SlideShare una empresa de Scribd logo
1 de 23
ELEMENTARY   PARTICLESPresented  by S.N. Saravanamoorthy M.Sc., M.Phil., B.Ed., Assistant  Professor in Physics, Devanga  Arts College (Autonomous), Aruppukottai – 626 101.
1. Introduction 2. Classification 3. Particles & Antiparticles 4. Particles instability 5. Conservation laws
INTRODUCTION *  By the year 1932, only three elementary particles namely electron,      proton and photon were known. * The discovery of Neutron by Chadwick in 1932 raised their number to      four. * These elementary particles are the building blocks of matter & they      have characteristic properties such as rest mass, electric charge &      intrinsic angular momentum.  * The elementary particles discovered so far, form a long list of      around 200. These particles are elementary in the sense that they      are structureless, i.e., they cannot be explained as a system of      other elementary particles.
Elementary particle Baryons                   Leptons                            Mesons                 Antiparticles              Electron       Photon        Neutron              Muon                                                                                                              kaon                                                                                              Pion                       Eta Nucleons                Hyperons Proton                           Lambda, Sigma, Omega Neutron
BARYONS (Or) heavy particles * Protons & particles  heavier than proton form this group. * Proton and neutron are called nucleons and the rest mass      are called hyperons. * Every baryons has an antiparticle. * If a number, called the baryon number +1 is assigned to     baryons and a number -1 is assigned to antibaryons, then     in any closed system interaction or decay, the  baryon     number does not change. This is the law of conservation      of baryons.
HYPERONS * Time decay of the order of 10−10 seconds * Mass value intermediate between neutron & deuteron * Their decay time is very much greater than the time     of their formation (10−3 sec). * K mesons – Strange Particles (Gellmann & Nishijima) * Four types – Lambda, Sigma, Xi, Omega
Leptons *It contains electron, photon, neutrino & muon. * All these elementary particles have masses smaller    than that of a pion. ELECTRON * First discovered particle * negative charge & stable particle * An electrostatic field exists between two electrons
PHOTON * no charge & no rest mass * It has energy given by Plank’s equation E=hν * It has an equivalent mass given by Einstein’s equation    E=mc2. NEUTRINO * 1956 – Beta ray spectra in radioactivity * no charge & rest mass is zero * It travels with the speed of light * It exists in two form, one associated with electron & the other with the muon
Muon * It is similar to the electron except that its mass is     about 200 times that of the electron. * It decays very quickly with a half life of 2.2μs into    one electron and two neutrinos.  * It is negatively charged and has a spin of ½.  * It was first discovered during the study of cosmic rays.
MESONS * Masses are between those of leptons & baryons. * They are unstable. * They decay into lighter mesons or leptons. * They have either positive, negative at zero charge. * The mesons include the pion, kaon and eta particles.
Positive Pimeson (Pion) ,[object Object]
positively charged particle & life time - 10−8 secNeutral Pion ,[object Object]
Mass is equal to 264 times the mass of the electronCharged Kaon: +ve charge & a mass of about one-half of                              proton. Neutral kaon: No charge & Its life is of the order of 10−9 sec
PARTICLES & ANTI-PARTICLES Electron – Positron * Same mass & the same spin but opposite charge *They annihilate each other with the emission of photons * The existence of an antiparticle for the electron was    actually predicted by Dirac, because of a symmetry of     the equations of the relativistic quantum theory of the      electron. ,[object Object],[object Object]
Neutron and Antineutron
Neutrino and Antineutrino It has Charge Zero, spin ½, zero rest mass and magnetic moment smaller than 10−8 Bohr magneton or nearly zero. Finite energy, momentum and travels with the speed of light. It does not cause ionization on passing through matter. The spin of the neutrino is opposite in direction to the direction of its motion. (neutrino spins – counterclockwise) The spin of the antineutrino is in the same direction as its direction of motion. (It spins clockwise) The neutrino moves through space in the manner of a left-handed screw, while the antineutrino does so in the manner of a right-handed screw.  Continue…
Neutrino possesses a “left-handed” helicity ; the antineutrino possesses a “right-handed” helicity. Neutrino’s emitted in Beta decay have a negative helicity.  They are longitudinally polarized with their spin axes antiparallel to their direction of travel.     H = + 1 for ν- ; H = - for ν Because of its lack of charge and magnetic moment, a neutrino has essentially no interaction with matter, except that which leads to inverse beta decay. This interaction is extremely weak. (σ≈10- 20  barn) Matter is almost totally transparent to neutrinos.
Conservation Laws Conservation of parity Charge conjugation symmetry Time reversal symmetry Combined Inversion of CPT
Conservation of Parity Parity relates to the symmetry of the wave function that represents the system. If the wave function is unchanged then the system has a parity of +1. If changed, then the system has parity of -1. During a reaction in which parity is conserved, the total parity number does not change. Prior to 1956 it was believed that all reactions in nature obeyed the law of conservation of parity. Yang and Lee pointed out that in reactions involving the weak interaction, parity was not conserved. Indeed parity conservation is found to hold true only in the strong and em interactions.
Charge conjugate symmetry It is the act of symmetry operation in which every particle in a system is replaced by its antiparticle. If the anti-system or antimatter counterpart exhibits the same physical phenomena, then charge parity (C) is conserved. In fact C is not conserved in the weak interaction.
Time reversal symmetry Time parity T describes the behaviour of a wave function when t is replaced by –t.  The symmetry operation that corresponds to the conservation of time parity is time reversal. The direction of  time is not significant, so that the reverse of any process that can occur is also a process that can occur. Prior to 1964, time parity T was considered to be conserved in every interaction. One form of Kokaon can decay in to π+, π−, which violates the conservation of T.  The symmetry of phenomena under time reversal does not seem to be universal.

Más contenido relacionado

La actualidad más candente

Standard Model in Particle Physics, Physical Science Lesson PowerPoint
Standard Model in Particle Physics, Physical Science Lesson PowerPointStandard Model in Particle Physics, Physical Science Lesson PowerPoint
Standard Model in Particle Physics, Physical Science Lesson PowerPoint
www.sciencepowerpoint.com
 
Nuclear stability
Nuclear stabilityNuclear stability
Nuclear stability
zehnerm2
 
nuclear physics,unit 6
nuclear physics,unit 6nuclear physics,unit 6
nuclear physics,unit 6
Kumar
 

La actualidad más candente (20)

Semiconductors
SemiconductorsSemiconductors
Semiconductors
 
Standard Model in Particle Physics, Physical Science Lesson PowerPoint
Standard Model in Particle Physics, Physical Science Lesson PowerPointStandard Model in Particle Physics, Physical Science Lesson PowerPoint
Standard Model in Particle Physics, Physical Science Lesson PowerPoint
 
Nuclear chain reaction
Nuclear chain reactionNuclear chain reaction
Nuclear chain reaction
 
Introduction to particle physics
Introduction to particle physicsIntroduction to particle physics
Introduction to particle physics
 
Energy bands insolids
Energy bands insolidsEnergy bands insolids
Energy bands insolids
 
Elementary particles
Elementary particlesElementary particles
Elementary particles
 
Ph 101-8
Ph 101-8Ph 101-8
Ph 101-8
 
SEMICONDUCTORS,BAND THEORY OF SOLIDS,FERMI-DIRAC PROBABILITY,DISTRIBUTION FUN...
SEMICONDUCTORS,BAND THEORY OF SOLIDS,FERMI-DIRAC PROBABILITY,DISTRIBUTION FUN...SEMICONDUCTORS,BAND THEORY OF SOLIDS,FERMI-DIRAC PROBABILITY,DISTRIBUTION FUN...
SEMICONDUCTORS,BAND THEORY OF SOLIDS,FERMI-DIRAC PROBABILITY,DISTRIBUTION FUN...
 
Conductor semiconductor insulator
Conductor semiconductor insulatorConductor semiconductor insulator
Conductor semiconductor insulator
 
Nuclear stability
Nuclear stabilityNuclear stability
Nuclear stability
 
State and explain Alpha , Beta and Gamma decay
State and explain Alpha , Beta and Gamma decayState and explain Alpha , Beta and Gamma decay
State and explain Alpha , Beta and Gamma decay
 
Limitations OF Classical Physics and Birth Of Quantum Mechanics
Limitations OF Classical Physics and Birth Of Quantum MechanicsLimitations OF Classical Physics and Birth Of Quantum Mechanics
Limitations OF Classical Physics and Birth Of Quantum Mechanics
 
Nuclear physics
Nuclear physicsNuclear physics
Nuclear physics
 
Free electron in_metal
Free electron in_metalFree electron in_metal
Free electron in_metal
 
Standard model of particle physics
Standard model of particle physicsStandard model of particle physics
Standard model of particle physics
 
nuclear physics,unit 6
nuclear physics,unit 6nuclear physics,unit 6
nuclear physics,unit 6
 
Band theory of solids
Band theory of solidsBand theory of solids
Band theory of solids
 
Solid State Physics
Solid State PhysicsSolid State Physics
Solid State Physics
 
Specific Heat Capacity
Specific Heat CapacitySpecific Heat Capacity
Specific Heat Capacity
 
Blackbody ppt
Blackbody pptBlackbody ppt
Blackbody ppt
 

Similar a Elementary particles

BE UNIT-1 basic electronics unit one.pptx
BE UNIT-1 basic electronics unit one.pptxBE UNIT-1 basic electronics unit one.pptx
BE UNIT-1 basic electronics unit one.pptx
harisbs369
 
Topic 7.3 - The structure of matter.pptx
Topic 7.3 - The structure of matter.pptxTopic 7.3 - The structure of matter.pptx
Topic 7.3 - The structure of matter.pptx
HashemYamani
 

Similar a Elementary particles (20)

elementaryparticles-101223114011-phpapp02.pptx
elementaryparticles-101223114011-phpapp02.pptxelementaryparticles-101223114011-phpapp02.pptx
elementaryparticles-101223114011-phpapp02.pptx
 
Classification of particles
Classification of particlesClassification of particles
Classification of particles
 
Unit2 Presentation
Unit2 PresentationUnit2 Presentation
Unit2 Presentation
 
12.2
12.212.2
12.2
 
physics project.pptx
physics project.pptxphysics project.pptx
physics project.pptx
 
Atom inside out
Atom inside outAtom inside out
Atom inside out
 
Atomic structore
Atomic structoreAtomic structore
Atomic structore
 
Atomic and nuclear physics
Atomic and nuclear physicsAtomic and nuclear physics
Atomic and nuclear physics
 
Shubham kumar{11th a}
Shubham kumar{11th a}Shubham kumar{11th a}
Shubham kumar{11th a}
 
Martin Lindsey MSIMatter Presentation
Martin Lindsey MSIMatter PresentationMartin Lindsey MSIMatter Presentation
Martin Lindsey MSIMatter Presentation
 
Structure of atom by pratiksha
Structure of atom by pratikshaStructure of atom by pratiksha
Structure of atom by pratiksha
 
BE UNIT-1 basic electronics unit one.pptx
BE UNIT-1 basic electronics unit one.pptxBE UNIT-1 basic electronics unit one.pptx
BE UNIT-1 basic electronics unit one.pptx
 
Topic 7.3 - The structure of matter.pptx
Topic 7.3 - The structure of matter.pptxTopic 7.3 - The structure of matter.pptx
Topic 7.3 - The structure of matter.pptx
 
7248247.ppt
7248247.ppt7248247.ppt
7248247.ppt
 
Structure of an atom
Structure of an atomStructure of an atom
Structure of an atom
 
Atoms chemistry
Atoms chemistry Atoms chemistry
Atoms chemistry
 
Module 2 atom inside out (grade 8)
Module 2 atom inside out (grade 8)Module 2 atom inside out (grade 8)
Module 2 atom inside out (grade 8)
 
Structure Of The Atom.pdf notes important
Structure Of The Atom.pdf notes importantStructure Of The Atom.pdf notes important
Structure Of The Atom.pdf notes important
 
Nuclear Energy, materi kelas 12 SMA saint Johns meruya.pptx
Nuclear Energy, materi kelas 12 SMA saint Johns meruya.pptxNuclear Energy, materi kelas 12 SMA saint Johns meruya.pptx
Nuclear Energy, materi kelas 12 SMA saint Johns meruya.pptx
 
Structure of atomic
Structure of atomicStructure of atomic
Structure of atomic
 

Más de SNS (6)

Growth and spectroscopic studies on vitamin 'C' crystal
Growth and spectroscopic studies on vitamin 'C' crystalGrowth and spectroscopic studies on vitamin 'C' crystal
Growth and spectroscopic studies on vitamin 'C' crystal
 
GATE - Physics - 2006
GATE - Physics - 2006GATE - Physics - 2006
GATE - Physics - 2006
 
GATE - Physics - 2005
GATE - Physics - 2005GATE - Physics - 2005
GATE - Physics - 2005
 
Materials science
Materials scienceMaterials science
Materials science
 
Matter
MatterMatter
Matter
 
Monkey
MonkeyMonkey
Monkey
 

Último

Salient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functionsSalient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functions
KarakKing
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
heathfieldcps1
 
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
ZurliaSoop
 

Último (20)

Fostering Friendships - Enhancing Social Bonds in the Classroom
Fostering Friendships - Enhancing Social Bonds  in the ClassroomFostering Friendships - Enhancing Social Bonds  in the Classroom
Fostering Friendships - Enhancing Social Bonds in the Classroom
 
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptx
 
Salient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functionsSalient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functions
 
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
 
Plant propagation: Sexual and Asexual propapagation.pptx
Plant propagation: Sexual and Asexual propapagation.pptxPlant propagation: Sexual and Asexual propapagation.pptx
Plant propagation: Sexual and Asexual propapagation.pptx
 
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdfUnit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdf
 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
 
Google Gemini An AI Revolution in Education.pptx
Google Gemini An AI Revolution in Education.pptxGoogle Gemini An AI Revolution in Education.pptx
Google Gemini An AI Revolution in Education.pptx
 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docx
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
 
Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)
 
How to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptxHow to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptx
 
Towards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptxTowards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptx
 
Single or Multiple melodic lines structure
Single or Multiple melodic lines structureSingle or Multiple melodic lines structure
Single or Multiple melodic lines structure
 
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
 
Jamworks pilot and AI at Jisc (20/03/2024)
Jamworks pilot and AI at Jisc (20/03/2024)Jamworks pilot and AI at Jisc (20/03/2024)
Jamworks pilot and AI at Jisc (20/03/2024)
 
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptxHMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
 
Wellbeing inclusion and digital dystopias.pptx
Wellbeing inclusion and digital dystopias.pptxWellbeing inclusion and digital dystopias.pptx
Wellbeing inclusion and digital dystopias.pptx
 
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
 

Elementary particles

  • 1. ELEMENTARY PARTICLESPresented by S.N. Saravanamoorthy M.Sc., M.Phil., B.Ed., Assistant Professor in Physics, Devanga Arts College (Autonomous), Aruppukottai – 626 101.
  • 2. 1. Introduction 2. Classification 3. Particles & Antiparticles 4. Particles instability 5. Conservation laws
  • 3. INTRODUCTION * By the year 1932, only three elementary particles namely electron, proton and photon were known. * The discovery of Neutron by Chadwick in 1932 raised their number to four. * These elementary particles are the building blocks of matter & they have characteristic properties such as rest mass, electric charge & intrinsic angular momentum. * The elementary particles discovered so far, form a long list of around 200. These particles are elementary in the sense that they are structureless, i.e., they cannot be explained as a system of other elementary particles.
  • 4. Elementary particle Baryons Leptons Mesons Antiparticles Electron Photon Neutron Muon kaon Pion Eta Nucleons Hyperons Proton Lambda, Sigma, Omega Neutron
  • 5.
  • 6.
  • 7. BARYONS (Or) heavy particles * Protons & particles heavier than proton form this group. * Proton and neutron are called nucleons and the rest mass are called hyperons. * Every baryons has an antiparticle. * If a number, called the baryon number +1 is assigned to baryons and a number -1 is assigned to antibaryons, then in any closed system interaction or decay, the baryon number does not change. This is the law of conservation of baryons.
  • 8. HYPERONS * Time decay of the order of 10−10 seconds * Mass value intermediate between neutron & deuteron * Their decay time is very much greater than the time of their formation (10−3 sec). * K mesons – Strange Particles (Gellmann & Nishijima) * Four types – Lambda, Sigma, Xi, Omega
  • 9. Leptons *It contains electron, photon, neutrino & muon. * All these elementary particles have masses smaller than that of a pion. ELECTRON * First discovered particle * negative charge & stable particle * An electrostatic field exists between two electrons
  • 10. PHOTON * no charge & no rest mass * It has energy given by Plank’s equation E=hν * It has an equivalent mass given by Einstein’s equation E=mc2. NEUTRINO * 1956 – Beta ray spectra in radioactivity * no charge & rest mass is zero * It travels with the speed of light * It exists in two form, one associated with electron & the other with the muon
  • 11. Muon * It is similar to the electron except that its mass is about 200 times that of the electron. * It decays very quickly with a half life of 2.2μs into one electron and two neutrinos. * It is negatively charged and has a spin of ½. * It was first discovered during the study of cosmic rays.
  • 12. MESONS * Masses are between those of leptons & baryons. * They are unstable. * They decay into lighter mesons or leptons. * They have either positive, negative at zero charge. * The mesons include the pion, kaon and eta particles.
  • 13.
  • 14.
  • 15. Mass is equal to 264 times the mass of the electronCharged Kaon: +ve charge & a mass of about one-half of proton. Neutral kaon: No charge & Its life is of the order of 10−9 sec
  • 16.
  • 18. Neutrino and Antineutrino It has Charge Zero, spin ½, zero rest mass and magnetic moment smaller than 10−8 Bohr magneton or nearly zero. Finite energy, momentum and travels with the speed of light. It does not cause ionization on passing through matter. The spin of the neutrino is opposite in direction to the direction of its motion. (neutrino spins – counterclockwise) The spin of the antineutrino is in the same direction as its direction of motion. (It spins clockwise) The neutrino moves through space in the manner of a left-handed screw, while the antineutrino does so in the manner of a right-handed screw. Continue…
  • 19. Neutrino possesses a “left-handed” helicity ; the antineutrino possesses a “right-handed” helicity. Neutrino’s emitted in Beta decay have a negative helicity. They are longitudinally polarized with their spin axes antiparallel to their direction of travel. H = + 1 for ν- ; H = - for ν Because of its lack of charge and magnetic moment, a neutrino has essentially no interaction with matter, except that which leads to inverse beta decay. This interaction is extremely weak. (σ≈10- 20 barn) Matter is almost totally transparent to neutrinos.
  • 20. Conservation Laws Conservation of parity Charge conjugation symmetry Time reversal symmetry Combined Inversion of CPT
  • 21. Conservation of Parity Parity relates to the symmetry of the wave function that represents the system. If the wave function is unchanged then the system has a parity of +1. If changed, then the system has parity of -1. During a reaction in which parity is conserved, the total parity number does not change. Prior to 1956 it was believed that all reactions in nature obeyed the law of conservation of parity. Yang and Lee pointed out that in reactions involving the weak interaction, parity was not conserved. Indeed parity conservation is found to hold true only in the strong and em interactions.
  • 22. Charge conjugate symmetry It is the act of symmetry operation in which every particle in a system is replaced by its antiparticle. If the anti-system or antimatter counterpart exhibits the same physical phenomena, then charge parity (C) is conserved. In fact C is not conserved in the weak interaction.
  • 23. Time reversal symmetry Time parity T describes the behaviour of a wave function when t is replaced by –t. The symmetry operation that corresponds to the conservation of time parity is time reversal. The direction of time is not significant, so that the reverse of any process that can occur is also a process that can occur. Prior to 1964, time parity T was considered to be conserved in every interaction. One form of Kokaon can decay in to π+, π−, which violates the conservation of T. The symmetry of phenomena under time reversal does not seem to be universal.
  • 24. Combined Inversion of CPT The combined symmetry operation in which the antimatter mirror-image of a system is run in reverse allows a test of CPT invariance. The conservation of CPT means that for every process there is an antimatter mirror-image counterpart that takes place in reverse. This particular symmetry seems to hold for all interactions, even though its component symmetries sometimes fail individually.