SlideShare una empresa de Scribd logo
1 de 14
Descargar para leer sin conexión
facebook.com/edunepal.info
@ edunepal_info
Intersection of Surfaces:
1. Essential Information:
2. Display of Engineering Applications:
3. Solution Steps to solve Problem:
4. Case 1: Cylinder to Cylinder:
5. Case 2: Prism to Cylinder:
6. Case 3: Cone to Cylinder
7. Case 4: Prism to Prism: Axis Intersecting.
8. Case 5: Triangular Prism to Cylinder
9. Case 6: Prism to Prism: Axis Skew
10. Case 7 Prism to Cone: from top:
11. Case 8: Cylinder to Cone:
1. INTERSECTIONS.
ENGINEERING APPLICATIONS
OF
THE PRINCIPLES
OF
PROJECTIONS OF SOLIDES.
STUDY CAREFULLY
THE ILLUSTRATIONS GIVEN ON
NEXT SIX PAGES !
INTERPENETRATION OF SOLIDS
WHEN ONE SOLID PENETRATES ANOTHER SOLID THEN THEIR SURFACES INTERSECT
AND
AT THE JUNCTION OF INTERSECTION A TYPICAL CURVE IS FORMED,
WHICH REMAINS COMMON TO BOTH SOLIDS.
THIS CURVE IS CALLED CURVE OF INTERSECTION
AND
IT IS A RESULT OF INTERPENETRATION OF SOLIDS.
PURPOSE OF DRAWING THESE CURVES:-
WHEN TWO OBJECTS ARE TO BE JOINED TOGATHER, MAXIMUM SURFACE CONTACT BETWEEN BOTH
BECOMES A BASIC REQUIREMENT FOR STRONGEST & LEAK-PROOF JOINT.
Curves of Intersections being common to both Intersecting solids,
show exact & maximum surface contact of both solids.
Study Following Illustrations Carefully.
Square Pipes. Circular Pipes. Square Pipes. Circular Pipes.
Minimum Surface Contact.
( Point Contact) (Maximum Surface Contact)
Lines of Intersections. Curves of Intersections.
A machine component having
two intersecting cylindrical
surfaces with the axis at
acute angle to each other.
Intersection of a Cylindrical
main and Branch Pipe.
Pump lid having shape of a
hexagonal Prism and
Hemi-sphere intersecting
each other.
Forged End of a
Connecting Rod.
A Feeding Hopper
In industry.
An Industrial Dust collector.
Intersection of two cylinders.
Two Cylindrical
surfaces.
SOME ACTUAL OBJECTS ARE SHOWN, SHOWING CURVES OF INTERSECTIONS.
BY WHITE ARROWS.
FOLLOWING CASES ARE SOLVED.
REFFER ILLUSTRATIONS
AND
NOTE THE COMMON
CONSTRUCTION
FOR ALL
1.CYLINDER TO CYLINDER2.
2.SQ.PRISM TO CYLINDER
3.CONE TO CYLINDER
4.TRIANGULAR PRISM TO CYLNDER
5.SQ.PRISM TO SQ.PRISM
6.SQ.PRISM TO SQ.PRISM
( SKEW POSITION)
7.SQARE PRISM TO CONE ( from top )
8.CYLINDER TO CONE
COMMON SOLUTION STEPS
One solid will be standing on HP
Other will penetrate horizontally.
Draw three views of standing solid.
Name views as per the illustrations.
Beginning with side view draw three
Views of penetrating solids also.
On it’s S.V. mark number of points
And name those(either letters or nos.)
The points which are on standard
generators or edges of standing solid,
( in S.V.) can be marked on respective
generators in Fv and Tv. And other
points from SV should be brought to
Tv first and then projecting upward
To Fv.
Dark and dotted line’s decision should
be taken by observing side view from
it’s right side as shown by arrow.
Accordingly those should be joined
by curvature or straight lines.
Note:
Incase cone is penetrating solid Side view is not necessary.
Similarly in case of penetration from top it is not required.
X Y
1
2
3
4
a”
g” c”
e”
b”
f” d”
h”
4” 1”3” 2”1’ 2’4’ 3’
a’
b ’h’
c’g’
d’f’
a’
CASE 1.
CYLINDER STANDING
&
CYLINDER PENETRATING
Problem: A cylinder 50mm dia.and 70mm axis is completely penetrated
by another of 40 mm dia.and 70 mm axis horizontally Both axes intersect
& bisect each other. Draw projections showing curves of intersections.
X Y
a”
d” b”
c”
4” 1”3” 2”1’ 2’4’ 3’
1
2
3
4
a’
d’
b’
c’
a’
c’
d’
b’
CASE 2.
CYLINDER STANDING
&
SQ.PRISM PENETRATING
Problem: A cylinder 50mm dia.and 70mm axis is completely penetrated
by a square prism of 25 mm sides.and 70 mm axis, horizontally. Both axes
Intersect & bisect each other. All faces of prism are equally inclined to Hp.
Draw projections showing curves of intersections.
X Y
CASE 3.
CYLINDER STANDING
&
CONE PENETRATING
Problem: A cylinder of 80 mm diameter and 100 mm axis
is completely penetrated by a cone of 80 mm diameter and
120 mm long axis horizontally.Both axes intersect & bisect
each other. Draw projections showing curve of intersections.
1
2 8
3 7
4 6
5
7’
6’ 8’
1’ 5’
2’ 4’
3’
X Y
a”
d” b”
c”
a’
c’
a’
d’
b’
c’
d’
b’
1
2
3
4
1’ 2’4’ 3’ 4” 1”3” 2”
CASE 4.
SQ.PRISM STANDING
&
SQ.PRISM PENETRATING
Problem: A sq.prism 30 mm base sides.and 70mm axis is completely penetrated
by another square prism of 25 mm sides.and 70 mm axis, horizontally. Both axes
Intersects & bisect each other. All faces of prisms are equally inclined to Vp.
Draw projections showing curves of intersections.
X Y
1
2
3
4
4” 1”3” 2”1’ 2’4’ 3’
b
e
a
c
d
f
bb
c
d
e e
aa
f f
CASE 5. CYLINDER STANDING & TRIANGULAR PRISM PENETRATING
Problem: A cylinder 50mm dia.and 70mm axis is completely penetrated
by a triangular prism of 45 mm sides.and 70 mm axis, horizontally.
One flat face of prism is parallel to Vp and Contains axis of cylinder.
Draw projections showing curves of intersections.
X Y
1
2
3
4
1’ 2’4’ 3’ 4” 1”3” 2”
300
c”
f”
a’
f’
c’
d’
b’
e’
CASE 6.
SQ.PRISM STANDING
&
SQ.PRISM PENETRATING
(300 SKEW POSITION)
Problem: A sq.prism 30 mm base sides.and 70mm axis is
completely penetrated by another square prism of 25 mm side
s.and 70 mm axis, horizontally. Both axes Intersect & bisect
each other.Two faces of penetrating prism are 300 inclined to Hp.
Draw projections showing curves of intersections.
X Y
h
a
b
c
d
e
g
f
1
2
3
4
5
6
10
9
8
7
a’ b’h’ c’g’ d’f’ e’
5 mm OFF-SET
1’
2’
5’
4’
3’
6’
CASE 7.
CONE STANDING & SQ.PRISM PENETRATING
(BOTH AXES VERTICAL)
Problem: A cone70 mm base diameter and 90 mm axis
is completely penetrated by a square prism from top
with it’s axis // to cone’s axis and 5 mm away from it.
a vertical plane containing both axes is parallel to Vp.
Take all faces of sq.prism equally inclined to Vp.
Base Side of prism is 0 mm and axis is 100 mm long.
Draw projections showing curves of intersections.
CASE 8.
CONE STANDING
&
CYLINDER PENETRATING
h
a
b
c
d
e
g
f
a’ b’h’ c’g’ d’f’ e’ g” g”h” a”e” b”d” c”
1
2
3
4
5
6
7
8
X Y
o”o’
11
33
5 5
6
7,
8,22
4 4
Problem: A vertical cone, base diameter 75 mm and axis 100 mm long,
is completely penetrated by a cylinder of 45 mm diameter. The axis of the
cylinder is parallel to Hp and Vp and intersects axis of the cone at a point
28 mm above the base. Draw projections showing curves of intersection.

Más contenido relacionado

La actualidad más candente

Lesson 13-perspective-projection
Lesson 13-perspective-projectionLesson 13-perspective-projection
Lesson 13-perspective-projection
eglive
 
Intersection and Penetration of Soilds
Intersection and Penetration of SoildsIntersection and Penetration of Soilds
Intersection and Penetration of Soilds
shubham kanungo
 

La actualidad más candente (20)

Projection of solids
Projection of solidsProjection of solids
Projection of solids
 
Isometric Projection
Isometric ProjectionIsometric Projection
Isometric Projection
 
Unit v isometric projection
Unit  v  isometric projectionUnit  v  isometric projection
Unit v isometric projection
 
Development of surfaces
Development of surfacesDevelopment of surfaces
Development of surfaces
 
Section of solids - ENGINEERING DRAWING/GRAPHICS
Section of solids - ENGINEERING DRAWING/GRAPHICSSection of solids - ENGINEERING DRAWING/GRAPHICS
Section of solids - ENGINEERING DRAWING/GRAPHICS
 
Unit iv section of solids
Unit  iv section of solidsUnit  iv section of solids
Unit iv section of solids
 
Projection of solids
Projection of solidsProjection of solids
Projection of solids
 
Section of solids
Section of solidsSection of solids
Section of solids
 
GHRCEM_Amravati_Slider Crank Chain Mechanism
GHRCEM_Amravati_Slider Crank Chain MechanismGHRCEM_Amravati_Slider Crank Chain Mechanism
GHRCEM_Amravati_Slider Crank Chain Mechanism
 
Isometric projections
Isometric projectionsIsometric projections
Isometric projections
 
Lesson 13-perspective-projection
Lesson 13-perspective-projectionLesson 13-perspective-projection
Lesson 13-perspective-projection
 
Section of solids
Section of solidsSection of solids
Section of solids
 
DEVELOPMENT OF SURFACES.docx
DEVELOPMENT OF SURFACES.docxDEVELOPMENT OF SURFACES.docx
DEVELOPMENT OF SURFACES.docx
 
Intersection - ENGINEERING DRAWING
Intersection - ENGINEERING DRAWINGIntersection - ENGINEERING DRAWING
Intersection - ENGINEERING DRAWING
 
Basic introduction to Engineering Drawing
Basic introduction to Engineering DrawingBasic introduction to Engineering Drawing
Basic introduction to Engineering Drawing
 
Orthographic projection
Orthographic projectionOrthographic projection
Orthographic projection
 
Surface Development
Surface Development Surface Development
Surface Development
 
Isometric View of an Object
 Isometric View of an Object Isometric View of an Object
Isometric View of an Object
 
orthographic projection
orthographic projectionorthographic projection
orthographic projection
 
Intersection and Penetration of Soilds
Intersection and Penetration of SoildsIntersection and Penetration of Soilds
Intersection and Penetration of Soilds
 

Similar a Intersection of-solids-guidance

Engineering graphics intersection
Engineering graphics   intersectionEngineering graphics   intersection
Engineering graphics intersection
Pranav Kulshrestha
 
Development of surfaces of solids
Development of surfaces of solidsDevelopment of surfaces of solids
Development of surfaces of solids
Sumit Chandak
 
Engineering garphics section and development
Engineering garphics   section and developmentEngineering garphics   section and development
Engineering garphics section and development
Pranav Kulshrestha
 
09 a10591 engg drawing
09 a10591 engg drawing09 a10591 engg drawing
09 a10591 engg drawing
jntuworld
 
09 a10591 engg drawing (1)
09 a10591 engg drawing (1)09 a10591 engg drawing (1)
09 a10591 engg drawing (1)
jntuworld
 
Section and development
Section and developmentSection and development
Section and development
gtuautonomous
 
Section and development
Section and developmentSection and development
Section and development
gtuautonomous
 
surface development.ppt
surface development.pptsurface development.ppt
surface development.ppt
ssuser6cdd2d
 

Similar a Intersection of-solids-guidance (20)

UPDATED INTERSECTIONS.ppt
UPDATED INTERSECTIONS.pptUPDATED INTERSECTIONS.ppt
UPDATED INTERSECTIONS.ppt
 
Intersection
IntersectionIntersection
Intersection
 
Intersection1.pdf
Intersection1.pdfIntersection1.pdf
Intersection1.pdf
 
Engineering graphics intersection
Engineering graphics   intersectionEngineering graphics   intersection
Engineering graphics intersection
 
engineering-graphics.pdf
engineering-graphics.pdfengineering-graphics.pdf
engineering-graphics.pdf
 
Development of surfaces of solids
Development of surfaces of solidsDevelopment of surfaces of solids
Development of surfaces of solids
 
Engineering graphics
Engineering graphicsEngineering graphics
Engineering graphics
 
Projection of solids
Projection of solidsProjection of solids
Projection of solids
 
COMPLETE-engineering-graphics PPT.ppt
COMPLETE-engineering-graphics PPT.pptCOMPLETE-engineering-graphics PPT.ppt
COMPLETE-engineering-graphics PPT.ppt
 
Engineering garphics section and development
Engineering garphics   section and developmentEngineering garphics   section and development
Engineering garphics section and development
 
Engineering graphics practicing booklet (nrcm)
Engineering graphics practicing booklet (nrcm)Engineering graphics practicing booklet (nrcm)
Engineering graphics practicing booklet (nrcm)
 
09 a10591 engg drawing
09 a10591 engg drawing09 a10591 engg drawing
09 a10591 engg drawing
 
09 a10591 engg drawing (1)
09 a10591 engg drawing (1)09 a10591 engg drawing (1)
09 a10591 engg drawing (1)
 
Sections & Development of Surfaces_MAY 7 (3).pptx
Sections & Development of Surfaces_MAY 7 (3).pptxSections & Development of Surfaces_MAY 7 (3).pptx
Sections & Development of Surfaces_MAY 7 (3).pptx
 
Section and development
Section and developmentSection and development
Section and development
 
Sectionanddevelopment(thedirectdata[1].com)
Sectionanddevelopment(thedirectdata[1].com)Sectionanddevelopment(thedirectdata[1].com)
Sectionanddevelopment(thedirectdata[1].com)
 
cylinder cylinder intersection
cylinder cylinder intersection cylinder cylinder intersection
cylinder cylinder intersection
 
Section and development
Section and developmentSection and development
Section and development
 
Intersection 1
Intersection 1Intersection 1
Intersection 1
 
surface development.ppt
surface development.pptsurface development.ppt
surface development.ppt
 

Último

Standard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayStandard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power Play
Epec Engineered Technologies
 
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments""Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
mphochane1998
 
Verification of thevenin's theorem for BEEE Lab (1).pptx
Verification of thevenin's theorem for BEEE Lab (1).pptxVerification of thevenin's theorem for BEEE Lab (1).pptx
Verification of thevenin's theorem for BEEE Lab (1).pptx
chumtiyababu
 

Último (20)

PE 459 LECTURE 2- natural gas basic concepts and properties
PE 459 LECTURE 2- natural gas basic concepts and propertiesPE 459 LECTURE 2- natural gas basic concepts and properties
PE 459 LECTURE 2- natural gas basic concepts and properties
 
A Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna MunicipalityA Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna Municipality
 
Design For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the startDesign For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the start
 
Moment Distribution Method For Btech Civil
Moment Distribution Method For Btech CivilMoment Distribution Method For Btech Civil
Moment Distribution Method For Btech Civil
 
Introduction to Serverless with AWS Lambda
Introduction to Serverless with AWS LambdaIntroduction to Serverless with AWS Lambda
Introduction to Serverless with AWS Lambda
 
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
 
Standard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayStandard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power Play
 
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments""Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
 
Engineering Drawing focus on projection of planes
Engineering Drawing focus on projection of planesEngineering Drawing focus on projection of planes
Engineering Drawing focus on projection of planes
 
Wadi Rum luxhotel lodge Analysis case study.pptx
Wadi Rum luxhotel lodge Analysis case study.pptxWadi Rum luxhotel lodge Analysis case study.pptx
Wadi Rum luxhotel lodge Analysis case study.pptx
 
Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...
Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...
Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...
 
Double Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torqueDouble Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torque
 
Verification of thevenin's theorem for BEEE Lab (1).pptx
Verification of thevenin's theorem for BEEE Lab (1).pptxVerification of thevenin's theorem for BEEE Lab (1).pptx
Verification of thevenin's theorem for BEEE Lab (1).pptx
 
Thermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.pptThermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.ppt
 
Employee leave management system project.
Employee leave management system project.Employee leave management system project.
Employee leave management system project.
 
data_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfdata_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdf
 
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
 
Computer Networks Basics of Network Devices
Computer Networks  Basics of Network DevicesComputer Networks  Basics of Network Devices
Computer Networks Basics of Network Devices
 
Orlando’s Arnold Palmer Hospital Layout Strategy-1.pptx
Orlando’s Arnold Palmer Hospital Layout Strategy-1.pptxOrlando’s Arnold Palmer Hospital Layout Strategy-1.pptx
Orlando’s Arnold Palmer Hospital Layout Strategy-1.pptx
 
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptxS1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
 

Intersection of-solids-guidance

  • 2. Intersection of Surfaces: 1. Essential Information: 2. Display of Engineering Applications: 3. Solution Steps to solve Problem: 4. Case 1: Cylinder to Cylinder: 5. Case 2: Prism to Cylinder: 6. Case 3: Cone to Cylinder 7. Case 4: Prism to Prism: Axis Intersecting. 8. Case 5: Triangular Prism to Cylinder 9. Case 6: Prism to Prism: Axis Skew 10. Case 7 Prism to Cone: from top: 11. Case 8: Cylinder to Cone:
  • 3. 1. INTERSECTIONS. ENGINEERING APPLICATIONS OF THE PRINCIPLES OF PROJECTIONS OF SOLIDES. STUDY CAREFULLY THE ILLUSTRATIONS GIVEN ON NEXT SIX PAGES !
  • 4. INTERPENETRATION OF SOLIDS WHEN ONE SOLID PENETRATES ANOTHER SOLID THEN THEIR SURFACES INTERSECT AND AT THE JUNCTION OF INTERSECTION A TYPICAL CURVE IS FORMED, WHICH REMAINS COMMON TO BOTH SOLIDS. THIS CURVE IS CALLED CURVE OF INTERSECTION AND IT IS A RESULT OF INTERPENETRATION OF SOLIDS. PURPOSE OF DRAWING THESE CURVES:- WHEN TWO OBJECTS ARE TO BE JOINED TOGATHER, MAXIMUM SURFACE CONTACT BETWEEN BOTH BECOMES A BASIC REQUIREMENT FOR STRONGEST & LEAK-PROOF JOINT. Curves of Intersections being common to both Intersecting solids, show exact & maximum surface contact of both solids. Study Following Illustrations Carefully. Square Pipes. Circular Pipes. Square Pipes. Circular Pipes. Minimum Surface Contact. ( Point Contact) (Maximum Surface Contact) Lines of Intersections. Curves of Intersections.
  • 5. A machine component having two intersecting cylindrical surfaces with the axis at acute angle to each other. Intersection of a Cylindrical main and Branch Pipe. Pump lid having shape of a hexagonal Prism and Hemi-sphere intersecting each other. Forged End of a Connecting Rod. A Feeding Hopper In industry. An Industrial Dust collector. Intersection of two cylinders. Two Cylindrical surfaces. SOME ACTUAL OBJECTS ARE SHOWN, SHOWING CURVES OF INTERSECTIONS. BY WHITE ARROWS.
  • 6. FOLLOWING CASES ARE SOLVED. REFFER ILLUSTRATIONS AND NOTE THE COMMON CONSTRUCTION FOR ALL 1.CYLINDER TO CYLINDER2. 2.SQ.PRISM TO CYLINDER 3.CONE TO CYLINDER 4.TRIANGULAR PRISM TO CYLNDER 5.SQ.PRISM TO SQ.PRISM 6.SQ.PRISM TO SQ.PRISM ( SKEW POSITION) 7.SQARE PRISM TO CONE ( from top ) 8.CYLINDER TO CONE COMMON SOLUTION STEPS One solid will be standing on HP Other will penetrate horizontally. Draw three views of standing solid. Name views as per the illustrations. Beginning with side view draw three Views of penetrating solids also. On it’s S.V. mark number of points And name those(either letters or nos.) The points which are on standard generators or edges of standing solid, ( in S.V.) can be marked on respective generators in Fv and Tv. And other points from SV should be brought to Tv first and then projecting upward To Fv. Dark and dotted line’s decision should be taken by observing side view from it’s right side as shown by arrow. Accordingly those should be joined by curvature or straight lines. Note: Incase cone is penetrating solid Side view is not necessary. Similarly in case of penetration from top it is not required.
  • 7. X Y 1 2 3 4 a” g” c” e” b” f” d” h” 4” 1”3” 2”1’ 2’4’ 3’ a’ b ’h’ c’g’ d’f’ a’ CASE 1. CYLINDER STANDING & CYLINDER PENETRATING Problem: A cylinder 50mm dia.and 70mm axis is completely penetrated by another of 40 mm dia.and 70 mm axis horizontally Both axes intersect & bisect each other. Draw projections showing curves of intersections.
  • 8. X Y a” d” b” c” 4” 1”3” 2”1’ 2’4’ 3’ 1 2 3 4 a’ d’ b’ c’ a’ c’ d’ b’ CASE 2. CYLINDER STANDING & SQ.PRISM PENETRATING Problem: A cylinder 50mm dia.and 70mm axis is completely penetrated by a square prism of 25 mm sides.and 70 mm axis, horizontally. Both axes Intersect & bisect each other. All faces of prism are equally inclined to Hp. Draw projections showing curves of intersections.
  • 9. X Y CASE 3. CYLINDER STANDING & CONE PENETRATING Problem: A cylinder of 80 mm diameter and 100 mm axis is completely penetrated by a cone of 80 mm diameter and 120 mm long axis horizontally.Both axes intersect & bisect each other. Draw projections showing curve of intersections. 1 2 8 3 7 4 6 5 7’ 6’ 8’ 1’ 5’ 2’ 4’ 3’
  • 10. X Y a” d” b” c” a’ c’ a’ d’ b’ c’ d’ b’ 1 2 3 4 1’ 2’4’ 3’ 4” 1”3” 2” CASE 4. SQ.PRISM STANDING & SQ.PRISM PENETRATING Problem: A sq.prism 30 mm base sides.and 70mm axis is completely penetrated by another square prism of 25 mm sides.and 70 mm axis, horizontally. Both axes Intersects & bisect each other. All faces of prisms are equally inclined to Vp. Draw projections showing curves of intersections.
  • 11. X Y 1 2 3 4 4” 1”3” 2”1’ 2’4’ 3’ b e a c d f bb c d e e aa f f CASE 5. CYLINDER STANDING & TRIANGULAR PRISM PENETRATING Problem: A cylinder 50mm dia.and 70mm axis is completely penetrated by a triangular prism of 45 mm sides.and 70 mm axis, horizontally. One flat face of prism is parallel to Vp and Contains axis of cylinder. Draw projections showing curves of intersections.
  • 12. X Y 1 2 3 4 1’ 2’4’ 3’ 4” 1”3” 2” 300 c” f” a’ f’ c’ d’ b’ e’ CASE 6. SQ.PRISM STANDING & SQ.PRISM PENETRATING (300 SKEW POSITION) Problem: A sq.prism 30 mm base sides.and 70mm axis is completely penetrated by another square prism of 25 mm side s.and 70 mm axis, horizontally. Both axes Intersect & bisect each other.Two faces of penetrating prism are 300 inclined to Hp. Draw projections showing curves of intersections.
  • 13. X Y h a b c d e g f 1 2 3 4 5 6 10 9 8 7 a’ b’h’ c’g’ d’f’ e’ 5 mm OFF-SET 1’ 2’ 5’ 4’ 3’ 6’ CASE 7. CONE STANDING & SQ.PRISM PENETRATING (BOTH AXES VERTICAL) Problem: A cone70 mm base diameter and 90 mm axis is completely penetrated by a square prism from top with it’s axis // to cone’s axis and 5 mm away from it. a vertical plane containing both axes is parallel to Vp. Take all faces of sq.prism equally inclined to Vp. Base Side of prism is 0 mm and axis is 100 mm long. Draw projections showing curves of intersections.
  • 14. CASE 8. CONE STANDING & CYLINDER PENETRATING h a b c d e g f a’ b’h’ c’g’ d’f’ e’ g” g”h” a”e” b”d” c” 1 2 3 4 5 6 7 8 X Y o”o’ 11 33 5 5 6 7, 8,22 4 4 Problem: A vertical cone, base diameter 75 mm and axis 100 mm long, is completely penetrated by a cylinder of 45 mm diameter. The axis of the cylinder is parallel to Hp and Vp and intersects axis of the cone at a point 28 mm above the base. Draw projections showing curves of intersection.