SlideShare una empresa de Scribd logo
1 de 100
DOPPLER PHYSICS
•  Dr.Sahil	
  Chaudhry,	
  AJIMS
OUTLINE
•  Doppler	
  Principles	
  
•  Pulsed	
  and	
  Con:nuous	
  Doppler	
  
	
  
•  Aliasing	
  and	
  Nyquist	
  Criteria	
  
•  Spectral	
  Analysis	
  
•  Colour	
  flow	
  imaging	
  
•  Power	
  Doppler	
  
•  Doppler	
  Ar:facts	
  
Waves from a stationary source
Wave	
  peaks	
  evenly	
  spaced	
  around	
  the	
  source	
  at	
  1	
  wavelength	
  intervals	
  
Waves from a moving source
Source	
  moving	
  this	
  way	
  
Old	
  posi7ons	
  of	
  source	
  
Doppler Effect
v Change	
  in	
  the	
  perceived	
  frequency	
  of	
  sound	
  
emiGed	
  by	
  a	
  moving	
  source.	
  
v The	
  basis	
  of	
  Doppler	
  ultrasonography	
  is	
  the	
  fact	
  
that	
  refected/scaGered	
  ultrasonic	
  waves	
  from	
  a	
  
moving	
  interface	
  will	
  undergo	
  a	
  frequency	
  shiK.	
  	
  
RECEIVED FREQUENCY TRANSMITTED FREQUENCY
DOPPLER SHIFT
•  In	
  diagnos:c	
  ultrasound,	
  the	
  Doppler	
  effect	
  is	
  used	
  
to	
  measure	
  blood	
  flow	
  velocity.	
  	
  
•  When	
  the	
  emiGed	
  ultrasound	
  beam	
  strikes	
  moving	
  
blood	
  cells,	
  the	
  laGer	
  reflect	
  the	
  pulse	
  with	
  a	
  
specific	
  Doppler	
  shiK	
  frequency	
  that	
  depends	
  on	
  
the	
  velocity	
  and	
  direc:on	
  of	
  blood	
  flow.	
  
•  IF RECEIVED FREQUENCY = TRANSMITTED FREQUENCY, NO DOPPLER SHIFT
¨  Posi:ve	
  shiK	
  	
  
Ø  	
  	
  Received	
  freq	
  >	
  
transmiGed	
  	
  freq	
  
Ø  Flow	
  towards	
  the	
  
transducer	
  
¨  Nega:ve	
  shiK	
  
Ø  TransmiGed	
  freq	
  >	
  
received	
  freq	
  
Ø  Flow	
  away	
  from	
  the	
  
transducer	
  
•  Angle	
  	
  
•  	
  	
  	
  	
  	
  	
  Cos	
  (a)	
   	
  
Doppler	
  shiK	
  depends	
  on	
  the	
  cosine	
  
of	
  the	
  angle	
  between	
  the	
  sound	
  
beam	
  and	
  the	
  direc:on	
  of	
  the	
  
mo:on	
  
	
  
	
  
	
  	
  	
  	
  	
  V	
  =	
  	
  	
  	
  	
  Fd	
  	
  ×	
  C	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  2	
  fₒ	
  ×	
  cos	
  ᶱ	
  
	
  
Op:mal	
  angle	
  	
  	
  	
  	
  	
  	
  30°	
  -­‐	
  60°	
  
	
  
	
  
Angle	
   Cos	
  theta	
  
0	
   1	
  
45	
   0.7	
  
60	
   0.5	
  
90	
   0	
  
Angle	
  to	
  Flow	
  
Angle Cosine
0 1.00
15 0.97
45 0.71
60 0.50
75 0.26
90 0.00
The size of the Doppler signal is dependent on:	
  
	
  
	
  
•  Blood	
  velocity:	
  as	
  velocity	
  
increases,	
  so	
  does	
  the	
  Doppler	
  
frequency	
  
•  Ultrasound	
  frequency:	
  higher	
  
ultrasound	
  frequencies	
  give	
  
increased	
  Doppler	
  frequency.	
  
•  Angle	
  of	
  Insona:on	
  
Continuous Doppler
•  Uses	
  two	
  crystals,	
  one	
  to	
  send	
  
and	
  one	
  to	
  receive.	
  
•  Uses	
  con:nuous	
  transmission	
  
and	
  recep:on	
  of	
  ultrasound.	
  	
  
•  Doppler	
  signals	
  are	
  obtained	
  
from	
  all	
  vessels	
  in	
  the	
  path	
  of	
  
the	
  ultrasound	
  beam	
  (un:l	
  the	
  
ultrasound	
  beam	
  becomes	
  
sufficiently	
  aGenuated	
  due	
  to	
  
depth).	
  	
  
•  Unable	
  to	
  determine	
  the	
  specific	
  
loca:on	
  of	
  veloci:es	
  within	
  the	
  
beam	
  and	
  cannot	
  be	
  used	
  to	
  
produce	
  color	
  flow	
  images.	
  	
  
•  Used	
  in	
  adult	
  cardiac	
  scanners	
  
to	
  inves:gate	
  the	
  high	
  veloci:es	
  
in	
  the	
  aorta.	
  	
  
AUDI
O	
  
AMP
LIFIE
R	
  
FIL
TE
R	
  
DEMOD
ULATO
R	
  
OSCILLAT
OR,	
  
TRANSMI
T	
  
AMPLIFIE
R	
  
RECEIV
ER,	
  
AMPLI
FIER	
  
CW	
  DOPPLER	
  
•  Doppler shift can be located at any depth in
the flow sensitive zone of beam.
•  The Doppler receiver is unable to determine
the exact location of the Doppler shift.
•  Thus CW lacks range resolution.
•  Because it is continuously sample returning
echoes it have no limitations
on measuring high flow velocities.
Directional Doppler
ü  Quadrature	
  detec:on	
  helps	
  in	
  determining	
  flow	
  direc:on.	
  
	
  	
  
ü  Received	
  echo	
  signals	
  are	
  amplified	
  àsplit	
  into	
  two	
  iden:cal	
  
channels	
  for	
  demodula:on.	
  
ü  The	
  reference	
  signals	
  from	
  the	
  transmiGer	
  sent	
  to	
  the	
  two	
  
demodulators	
  are	
  90	
  degrees	
  out	
  of	
  phase.	
  
	
  	
  
ü  Two	
  separate	
  Doppler	
  signals	
  are	
  produced.	
  They	
  are	
  iden:cal	
  except	
  
for	
  a	
  small	
  phase	
  difference	
  between	
  them,	
  and	
  this	
  phase	
  difference	
  
can	
  be	
  used	
  to	
  determine	
  whether	
  the	
  Doppler	
  shiK	
  is	
  posi:ve	
  or	
  
nega:ve.	
  
Pulsed Doppler
•  The	
  transducer	
  both	
  sends	
  and	
  
receives	
  the	
  signal.	
  
•  The	
  returned	
  signal	
  is	
  gated	
  so	
  that	
  
only	
  informa:on	
  about	
  the	
  desired	
  
depth	
  is	
  computed	
  
•  Pulses	
  –	
  just	
  like	
  real	
  :me	
  scanning	
  
•  Need	
  to	
  “gate”	
  analysis	
  of	
  received	
  
pulse,	
  so	
  we	
  know	
  where	
  the	
  moving	
  
objects	
  are.	
  
•  This	
  allows	
  measurement	
  of	
  the	
  
depth	
  (or	
  range)	
  of	
  the	
  flow	
  site.	
  
Addi:onally,	
  the	
  size	
  of	
  the	
  sample	
  
volume	
  (or	
  range	
  gate)	
  can	
  be	
  
changed.	
  Pulsed	
  wave	
  ultrasound	
  is	
  
used	
  to	
  provide	
  data	
  for	
  Doppler	
  
sonograms	
  and	
  color	
  flow	
  images	
  
Sam
ple	
  
Demod
ulator	
  
Gate	
  
size	
  
and	
  
depth	
  
Master	
  
Oscillat
or	
  
Rec
eive
r	
  
Gated	
  
Trasmi
Ger	
  
Continuous doppler Pulsed doppler
Ø 	
  	
  	
  Separate	
  	
  crystal	
  for	
  
	
  	
  	
  	
  transmiqng	
  &	
  receiving	
  
Ø 	
  	
  Can	
  measure	
  high	
  veloci:es	
  
Ø 	
  	
  Range	
  ambiguity	
  
	
  
Ø 	
  	
  Single	
  crystal	
  transmits	
  &	
  
receives.	
  
Ø 	
  	
  Range	
  resolu:on	
  
Ø 	
  	
  Can’t	
  measure	
  very	
  high	
  veloci:es	
  
Doppler Modes
Colour	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Power	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Spectral	
  
Physics of Spectral Flow
Vascular	
  Flow	
  
•  Blood	
  flow	
  is	
  normally	
  laminar	
  with	
  velocity	
  decreasing	
  
from	
  the	
  center	
  outward	
  to	
  the	
  vessel	
  walls	
  
Hemodynamic Principles
Laminar	
  Flow	
  
•  Con:nuous	
  or	
  laminar	
  flow	
  is	
  characterized	
  by	
  a	
  
constant	
  velocity	
  over	
  :me.	
  
•  The	
  flow	
  profile	
  of	
  laminar	
  flow	
  is	
  determined	
  by	
  
iner:al	
  and	
  fric:onal	
  forces.	
  Fric:on	
  produces	
  a	
  
laminar,	
  or,	
  in	
  the	
  three-­‐dimensional	
  model,	
  parabolic	
  
flow	
  profile.	
  Flow	
  is	
  fastest	
  toward	
  the	
  center	
  of	
  a	
  
vessel	
  and	
  decreases	
  toward	
  the	
  wall,	
  where	
  it	
  
approximates	
  zero.	
  
•  Color	
  duplex	
  ultrasound	
  reflects	
  this	
  flow	
  profile	
  by	
  
lighter	
  color	
  shades	
  in	
  the	
  center	
  (fast	
  flow)	
  and	
  darker	
  
shades	
  near	
  the	
  wall	
  (slow	
  flow)	
  
Typical triphasic Doppler waveform of the
popliteal artery.	
  
	
  
color duplex scan depicts
laminar flow with lighter
coloring in the
center darker colors
toward the margins.
Pulsatile Flow
•  In	
  contrast	
  to	
  laminar	
  flow,	
  pulsa:le	
  flow	
  changes	
  
periodically	
  over	
  :me.	
  Phases	
  of	
  accelera:on	
  and	
  
decelera:on	
  vary	
  in	
  rela:on	
  to	
  changes	
  in	
  pressure.	
  	
  
•  The	
  pressure	
  amplitude	
  generated	
  by	
  the	
  leK	
  ventricle	
  
is	
  reduced	
  by	
  the	
  compliance	
  of	
  the	
  aorta	
  and	
  other	
  
large	
  vessels	
  (windkessel	
  effect),	
  resul:ng	
  in	
  a	
  more	
  
steady	
  flow.	
  	
  
•  Another	
  factor	
  affec:ng	
  the	
  flow	
  profile	
  is	
  the	
  
peripheral	
  resistance	
  
•  As	
  the	
  peripheral	
  resistance	
  is	
  a	
  crucial	
  factor	
  affec:ng	
  
the	
  waveform,	
  a	
  dis:nc:on	
  is	
  made	
  between	
  low-­‐
resistance	
  flow	
  and	
  high-­‐resistance	
  flow.	
  
Low Resistance Flow
•  Arteries	
  supplying	
  parenchymal	
  organs	
  
and	
  the	
  brain	
  are	
  characterized	
  by	
  a	
  fairly	
  
steady	
  blood	
  flow	
  as	
  a	
  result	
  of	
  low	
  
peripheral	
  resistance.	
  In	
  these	
  arteries,	
  a	
  
moderate	
  systolic	
  rise	
  is	
  followed	
  by	
  a	
  
steady	
  flow	
  that	
  persists	
  throughout	
  
diastole.	
  This	
  flow	
  profile	
  is	
  typical	
  of	
  the	
  
renal,	
  hepa:c,	
  splenic,	
  internal	
  caro:d,	
  
and	
  vertebral	
  arteries	
  
•  The	
  windkessel	
  effect	
  thus	
  ensures	
  a	
  
more	
  con:nuous	
  flow	
  than	
  would	
  result	
  
from	
  the	
  ac:on	
  of	
  the	
  leK	
  ventricle	
  and	
  
aor:c	
  valve	
  alone.	
  As	
  a	
  result,	
  flow	
  will	
  
become	
  more	
  pulsa:le	
  when	
  this	
  effect	
  
and	
  the	
  normal	
  elas:city	
  of	
  the	
  vessels	
  
are	
  lost.	
  
High Resistance Flow
•  A	
  high	
  peripheral	
  resistance	
  results	
  
in	
  a	
  more	
  pulsa:le	
  flow	
  with	
  a	
  
steep	
  systolic	
  upslope	
  during	
  the	
  
accelera:on	
  phase,	
  followed	
  by	
  
decelera:on	
  and	
  a	
  significant	
  
reflux	
  in	
  early	
  diastole	
  and	
  short	
  
backward	
  flow	
  in	
  mid-­‐diastole.	
  
Zero	
  flow	
  is	
  typically	
  seen	
  in	
  end	
  
diastole.	
  This	
  paGern	
  is	
  referred	
  to	
  
as	
  triphasic	
  flow.	
  
•  High-­‐resistance	
  flow	
  is	
  typical	
  of	
  
the	
  arteries	
  supplying	
  Muscles	
  and	
  
the	
  skin	
  
Transition from laminar to turbulent flow	
  
	
  Ø Turbulent	
  flow	
  occurs	
  when	
  
laminar	
  flow	
  breaks	
  down	
  and	
  the	
  
par:cles	
  in	
  the	
  fluid	
  move	
  
randomly	
  in	
  all	
  direc:ons	
  with	
  
variable	
  speeds	
  
Ø 	
  Turbulent	
  flow	
  is	
  more	
  likely	
  to	
  
occur	
  at	
  high	
  veloci:es	
  (V),	
  and	
  the	
  
cri:cal	
  velocity	
  at	
  which	
  flow	
  
becomes	
  turbulent	
  depends	
  on	
  the	
  
viscosity,	
  the	
  density	
  of	
  the	
  fluid	
  
and	
  the	
  diameter	
  of	
  the	
  vessel	
  (d).	
  
Reynolds	
  described	
  this	
  
rela:onship,	
  which	
  defines	
  a	
  value	
  
called	
  the	
  Reynolds	
  number	
  (Re)	
  
Color	
  Flow	
  Imaging	
  
•  	
  Doppler data evaluated using
autocorrelation.
•  Autocorrelation is a technique that
compare the echo from each pulse
with the echo from the previous pulse.
•  Autocorrelation requires a minimum
of 3 pulses per scan line.
Color	
  Flow	
  Imaging	
  
•  This technique can only produce an
estimate of the mean frequency shift
and mean velocity.
•  Increasing the line per frame provides
an image with more resolution at the
expense of the frame rate.
Color	
  Flow	
  Imaging	
  
Color	
  Resolu7on	
  
Frame	
  rate	
  
Number	
  of	
  lines	
  in	
  
Gray	
  scale	
  imaging	
  
Color	
  Flow	
  Imaging	
  
•  To produce the color flow image, the
mean Doppler shift is encoded
according to a preset color map.
•  This color information is superimposed
on the gray scale anatomic scan in real
time.
Color	
  Flow	
  Maps	
  
•  Velocity color map
•  Variance color
map
.	
  
Velocity	
  Color	
  Bar	
  
Increasing flow velocity
away from the transducer
Zero flow
Increasing flow velocity
toward the transducer
Variance	
  Color	
  Bar	
  
Variance	
  Color	
  
 	
  	
  	
  Near	
  occlusion	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Total	
  occlusion	
  
Colour Doppler
Limita:ons	
  :	
  
Ø Semi	
  quan:ta:ve	
  	
  
Ø Angle	
  dependence	
  
Ø Aliasing	
  
Ø Ar:facts	
  caused	
  by	
  the	
  noise	
  
Ø Poor	
  temporal	
  resolu:on.	
  	
  
Colour Box
Color box is an operator-adjustable
area within US image in which all
color Doppler information is
displayed.
Because frame rate decreases as
box size increases, image
resolution & quality are affected by
box size and width.
Box should be as small &
superficial as possible while still
providing necessary information.
A deep color box will result in a
slower PRF, which may produce
aliasing of depicted color flow.
Colour Box
Aliasing
•  Aliasing	
  is	
  produc:on	
  
of	
  ar:ficial	
  low	
  
frequency	
  signals	
  
when	
  the	
  sampling	
  
rate	
  is	
  less	
  than	
  twice	
  
the	
  doppler	
  signal	
  
frequency.	
  When	
  the	
  
Doppler	
  shiKs	
  exceed	
  a	
  
value	
  Nyquist	
  
frequency,	
  veloci:es	
  
are	
  perceived	
  as	
  going	
  
in	
  opposite	
  direc:on.	
  
Aliasing	
  	
  occurs	
  when	
  	
  Doppler	
  shi2	
  >	
  Nyquist	
  
frequency	
  
Nyquist	
  	
  freq	
  -­‐	
  Pulse	
  Repe<<on	
  Frequency	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   	
   	
   	
  	
  2	
  
Nyquist	
  Sampling	
  Limit	
  
•  The	
  Maximum	
  Doppler	
  frequency	
  that	
  can	
  be	
  
sampled	
  is	
  ½	
  the	
  PRF	
  
•  Example,	
  if	
  PRF	
  =	
  8	
  kHz	
  
– Max	
  Doppler	
  frequency	
  is	
  4	
  kHz	
  
•  Example,	
  if	
  PRF	
  =	
  4	
  kHz	
  
– Max	
  Doppler	
  frequency	
  is	
  2	
  kHz	
  
Adjustments to be made to avoid aliasing
•  Increasing	
  the	
  PRF	
  
•  Moving	
  color	
  or	
  spectral	
  baseline	
  up	
  or	
  down.	
  
•  Decreasing	
  Doppler	
  shiK	
  frequency	
  (changing	
  
angle	
  of	
  insona:on).	
  	
  
•  Using	
  a	
  lower-­‐frequency	
  transducer.	
  	
  
 Doppler	
  Spectrum	
  Assessment	
  
Assess the following:
1. Presence of flow
2. Direction of flow
3. Amplitude
4. Window
5. Pulsatility
 Doppler	
  Spectrum	
  Assessment	
  
Check	
  for	
  Flow	
  
Flow	
  	
  
Detected	
  
No	
  Flow	
  	
  
Detected	
  
Check	
  	
  
SV	
  Placement	
  
Sensi7ve	
  
Decreased	
  
Sensi7vity	
  
Improve	
  
Sensi7vity	
  
Check	
  	
  
Sensi7vity	
  
Check	
  Beam-­‐	
  
flow	
  angle	
  	
  
 Doppler	
  Spectrum	
  Assessment	
  
Sensitivity can be improved by:
•  Increasing power or gain.
•  Decreasing the velocity scale.
•  Decreasing the reject or filter.
•  Slowly increasing the SV size.
 Doppler	
  Spectrum	
  Assessment	
  
Direction of Flow
Pulsed Doppler use
quadrature phase
detection to provide
bidirectional Doppler
information.
 Doppler	
  Spectrum	
  Assessment	
  
Flow can either be:
•  Mono-phasic
•  Bi-phasic
•  Tri-phasic
•  Bidirectional
 Spectral	
  	
  Display	
  
Frequency	
  
Time	
  
Mono-­‐phasic	
  Flow	
  
	
  
Flow	
  on	
  just	
  on	
  side	
  	
  
of	
  the	
  Baseline.	
  
 Spectral	
  	
  Display	
  
Frequency	
  
Time	
  
Bi-­‐phasic	
  Flow	
  
	
  
Flow	
  start	
  on	
  one	
  
side	
  of	
  the	
  Baseline	
  	
  
and	
  then	
  crosses	
  to	
  	
  
the	
  other.	
  
 Spectral	
  	
  Display	
  
Frequency	
  
Time	
  
Tri-­‐phasic	
  Flow	
  
	
  
Flow	
  start	
  on	
  one	
  side	
  	
  
of	
  	
  the	
  	
  baseline	
  side,	
  
then	
  crosses	
  to	
  the	
  	
  
other,	
  then	
  returns	
  to	
  	
  
the	
  original	
  side.	
  
 Spectral	
  	
  Display	
  
Time	
  
Frequency	
  
Bidirec7onal	
  Flow	
  
	
  
Flow	
  which	
  occurs	
  
simultaneously	
  on	
  	
  
both	
  sides	
  of	
  the	
  	
  
baseline.	
  	
  
 Doppler	
  Spectrum	
  Assessment	
  
Amplitude
The spectrum displays echo amplitude by varying the
brightness of the display.
The amplitude of the echoes are determined by:
•  Echo intensity
•  Power
•  Gain
•  Dynamic range
 Doppler	
  Spectrum	
  Assessment	
  
Window
•  Received Doppler shift consist of a range of
frequencies.
•  Narrow range of frequencies will result in a
narrow display line.
•  The clear area underneath the spectrum is
called the window.
 Spectral	
  	
  Display	
  
Sonic	
  Window	
  
Velocity	
  
Time	
  
A	
  narrow	
  range	
  of	
  frequencies	
  
results	
  in	
  large	
  clear	
  window.	
  
 Spectral	
  	
  Display	
  
Sonic	
  Window	
  
Velocity	
  
Time	
  
A	
  broad	
  range	
  of	
  frequencies	
  
results	
  in	
  diminished	
  window.	
  
Spectrum	
  Broadening	
  
Loss of the Spectral window
is called
Spectral Broadening.
Spectrum	
  Broadening	
  
Occurs usually:
•  As the blood decelerates in diastole
•  If sample volume is placed to close to the vessel wall
•  In small vessels (parabolic velocity profile)
Spectrum	
  Broadening	
  
•  Tortuous vessels.
•  Low flow states..
•  Excessive gain/power/dynamic range
Spectrum	
  Broadening	
  
It is hallmark of
disturbed and/or
turbulent flow.
Spectrum	
  Broadening	
  
Pulsatility
•  Measures the difference between the maximum
and minimum velocities within the cardiac cycle.
•  Indices are unit less.
•  All increase in value as flow pulsatility increases.
•  Can be measured without knowledge of the Doppler
angle.
Spectral analysis
	
  	
  	
  	
  	
  sharp	
  systolic	
  peak	
  +	
  
reversed	
  diastolic	
  flow	
  
	
  	
  	
  	
  	
  	
  (e.g.)	
  extremity	
  artery	
  in	
  
res:ng	
  stage.	
  
	
  	
  	
  	
  	
  Broad	
  systolic	
  peak	
  +	
  
forward	
  flow	
  in	
  diastole	
  
	
  	
  	
  	
  	
  	
  (e.g.)	
  
ICA,renal,vertebral,celiac.	
  
	
  
	
  	
  	
  	
  	
  	
  Sharp	
  systolic	
  peak	
  +	
  forward	
  
flow	
  in	
  diastole.	
  
	
  	
  	
  	
  	
  (e.g.)	
  	
  ECA	
  &	
  SMA	
  (during	
  
fas:ng)	
  	
  
Spectral changes in disturbed flow
•  Doppler indices are :
Ø PI
Ø RI
Ø SYSTOLIC / DIASTOLIC RATIO
Ø Acceleration time(AT) and acceleration index(AI)
Ø SPECTRAL BROADENING
•  These indices can thus serve as a semiquantitative parameter
for the evaluation of stenoses	
  
Pulsatility Index
§  It is defined as the
maximum height of the
waveform, S, minus the
minimum diastolic, D
(which may be
negative), divided by
the mean height, M,
•  Stenoses or occlusions
in arteries will alter the
Doppler waveform and
the pulsatility index.
Pourcelot’s Resistance index (RI)
§  The resistance indices, in particular the Pourcelot index,
reflect wall elasticity as well as the peripheral resistance of
the organ supplied
•  In vessels with greater peripheral resistance, the Pourcelot
index is higher and end-diastolic velocity decreases.
§  It is defined as follows
where E is end diastolic velocity. The value of RI can be
calculated by the scanner and displayed on the screen.
Acceleration Time and Index
Spectral Broadening
§  There have been several definitions of spectral
broadening (SB) described over the years in an
attempt to quantify the spread of frequencies present
within a spectrum. One such definition is as follows:
§  Increased SB indicates the presence of arterial disease	
  
•  SPECTRAL	
  DOPPLER	
   •  COLOUR	
  DOPPLER	
  
Depic7on	
  of	
  Doppler	
  shiQ	
  
informa7on	
  in	
  waveform	
  
U7lize	
  the	
  Doppler	
  shiQ	
  
informa7on	
  to	
  show	
  blood	
  flow	
  in	
  
color	
  
•  SPECTRAL	
  DOPPLER	
  
Advantages	
  :	
  
•  Depicts	
  	
  quan:ta:ve	
  
flow	
  at	
  one	
  site	
  
•  Allows	
  calcula:ons	
  
of	
  velocity	
  and	
  
indices	
  	
  
•  Good	
  temporal	
  
resolu:on	
  
•  COLOUR	
  DOPPLER	
  
Advantages	
  :	
  
Ø Overall	
  view	
  of	
  flow	
  
Ø 	
  Direc:onal	
  
informa:on	
  about	
  
flow	
  
Ø 	
  Averaged	
  velocity	
  
informa:on	
  about	
  
flow	
  
Power Doppler
¨  Power	
  or	
  intensity	
  of	
  
Doppler	
  signal	
  is	
  
measured	
  rather	
  
than	
  Doppler	
  shiK.	
  
	
  
Limita:ons	
  :	
  
¨  No	
  direc:on	
  /	
  
velocity	
  informa:on	
  
¨  Slow	
  frame	
  rate	
  	
  
	
  
Power Doppler
Ø A	
  color-­‐coded	
  map	
  of	
  Doppler	
  shiKs	
  superimposed	
  
onto	
  a	
  B-­‐mode	
  ultrasound	
  image	
  	
  
Ø Color	
  flow	
  imaging	
  have	
  to	
  produce	
  several	
  
thousand	
  color	
  points	
  of	
  flow	
  informa:on	
  for	
  each	
  
frame	
  superimposed	
  on	
  the	
  B-­‐mode	
  image.	
  	
  
Ø Color	
  flow	
  imaging	
  uses	
  fewer,	
  shorter	
  pulses	
  along	
  
each	
  color	
  scan	
  line	
  of	
  the	
  image	
  to	
  give	
  a	
  mean	
  
frequency	
  shiK	
  and	
  a	
  variance	
  at	
  each	
  small	
  area	
  of	
  
measurement.	
  This	
  frequency	
  shiK	
  is	
  displayed	
  as	
  a	
  
color	
  pixel.	
  
Power Doppler
	
  
Ø The	
  transducer	
  elements	
  are	
  switched	
  rapidly	
  between	
  B-­‐
mode	
  and	
  color	
  flow	
  imaging	
  to	
  give	
  an	
  impression	
  of	
  a	
  
combined	
  simultaneous	
  image.	
  
Ø 	
  The	
  pulses	
  used	
  for	
  color	
  flow	
  imaging	
  are	
  typically	
  three	
  
to	
  four	
  :mes	
  longer	
  than	
  those	
  for	
  the	
  B-­‐mode	
  image,	
  with	
  
a	
  corresponding	
  loss	
  of	
  axial	
  resolu:on.	
  	
  
Ø Assignment	
  of	
  color	
  to	
  frequency	
  shiKs	
  is	
  usually	
  based	
  on	
  
direc:on	
  (for	
  example,	
  red	
  for	
  Doppler	
  shiKs	
  towards	
  the	
  
ultrasound	
  beam	
  and	
  blue	
  for	
  shiKs	
  away	
  from	
  it)	
  and	
  
magnitude	
  (different	
  color	
  hues	
  or	
  lighter	
  satura:on	
  for	
  
higher	
  frequency	
  shiKs).	
  	
  
Power Doppler
Advantages	
  :	
  
Ø  Increased	
  sensi:vity	
  
of	
  flow	
  detec:on	
  
Ø  Less	
  angle	
  
dependence	
  
Ø  No	
  aliasing	
  
Ø  Noise	
  –	
  a	
  
homogenous	
  
background	
  
Spectral Velocity Scale
Scale	
  change	
  adjustment	
  
Colour Velocity Scale
Spectral Baseline
Colour Baseline
Wall Filter
¨  Filters	
  eliminate	
  
typically	
  low-­‐
frequency	
  high-­‐
intensity	
  noise	
  that	
  
may	
  arise	
  from	
  
vessel	
  wall	
  mo:on	
  	
  
Spectral Filter
	
  Very	
  High	
  filter	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
Color	
  duplex	
  US	
  image	
  obtained	
  with	
  a	
  
high	
  wall	
  filter	
  seVng	
  shows	
  loss	
  of	
  
the	
  low-­‐velocity-­‐flow	
  component	
  of	
  the	
  
spectral	
  waveform	
  immediately	
  above	
  the	
  
baseline.	
  Higher-­‐velocity	
  flow	
  is	
  
well	
  depicted,	
  and	
  accurate	
  flow	
  
quan:fica:on	
  can	
  s:ll	
  occur.	
  In	
  the	
  
evalua:on	
  of	
  the	
  liver	
  vasculature,	
  this	
  is	
  
likely	
  to	
  become	
  relevant	
  only	
  when	
  flow	
  
velocity	
  is	
  very	
  low	
  and	
  falls	
  within	
  the	
  
range	
  of	
  veloci:es	
  that	
  are	
  filtered	
  out.	
  
Spectral Filter	
  
Color	
  duplex	
  US	
  
image	
  demonstrates	
  
how	
  the	
  spectral	
  
waveform	
  
progressively	
  fills	
  in	
  
toward	
  the	
  baseline.	
  
	
  Op:mal	
  filter	
  50-­‐100	
  Hz	
  
Colour gain
Amplifica:on	
  of	
  the	
  sampled	
  
informa:on	
  
Spectral gain
Angle Correction
•  Angle	
  
correc:on	
  
refers	
  to	
  
adjustment	
  
of	
  Doppler	
  
angle	
  &	
  is	
  
used	
  to	
  
calibrate	
  
velocity	
  scale	
  
for	
  the	
  angle	
  
between	
  US	
  
beam	
  and	
  
blood	
  flow	
  
being	
  
measured	
  
45’’	
   0’	
   >90’	
  
• The	
  angle	
  of	
  insona7on	
  should	
  also	
  be	
  between	
  45°-­‐	
  60°.	
  	
  
• Flow	
  may	
  appear	
  to	
  be	
  reversed	
  when	
  the	
  beam-­‐flow	
  angle	
  changes	
  about	
  90°.	
  	
  
• Complete	
  loss	
  of	
  flow	
  may	
  be	
  evident	
  when	
  the	
  beam-­‐flow	
  angle	
  is	
  90°.	
  
	
  
Beam Steering
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  
	
  
	
  45°	
  
’	
  
	
  
	
  
>90°	
  
Gate Size
Represents the area of flow
assessed with Doppler.
Sample Volume
Sample volume size should be 1/3 of
the diameter of the vessel.
Inversion
¨  Ability	
  to	
  manually	
  	
  
invert	
  the	
  spectral	
  
wave	
  or	
  	
  color	
  
seqngs.	
  
	
  
	
  
Colour Inversion
Spectral Inversion
Doppler artifacts
•  Aliasing	
  
•  Mirror	
  image	
  
•  Blooming	
  
•  Color	
  in	
  non	
  vascular	
  structures	
  
•  Twinkle	
  ar:facts	
  
Mirror	
  image	
  ar:fact	
  
•  any	
  vessel	
  adjacent	
  to	
  a	
  
highly	
  reflec:ve	
  surface,	
  
such	
  as	
  the	
  lung,	
  
subdiaphragma:c	
  region	
  
of	
  the	
  liver	
  and	
  the	
  
supraclavicular	
  region	
  
Blooming artifact
Twinkling artifact
	
  	
  	
  Rapidly	
  
fluctua:ng	
  
mixture	
  of	
  
Doppler	
  
signals	
  (red	
  
and	
  blue	
  
pixels)	
  that	
  
imitate	
  
turbulent	
  
flow	
  
Colour in non vascular structures (Colour flash
artifact)
•  	
  Manifests	
  as	
  a	
  colour	
  
signal	
  due	
  to	
  transducer	
  
or	
  pa:ent	
  mo:on	
  
•  Hypoechoic	
  areas	
  such	
  as	
  
a	
  cyst	
  or	
  a	
  duct	
  are	
  
suscep:ble	
  to	
  colour	
  flash	
  
ar:fact.	
  
Doppler Physics

Más contenido relacionado

La actualidad más candente

Principles of Doppler ultrasound
Principles of Doppler ultrasoundPrinciples of Doppler ultrasound
Principles of Doppler ultrasoundSamir Haffar
 
Tissue harmonic imaging
Tissue harmonic imaging Tissue harmonic imaging
Tissue harmonic imaging MAMTA PANDA
 
Peripheral arterial doppler
Peripheral  arterial dopplerPeripheral  arterial doppler
Peripheral arterial dopplerAnish Choudhary
 
Ultrasound Basic Knobology & Controls
Ultrasound Basic Knobology & ControlsUltrasound Basic Knobology & Controls
Ultrasound Basic Knobology & ControlsMadhuka Perera
 
Doppler ultrasound in peripheral arterial disease
Doppler ultrasound in peripheral arterial diseaseDoppler ultrasound in peripheral arterial disease
Doppler ultrasound in peripheral arterial diseaseDr. Naveed Quetta
 
ULTRASOUND PHYSICS
ULTRASOUND PHYSICSULTRASOUND PHYSICS
ULTRASOUND PHYSICSNavni Garg
 
Resolution and different transducers
Resolution and different transducersResolution and different transducers
Resolution and different transducersRaghu Kishore Galla
 
CT Angiography presentation
CT Angiography presentation CT Angiography presentation
CT Angiography presentation Shatha M
 
Doppler Hemodynamics with hepatic doppler
Doppler Hemodynamics with hepatic dopplerDoppler Hemodynamics with hepatic doppler
Doppler Hemodynamics with hepatic dopplerDr Varun Bansal
 
Normal doppler spectral pattern of abdominal and limb vessels final
Normal doppler spectral pattern of abdominal and limb vessels finalNormal doppler spectral pattern of abdominal and limb vessels final
Normal doppler spectral pattern of abdominal and limb vessels finalNipun Gupta
 
Perfusion MRI (DSC and DCE perfusion techniques) for radiology residents
Perfusion MRI (DSC and DCE perfusion techniques) for radiology residentsPerfusion MRI (DSC and DCE perfusion techniques) for radiology residents
Perfusion MRI (DSC and DCE perfusion techniques) for radiology residentsRiham Dessouky
 
Hepatic doppler ultrasound
Hepatic doppler ultrasoundHepatic doppler ultrasound
Hepatic doppler ultrasoundDr. Mohit Goel
 
Advances in ultrasound
Advances in ultrasoundAdvances in ultrasound
Advances in ultrasoundSangeeta Jha
 
Venous Doppler upper limb
Venous Doppler upper limb Venous Doppler upper limb
Venous Doppler upper limb Milan Silwal
 
Contrast enhanced ultrasound
Contrast enhanced ultrasoundContrast enhanced ultrasound
Contrast enhanced ultrasoundNeeraj Patange
 

La actualidad más candente (20)

Principles of Doppler ultrasound
Principles of Doppler ultrasoundPrinciples of Doppler ultrasound
Principles of Doppler ultrasound
 
Tissue harmonic imaging
Tissue harmonic imaging Tissue harmonic imaging
Tissue harmonic imaging
 
Usg artifacts
Usg artifactsUsg artifacts
Usg artifacts
 
Peripheral arterial doppler
Peripheral  arterial dopplerPeripheral  arterial doppler
Peripheral arterial doppler
 
Ultrasound Basic Knobology & Controls
Ultrasound Basic Knobology & ControlsUltrasound Basic Knobology & Controls
Ultrasound Basic Knobology & Controls
 
Renal doppler
Renal dopplerRenal doppler
Renal doppler
 
Doppler ultrasound in peripheral arterial disease
Doppler ultrasound in peripheral arterial diseaseDoppler ultrasound in peripheral arterial disease
Doppler ultrasound in peripheral arterial disease
 
ULTRASOUND PHYSICS
ULTRASOUND PHYSICSULTRASOUND PHYSICS
ULTRASOUND PHYSICS
 
Doppler physics
Doppler physics Doppler physics
Doppler physics
 
Resolution and different transducers
Resolution and different transducersResolution and different transducers
Resolution and different transducers
 
CT Angiography presentation
CT Angiography presentation CT Angiography presentation
CT Angiography presentation
 
Carotid doppler Ultrasound
Carotid doppler UltrasoundCarotid doppler Ultrasound
Carotid doppler Ultrasound
 
Doppler Hemodynamics with hepatic doppler
Doppler Hemodynamics with hepatic dopplerDoppler Hemodynamics with hepatic doppler
Doppler Hemodynamics with hepatic doppler
 
Doppler of the portal system
Doppler of the portal systemDoppler of the portal system
Doppler of the portal system
 
Normal doppler spectral pattern of abdominal and limb vessels final
Normal doppler spectral pattern of abdominal and limb vessels finalNormal doppler spectral pattern of abdominal and limb vessels final
Normal doppler spectral pattern of abdominal and limb vessels final
 
Perfusion MRI (DSC and DCE perfusion techniques) for radiology residents
Perfusion MRI (DSC and DCE perfusion techniques) for radiology residentsPerfusion MRI (DSC and DCE perfusion techniques) for radiology residents
Perfusion MRI (DSC and DCE perfusion techniques) for radiology residents
 
Hepatic doppler ultrasound
Hepatic doppler ultrasoundHepatic doppler ultrasound
Hepatic doppler ultrasound
 
Advances in ultrasound
Advances in ultrasoundAdvances in ultrasound
Advances in ultrasound
 
Venous Doppler upper limb
Venous Doppler upper limb Venous Doppler upper limb
Venous Doppler upper limb
 
Contrast enhanced ultrasound
Contrast enhanced ultrasoundContrast enhanced ultrasound
Contrast enhanced ultrasound
 

Destacado

Artifacts in esophageal high resolution manometry
Artifacts in esophageal high resolution manometryArtifacts in esophageal high resolution manometry
Artifacts in esophageal high resolution manometrySamir Haffar
 
A v fistula in heamodialysis
A v fistula in heamodialysisA v fistula in heamodialysis
A v fistula in heamodialysisSaeed Al-Shomimi
 
Helicobacter pylori & Nobel Prize in medicine & physiology
Helicobacter pylori & Nobel Prize in medicine & physiologyHelicobacter pylori & Nobel Prize in medicine & physiology
Helicobacter pylori & Nobel Prize in medicine & physiologySamir Haffar
 
Doppler ultrasound in deep vein thrombosis
Doppler ultrasound in deep vein thrombosisDoppler ultrasound in deep vein thrombosis
Doppler ultrasound in deep vein thrombosisSamir Haffar
 
Doppler ultrasound of A-V access for hemodialysis
Doppler ultrasound of A-V access for hemodialysisDoppler ultrasound of A-V access for hemodialysis
Doppler ultrasound of A-V access for hemodialysisSamir Haffar
 
Doppler ultrasound of lower limb arteries
Doppler ultrasound of lower limb arteriesDoppler ultrasound of lower limb arteries
Doppler ultrasound of lower limb arteriesSamir Haffar
 

Destacado (6)

Artifacts in esophageal high resolution manometry
Artifacts in esophageal high resolution manometryArtifacts in esophageal high resolution manometry
Artifacts in esophageal high resolution manometry
 
A v fistula in heamodialysis
A v fistula in heamodialysisA v fistula in heamodialysis
A v fistula in heamodialysis
 
Helicobacter pylori & Nobel Prize in medicine & physiology
Helicobacter pylori & Nobel Prize in medicine & physiologyHelicobacter pylori & Nobel Prize in medicine & physiology
Helicobacter pylori & Nobel Prize in medicine & physiology
 
Doppler ultrasound in deep vein thrombosis
Doppler ultrasound in deep vein thrombosisDoppler ultrasound in deep vein thrombosis
Doppler ultrasound in deep vein thrombosis
 
Doppler ultrasound of A-V access for hemodialysis
Doppler ultrasound of A-V access for hemodialysisDoppler ultrasound of A-V access for hemodialysis
Doppler ultrasound of A-V access for hemodialysis
 
Doppler ultrasound of lower limb arteries
Doppler ultrasound of lower limb arteriesDoppler ultrasound of lower limb arteries
Doppler ultrasound of lower limb arteries
 

Similar a Doppler Physics

doppler physics.pptx
doppler physics.pptxdoppler physics.pptx
doppler physics.pptxalma dsouza
 
Doppler ultrasounds (1)
Doppler ultrasounds (1)Doppler ultrasounds (1)
Doppler ultrasounds (1)KamalEldirawi
 
Flow measurement in Blood flow
Flow measurement in Blood flowFlow measurement in Blood flow
Flow measurement in Blood flowVinothini S
 
doppler gynecology pdf doppler en gynécologie
doppler gynecology pdf doppler en gynécologiedoppler gynecology pdf doppler en gynécologie
doppler gynecology pdf doppler en gynécologieRimaBoualleg
 
Doppler study general bases
Doppler study general basesDoppler study general bases
Doppler study general basesRiyadhWaheed
 
carotid doppler u/s Radiology
carotid doppler u/s Radiologycarotid doppler u/s Radiology
carotid doppler u/s RadiologyHenock Negasi
 
Doppler principles [1]
Doppler principles [1]Doppler principles [1]
Doppler principles [1]KamalEldirawi
 
Echocardiographic evaluation of of coronary arteries
Echocardiographic evaluation of  of coronary arteriesEchocardiographic evaluation of  of coronary arteries
Echocardiographic evaluation of of coronary arteriesRaghu Kishore Galla
 
echo evaluation of coronary arteries.pptx
echo evaluation of coronary arteries.pptxecho evaluation of coronary arteries.pptx
echo evaluation of coronary arteries.pptxAbhinay Reddy
 
Renal doppler ultrasound
Renal doppler ultrasoundRenal doppler ultrasound
Renal doppler ultrasoundAhmed Bahnassy
 

Similar a Doppler Physics (20)

Doppler echocardiography
Doppler echocardiographyDoppler echocardiography
Doppler echocardiography
 
Doppler echocardiography
Doppler echocardiographyDoppler echocardiography
Doppler echocardiography
 
doppler physics.pptx
doppler physics.pptxdoppler physics.pptx
doppler physics.pptx
 
dopplerphysics2.pptx
dopplerphysics2.pptxdopplerphysics2.pptx
dopplerphysics2.pptx
 
Doppler phys (2)
Doppler phys (2)Doppler phys (2)
Doppler phys (2)
 
Doppler ultrasounds (1)
Doppler ultrasounds (1)Doppler ultrasounds (1)
Doppler ultrasounds (1)
 
Flow measurement in Blood flow
Flow measurement in Blood flowFlow measurement in Blood flow
Flow measurement in Blood flow
 
Echocardiography
Echocardiography Echocardiography
Echocardiography
 
Dop phys (1)
Dop phys (1)Dop phys (1)
Dop phys (1)
 
doppler gynecology pdf doppler en gynécologie
doppler gynecology pdf doppler en gynécologiedoppler gynecology pdf doppler en gynécologie
doppler gynecology pdf doppler en gynécologie
 
Doppler study general bases
Doppler study general basesDoppler study general bases
Doppler study general bases
 
Doppler physics.pptx
Doppler physics.pptxDoppler physics.pptx
Doppler physics.pptx
 
Doppler us (3)
Doppler us (3)Doppler us (3)
Doppler us (3)
 
carotid doppler u/s Radiology
carotid doppler u/s Radiologycarotid doppler u/s Radiology
carotid doppler u/s Radiology
 
Doppler principles [1]
Doppler principles [1]Doppler principles [1]
Doppler principles [1]
 
Echocardiographic evaluation of of coronary arteries
Echocardiographic evaluation of  of coronary arteriesEchocardiographic evaluation of  of coronary arteries
Echocardiographic evaluation of of coronary arteries
 
echo evaluation of coronary arteries.pptx
echo evaluation of coronary arteries.pptxecho evaluation of coronary arteries.pptx
echo evaluation of coronary arteries.pptx
 
blood flow measurement
blood flow measurementblood flow measurement
blood flow measurement
 
Renal Doppler Ultrasound
Renal Doppler UltrasoundRenal Doppler Ultrasound
Renal Doppler Ultrasound
 
Renal doppler ultrasound
Renal doppler ultrasoundRenal doppler ultrasound
Renal doppler ultrasound
 

Más de Sahil Chaudhry

Imaging in Ocular Pathologies
Imaging in Ocular PathologiesImaging in Ocular Pathologies
Imaging in Ocular PathologiesSahil Chaudhry
 
MR Imaging of shoulder and knee joints
MR Imaging of shoulder and knee jointsMR Imaging of shoulder and knee joints
MR Imaging of shoulder and knee jointsSahil Chaudhry
 
Imaging in Osteoporosis and Paget's disease
Imaging in Osteoporosis and Paget's diseaseImaging in Osteoporosis and Paget's disease
Imaging in Osteoporosis and Paget's diseaseSahil Chaudhry
 
Non Tubercular Infections of Genitourinary tract
Non Tubercular Infections of Genitourinary tractNon Tubercular Infections of Genitourinary tract
Non Tubercular Infections of Genitourinary tractSahil Chaudhry
 
IBD AND ABDOMINAL TB-ROLE OF IMAGING
IBD AND ABDOMINAL TB-ROLE OF IMAGINGIBD AND ABDOMINAL TB-ROLE OF IMAGING
IBD AND ABDOMINAL TB-ROLE OF IMAGINGSahil Chaudhry
 
Imaging of Malignant Liver Lesions
Imaging of Malignant Liver LesionsImaging of Malignant Liver Lesions
Imaging of Malignant Liver LesionsSahil Chaudhry
 
Ultrasound shoulder and knee joints
Ultrasound shoulder and knee jointsUltrasound shoulder and knee joints
Ultrasound shoulder and knee jointsSahil Chaudhry
 
Ultrasound Elastography
Ultrasound Elastography Ultrasound Elastography
Ultrasound Elastography Sahil Chaudhry
 
Fetal Anomaly Scan - Chest,GIT,GUT
Fetal Anomaly Scan - Chest,GIT,GUTFetal Anomaly Scan - Chest,GIT,GUT
Fetal Anomaly Scan - Chest,GIT,GUTSahil Chaudhry
 
Cross sectional anatomy of the neck
Cross sectional anatomy of the neckCross sectional anatomy of the neck
Cross sectional anatomy of the neckSahil Chaudhry
 
HRCT TECHNIQUE AND INTERPRETATION
HRCT TECHNIQUE AND INTERPRETATIONHRCT TECHNIQUE AND INTERPRETATION
HRCT TECHNIQUE AND INTERPRETATIONSahil Chaudhry
 

Más de Sahil Chaudhry (12)

Imaging in Ocular Pathologies
Imaging in Ocular PathologiesImaging in Ocular Pathologies
Imaging in Ocular Pathologies
 
CNS infections
CNS infectionsCNS infections
CNS infections
 
MR Imaging of shoulder and knee joints
MR Imaging of shoulder and knee jointsMR Imaging of shoulder and knee joints
MR Imaging of shoulder and knee joints
 
Imaging in Osteoporosis and Paget's disease
Imaging in Osteoporosis and Paget's diseaseImaging in Osteoporosis and Paget's disease
Imaging in Osteoporosis and Paget's disease
 
Non Tubercular Infections of Genitourinary tract
Non Tubercular Infections of Genitourinary tractNon Tubercular Infections of Genitourinary tract
Non Tubercular Infections of Genitourinary tract
 
IBD AND ABDOMINAL TB-ROLE OF IMAGING
IBD AND ABDOMINAL TB-ROLE OF IMAGINGIBD AND ABDOMINAL TB-ROLE OF IMAGING
IBD AND ABDOMINAL TB-ROLE OF IMAGING
 
Imaging of Malignant Liver Lesions
Imaging of Malignant Liver LesionsImaging of Malignant Liver Lesions
Imaging of Malignant Liver Lesions
 
Ultrasound shoulder and knee joints
Ultrasound shoulder and knee jointsUltrasound shoulder and knee joints
Ultrasound shoulder and knee joints
 
Ultrasound Elastography
Ultrasound Elastography Ultrasound Elastography
Ultrasound Elastography
 
Fetal Anomaly Scan - Chest,GIT,GUT
Fetal Anomaly Scan - Chest,GIT,GUTFetal Anomaly Scan - Chest,GIT,GUT
Fetal Anomaly Scan - Chest,GIT,GUT
 
Cross sectional anatomy of the neck
Cross sectional anatomy of the neckCross sectional anatomy of the neck
Cross sectional anatomy of the neck
 
HRCT TECHNIQUE AND INTERPRETATION
HRCT TECHNIQUE AND INTERPRETATIONHRCT TECHNIQUE AND INTERPRETATION
HRCT TECHNIQUE AND INTERPRETATION
 

Último

Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...EduSkills OECD
 
Gardella_PRCampaignConclusion Pitch Letter
Gardella_PRCampaignConclusion Pitch LetterGardella_PRCampaignConclusion Pitch Letter
Gardella_PRCampaignConclusion Pitch LetterMateoGardella
 
An Overview of Mutual Funds Bcom Project.pdf
An Overview of Mutual Funds Bcom Project.pdfAn Overview of Mutual Funds Bcom Project.pdf
An Overview of Mutual Funds Bcom Project.pdfSanaAli374401
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfJayanti Pande
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfagholdier
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17Celine George
 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxDenish Jangid
 
Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.pptRamjanShidvankar
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxAreebaZafar22
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introductionMaksud Ahmed
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeThiyagu K
 
Seal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxSeal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxnegromaestrong
 
Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Disha Kariya
 
Class 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfClass 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfAyushMahapatra5
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Celine George
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityGeoBlogs
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactdawncurless
 

Último (20)

Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 
Gardella_PRCampaignConclusion Pitch Letter
Gardella_PRCampaignConclusion Pitch LetterGardella_PRCampaignConclusion Pitch Letter
Gardella_PRCampaignConclusion Pitch Letter
 
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptxINDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
 
An Overview of Mutual Funds Bcom Project.pdf
An Overview of Mutual Funds Bcom Project.pdfAn Overview of Mutual Funds Bcom Project.pdf
An Overview of Mutual Funds Bcom Project.pdf
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdf
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17
 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
 
Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.ppt
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptx
 
Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and Mode
 
Seal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxSeal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptx
 
Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..
 
Class 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfClass 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdf
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activity
 
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impact
 

Doppler Physics

  • 1. DOPPLER PHYSICS •  Dr.Sahil  Chaudhry,  AJIMS
  • 2.
  • 3. OUTLINE •  Doppler  Principles   •  Pulsed  and  Con:nuous  Doppler     •  Aliasing  and  Nyquist  Criteria   •  Spectral  Analysis   •  Colour  flow  imaging   •  Power  Doppler   •  Doppler  Ar:facts  
  • 4.
  • 5. Waves from a stationary source Wave  peaks  evenly  spaced  around  the  source  at  1  wavelength  intervals  
  • 6. Waves from a moving source Source  moving  this  way   Old  posi7ons  of  source  
  • 7. Doppler Effect v Change  in  the  perceived  frequency  of  sound   emiGed  by  a  moving  source.   v The  basis  of  Doppler  ultrasonography  is  the  fact   that  refected/scaGered  ultrasonic  waves  from  a   moving  interface  will  undergo  a  frequency  shiK.    
  • 8. RECEIVED FREQUENCY TRANSMITTED FREQUENCY DOPPLER SHIFT
  • 9. •  In  diagnos:c  ultrasound,  the  Doppler  effect  is  used   to  measure  blood  flow  velocity.     •  When  the  emiGed  ultrasound  beam  strikes  moving   blood  cells,  the  laGer  reflect  the  pulse  with  a   specific  Doppler  shiK  frequency  that  depends  on   the  velocity  and  direc:on  of  blood  flow.  
  • 10. •  IF RECEIVED FREQUENCY = TRANSMITTED FREQUENCY, NO DOPPLER SHIFT ¨  Posi:ve  shiK     Ø     Received  freq  >   transmiGed    freq   Ø  Flow  towards  the   transducer   ¨  Nega:ve  shiK   Ø  TransmiGed  freq  >   received  freq   Ø  Flow  away  from  the   transducer  
  • 11.
  • 12. •  Angle     •             Cos  (a)     Doppler  shiK  depends  on  the  cosine   of  the  angle  between  the  sound   beam  and  the  direc:on  of  the   mo:on                V  =          Fd    ×  C                                2  fₒ  ×  cos  ᶱ     Op:mal  angle              30°  -­‐  60°       Angle   Cos  theta   0   1   45   0.7   60   0.5   90   0  
  • 13. Angle  to  Flow   Angle Cosine 0 1.00 15 0.97 45 0.71 60 0.50 75 0.26 90 0.00
  • 14. The size of the Doppler signal is dependent on:       •  Blood  velocity:  as  velocity   increases,  so  does  the  Doppler   frequency   •  Ultrasound  frequency:  higher   ultrasound  frequencies  give   increased  Doppler  frequency.   •  Angle  of  Insona:on  
  • 15. Continuous Doppler •  Uses  two  crystals,  one  to  send   and  one  to  receive.   •  Uses  con:nuous  transmission   and  recep:on  of  ultrasound.     •  Doppler  signals  are  obtained   from  all  vessels  in  the  path  of   the  ultrasound  beam  (un:l  the   ultrasound  beam  becomes   sufficiently  aGenuated  due  to   depth).     •  Unable  to  determine  the  specific   loca:on  of  veloci:es  within  the   beam  and  cannot  be  used  to   produce  color  flow  images.     •  Used  in  adult  cardiac  scanners   to  inves:gate  the  high  veloci:es   in  the  aorta.     AUDI O   AMP LIFIE R   FIL TE R   DEMOD ULATO R   OSCILLAT OR,   TRANSMI T   AMPLIFIE R   RECEIV ER,   AMPLI FIER  
  • 16. CW  DOPPLER   •  Doppler shift can be located at any depth in the flow sensitive zone of beam. •  The Doppler receiver is unable to determine the exact location of the Doppler shift. •  Thus CW lacks range resolution. •  Because it is continuously sample returning echoes it have no limitations on measuring high flow velocities.
  • 17.
  • 18. Directional Doppler ü  Quadrature  detec:on  helps  in  determining  flow  direc:on.       ü  Received  echo  signals  are  amplified  àsplit  into  two  iden:cal   channels  for  demodula:on.   ü  The  reference  signals  from  the  transmiGer  sent  to  the  two   demodulators  are  90  degrees  out  of  phase.       ü  Two  separate  Doppler  signals  are  produced.  They  are  iden:cal  except   for  a  small  phase  difference  between  them,  and  this  phase  difference   can  be  used  to  determine  whether  the  Doppler  shiK  is  posi:ve  or   nega:ve.  
  • 19. Pulsed Doppler •  The  transducer  both  sends  and   receives  the  signal.   •  The  returned  signal  is  gated  so  that   only  informa:on  about  the  desired   depth  is  computed   •  Pulses  –  just  like  real  :me  scanning   •  Need  to  “gate”  analysis  of  received   pulse,  so  we  know  where  the  moving   objects  are.   •  This  allows  measurement  of  the   depth  (or  range)  of  the  flow  site.   Addi:onally,  the  size  of  the  sample   volume  (or  range  gate)  can  be   changed.  Pulsed  wave  ultrasound  is   used  to  provide  data  for  Doppler   sonograms  and  color  flow  images   Sam ple   Demod ulator   Gate   size   and   depth   Master   Oscillat or   Rec eive r   Gated   Trasmi Ger  
  • 20. Continuous doppler Pulsed doppler Ø       Separate    crystal  for          transmiqng  &  receiving   Ø     Can  measure  high  veloci:es   Ø     Range  ambiguity     Ø     Single  crystal  transmits  &   receives.   Ø     Range  resolu:on   Ø     Can’t  measure  very  high  veloci:es  
  • 21. Doppler Modes Colour                                                        Power                                              Spectral  
  • 22. Physics of Spectral Flow Vascular  Flow   •  Blood  flow  is  normally  laminar  with  velocity  decreasing   from  the  center  outward  to  the  vessel  walls  
  • 23. Hemodynamic Principles Laminar  Flow   •  Con:nuous  or  laminar  flow  is  characterized  by  a   constant  velocity  over  :me.   •  The  flow  profile  of  laminar  flow  is  determined  by   iner:al  and  fric:onal  forces.  Fric:on  produces  a   laminar,  or,  in  the  three-­‐dimensional  model,  parabolic   flow  profile.  Flow  is  fastest  toward  the  center  of  a   vessel  and  decreases  toward  the  wall,  where  it   approximates  zero.   •  Color  duplex  ultrasound  reflects  this  flow  profile  by   lighter  color  shades  in  the  center  (fast  flow)  and  darker   shades  near  the  wall  (slow  flow)  
  • 24. Typical triphasic Doppler waveform of the popliteal artery.     color duplex scan depicts laminar flow with lighter coloring in the center darker colors toward the margins.
  • 25. Pulsatile Flow •  In  contrast  to  laminar  flow,  pulsa:le  flow  changes   periodically  over  :me.  Phases  of  accelera:on  and   decelera:on  vary  in  rela:on  to  changes  in  pressure.     •  The  pressure  amplitude  generated  by  the  leK  ventricle   is  reduced  by  the  compliance  of  the  aorta  and  other   large  vessels  (windkessel  effect),  resul:ng  in  a  more   steady  flow.     •  Another  factor  affec:ng  the  flow  profile  is  the   peripheral  resistance   •  As  the  peripheral  resistance  is  a  crucial  factor  affec:ng   the  waveform,  a  dis:nc:on  is  made  between  low-­‐ resistance  flow  and  high-­‐resistance  flow.  
  • 26. Low Resistance Flow •  Arteries  supplying  parenchymal  organs   and  the  brain  are  characterized  by  a  fairly   steady  blood  flow  as  a  result  of  low   peripheral  resistance.  In  these  arteries,  a   moderate  systolic  rise  is  followed  by  a   steady  flow  that  persists  throughout   diastole.  This  flow  profile  is  typical  of  the   renal,  hepa:c,  splenic,  internal  caro:d,   and  vertebral  arteries   •  The  windkessel  effect  thus  ensures  a   more  con:nuous  flow  than  would  result   from  the  ac:on  of  the  leK  ventricle  and   aor:c  valve  alone.  As  a  result,  flow  will   become  more  pulsa:le  when  this  effect   and  the  normal  elas:city  of  the  vessels   are  lost.  
  • 27. High Resistance Flow •  A  high  peripheral  resistance  results   in  a  more  pulsa:le  flow  with  a   steep  systolic  upslope  during  the   accelera:on  phase,  followed  by   decelera:on  and  a  significant   reflux  in  early  diastole  and  short   backward  flow  in  mid-­‐diastole.   Zero  flow  is  typically  seen  in  end   diastole.  This  paGern  is  referred  to   as  triphasic  flow.   •  High-­‐resistance  flow  is  typical  of   the  arteries  supplying  Muscles  and   the  skin  
  • 28. Transition from laminar to turbulent flow    Ø Turbulent  flow  occurs  when   laminar  flow  breaks  down  and  the   par:cles  in  the  fluid  move   randomly  in  all  direc:ons  with   variable  speeds   Ø   Turbulent  flow  is  more  likely  to   occur  at  high  veloci:es  (V),  and  the   cri:cal  velocity  at  which  flow   becomes  turbulent  depends  on  the   viscosity,  the  density  of  the  fluid   and  the  diameter  of  the  vessel  (d).   Reynolds  described  this   rela:onship,  which  defines  a  value   called  the  Reynolds  number  (Re)  
  • 29.
  • 30. Color  Flow  Imaging   •   Doppler data evaluated using autocorrelation. •  Autocorrelation is a technique that compare the echo from each pulse with the echo from the previous pulse. •  Autocorrelation requires a minimum of 3 pulses per scan line.
  • 31. Color  Flow  Imaging   •  This technique can only produce an estimate of the mean frequency shift and mean velocity. •  Increasing the line per frame provides an image with more resolution at the expense of the frame rate.
  • 32. Color  Flow  Imaging   Color  Resolu7on   Frame  rate   Number  of  lines  in   Gray  scale  imaging  
  • 33. Color  Flow  Imaging   •  To produce the color flow image, the mean Doppler shift is encoded according to a preset color map. •  This color information is superimposed on the gray scale anatomic scan in real time.
  • 34. Color  Flow  Maps   •  Velocity color map •  Variance color map
  • 35.
  • 36.
  • 37. .  
  • 38. Velocity  Color  Bar   Increasing flow velocity away from the transducer Zero flow Increasing flow velocity toward the transducer
  • 39. Variance  Color  Bar   Variance  Color  
  • 40.        Near  occlusion                      Total  occlusion  
  • 41. Colour Doppler Limita:ons  :   Ø Semi  quan:ta:ve     Ø Angle  dependence   Ø Aliasing   Ø Ar:facts  caused  by  the  noise   Ø Poor  temporal  resolu:on.    
  • 42. Colour Box Color box is an operator-adjustable area within US image in which all color Doppler information is displayed. Because frame rate decreases as box size increases, image resolution & quality are affected by box size and width. Box should be as small & superficial as possible while still providing necessary information. A deep color box will result in a slower PRF, which may produce aliasing of depicted color flow.
  • 44. Aliasing •  Aliasing  is  produc:on   of  ar:ficial  low   frequency  signals   when  the  sampling   rate  is  less  than  twice   the  doppler  signal   frequency.  When  the   Doppler  shiKs  exceed  a   value  Nyquist   frequency,  veloci:es   are  perceived  as  going   in  opposite  direc:on.   Aliasing    occurs  when    Doppler  shi2  >  Nyquist   frequency   Nyquist    freq  -­‐  Pulse  Repe<<on  Frequency                              2  
  • 45. Nyquist  Sampling  Limit   •  The  Maximum  Doppler  frequency  that  can  be   sampled  is  ½  the  PRF   •  Example,  if  PRF  =  8  kHz   – Max  Doppler  frequency  is  4  kHz   •  Example,  if  PRF  =  4  kHz   – Max  Doppler  frequency  is  2  kHz  
  • 46. Adjustments to be made to avoid aliasing •  Increasing  the  PRF   •  Moving  color  or  spectral  baseline  up  or  down.   •  Decreasing  Doppler  shiK  frequency  (changing   angle  of  insona:on).     •  Using  a  lower-­‐frequency  transducer.    
  • 47.  Doppler  Spectrum  Assessment   Assess the following: 1. Presence of flow 2. Direction of flow 3. Amplitude 4. Window 5. Pulsatility
  • 48.  Doppler  Spectrum  Assessment   Check  for  Flow   Flow     Detected   No  Flow     Detected   Check     SV  Placement   Sensi7ve   Decreased   Sensi7vity   Improve   Sensi7vity   Check     Sensi7vity   Check  Beam-­‐   flow  angle    
  • 49.  Doppler  Spectrum  Assessment   Sensitivity can be improved by: •  Increasing power or gain. •  Decreasing the velocity scale. •  Decreasing the reject or filter. •  Slowly increasing the SV size.
  • 50.  Doppler  Spectrum  Assessment   Direction of Flow Pulsed Doppler use quadrature phase detection to provide bidirectional Doppler information.
  • 51.  Doppler  Spectrum  Assessment   Flow can either be: •  Mono-phasic •  Bi-phasic •  Tri-phasic •  Bidirectional
  • 52.  Spectral    Display   Frequency   Time   Mono-­‐phasic  Flow     Flow  on  just  on  side     of  the  Baseline.  
  • 53.  Spectral    Display   Frequency   Time   Bi-­‐phasic  Flow     Flow  start  on  one   side  of  the  Baseline     and  then  crosses  to     the  other.  
  • 54.  Spectral    Display   Frequency   Time   Tri-­‐phasic  Flow     Flow  start  on  one  side     of    the    baseline  side,   then  crosses  to  the     other,  then  returns  to     the  original  side.  
  • 55.  Spectral    Display   Time   Frequency   Bidirec7onal  Flow     Flow  which  occurs   simultaneously  on     both  sides  of  the     baseline.    
  • 56.  Doppler  Spectrum  Assessment   Amplitude The spectrum displays echo amplitude by varying the brightness of the display. The amplitude of the echoes are determined by: •  Echo intensity •  Power •  Gain •  Dynamic range
  • 57.  Doppler  Spectrum  Assessment   Window •  Received Doppler shift consist of a range of frequencies. •  Narrow range of frequencies will result in a narrow display line. •  The clear area underneath the spectrum is called the window.
  • 58.  Spectral    Display   Sonic  Window   Velocity   Time   A  narrow  range  of  frequencies   results  in  large  clear  window.  
  • 59.  Spectral    Display   Sonic  Window   Velocity   Time   A  broad  range  of  frequencies   results  in  diminished  window.  
  • 60. Spectrum  Broadening   Loss of the Spectral window is called Spectral Broadening.
  • 61. Spectrum  Broadening   Occurs usually: •  As the blood decelerates in diastole •  If sample volume is placed to close to the vessel wall •  In small vessels (parabolic velocity profile)
  • 62. Spectrum  Broadening   •  Tortuous vessels. •  Low flow states.. •  Excessive gain/power/dynamic range
  • 63. Spectrum  Broadening   It is hallmark of disturbed and/or turbulent flow.
  • 64. Spectrum  Broadening   Pulsatility •  Measures the difference between the maximum and minimum velocities within the cardiac cycle. •  Indices are unit less. •  All increase in value as flow pulsatility increases. •  Can be measured without knowledge of the Doppler angle.
  • 65. Spectral analysis          sharp  systolic  peak  +   reversed  diastolic  flow              (e.g.)  extremity  artery  in   res:ng  stage.            Broad  systolic  peak  +   forward  flow  in  diastole              (e.g.)   ICA,renal,vertebral,celiac.                Sharp  systolic  peak  +  forward   flow  in  diastole.            (e.g.)    ECA  &  SMA  (during   fas:ng)    
  • 66. Spectral changes in disturbed flow
  • 67. •  Doppler indices are : Ø PI Ø RI Ø SYSTOLIC / DIASTOLIC RATIO Ø Acceleration time(AT) and acceleration index(AI) Ø SPECTRAL BROADENING •  These indices can thus serve as a semiquantitative parameter for the evaluation of stenoses  
  • 68. Pulsatility Index §  It is defined as the maximum height of the waveform, S, minus the minimum diastolic, D (which may be negative), divided by the mean height, M, •  Stenoses or occlusions in arteries will alter the Doppler waveform and the pulsatility index.
  • 69. Pourcelot’s Resistance index (RI) §  The resistance indices, in particular the Pourcelot index, reflect wall elasticity as well as the peripheral resistance of the organ supplied •  In vessels with greater peripheral resistance, the Pourcelot index is higher and end-diastolic velocity decreases. §  It is defined as follows where E is end diastolic velocity. The value of RI can be calculated by the scanner and displayed on the screen.
  • 71. Spectral Broadening §  There have been several definitions of spectral broadening (SB) described over the years in an attempt to quantify the spread of frequencies present within a spectrum. One such definition is as follows: §  Increased SB indicates the presence of arterial disease  
  • 72. •  SPECTRAL  DOPPLER   •  COLOUR  DOPPLER   Depic7on  of  Doppler  shiQ   informa7on  in  waveform   U7lize  the  Doppler  shiQ   informa7on  to  show  blood  flow  in   color  
  • 73. •  SPECTRAL  DOPPLER   Advantages  :   •  Depicts    quan:ta:ve   flow  at  one  site   •  Allows  calcula:ons   of  velocity  and   indices     •  Good  temporal   resolu:on   •  COLOUR  DOPPLER   Advantages  :   Ø Overall  view  of  flow   Ø   Direc:onal   informa:on  about   flow   Ø   Averaged  velocity   informa:on  about   flow  
  • 74. Power Doppler ¨  Power  or  intensity  of   Doppler  signal  is   measured  rather   than  Doppler  shiK.     Limita:ons  :   ¨  No  direc:on  /   velocity  informa:on   ¨  Slow  frame  rate      
  • 75. Power Doppler Ø A  color-­‐coded  map  of  Doppler  shiKs  superimposed   onto  a  B-­‐mode  ultrasound  image     Ø Color  flow  imaging  have  to  produce  several   thousand  color  points  of  flow  informa:on  for  each   frame  superimposed  on  the  B-­‐mode  image.     Ø Color  flow  imaging  uses  fewer,  shorter  pulses  along   each  color  scan  line  of  the  image  to  give  a  mean   frequency  shiK  and  a  variance  at  each  small  area  of   measurement.  This  frequency  shiK  is  displayed  as  a   color  pixel.  
  • 76. Power Doppler   Ø The  transducer  elements  are  switched  rapidly  between  B-­‐ mode  and  color  flow  imaging  to  give  an  impression  of  a   combined  simultaneous  image.   Ø   The  pulses  used  for  color  flow  imaging  are  typically  three   to  four  :mes  longer  than  those  for  the  B-­‐mode  image,  with   a  corresponding  loss  of  axial  resolu:on.     Ø Assignment  of  color  to  frequency  shiKs  is  usually  based  on   direc:on  (for  example,  red  for  Doppler  shiKs  towards  the   ultrasound  beam  and  blue  for  shiKs  away  from  it)  and   magnitude  (different  color  hues  or  lighter  satura:on  for   higher  frequency  shiKs).    
  • 77. Power Doppler Advantages  :   Ø  Increased  sensi:vity   of  flow  detec:on   Ø  Less  angle   dependence   Ø  No  aliasing   Ø  Noise  –  a   homogenous   background  
  • 78. Spectral Velocity Scale Scale  change  adjustment  
  • 82. Wall Filter ¨  Filters  eliminate   typically  low-­‐ frequency  high-­‐ intensity  noise  that   may  arise  from   vessel  wall  mo:on    
  • 83. Spectral Filter  Very  High  filter                                                     Color  duplex  US  image  obtained  with  a   high  wall  filter  seVng  shows  loss  of   the  low-­‐velocity-­‐flow  component  of  the   spectral  waveform  immediately  above  the   baseline.  Higher-­‐velocity  flow  is   well  depicted,  and  accurate  flow   quan:fica:on  can  s:ll  occur.  In  the   evalua:on  of  the  liver  vasculature,  this  is   likely  to  become  relevant  only  when  flow   velocity  is  very  low  and  falls  within  the   range  of  veloci:es  that  are  filtered  out.  
  • 84. Spectral Filter   Color  duplex  US   image  demonstrates   how  the  spectral   waveform   progressively  fills  in   toward  the  baseline.    Op:mal  filter  50-­‐100  Hz  
  • 85. Colour gain Amplifica:on  of  the  sampled   informa:on  
  • 87. Angle Correction •  Angle   correc:on   refers  to   adjustment   of  Doppler   angle  &  is   used  to   calibrate   velocity  scale   for  the  angle   between  US   beam  and   blood  flow   being   measured  
  • 88. 45’’   0’   >90’   • The  angle  of  insona7on  should  also  be  between  45°-­‐  60°.     • Flow  may  appear  to  be  reversed  when  the  beam-­‐flow  angle  changes  about  90°.     • Complete  loss  of  flow  may  be  evident  when  the  beam-­‐flow  angle  is  90°.    
  • 89. Beam Steering                              45°   ’       >90°  
  • 90. Gate Size Represents the area of flow assessed with Doppler.
  • 91. Sample Volume Sample volume size should be 1/3 of the diameter of the vessel.
  • 92. Inversion ¨  Ability  to  manually     invert  the  spectral   wave  or    color   seqngs.      
  • 95. Doppler artifacts •  Aliasing   •  Mirror  image   •  Blooming   •  Color  in  non  vascular  structures   •  Twinkle  ar:facts  
  • 96. Mirror  image  ar:fact   •  any  vessel  adjacent  to  a   highly  reflec:ve  surface,   such  as  the  lung,   subdiaphragma:c  region   of  the  liver  and  the   supraclavicular  region  
  • 98. Twinkling artifact      Rapidly   fluctua:ng   mixture  of   Doppler   signals  (red   and  blue   pixels)  that   imitate   turbulent   flow  
  • 99. Colour in non vascular structures (Colour flash artifact) •   Manifests  as  a  colour   signal  due  to  transducer   or  pa:ent  mo:on   •  Hypoechoic  areas  such  as   a  cyst  or  a  duct  are   suscep:ble  to  colour  flash   ar:fact.