Publicidad
Find the distance between the points with polar coordinates (3, 120 .pdf
Próximo SlideShare
Find the focus, directrix, and vertex for the parabola x² = -16y.pdfFind the focus, directrix, and vertex for the parabola x² = -16y.pdf
Cargando en ... 3
1 de 1
Publicidad

Más contenido relacionado

Más de sales89(20)

Publicidad

Find the distance between the points with polar coordinates (3, 120 .pdf

  1. Find the distance between the points with polar coordinates (3, 120 degrees) and (0.5, 49 degrees) Solution The simplest way to solve this is to convert the polar coordinates into cartesian coordinates first, and then, use the Cartesian coordinate distance formula to find the distance between those 2. (Point 1 = P_1 = 3angle 120 implies (x,y) = (3 cos120^circ, 3sin120^circ) = (- frac{3}{2}, frac{3sqrt{3}}{2})) (Point 2 = P_2 = 0.5angle 49 implies (x,y) = (0.5 cos49^circ, 0.5sin49^circ) approx (0.33, 0.38)) Now we use the distance formula: (D = sqrt{(0.33-(-frac{3}{2}))^2 + (0.38-(frac{3sqrt{3}}{2})^2} approx 8.27) root = 2.88
Publicidad