be susceptible to death via both apoptosis murine perforin, 36 –72 hemolytic U, for up to 2.5 hr and necrosis, (D’Souza et al., 1996; Ludwin, 1997; Merrill and examined using the oligodendrocyte phenotypic and Scolding, 1999). Their documented susceptibility to markers O4, galactocerebroside and myelin basic pro- injury by components of the immune system renders them tein (MBP), in addition to a membrane dye (DiI) and a vulnerable to damage in the vicinity of immune responses. marker of necrosis, propidium iodide, (PI). Cultures In active MS, some features of the lesion are sugges- were imaged chronologically by phase contrast, immu- tive of cytolytic damage (Prineas and McDonald, 1997; nofluorescence, digital, light and electron microscopy. Raine, 1997b), specifically oligodendrocyte swelling, cy- Findings showed that the majority of oligodendrocytes toplasmic vacuolation and myelin vesiculation (Suzuki et were killed within 60 –90 min via pore expansion and al., 1969; Rodriguez and Scheithauer, 1994; Genain et al., ultimately, membrane disruption. The structural fea- 1999; Raine et al., 1999). Although initial studies on tures of the cellular damage comprised swelling of the demyelination invoked serum factors (Raine, 1984; Ruijs cell body, fenestration and fragmentation of mem- et al., 1990), subsequent studies emphasized damage to branes and processes, cytoplasmic vacuolation and myelin and oligodendrocytes induced by lymphocytes and breakdown of the nuclear envelope. Astrocytes in the their soluble products (Selmaj and Raine, 1988; Ruijs et same system were relatively resistant to cell lysis. The above patterns of oligodendrocyte damage in SJL oli- Contract grant sponsor: National Multiple Sclerosis Society; Contract grant godendrocytes were reminiscent of patterns in the MS numbers: NMSS RG 1001-J-10, NMSS RG 2971, and NMSS RG 2843; lesion, leaving us to conclude that perforin may play an Contract grant sponsor: American Heart Association; Contract grant spon- important role in the human disease. J. Neurosci. Res. sor: HHS; Contract grant numbers: NS 08952, NS 11920, and NS 19943. 64:380 –391, 2001. © 2001 Wiley-Liss, Inc. *Correspondence to: Dr. Rana Zeine, Department of Pathology (Neuro- pathology), Albert Einstein College of Medicine, 1300 Morris Park Ave- Key words: demyelination; cytotoxicity; autoimmunity; nue, F-140, Bronx, NY 10461. E-mail: harkzen@aol.com oligodendrocyte; perforin; experimental autoimmune en- Received 13 November 2000; Revised 8 January 2001; Accepted 9 January cephalomyelitis; multiple sclerosis 2001 © 2001 Wiley-Liss, Inc.
  • 2. Oligodendrocyte Lysis by Perforin 381 al., 1990; Selmaj et al., 1991a; Freedman et al., 1991; Antel toplasmic damage that are reminiscent of the oligodendro- et al., 1998; Dal Canto et al., 2000). Several lines of cyte pathology encountered in MS lesions. evidence support the hypothesis that oligodendrocyte pa- thology and depletion from the CNS in MS may be METHODS AND MATERIALS related to perforin-mediated lysis. This is particularly a Animals propos to lysis of human oligodendrocytes by human Lactating female SJL mice with newborn pups were ob- T-cells that has been shown to occur in vitro via a pre- tained from either Jackson Labs (Bar Harbor, ME) or Charles dominantly perforin-based cytotoxicity mechanism (Zeine River (Wilmington, MA), and housed in an AAALAC- et al., 1998). accredited facility at the Albert Einstein College of Medicine. Perforin has been demonstrated in vivo in inflam- matory lesions of a variety of autoimmune diseases (Liu et Oligodendrocyte Cultures al., 1996; Kappeler and Mueller, 2000). In the CNS, Oligodendrocyte-enriched cultures were prepared as de- perforin expression has been detected in astrocytes in scribed previously (Barbarese, 1991). Primary CNS cultures normal brain tissue, and in astrocytes and infiltrating lym- were obtained by dissociation from the cerebral hemispheres of phocytes within demyelinative lesions of MS and its 1–3-day-old SJL mouse pups and plated onto poly-L-lysine- model, experimental autoimmune encephalomyelitis coated tissue culture dishes (Nunc, Fisher Scientific, Pittsburgh, (EAE) (Held et al., 1993; Gasque et al., 1998; Zeine et al., PA), for 12 days in Dulbecco’s modified Eagle’s medium 1999). Furthermore, perforin mRNA has been detected at (DMEM) (Gibco BRL, Rockville, MD), supplemented with elevated levels in the CSF of patients with MS (Matusevi- 10% newborn bovine serum (Gibco BRL). Enriched cultures of cius et al., 1998; Kivisakk et al., 1999). This potent mem- oligodendrocytes were obtained by mild trypsinization of the branolytic molecule, perforin, is a 70 kD pore-forming mixed cultures followed by depletion of adherent cells though protein (PFP) that is stored within cytolytic granules of differential adhesion to plastic substrata. Oligodendrocyte- cytotoxic T-cells and natural killer (NK) cells (Liu et al., enriched populations were seeded onto 24-well plates at 1 105 1995a). Perforin-mediated cytotoxicity is a calcium- cells per well and grown on either Thermanox plastic coverslips dependent mechanism as calcium ions are required both (Nunc) or glass D coverslips (Fisher), precoated with poly-L- for effective granule exocytosis and for the appropriate ornithine (Sigma, St. Louis, MO). Alternatively, Lab-Tek glass perforin conformation. Mechanistically, perforin mono- chamber slides (Nunc) were used. The feeding medium mers released by killer cells bind to phosphorylcholine (DMEM-N1-B104) was composed of a freshly prepared mix- lipid moieties and insert into target cell membranes where ture of DMEM/F12 (Gibco BRL), with pyruvic acid, HEPES, they polymerize and assemble to form homopolymeric albumin and the following N1 supplements: apo-transferrin transmembrane pore structures (Tschopp et al., 1989; (0.05 mg/ml), sodium selenite (30 nM) and biotin (10 ng/ml). Ojcius et al., 1991a). These pores perturb membrane Insulin (0.016 mg/ml), hydrocortisone (3.6 ng/ml), T3 permeability and result in target cell death by osmotic lysis, (15 nM), -ME and gentamicin (0.5%) were also added, and the a mechanism most closely related to necrosis. final mixture was supplemented with B104 neuroblastoma- conditioned medium in an 87:13 proportion. Chemicals and Among the mouse models of demyelination that hormones were obtained from Sigma, and B104 was supplied by most closely mimic the human disease, those most applied Dr. Barbarese. The final composition of these cultures was ca. to MS have been established in inbred mouse strains (SJL, 80% oligodendrocytes, 15% astrocytes and 5% microglia plus PL), strains that are susceptible to remitting-relapsing precursor cells. forms of EAE (Brown et al., 1982; Cross et al., 1987). The susceptibility of oligodendrocytes from mouse strains to Perforin-Mediated Lysis perforin-mediated lysis has never been examined because Adherent oligodendrocyte-enriched cultures were incu- mouse oligodendrocytes have been difficult to culture. In bated at 37°C with a preparation of the pore forming protein the early 1990s, the susceptibility of rat oligodendrocytes (PFP) perforin, provided by Dr. C.-C. Liu, in the range of to perforin-mediated injury was described (Scolding et al., 36 –72 hemolytic units (HU) in the presence of 2 mM Ca2 and 1990), and more recently, using a chromium-51 release in a final volume of 400 l serum-free medium. Control cul- cytotoxicity assay (Malipiero et al., 1997). To explore tures received either Ca2 Cl2 alone or PFP alone. Cell lysis was perforin-mediated CNS injury in a mouse model, we have evaluated over a period of 2.5 hr by phase contrast microscopy, developed a method to culture oligodendrocytes from SJL indirect immuno-fluorescence, LM and EM, or time-lapse dig- mice and have documented for the first time the selective ital imaging. effects of perforin on these cells using chronologic digital techniques. For this, we have examined the kinetics of Immunocytochemistry perforin-induced osmotic lysis of oligodendrocytes and At 30 min intervals after exposure to perforin, propidium have employed immunofluorescence, digital imaging and iodide (PI) (50 g/ml), an indicator of membrane disruption, light and electron microscopy (LM and EM), to define the was added to duplicate cultures for 3 min and the cells washed structural features of this process. Our analysis has revealed in PBS (Sigma) and fixed in 4% paraformaldehyde at 4°C that SJL mouse oligodendrocytes in vitro display several overnight. Fixed cells were then rinsed in PBS and incubated perforin-induced structural patterns of membrane and cy- with the following primary antibodies for 1 hr at room temper-
  • 3. 382 Zeine et al. ature: mouse monoclonal anti-galactocerebroside-GalC anti- glutaraldehyde in Millonig’s buffer, pH 7.4. The cultures were body (IgG3; Roche/Boehringer-Mannheim, Indianapolis, IN) then post-fixed for 45 min in 1% OsO4 in PBS, pH 7.4, at 1:10 dilution; mouse monoclonal anti-O4 antibody (IgM; dehydrated though a graded series of ethyl alcohol, washed in a Roche/Boehringer-Mannheim) at 1:5 dilution; mouse mono- 1:1 mixture of absolute alcohol and Epon 812, and embedded in clonal anti-myelin basic protein-MBP antibody (IgG1; Roche/ Epon 812. After polymerization, the flat sheets of epoxy were Boehringer-Mannheim) at 1:100 dilution. After gentle rinsing in removed from the plastic coverslips. For sectioning perpendic- PBS, coverslips were treated with the appropriate secondary ular to the plane of growth, the blocks were re-embedded antibodies for 1 hr at room temperature at 1:100 dilution: end-on in capsules of fresh epoxy (Norton et al., 1983). One FITC-conjugated goat anti-mouse IgG (Rockland, Gilberts- micron sections stained with toluidine blue were examined by ville, PA), and FITC-conjugated goat anti-mouse IgM light microscopy and for electron microscopy, thin sections (Rockland). The coverslips were washed and mounted on slides were double-stained with uranium and lead salts, carbon-coated using 50% glycerol containing the anti-fading agent, n-propyl and scanned in an Hitachi H 600. gallate (Sigma). The cells were viewed using a Nikon Optiphot and an Olympus IX 70 inverted microscope, both equipped for RESULTS epifluorescence with filters for rhodamine and FITC. SJL Mouse Oligodendrocytes in Culture DiI Membrane Staining and Imaging Oligodendrocytes were successfully isolated from Living cells were labeled with a fluorescent lipidophilic primary CNS cultures from newborn SJL mice and con- membrane tracer, the long-chain dialkylcarbocyanine, DiI (Mo- sisted of bipolar, tripolar and multipolar populations. lecular Probes, Eugene, OR). Oligodendrocyte-enriched cul- These cells differentiated and expressed the oligodendro- tures were incubated with 10 M DiI for 2 hr at 37°C. The cyte markers, GalC (Fig. 1A), O4 (Fig. 1J) and MBP (Fig. DiI-containing medium was then removed and the cells washed 1G). They extended multiple processes and elaborated flat before exposure to perforin. Control cells and cells exposed to membranes. These membrane sheets expanded with time perforin were viewed under an Olympus IX 70 microscope. and covered larger areas, remaining intact and exhibiting The temperature of the specimen was maintained at 37°C an homogeneous consistency and a well-demarcated edge within an environmental chamber equipped with air and stage (Figs. 1A,J and 2A). DiI revealed cytoplasmic ribs within heaters (Olympus, Melville, NY). Images were collected at 0.5 the flat membrane veils (Fig. 2A). O4 and GalC gave and 1 min intervals with a Censys-cooled CCD camera (Pho- intense membrane staining (Fig. 1A,J), whereas MBP tometrics, Tucson, AZ), and the light was shuttered (Ludl, staining was more cytoplasmic, denser in perinuclear re- Hawthorne, NY) between exposures. Software control was gions and diffuse over the membrane sheets (Fig. 1G). provided by I.P. Lab Spectrum (Scanalytics, Fairfax, VA), and deconvolution was performed at 80% to 90% haze reduction Perforin-Mediated Injury of SJL Mouse with PowerHazebuster (Vaytek, Fairfield, IA) on a Macintosh Oligodendrocytes G3. Oligodendrocyte-enriched cultures were exposed to 36, 48, 60 and 72 HU of perforin in the presence of 2 mM TUNEL Method Ca2 . Light and phase contrast microscopy showed swell- In some experiments, cell death by apoptosis was assessed ing of the cells within 15 min and rearrangement of the using the In Situ Cell Detection Kit with Fluorescein, (Enzo/ cytoplasm within 30 min of exposure. Examination of Boehringer-Mannheim, Indianapolis, IN), according to the membrane integrity in living cells stained with DiI re- manufacturer’s instructions. vealed the formation and expansion of distinct membrane holes, probably the result of coalescence of multiple sub- Dead Cell Ratio microscopic (15–20 nm) pores (Liu et al., 1995a), between The ratio of PI positive cells to total cells was calculated by 30 and 90 min after exposure to perforin (Fig. 2B,C). By counting approximately 300 cells in each of seven randomly- indirect immunofluorescence, the nuclei of dying and selected low power fields. Cells were exposed to 72 HU of dead cells stained bright red with PI after exposure to PFP perforin for 1.5 hr and then stained with PI and counted unfixed for 0.5 hr (Fig. 1D,K), 1 hr (Fig. 1H), and 2.5 hr (Fig. at 10 magnification. 1F,I,L). The pattern of distribution of O4 and GalC re- vealed distortion of the cellular architecture suggestive of Membrane Hole Expansion (Fenestration) swelling of the cell body and fragmentation of membranes The size of membrane holes (fenestrae) was measured at and processes seen by 30 min (Fig. 1C,K) Complete lysis the LM level by manually tracing with I.P. Lab Spectrum most frequently involved reduction of the cytoplasm to (Scanalytics), the areas of 16 individual fenestrae at each of 30 fragmented processes and droplets (Fig. 2D). At 2.5 hr, time points. The rate of hole expansion was determined by some cells could be found that had not proceeded though plotting the average areas at each time point against time. completion of osmotic lysis, but had arrested at a stage that exhibited marked swelling with abundant membrane holes Light and Electron Microscopy (Figs. 1E,L; 2C). These structural features of perforin- At 30 min intervals after exposure to perforin, monolayers induced oligodendrocyte damage were also clearly dem- of oligodendrocyte- enriched cells were fixed for 30 min di- onstrated in experiments where cultures were fixed and rectly on Thermanox coverslips by immersion in cold 2.5% stained with toluidine blue (Fig. 3). As compared to con-
  • 4. Oligodendrocyte Lysis by Perforin 383 Fig. 1. Indirect immunofluorescence of oligodendrocytes in culture, godendrocytes that are negative for PI. H: One hour PFP exposure. A before and after exposure to PFP. A: Control culture. Two GalC- group of MBP-positive , PI-positive oligodendrocytes can be seen. positive oligodendrocytes are shown. B: Same field as (A), stained with I: PFP exposure (2.5 hr). A group of MBP-positive/PI-positive oligo- PI. Note lack of PI staining in control oligodendrocytes shown in (A). dendrocytes. J: Control culture. Superimposition of O4 on a phase C: Thirty-minute PFP exposure. Four oligodendrocytes stain positively contrast image reveals a normal oligodendrocyte with a flattened mem- for GalC. D: Same field as (C) showing PI positivity of the four brane. K: Thirty minute PFP exposure. The pattern of O4 distribution oligodendrocytes. E: PFP exposure (2.5 hr). A group of GalC-positive suggests membrane fragmentation. The nucleus is slightly PI positive. oligodendrocytes is shown. F: Same field as (E) showing PI positivity L: PFP exposure (2.5 hr). O4 staining reveals multiple membrane holes and distorted nuclei of the oligodendrocytes. G: Control culture. and fragmentation. The nucleus is intensely positive for PI. Magnifi- Superimposition of MBP and PI staining showing MBP-positive oli- cation 450 in A–I; 700 in J–L.
  • 5. 384 Zeine et al. Fig. 2. Living oligodendrocytes stained with DiI. A: Control oligodendrocyte. Note the well- demarcated edge and homogeneous nature of the membranous veil of this oligodendrocyte. B: Forty-five minute exposure to PFP. By DiI staining, distinct membrane holes are visible. C: Same cell, 90 min exposure to PFP. The number and size of the holes have increased considerably. D: End-Stage lysis. A collection of cytoplasmic fragments is arranged around a distorted nucleus. Magnification 800. trols (Fig. 3A–C), cells exposed to PFP for 60 min man- areas of 16 individual fenestrae and the rate of expansion ifested swelling, cytoplasmic disintegration and vacuola- was determined from the slope of the plot of average areas tion (Fig. 3D–F). The nuclei became asymmetrically against time (data not shown). For this particular cell, distorted but did not exhibit signs of apoptosis (Figs. 1F,L, fenestrae expanded at a rate of 55 m2/min over a period 3D–F). TUNEL staining revealed no increase in TUNEL of 5 min after which most ceased to change. This pattern positive cells over control cultures (data not shown). of cellular arrest was not uncommon and probably repre- sented death with incomplete lysis. Some oligodendro- Rate of Membrane Fenestration cytes that were fixed as late as 2.5 hr after exposure to With DiI staining, distinct holes (fenestrae) became perforin exhibited a pattern of O4 distribution suggestive visible by EM in the membranes of oligodendrocytes after of numerous expanded fenestrae delineating vacuoles exposure to perforin for 30 min. The progression of throughout the damaged cell (Fig. 1L). fenestration was followed in one cell by time-lapse imag- ing starting at 45 min and ending at 90 min (Figs. 2B–C). Pattern of End-Stage Lysis Images were collected at 30 sec intervals. Hole size was A more severe pattern of destruction was evident by measured by tracing with I.P. Lab Spectrum software, the LM in oligodendrocytes that proceeded rapidly to com-
  • 6. Oligodendrocyte Lysis by Perforin 385 Fig. 3. Light microscopy of 1 micron toluidine blue-stained epoxy swollen nucleus surrounded by cytoplasmic remnants (arrow) lies ad- sections. A: Control culture. A flattened oligodendrocyte attached to jacent to a cell with vacuolated cytoplasm. E: Sixty minutes PFP. Two the substrate (arrow), lies next to an astrocyte. B: Control culture. sick, vacuolated oligodendrocytes lie beneath a layer of astrocytes. Three oligodendrocytes (arrows) lie on layer of astrocytic processes. F: Sixty minutes PFP. A fragmented culture shows a layer of degen- C: Control culture. A large flattened, healthy astrocyte with a single erating oligodendrocytes overlying a layer of minimally affected astro- nucleus is shown. D: Sixty minutes PFP. An oligodendrocyte with a cytes. Magnification 750 in B; 1,000 in A,C–F. plete lysis. Examples of such cells showed complete loss of forin for 1.5 hr and then stained with PI. For each field, PI all membrane veils and were captured by both immuno- images were superimposed on corresponding phase con- fluorescence and DiI staining. Some were found displaying trast micrograph and the cells counted unfixed. In cultures PI positive nuclei associated with few GalC positive rem- exposed to perforin, the ratio of PI-positive cells ranged nants of cytoplasmic fragments and processes (data not between 42 and 100% (mean 77%, SD 24), whereas the shown), whereas others presented as arrays of cytoplasmic range in control cultures remained between 9 and 15% fragments around an asymmetrically-enlarged and dis- (mean 11% , SD 2). torted nucleus (Fig. 2D). This type of cellular fragmenta- tion most probably represented end-stage osmotic lysis. Ultrastructural Features of Perforin-Induced Damage Kinetics of Perforin-Mediated Lysis By EM, the cytoplasm of normal oligodendrocytes in Experiments were repeated using either 36, 48, 60 or vitro was more electron-dense than that of astrocytes, 72 HU of perforin. In all cases, the kinetics of perforin- possessed short segments of rough ER and contained induced injury proceeded systematically though cell swell- microtubules but no intermediate filaments (Fig. 4A,B). ing (15–30 min), membrane fenestration and expansion After perforin-induced injury, these cells became edema- (30 –90 min), membrane fragmentation (30 –90 min), and tous and displayed extensive cytoplasmic vacuolation of end-stage lysis (90 –150 min). As mentioned above, het- the cell body and processes within 30 min of exposure. On erogeneity occurred in the extent of lysis achieved by occasion, oligodendrocytes featured an extremely large individual cells under the same culture conditions, with some single cytoplasmic vacuole, which most probably evolved cells becoming arrested at a stage before end-stage lysis. In from the confluence of several vacuoles during the process most cells, however, death was complete within 3 hr. of osmotic lysis (Fig. 5A). Fragmentation of unit mem- branes and the presence of myelin-like formations were Ratio of Cell Killing by Perforin noted at the perimeter of such vacuoles (Fig. 5B). Another The ratio of PI-positive cells was calculated by change common to the cytoplasm of affected oligoden- counting by LM approximately 300 cells in each of seven drocytes was evident at the 0.5 hr time-point, when randomly-selected low power fields. For this, cultures formation of villus-like profiles, rich in microtubules, was consisting of a mixture of early differentiating oligoden- encountered (Fig. 4C). This appearance probably corre- drocytes and astrocytes, were exposed to 72 HU of per- sponded to images seen by LM (Fig. 3D).
  • 7. 386 Zeine et al. Fig. 4. EM of control cells and early perforin-induced cytoplasmic 30,000. C: Thirty minutes PFP. The cytoplasm of this oligodendro- injury. A: Control culture. A normal oligodendrocyte lies to the left of cyte protrudes as villus-like processes into the extracellular space. Note an astrocyte. The cytoplasm of the oligodendrocyte is distinctly denser. the numerous microtubules with the cell body and the villus-like Magnification 12,000. B: Detail of the oligodendrocyte cytoplasm in profiles (arrows). Magnification 75,000. (A). Note the microtubules in cross section (arrows). Magnification
  • 8. Oligodendrocyte Lysis by Perforin 387 Fig. 5. Ultrastructural patterns of membrane damage in oligodendro- 30,000. C: Sixty minutes PFP. End-stage lysis is seen in an oligo- cytes exposed to PFP. A: Thirty minutes PFP. This oligodendrocyte dendrocyte that has lost its cell membrane, cytoplasmic integrity and has developed a large vacuole around the perimeter of which myelin- intact nuclear membrane. Magnification 14,000. D: Detail of (C) to like figures are located. Magnification 12,000. B: Detail from A to show beginning disruption of the nuclear membrane. Magnification show the lamellar patterns of the myelin droplets. Magnification 30,000.
  • 9. 388 Zeine et al. Fig. 6. Sixty minutes PFP. Two interdigitating, apparently healthy astrocytes display an abundance of intermediate filaments and ro- settes of ribosomes. The nucleus of the cell on the right is normal and a hemidesmosome (typical of subpial astrocytes) is indicated (ar- row). Magnification 19,000. Oligodendrocytes examined after exposure to per- of perforin exposure, cell membranes were lost and nu- forin for 1 hr exhibited complete loss of the cell membrane clear envelopes began to degenerate (Fig. 5C). This is the with only remnants of cytoplasm remaining around the first report demonstrating that SJL mouse oligodendro- nucleus (Fig. 5C). In addition, evidence of degeneration of cytes are susceptible to perforin-induced osmotic lysis, a the nuclear envelope was noted (Fig. 5D). Similar pathol- highly conserved, classical cell-death mechanism (Ojcius ogy, albeit delayed and to a lesser degree, was seen in et al., 1991a; Liu et al., 1995b) and this occurred at a dose astrocytes in the same culture system but on most occa- level similar to that which kills other eukaryotic cells. sions, astrocytes were relatively resistant to damage and Interestingly, oligodendrocyte changes observed maintained a normal ultrastructure well into the experi- here in vitro held much in common with appearances mental period (Fig. 6). described in MS lesions, ultrastructural studies of which DISCUSSION have consistently documented that oligodendrocyte pa- thology exhibits features suggestive of immune osmotic The mechanisms underlying oligodendrocyte deple- lysis or necrosis (Prineas, 1985; Prineas and McDonald, tion from the MS plaque remain to be clarified although cytolytic mechanisms have repeatedly been implicated 1997). In contrast, evidence for oligodendrocyte apoptosis (Raine, 1997b). One candidate molecule in this process is in MS and EAE has been lacking or, at most, rare the pore-forming membranolytic molecule, perforin, and (D’Souza et al., 1996; Bonetti et al., 1997; Bonetti and in this report, we have studied the effects of perforin on Raine, 1997; Waldner et al., 1997). Perforin is a potent oligodendrocytes cultured from a strain of mouse (SJL) mediator of osmotic lysis and perforin-mediated cytotox- most frequently applied to studies on MS and a strain from icity is induced by killer T-cells (Lowin et al., 1994; Kagi which oligodendrocytes have been difficult to grow in the et al., 1994). The presence of killer cells and perforin in past. Our results have shown that during normal develop- demyelinative lesions of EAE and MS is well-known ment in culture, oligodendrocytes extended processes and (Selmaj et al., 1991b; Held et al., 1993; Olive, 1996; Rajan elaborated flattened myelin-like membranes, as described et al., 1996; Gasque et al., 1998; Zeine et al., 1999), and previously for the murine system (Barry et al., 1996). After a dual role has been proposed for these cell types whereby exposure to perforin, the integrity of the membrane veils injury to oligodendrocytes and neurons is detrimental was compromised as microscopic fenestrae appeared and whereas injury to immune cells is protective to the CNS expanded rapidly, transforming the flat membrane sheets (Battistini et al., 1995; Malipiero et al., 1997; Zhang et al., into a delicate lacework (Fig. 2B,C). The cell bodies 1997; Matsumoto et al., 1998; Murray et al., 1998; Zeine swelled and the cytoplasm became vacuolated and dis- et al., 1999). Most likely, the balance between the effector rupted into fragments rich in microtubules. Within 60 min and immunoregulatory arms of the immune response de-
  • 10. Oligodendrocyte Lysis by Perforin 389 termines the magnitude of CNS damage inflicted by the Kinase inhibitors block the mobilization and orientation of perforin-based cytotoxicity pathway. In a study on MOG- perforin-containing granules toward the contact zone induced EAE in perforin knockout mice, oligodendrocyte (Wei et al., 1998); and calreticulin blocks perforin lytic pathology was not discussed. activity by stabilizing target cell membranes (Fraser et al., Ultrastructurally, injured oligodendrocytes in MS le- 2000). Thus, the development of strategies to block per- sions appear swollen, with vacuolated cytoplasm and wid- forin activity in vivo holds promise for rescuing oligoden- ened, degenerating or ruptured membranes (Field and drocyte targets during acute episodes of inflammatory de- Raine, 1964; Perier and Gregoire, 1965; Prineas, 1985; ` ` myelination. Rodriguez et al., 1993; Rodriguez and Scheithauer, 1994; The observation that astrocytes were more resistant Raine, 1997b; Raine et al., 1999). Previous studies have than oligodendrocytes to perforin was not surprising con- shown that myelin in acute lesions is transformed into sidering their general resilience to disease. We and others vesicular networks (Kirk, 1979; Lee et al., 1990; Rodri- have shown the expression of perforin within the cyto- guez and Scheithauer, 1994; Genain et al., 1999; Raine et plasm of astrocytes in vivo and in culture (Gasque et al., al., 1999). In this study, some images of oligodendrocytes 1998; Zeine et al., 1999). Astrocytes are the only cells and their membranes undergoing lysis by perforin-induced known to harbor free cytosolic perforin, and they must membrane fragmentation were reminiscent of changes therefore have some protective mechanism to guard their described in acute MS lesions (viz. Suzuki et al., 1969; Fig. own membranes against perforin lysis. Furthermore, as- 11, loc.cit.; Rodriguez and Scheithauer, 1994; Fig. 4A, trocytes may be a source of perforin in the CNS and may loc.cit.; Raine, 1997b; Fig. 5, loc. cit.; Prineas and Mc- play an effector or regulatory role during inflammation. Donald, 1997; Fig. 13.35, loc. cit.; Raine et al., 1999; Figs. Thus, we have shown that oligodendrocytes cultured 6 – 8, loc. cit.). from the CNS of SJL mice are selectively vulnerable to The search for molecules that readily lyse oligoden- cytolytic damage by perforin, and that early-stage cell lysis drocytes has been difficult. Perforin-based cytotoxicity is involves the formation of fenestrae in the cell membranes, most akin to complement toxicity. Although the C9 com- probably as a result of the coalescence of numerous sub- ponent of complement is deposited in MS and EAE le- microscopic perforin-induced pores and the influx of wa- sions, some studies have shown that human oligodendro- ter into the cell. Subsequently, cells either disintegrated cytes are not sensitive to complement damage in culture into cytoplasmic droplets, developed large cytoplasmic (Zajicek et al., 1995). Combining antibodies with com- vacuoles, formed disrupted membranous networks or be- plement results in a reduction in the survival of oligoden- came totally devoid of cell membrane - all these changes drocytes in culture via a toxicity mechanism that can be primary to nuclear disintegration. As stated above, many of inhibited by the addition of normal immunoglobulins these morphologic patterns have been described in MS (Scolding et al., 1989; Scolding et al., 1990; Stangel et al., and EAE previously and are in support of oligodendrocyte 2000). It is most unlikely, however, that immunoglobulin damage in MS being effected by a non-apoptotic process. would be protective in the case of perforin-mediated lysis. In ongoing studies on tissue from EAE and MS (Zeine et We therefore reaffirm a unique role for perforin in irre- al., in preparation), we have documented the upregulation versible oligodendrocyte injury relevant to the pathogen- of perforin by western blotting during acute exacerbations esis of MS and extend previous findings by providing and downregulation during remission. Perforin was present within infiltrating cytotoxic cells and astrocytes by detailed timed images from oligodendrocytes undergoing immunohistochemistry, and the extent of remyelination osmotic lysis. correlated with the absence of perforin. Thus, in the series With regard to previous works on perforin-mediated of molecular events leading to the formation of the MS lysis, our results are in agreement with the findings of lesion, it seems that a role for perforin may very well be Jones et al. (1991) showing that “not all PI-positive cells found at the acute end of the spectrum. proceeded to lysis.” Thus, the possibility of sub-lethal attack by perforin on individual cells remains open and ACKNOWLEDGMENTS raises interest in the mechanism of resistance to perforin We are indebted to Michael Cammer for expert ( Jiang et al., 1990; Ojcius et al., 1990, 1991b). Of ther- technical assistance with digital imaging at the Analytical apeutic relevance would be the conferring of resistance to Imaging Facility of the Albert Einstein College of Medi- selected target cells, e.g., oligodendrocytes, in EAE and cine; to Dr. Hin Hark Gan of New York University and MS. Such a prospect awaits the isolation of ‘L-protectin,’ Howard Hughes Medical Institute for discussion; to Dr. a membrane-bound glycosylated molecule that interferes Jorge Larocca of the Albert Einstein College of Medicine, with perforin function in resistant target cell membranes Department of Neurology, for advice; and to Patricia (Liu et al., 1995b). Currently, some experience has been Cobban-Bond for administrative assistance. This research gained by blocking perforin-mediated lysis via four classes was supported in part by grants from the National Multiple of chemical reagents in vitro. Calcium chelators inhibit Sclerosis Society of the USA (NMSS RG 1001-J-10 exocytosis and perforin binding to membranes (Liu et al., [CSR], NMSS RG 2971 [WC] and NMSS RG 2843 1995b); H -ATPase inhibitors raise the pH within cyto- [EB]), the American Heart Association (CCL), and by toxic granules leading to accelerated degradation of per- HHS Grants NS 08952 (CSR), NS 11920 (CSR), and NS forin (Kataoka et al., 1996; Zeine et al., 1998); MAP- 19943 (EB).
  • 11. 390 Zeine et al. REFERENCES Hengartner H, Golstein P. 1994. Fas and perforin pathways as major Antel JP, McCrea E, Ladiwala U, Qin YF, Becher B. 1998. Non-MHC- mechanisms of T cell-mediated cytotoxicity. Science 265:528 –530. restricted cell-mediated lysis of human oligodendrocytes in vitro: relation Kappeler A, Mueller C. 2000. The role of activated cytotoxic T-cells in with CD56 expression. J Immunol 160:1606 –1611. inflammatory bowel disease. Histol Histopathol 15:167–172. Barbarese E. 1991. Spatial distribution of myelin basic protein mRNA and Kataoka T, Shinohara N, Takayama H, Takaku K, Kondo S, Yonehara S, polypeptide in quaking oligodendrocytes in culture. J Neurosci Res Nagai K. 1996. Concanamycin A, a powerful tool for characterization and 29:271–281. estimation of contribution of perforin- and Fas-based lytic pathways in Barry C, Pearson C, Barbarese E. 1996. Morphological organization of cell-mediated cytotoxicity. J Immunol 156:3678 –3686. oligodendrocyte processes during development in culture and in vivo. Kirk J. 1979. Pseudoviral hollow-cored vesicles in multiple sclerosis brain. Dev Neurosci 18:233–242. Acta Neuropathol (Berl) 48:63– 66. Battistini L, Salvetti M, Ristori G, Falcone M, Raine CS, Brosnan CF. Kivisakk P, Stawiarz L, Matusevicius D, Fredrikson S, Soderstrom M, 1995. Gamma delta T cell receptor analysis supports a role for HSP 70 Hindmarsh T, Link H. 1999. High numbers of perforin mRNA express- selection of lymphocytes in multiple sclerosis lesions. Mol Med 1:554 – ing CSF cells in multiple sclerosis patients with gadolinium-enhancing 562. brain MRI lesions. Acta Neurol Scand 100:18 –24. Bonetti B, Pohl J, Gao YL, Raine CS. 1997. Cell death during autoimmune Lee SC, Moore GR, Golenwsky G, Raine CS. 1990. Multiple sclerosis: a demyelination: effector but not target-cells are eliminated by apoptosis. role for astroglia in active demyelination suggested by Class II MHC J Immunol 159:5733–5741. expression and ultrastructural study. J Neuropathol Exp Neurol 49:122– Bonetti B, Raine CS. 1997. Multiple sclerosis: oligodendrocytes display cell 136. death-related molecules in situ but do not undergo apoptosis. Ann Neurol Liu CC, Persechini PM, Young JD. 1995b. Perforin and lymphocyte- 42:74 – 84. mediated cytolysis. Immunol Rev 146:145–175. Brosnan CF, Raine CS. 1996. Mechanisms of immune injury in multiple Liu CC, Walsh CM, Young JD. 1995a. Perforin: structure and function. sclerosis. Brain Pathol 6:243–257. Immunol Today 16:194 –201. Brown A, McFarlin DE, Raine CS. 1982. Chronologic neuropathology of Liu CC, Young LH, Young JD. 1996. Lymphocyte-mediated cytolysis and relapsing experimental allergic encephalomyelitis in the mouse. Lab Invest disease. N Engl J Med 335:1651–1659. 46:171–185. Lowin B, Hahne M, Mattmann C, Tschopp J. 1994. Cytolytic T-cell Cross A, McFarlin DE, McCarron RM, Raine CS. 1987. Adoptively- cytotoxicity is mediated through perforin and Fas lytic pathways. Nature transferred acute and chronic relapsing autoimmune encephalomyelitis in 370:650 – 652. the PL/J mouse with observations on altered pathology by intercurrent Lucchinetti C, Bruck W, Parisi J, Scheithauer B, Rodriguez M, Lassmann infection. Lab Invest 57:499 – 412. H. 1999. A quantitative analysis of oligodendrocytes in multiple sclerosis D’Souza SD, Bonetti B, Balasingam V, Cashman NR, Barker PA, Troutt lesions. A study of 113 cases. Brain 122:2279 –2295. AB, Raine CS, Antel JP. 1996. Multiple sclerosis: Fas signaling in oligo- Ludwin SK. 1997. The pathobiology of the oligodendrocyte. J Neuro- dendrocyte cell death. J Exp Med 184:2361–2370. pathol Exp Neurol 56:111–124. Dal Canto MC, Calenoff MA, Miller SD, Vanderlugt CL. 2000. Lympho- Malipiero U, Frei K, Spanaus KS, Agresti C, Lassmann H, Hahne M, cytes from mice chronically infected with Theiler’s murine encephalo- Tschopp J, Eugster HP, Fontana A. 1997. Myelin oligodendrocyte myelitis virus produce demyelination of organotypic cultures after stim- glycoprotein-induced autoimmune encephalomyelitis is chronic/ ulation with the major encephalitogenic epitope of myelin proteolipid relapsing in perforin knockout mice, but monophasic in Fas- and Fas protein. Epitope spreading in TMEV infection has functional activity. ligand-deficient lpr and gld mice. Eur J Immunol 27:3151–3160. J Neuroimmunol 104:79 – 84. Matsumoto Y, Kohyama K, Aikawa Y, Shin T, Kawazoe Y, Suzuki Y, Field EJ, Raine CS. 1964. Examination of multiple sclerosis biopsy speci- Tanuma N. 1998. Role of natural killer cells and TCR gamma delta men. (Abstract). Third Eur Reg Conf on EM. Prague Czech Acad Sci T-cells in acute autoimmune encephalomyelitis. Eur J Immunol 28:1681– ii:289 –290. 1688. Fraser SA, Karimi R, Michalak M, Hudig D. 2000. Perforin lytic activity is Matusevicius D, Kivisakk P, Navikas V, Soderstrom M, Fredrikson S, Link controlled by calreticulin. J Immunol 164:4150 – 4155. H. 1998. Interleukin-12 and perforin mRNA expression is augmented in Freedman MS, Ruijs TC, Selin LK, Antel JP. 1991. Peripheral blood blood mononuclear cells in multiple sclerosis. Scand J Immunol 47:582– gamma-delta T-cells lyse fresh human brain-derived oligodendrocytes. 590. Ann Neurol 30:794 – 800. Merrill JE, Scolding NJ. 1999. Mechanisms of damage to myelin and Gasque P, Jones J, Singhrao SK, Morgan B. 1998. Identification of an astrocyte oligodendrocytes and their relevance to disease. Neuropathol Appl Neu- cell population from human brain that expresses perforin, a cytotoxic protein robiol 25:435– 458. implicated in immune defense. J Exp Med 187:451– 460. Murray PD, McGavern DB, Lin X, Njenga MK, Leibowitz J, Pease LR, Genain CP, Cannella B, Hauser SL, Raine CS. 1999. Identification of Rodriguez M. 1998. Perforin-dependent neurologic injury in a viral autoantibodies associated with myelin damage in multiple sclerosis. Nat model of multiple sclerosis. J Neurosci 18:7306 –7314. Med 5:170 –175. Norton WT, Farooq M, Fields KL, Raine CS. 1983. The long term culture Held W, Meyermann R, Qin Y, Mueller C. 1993. Perforin and tumor of bulk-isolated bovine oligodendroglia from adult brain. Brain Res necrosis factor alpha in the pathogenesis of experimental allergic enceph- 270:295–310. alomyelitis: comparison of autoantigen induced and transferred disease in Ojcius DM, Jiang SB, Persechini PM, Storch J, Young JD. 1990. Resis- Lewis rats. J Autoimmun 6:311–322. tance to the pore-forming protein of cytotoxic T-cells: comparison of Jiang SB, Ojcius DM, Persechini PM, Young JD. 1990. Resistance of target cell membrane rigidity. Mol Immunol 27:839 – 845. cytolytic lymphocytes to perforin-mediated killing. Inhibition of perforin Ojcius DM, Muller S, Hasselkus-Light CS, Young JD, Jiang S. 1991b. binding activity by surface membrane proteins. J Immunol 144:998 – Plasma membrane-associated proteins with the ability to partially inhibit 1003. perforin-mediated lysis. Immunol Lett 28:101–108. Jones J, Frith S, Piddlesden S, Morgan BP, Compston DA, Campbell AK, Ojcius DM, Persechini PM, Zheng LM, Notaroberto PC, Adeodato SC, Hallett MB. 1991. Imaging Ca2 changes in individual oligodendrocytes Young JD. 1991a. Cytolytic and ion channel-forming properties of the N attacked by T-cell perforin. Immunology 74:572–577. terminus of lymphocyte perforin. Proc Natl Acad Sci USA 88:4621– Kagi D, Vignaux F, Ledermann B, Burki K, Depraetere V, Nagata S, 4625.
  • 12. Oligodendrocyte Lysis by Perforin 391 Olive C. 1996. Expression of the T cell receptor delta-chain repertoire in Scolding NJ, Morgan BP, Campbell AK, Compston DA. 1990. Comple- mouse lymph node. Immunol Cell Biol 74:313–317. ment mediated serum cytotoxicity against oligodendrocytes: a comparison Perier O, Gregoire A. 1965. Electron microscopic features of multiple ` ` with other cells of the oligodendrocyte-type 2 astrocyte lineage. J Neurol sclerosis lesions. Brain 88:937–952. Sci 97:155–162. Pouly S, Antel JP. 1999. Multiple sclerosis and central nervous system Selmaj K, Brosnan CF, Raine CS. 1991b. Colocalization of lymphocytes demyelination. J Autoimmun 13:297–306. bearing gamma delta T-cell receptor and heat shock protein hsp65 Prineas JW. 1985. The neuropathology of multiple sclerosis. In: Vinken PJ, oligodendrocytes in multiple sclerosis. Proc Natl Acad Sci USA 88:6452– Bruyn GW, Klawans GW, Koetsier JC, editors. Handbook of clinical 6456. neurology, Vol 47. Demyelinating diseases. Amsterdam: Elsevier. p 213– Selmaj K, Cross AH, Farooq M, Brosnan CF, Raine CS. 1991a. Non- 257. specific oligodendrocyte cytotoxicity mediated by soluble products of Prineas JW, McDonald W. 1997. Demyelinating diseases. In: Graham DI, activated T-cell lines. J Neuroimmunol 35:261–271. Lantos PL, editors. Greenfield’s neuropathology. London: Arnold. p Selmaj KW, Raine CS. 1988. Tumor necrosis factor mediates myelin and 813– 896. oligodendrocyte damage in vitro. Ann Neurol 23:339 –346. Raine CS. 1984. Biology of disease. Analysis of autoimmune demyelina- Stangel M, Compston A, Scolding NJ. 2000. Oligodendroglia are protected tion: its impact upon multiple sclerosis. Lab Invest 50:608 – 635. from antibody-mediated complement injury by normal immunoglobulins Raine CS. 1997a. The lesion in multiple sclerosis and chronic relapsing (IVIg). J Neuroimmunol 103:195–201. allergic encephalomyelitis—a structural comparison. In: Raine CS, Mc- Suzuki K, Andrews JM, Waltz JM, Terry RD. 1969. Ultrastructural studies Farland HF, Tourtellotte WW, editors. Multiple sclerosis: clinical and of multiple sclerosis. Lab Invest 20:444 – 454. pathogenic basis. London: Chapman and Hall. p 243–286. Tschopp J, Schafer S, Masson D, Peitsch MC, Heusser C. 1989. Phospho- Raine CS. 1997b. The Norton lecture: a review of the oligodendrocyte in rylcholine acts as a Ca2 -dependent receptor molecule for lymphocyte the multiple sclerosis lesion. J Neuroimmunol 77:135–152. perforin. Nature 337:272–274. Raine CS, Cannella B, Hauser SL, Genain CP. 1999. Demyelination in Waldner H, Sobel RA, Howard E, Kuchroo VK. 1997. Fas- and FasL- primate autoimmune encephalomyelitis and acute multiple sclerosis le- deficient mice are resistant to induction of autoimmune encephalomyeli- sions: a case for antigen-specific antibody mediation. Ann Neurol 46: tis. J Immunol 159:3100 –3103. 144 –160. Rajan AJ, Gao YL, Raine CS, Brosnan CF. 1996. A pathogenic role for Wei S, Gamero AM, Liu JH, Daulton AA, Valkov NI, Trapani JA, Larner gamma delta T-cells in relapsing-remitting experimental allergic enceph- AC, Weber MJ, Djeu JY. 1998. Control of lytic function by mitogen- alomyelitis in the SJL mouse. J Immunol 157:941–949. activated protein kinase/extracellular regulatory kinase 2 (ERK2) in a Rodriguez M, Scheithauer B. 1994. Ultrastructure of multiple sclerosis. human natural killer cell line: identification of perforin and granzyme B Ultrastruct Pathol 18:3–13. mobilization by functional ERK2. J Exp Med 187:1753–1765. Rodriguez M, Scheithauer BW, Forbes G, Kelly PJ. 1993. Oligodendro- Zajicek J, Wing M, Skepper J, Compston A. 1995. Human oligodendro- cyte injury is an early event in lesions of multiple sclerosis. Mayo Clin cytes are not sensitive to complement. A study of CD59 expression in the Proc 68:627– 636. human central nervous system. Lab Invest 73:128 –138. Ruijs TC, Freedman MS, Grenier YG, Olivier A, Antel JP. 1990. Human Zeine R, Cannella B, Pitt D, Raine CS. 1999. Perforin expression in oligodendrocytes are susceptible to cytolysis by major histocompatibility demyelinative lesions of multiple sclerosis, and a role for perforin in the complex class I-restricted lymphocytes. J Neuroimmunol 27:89 –97. regulation of experimental autoimmune encephalomyelitis. J Neuro- Ruijs TC, Olivier A, Antel JP. 1990. Serum cytotoxicity to human and rat pathol Exp Neurol 58:564. oligodendrocytes in culture. Brain Res 517:99 –104. Zeine R, Pon R, Ladiwala U, Antel JP, Filion LG, Freedman MS. Scolding NJ, Houston WA, Morgan BP, Campbell AK, Compston DA. 1998. Mechanism of gamma delta T cell-induced human oligodendrocyte 1989. Reversible injury of cultured rat oligodendrocytes by complement. cytotoxicity: relevance to multiple sclerosis. J Neuroimmunol 87:49 – 61. Immunology 67:441– 446. Zhang B, Yamamura T, Kondo T, Fujiwara M, Tabira T. 1997. Regulation Scolding NJ, Jones J, Compston DA, Morgan BP. 1990. Oligodendrocyte of experimental autoimmune encephalomyelitis by natural killer (NK) susceptibility to injury by T-cell perforin. Immunology 70:6 –10. cells. J Exp Med 186:1677–1687.