SlideShare una empresa de Scribd logo
1 de 29
Broadband Microwave Negative Group Delay
     Transmission Line Phase Shifters

                  Sinan Keser
             M.A.Sc. Thesis Defense
                October 1, 2012
Outline

•   Introduction
•   Background
•   Loaded Transmission Lines
•   Negative Group Delay (NGD) Phase Shifter Design
•   Simulation & Experimental Results
•   Conclusions




                                                      2
Phase shifters Basics

Transmission-type phase shifter




                                  phase           𝜙 = arg 𝑆21
                                                      𝜙
                                  phase delay 𝜏 𝑝 = −
                                                      𝜔
                                                      𝜕𝜙
                                  group delay 𝜏 𝑔 = −
                                                      𝜕𝜔
                                                         𝜙 𝑡𝑜𝑙
                                  phase BW    Δ𝜔 ≈
                                                      𝜏 𝑔 𝜔0

                                                                 3
Motivation
• Design a NGD network to cascade with an equivalently
  matched phase shifter with an equal but positive group
  delay to achieve a flat phase response (zero group delay).




                                                               4
Background – NGD Circuits




NGD & NRI Loaded TL Unit Cell   NGD feedback Amplifier   Microwave NGD FET Amplifier
   Mojahedi, et al. (2004)       Kandic, et al. (2011)        Ravelo, et al. (2007)




      X   Non reciprocal
      X   Narrowband
      X   High Return & Insertion Loss / Poor Efficiency
      X   Combining Gain and NGD into one stage is not beneficial


                                                                                       5
Background – Metamaterial TLs




 Negative Refractive Index            Composite Right/Left-Handed
Transmission Line (NRI-TL)            Transmission Line (CRLH-TL)
    Eleftheriades, et al.                     Caloz, et al.


                     Passive
                     Broadband
                     Low Return loss
                     Low Insertion loss
                     Positive or Negative Phase Delay
                      … But Always Positive Group Delay
                                                                    6
Proposal

• Design a broadband impedance matched loaded TL
  with a specified negative group delay, and:
   –   Determine relationship between NGD, Insertion Loss
       and NGD Bandwidth. (trade-offs)
   –   Minimize the frequency variation of both group delay
       and gain.

• Given the specifications of a phase shifter:
   – Select either positive or negative phase delay on the
     basis of group delay minimization, and
   – Combine with NGD unit cell to produce a zero group
     delay phase over a wideband.
                                                              7
Loaded TL Unit Cell

    Small host TL

     𝜃 𝑇𝐿 ≪ 1
     𝐿 𝑇𝐿 = 𝑗𝑍0 𝜃 𝑇𝐿

     𝐶 𝑇𝐿 = 𝑗𝑌0 𝜃 𝑇𝐿

Balanced Condition

                                                          Metamaterial-TL (MTM-TL)
      𝑍   𝑌
        = ≪1
     𝑍0  𝑌0                                       Loading Elements             Host TL



                             0        𝑒 −𝑍   𝑍0
𝑆   𝑀𝑇𝑀   ≈ 𝑒 −𝑗   𝜃 𝑇𝐿

                          𝑒 −𝑍   𝑍0
                                        0
          Impedance matched
            and Reciprocal
                                                                                         8
MTM-TL Characteristics
                                                            Equivalent TL




                                                                 1
                                                            𝛾=              𝑍𝑛
                                                                 𝑍0
                                                                      𝑛




                1
ln 𝑆21 = −         𝑅 + 𝑅2 + ⋯ + 𝑅 𝑛    • Insertion Losses add
                𝑍0 1

                1
   𝜙21 = −         𝑋 + 𝑋2 + ⋯ + 𝑋 𝑛    • Phases add
                𝑍0 1

           1      𝜕𝑋1   𝜕𝑋2     𝜕𝑋 𝑛
    𝜏𝑔 =              +     +⋯+        • Group delays add
           𝑍0     𝜕𝜔    𝜕𝜔      𝜕𝜔


                                                                                 9
Lossless MTM-TL & Group Delay
• Lossless unit cells always have a positive group delay
  proportional to the stored energy Wav (in reactive elements)


                                        𝑊𝑎𝑣   1 𝜕𝑋
                                   𝜏𝑔 =     =       >0
                                        𝑎2    𝑍0 𝜕𝜔


Use 1st order MTM-TLs to minimize group delay



                                                    1
                                             𝜔𝑐 =        , 𝑍0 =   𝐿/𝐶
                                                    𝐿𝐶


                                                                        10
Low-Pass & High-Pass S21 Responses
                low loss




                                                       S21 Polar Plot




                                                                               𝜔≫1
𝜙 𝐿𝑃 ≈ −𝜔/𝜔 𝑐                                                       𝜔↑

                           𝜙 𝐻𝑃 ≈ 𝜔 𝑐 /𝜔                                       𝜔≪1




• The balanced NRI-TL is the combination of both low-pass and high-pass unit
  cells (band-pass).
• To minimize its group delay, the host TL length should be minimized.
                                                                                 11
Proposed NGD Unit Cell
                                                                         S21 Polar Plot




                                                                                 NGD




                  𝑍   𝑌        𝐴
          𝛾=        = =
                 𝑍0  𝑌0 1 + 𝑗𝑄 𝜔 − 𝜔0
                               𝜔0   𝜔


     𝑅𝑧   𝑍0          1    𝐿𝑧        𝐶𝑦            1            1
𝐴=      =    ,   𝑄=           = 𝑅𝑦      ,   𝜔0 =            =
     𝑍0   𝑅𝑦          𝑅𝑧   𝐶𝑧        𝐿𝑦            𝐿 𝑧 𝐶𝑧       𝐿 𝑦 𝐶𝑦
                                                                                          12
NGD Unit Cell Phase and Magnitude Response




 Δ𝜙 𝑝𝑝 = ILmax = 𝐴

                 𝜔0                    𝐼𝐿 𝑚𝑎𝑥
   Δ𝜔 𝑁𝐺𝐷 =
                  𝑄
                          𝜏 𝑔,𝑚𝑎𝑥   =2
                                       Δ𝜔 𝑁𝐺𝐷
                 2𝐴𝑄
  𝜏 𝑛𝑔𝑑 ,𝑚𝑎𝑥 =
                  𝜔0
                                                13
Constant NGD with varying Insertion Loss


                                                      BW5
                                                                 A=5dB
                                                      BW3
                A=1dB
                                                      BW1       A=3dB


                                                                A=1dB
                A=3dB


                    A=5dB




For a constant NGD, Bandwidth increases with increasing Insertion Loss

                            𝐼𝐿 𝑚𝑎𝑥
                                   = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡
                            Δ𝜔 𝑁𝐺𝐷
                                                                         14
Maximum Return Loss per NGD unit cell
     Return Loss vs. Frequency            Max. Return Loss vs. Max. Insertion Loss




 •    Return loss increases as Insertion loss increases
 •    For a low return loss, the insertion loss (and thus bandwidth-
      NGD product) per unit cell must be kept sufficiently low.


                                                                                     15
ADS Ideal Microstrip Simulation Setup
• NGD unit cell component values are determined by specifying the
  phase shifters 1. centre frequency, 2. characteristic impedance, 3. NGD
  (to produce zero group delay) and 4. maximum Insertion Loss.
                          TL lengths determine
                               phase delay




                                                                            16
Simulated -300 NGD TL Phase Shifter


                                             ±20 phase bandwidth
                                             Unloaded TL:105 MHz
                                             NGD:        550 MHz

   NGD           NGD
   Unloaded TL   Unloaded TL




                           NGD Return Loss



                                              • Return loss < 40dB
                                              • Insertion Loss < 3dB
  NGD
  Unloaded TL




                                                                       17
Simulated -900 (two-cells) NGD TL Phase Shifter
                NGD         NGD
               unit cell   unit cell




        NGD                                NGD
        Unloaded TL                        Unloaded TL

                                                         ±50 phase bandwidth
                                                         Unloaded TL: 87 MHz
                                                         NGD:        650 MHz




         NGD
         Unloaded TL
                                       NGD Return Loss



                                                         • Return loss < 37dB

                                                         • Insertion Loss < 8dB




                                                                                  18
-450 Two-Cell Stagger Tuned NGD Phase Shifter

                   NGD           NGD
                 unit cell 1   unit cell 2




two-cell NGD   unit cell 1          unit cell 2        Unloaded TL

                                                                      ±20 phase bandwidth
                                                                      Unloaded TL: 105 MHz
                                                                      NGD:         905 MHz




                                         input port
                                         output port

                                                                     • Return loss < 33dB

                                                                     • Insertion Loss < 4dB

                                                                     • Low IL ripple



                                                                                              19
Hybrid NRI-NGD 00 Phase Shifter




                                                   ±2o Phase bandwidth
                                                     NRI only: 79MHz
                                                    NGD-NRI: 553MHz

•   Combination of NRI (high-pass) and NGD (lossy
    resonator) into one non-symmetric unit cell.
•   Low return loss (< 20 dB) & Insertion Loss (< 2.5 dB)
•   Reduced size & number of components
                                                                         20
Beam Squint for a Linear Series-Fed Antenna Array

                              𝐴𝑟𝑟𝑎𝑦 𝐹𝑎𝑐𝑡𝑜𝑟 𝐵𝑒𝑎𝑚 𝑆𝑞𝑢𝑖𝑛𝑡

                                                     2𝑚𝜋
                                  𝜕𝜃     𝜏𝑔 − 𝜏𝑝 +
                                     =                𝜔
                                  𝜕𝜔        𝜔𝑑 𝐸
                                             𝑐 cos 𝜃
                                                      𝜕𝜃
                         to remove beam squint           =0    :
                                                      𝜕𝜔

                             1) m=0 main lobe  NRI-TL
                             2) equal phase and group delay  NGD



                                                     ±50 beam angle
                            Phase Shifter
                                                       Bandwidth
                            -3600 Unloaded TL              27 MHz
                            00 NRI –TL                  122 MHz
                            Hybrid 00 NGD NRI-TL        607 MHz

                                                                      21
Experimental Setup

Rogers RT Duroid 5880 substrate (εr=2.2)
    – 50Ω Microstrip TLs
RF surface mount components (0402, 0603)
    – Coilcraft ceramic inductors
    – Murata ceramic capacitors
    – Vishay thick film resistors
Modelithics component models
   – Empirical data models
   – Substrate scalable, pad dimension scalable



                                                  22
-300 NGD TL Phase Shifter (3dB loss)




        component values
            ½Z             Y
    R        8Ω       156 Ω

    L      1.5 nH     20 nH
    C       16 pF     1.2 pF


                                       23
-300 NGD TL Phase Shifter (3dB loss)




Summary
• ±20 phase bandwidth: 610MHz – 1240MHz (63%)
   450% increase over unloaded TL (14%)
• Measured Insertion Loss < 3.1dB
• Measured Return loss < 20dB


                                                24
-300 NGD TL Phase Shifter (2dB loss)




        component values

            ½Z             Y
    R       5.9 Ω     210 Ω

    L       1 nH      33 nH
    C       14 pF     0.8 pF


                                       25
-300 NGD TL Phase Shifter (2dB loss)




                                                Insertion Loss [dB]
Phase [deg]




                                                      Return Loss [dB]
Summary
• ±20 phase bandwidth: 680MHz – 1160MHz (51%)
   364% increase over unloaded TL (14%)
• Measured Insertion Loss < 2.12 dB
• Measured Return Loss < 20dB
• Less Ins. Loss but also less NGD bandwidth
                                                                         26
00 NGD NRI-TL Phase Shifter




    component values
      ½Z        Y      NRI
R    10 Ω     100 Ω      -
L    3.6 nH   30 nH    56 nH
C    11 pF    2.7 pF   27 pF




                                          27
00 NGD NRI-TL Phase Shifter

                         Measured NGD NRI-TL
                         phase error (700MHz)
                         = +3.60


                         ±20 phase bandwidth
                         NRI-TL:       71 MHz
                         NGD NRI-TL: 188 MHz




                         Measured
                         • Return loss < 14 dB

                         • Insertion Loss < 3.37 dB




                                                  28
Conclusions
• Passive Broadband NGD Unit Cell Proposed
   – Frequency, Impedance and NGD scalable
   – Quasi-linear phase at centre frequency
   – NGD, Insertion Loss and Bandwidth trade-off identified

• NGD combined with lossless phase shifters to significantly
  increase phase bandwidth

• Beam Squint may only be removed entirely with NGD phase
  shifters.

• Experimentally verified microstrip NGD phase shifters with
  both positive and negative phase delays at 0.5GHz – 1.2GHz.

                                                                29

Más contenido relacionado

Destacado

Radar 2009 a 9 antennas 2
Radar 2009 a 9 antennas 2Radar 2009 a 9 antennas 2
Radar 2009 a 9 antennas 2Forward2025
 
RF MEMS Steerable Antennas for Automotive Radar and Future Wireless Applicati...
RF MEMS Steerable Antennas for Automotive Radar and Future Wireless Applicati...RF MEMS Steerable Antennas for Automotive Radar and Future Wireless Applicati...
RF MEMS Steerable Antennas for Automotive Radar and Future Wireless Applicati...The Research Council of Norway, IKTPLUSS
 
Conical horn antenna with parabolic reflector using cst
Conical horn antenna with parabolic reflector using cstConical horn antenna with parabolic reflector using cst
Conical horn antenna with parabolic reflector using cstAzlin lolin
 
Phased array antenna
Phased array antennaPhased array antenna
Phased array antennaShaveta Banda
 
Microstrip patch antenna for wimax applications
Microstrip patch antenna for wimax applicationsMicrostrip patch antenna for wimax applications
Microstrip patch antenna for wimax applicationsAbu Raneem
 
Life detection using microwave L band
Life detection using microwave L bandLife detection using microwave L band
Life detection using microwave L bandshiva kumar cheruku
 
Mtt 08 Poster Holzman 3 14 08
Mtt 08 Poster Holzman 3 14 08Mtt 08 Poster Holzman 3 14 08
Mtt 08 Poster Holzman 3 14 08eholzman
 
110232799-Final Year Thesis
110232799-Final Year Thesis110232799-Final Year Thesis
110232799-Final Year ThesisBhavishya Sehgal
 
Design and Implementation of Log-Periodic Antenna
Design and Implementation of Log-Periodic AntennaDesign and Implementation of Log-Periodic Antenna
Design and Implementation of Log-Periodic AntennaShruti Nadkarni
 
Project presentation
Project presentationProject presentation
Project presentationMayank Rai
 
Final tssa design and realization of passive phase shifters
Final tssa design and realization of passive phase shiftersFinal tssa design and realization of passive phase shifters
Final tssa design and realization of passive phase shiftersDr.Joko Suryana
 
Design of band notched antenna for ultra wide band applications
Design of band notched antenna for ultra wide band applicationsDesign of band notched antenna for ultra wide band applications
Design of band notched antenna for ultra wide band applicationsEngr Syed Absar Kazmi
 
Transmission Line Basics
Transmission Line BasicsTransmission Line Basics
Transmission Line BasicsJohn Williams
 
DESIGN OF RECTANGULAR PATCH ANTEENA USING METAMATERIAL SUBSTRATE
    DESIGN OF RECTANGULAR PATCH ANTEENA USING METAMATERIAL SUBSTRATE    DESIGN OF RECTANGULAR PATCH ANTEENA USING METAMATERIAL SUBSTRATE
DESIGN OF RECTANGULAR PATCH ANTEENA USING METAMATERIAL SUBSTRATEPrateek Kumar
 
Microstrip rectangular patch antenna
Microstrip rectangular  patch antennaMicrostrip rectangular  patch antenna
Microstrip rectangular patch antennacharan -
 
Coaxial feed microstrip patch antenna using HFSS
 Coaxial feed microstrip patch antenna using  HFSS Coaxial feed microstrip patch antenna using  HFSS
Coaxial feed microstrip patch antenna using HFSSMithilesh Naphade
 

Destacado (19)

Radar 2009 a 9 antennas 2
Radar 2009 a 9 antennas 2Radar 2009 a 9 antennas 2
Radar 2009 a 9 antennas 2
 
RF MEMS Steerable Antennas for Automotive Radar and Future Wireless Applicati...
RF MEMS Steerable Antennas for Automotive Radar and Future Wireless Applicati...RF MEMS Steerable Antennas for Automotive Radar and Future Wireless Applicati...
RF MEMS Steerable Antennas for Automotive Radar and Future Wireless Applicati...
 
Conical horn antenna with parabolic reflector using cst
Conical horn antenna with parabolic reflector using cstConical horn antenna with parabolic reflector using cst
Conical horn antenna with parabolic reflector using cst
 
Phased array antenna
Phased array antennaPhased array antenna
Phased array antenna
 
array and phased array antennna
array and phased array antennnaarray and phased array antennna
array and phased array antennna
 
Microstrip patch antenna for wimax applications
Microstrip patch antenna for wimax applicationsMicrostrip patch antenna for wimax applications
Microstrip patch antenna for wimax applications
 
microwave_antenna
microwave_antennamicrowave_antenna
microwave_antenna
 
Life detection using microwave L band
Life detection using microwave L bandLife detection using microwave L band
Life detection using microwave L band
 
Mtt 08 Poster Holzman 3 14 08
Mtt 08 Poster Holzman 3 14 08Mtt 08 Poster Holzman 3 14 08
Mtt 08 Poster Holzman 3 14 08
 
110232799-Final Year Thesis
110232799-Final Year Thesis110232799-Final Year Thesis
110232799-Final Year Thesis
 
Design and Implementation of Log-Periodic Antenna
Design and Implementation of Log-Periodic AntennaDesign and Implementation of Log-Periodic Antenna
Design and Implementation of Log-Periodic Antenna
 
Project presentation
Project presentationProject presentation
Project presentation
 
Final tssa design and realization of passive phase shifters
Final tssa design and realization of passive phase shiftersFinal tssa design and realization of passive phase shifters
Final tssa design and realization of passive phase shifters
 
Design of band notched antenna for ultra wide band applications
Design of band notched antenna for ultra wide band applicationsDesign of band notched antenna for ultra wide band applications
Design of band notched antenna for ultra wide band applications
 
phase shifter
phase shifterphase shifter
phase shifter
 
Transmission Line Basics
Transmission Line BasicsTransmission Line Basics
Transmission Line Basics
 
DESIGN OF RECTANGULAR PATCH ANTEENA USING METAMATERIAL SUBSTRATE
    DESIGN OF RECTANGULAR PATCH ANTEENA USING METAMATERIAL SUBSTRATE    DESIGN OF RECTANGULAR PATCH ANTEENA USING METAMATERIAL SUBSTRATE
DESIGN OF RECTANGULAR PATCH ANTEENA USING METAMATERIAL SUBSTRATE
 
Microstrip rectangular patch antenna
Microstrip rectangular  patch antennaMicrostrip rectangular  patch antenna
Microstrip rectangular patch antenna
 
Coaxial feed microstrip patch antenna using HFSS
 Coaxial feed microstrip patch antenna using  HFSS Coaxial feed microstrip patch antenna using  HFSS
Coaxial feed microstrip patch antenna using HFSS
 

Similar a Slides ma sc defense final

Similar a Slides ma sc defense final (10)

Surveys
SurveysSurveys
Surveys
 
lecture8.ppt
lecture8.pptlecture8.ppt
lecture8.ppt
 
Thermoelectric Topping Cycle for Trough Solar Thermal Power Plants
Thermoelectric Topping Cycle for Trough Solar Thermal Power PlantsThermoelectric Topping Cycle for Trough Solar Thermal Power Plants
Thermoelectric Topping Cycle for Trough Solar Thermal Power Plants
 
Ak24255257
Ak24255257Ak24255257
Ak24255257
 
L6 triac & diac
L6 triac & diacL6 triac & diac
L6 triac & diac
 
Lecture8
Lecture8Lecture8
Lecture8
 
Paper study: Learning to solve circuit sat
Paper study: Learning to solve circuit satPaper study: Learning to solve circuit sat
Paper study: Learning to solve circuit sat
 
Advances in Directed Spanners
Advances in Directed SpannersAdvances in Directed Spanners
Advances in Directed Spanners
 
Test Requirements for Microprocessor Relays
Test Requirements for Microprocessor RelaysTest Requirements for Microprocessor Relays
Test Requirements for Microprocessor Relays
 
Generator protection gers
Generator protection gersGenerator protection gers
Generator protection gers
 

Slides ma sc defense final

  • 1. Broadband Microwave Negative Group Delay Transmission Line Phase Shifters Sinan Keser M.A.Sc. Thesis Defense October 1, 2012
  • 2. Outline • Introduction • Background • Loaded Transmission Lines • Negative Group Delay (NGD) Phase Shifter Design • Simulation & Experimental Results • Conclusions 2
  • 3. Phase shifters Basics Transmission-type phase shifter phase 𝜙 = arg 𝑆21 𝜙 phase delay 𝜏 𝑝 = − 𝜔 𝜕𝜙 group delay 𝜏 𝑔 = − 𝜕𝜔 𝜙 𝑡𝑜𝑙 phase BW Δ𝜔 ≈ 𝜏 𝑔 𝜔0 3
  • 4. Motivation • Design a NGD network to cascade with an equivalently matched phase shifter with an equal but positive group delay to achieve a flat phase response (zero group delay). 4
  • 5. Background – NGD Circuits NGD & NRI Loaded TL Unit Cell NGD feedback Amplifier Microwave NGD FET Amplifier Mojahedi, et al. (2004) Kandic, et al. (2011) Ravelo, et al. (2007) X Non reciprocal X Narrowband X High Return & Insertion Loss / Poor Efficiency X Combining Gain and NGD into one stage is not beneficial 5
  • 6. Background – Metamaterial TLs Negative Refractive Index Composite Right/Left-Handed Transmission Line (NRI-TL) Transmission Line (CRLH-TL) Eleftheriades, et al. Caloz, et al.  Passive  Broadband  Low Return loss  Low Insertion loss  Positive or Negative Phase Delay … But Always Positive Group Delay 6
  • 7. Proposal • Design a broadband impedance matched loaded TL with a specified negative group delay, and: – Determine relationship between NGD, Insertion Loss and NGD Bandwidth. (trade-offs) – Minimize the frequency variation of both group delay and gain. • Given the specifications of a phase shifter: – Select either positive or negative phase delay on the basis of group delay minimization, and – Combine with NGD unit cell to produce a zero group delay phase over a wideband. 7
  • 8. Loaded TL Unit Cell Small host TL 𝜃 𝑇𝐿 ≪ 1 𝐿 𝑇𝐿 = 𝑗𝑍0 𝜃 𝑇𝐿 𝐶 𝑇𝐿 = 𝑗𝑌0 𝜃 𝑇𝐿 Balanced Condition Metamaterial-TL (MTM-TL) 𝑍 𝑌 = ≪1 𝑍0 𝑌0 Loading Elements Host TL 0 𝑒 −𝑍 𝑍0 𝑆 𝑀𝑇𝑀 ≈ 𝑒 −𝑗 𝜃 𝑇𝐿 𝑒 −𝑍 𝑍0 0 Impedance matched and Reciprocal 8
  • 9. MTM-TL Characteristics Equivalent TL 1 𝛾= 𝑍𝑛 𝑍0 𝑛 1 ln 𝑆21 = − 𝑅 + 𝑅2 + ⋯ + 𝑅 𝑛 • Insertion Losses add 𝑍0 1 1 𝜙21 = − 𝑋 + 𝑋2 + ⋯ + 𝑋 𝑛 • Phases add 𝑍0 1 1 𝜕𝑋1 𝜕𝑋2 𝜕𝑋 𝑛 𝜏𝑔 = + +⋯+ • Group delays add 𝑍0 𝜕𝜔 𝜕𝜔 𝜕𝜔 9
  • 10. Lossless MTM-TL & Group Delay • Lossless unit cells always have a positive group delay proportional to the stored energy Wav (in reactive elements) 𝑊𝑎𝑣 1 𝜕𝑋 𝜏𝑔 = = >0 𝑎2 𝑍0 𝜕𝜔 Use 1st order MTM-TLs to minimize group delay 1 𝜔𝑐 = , 𝑍0 = 𝐿/𝐶 𝐿𝐶 10
  • 11. Low-Pass & High-Pass S21 Responses low loss S21 Polar Plot 𝜔≫1 𝜙 𝐿𝑃 ≈ −𝜔/𝜔 𝑐 𝜔↑ 𝜙 𝐻𝑃 ≈ 𝜔 𝑐 /𝜔 𝜔≪1 • The balanced NRI-TL is the combination of both low-pass and high-pass unit cells (band-pass). • To minimize its group delay, the host TL length should be minimized. 11
  • 12. Proposed NGD Unit Cell S21 Polar Plot NGD 𝑍 𝑌 𝐴 𝛾= = = 𝑍0 𝑌0 1 + 𝑗𝑄 𝜔 − 𝜔0 𝜔0 𝜔 𝑅𝑧 𝑍0 1 𝐿𝑧 𝐶𝑦 1 1 𝐴= = , 𝑄= = 𝑅𝑦 , 𝜔0 = = 𝑍0 𝑅𝑦 𝑅𝑧 𝐶𝑧 𝐿𝑦 𝐿 𝑧 𝐶𝑧 𝐿 𝑦 𝐶𝑦 12
  • 13. NGD Unit Cell Phase and Magnitude Response Δ𝜙 𝑝𝑝 = ILmax = 𝐴 𝜔0 𝐼𝐿 𝑚𝑎𝑥 Δ𝜔 𝑁𝐺𝐷 = 𝑄 𝜏 𝑔,𝑚𝑎𝑥 =2 Δ𝜔 𝑁𝐺𝐷 2𝐴𝑄 𝜏 𝑛𝑔𝑑 ,𝑚𝑎𝑥 = 𝜔0 13
  • 14. Constant NGD with varying Insertion Loss BW5 A=5dB BW3 A=1dB BW1 A=3dB A=1dB A=3dB A=5dB For a constant NGD, Bandwidth increases with increasing Insertion Loss 𝐼𝐿 𝑚𝑎𝑥 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 Δ𝜔 𝑁𝐺𝐷 14
  • 15. Maximum Return Loss per NGD unit cell Return Loss vs. Frequency Max. Return Loss vs. Max. Insertion Loss • Return loss increases as Insertion loss increases • For a low return loss, the insertion loss (and thus bandwidth- NGD product) per unit cell must be kept sufficiently low. 15
  • 16. ADS Ideal Microstrip Simulation Setup • NGD unit cell component values are determined by specifying the phase shifters 1. centre frequency, 2. characteristic impedance, 3. NGD (to produce zero group delay) and 4. maximum Insertion Loss. TL lengths determine phase delay 16
  • 17. Simulated -300 NGD TL Phase Shifter ±20 phase bandwidth Unloaded TL:105 MHz NGD: 550 MHz NGD NGD Unloaded TL Unloaded TL NGD Return Loss • Return loss < 40dB • Insertion Loss < 3dB NGD Unloaded TL 17
  • 18. Simulated -900 (two-cells) NGD TL Phase Shifter NGD NGD unit cell unit cell NGD NGD Unloaded TL Unloaded TL ±50 phase bandwidth Unloaded TL: 87 MHz NGD: 650 MHz NGD Unloaded TL NGD Return Loss • Return loss < 37dB • Insertion Loss < 8dB 18
  • 19. -450 Two-Cell Stagger Tuned NGD Phase Shifter NGD NGD unit cell 1 unit cell 2 two-cell NGD unit cell 1 unit cell 2 Unloaded TL ±20 phase bandwidth Unloaded TL: 105 MHz NGD: 905 MHz input port output port • Return loss < 33dB • Insertion Loss < 4dB • Low IL ripple 19
  • 20. Hybrid NRI-NGD 00 Phase Shifter ±2o Phase bandwidth NRI only: 79MHz NGD-NRI: 553MHz • Combination of NRI (high-pass) and NGD (lossy resonator) into one non-symmetric unit cell. • Low return loss (< 20 dB) & Insertion Loss (< 2.5 dB) • Reduced size & number of components 20
  • 21. Beam Squint for a Linear Series-Fed Antenna Array 𝐴𝑟𝑟𝑎𝑦 𝐹𝑎𝑐𝑡𝑜𝑟 𝐵𝑒𝑎𝑚 𝑆𝑞𝑢𝑖𝑛𝑡 2𝑚𝜋 𝜕𝜃 𝜏𝑔 − 𝜏𝑝 + = 𝜔 𝜕𝜔 𝜔𝑑 𝐸 𝑐 cos 𝜃 𝜕𝜃 to remove beam squint =0 : 𝜕𝜔 1) m=0 main lobe  NRI-TL 2) equal phase and group delay  NGD ±50 beam angle Phase Shifter Bandwidth -3600 Unloaded TL 27 MHz 00 NRI –TL 122 MHz Hybrid 00 NGD NRI-TL 607 MHz 21
  • 22. Experimental Setup Rogers RT Duroid 5880 substrate (εr=2.2) – 50Ω Microstrip TLs RF surface mount components (0402, 0603) – Coilcraft ceramic inductors – Murata ceramic capacitors – Vishay thick film resistors Modelithics component models – Empirical data models – Substrate scalable, pad dimension scalable 22
  • 23. -300 NGD TL Phase Shifter (3dB loss) component values ½Z Y R 8Ω 156 Ω L 1.5 nH 20 nH C 16 pF 1.2 pF 23
  • 24. -300 NGD TL Phase Shifter (3dB loss) Summary • ±20 phase bandwidth: 610MHz – 1240MHz (63%) 450% increase over unloaded TL (14%) • Measured Insertion Loss < 3.1dB • Measured Return loss < 20dB 24
  • 25. -300 NGD TL Phase Shifter (2dB loss) component values ½Z Y R 5.9 Ω 210 Ω L 1 nH 33 nH C 14 pF 0.8 pF 25
  • 26. -300 NGD TL Phase Shifter (2dB loss) Insertion Loss [dB] Phase [deg] Return Loss [dB] Summary • ±20 phase bandwidth: 680MHz – 1160MHz (51%) 364% increase over unloaded TL (14%) • Measured Insertion Loss < 2.12 dB • Measured Return Loss < 20dB • Less Ins. Loss but also less NGD bandwidth 26
  • 27. 00 NGD NRI-TL Phase Shifter component values ½Z Y NRI R 10 Ω 100 Ω - L 3.6 nH 30 nH 56 nH C 11 pF 2.7 pF 27 pF 27
  • 28. 00 NGD NRI-TL Phase Shifter Measured NGD NRI-TL phase error (700MHz) = +3.60 ±20 phase bandwidth NRI-TL: 71 MHz NGD NRI-TL: 188 MHz Measured • Return loss < 14 dB • Insertion Loss < 3.37 dB 28
  • 29. Conclusions • Passive Broadband NGD Unit Cell Proposed – Frequency, Impedance and NGD scalable – Quasi-linear phase at centre frequency – NGD, Insertion Loss and Bandwidth trade-off identified • NGD combined with lossless phase shifters to significantly increase phase bandwidth • Beam Squint may only be removed entirely with NGD phase shifters. • Experimentally verified microstrip NGD phase shifters with both positive and negative phase delays at 0.5GHz – 1.2GHz. 29

Notas del editor

  1. simplify
  2. animate
  3. Introduce the concept of butterworth filter and other filter types, IPM/constant-k
  4. Show a unit cell and the energy that its stored and also show these on aFosters reactance theoremEnergy delay
  5. Add linear filter conceptAdd bode plot and polar plotExplain the tp/tp ratio.Sinh(f) still trueN=3 Butterworth n=2, bessel filter, all linearTransmission line = n=infinity LP filter with infinite bandwidthIntroduce the time constants soonerSum of time constantsMatching condition is for matching, and to prevent stopbandsNRI-TL length reduction and Q
  6. Add legend, use colorAnimate
  7. labels
  8. Show design equations
  9. Label bandwidth, show networkslegnds
  10. Label bandwidthsShow network
  11. Label bandwidthsShow the cascade of two ngd unit cells
  12. 79, 553MHz2.47dB insertion loss
  13. Possiblyinclkude the ADS layout
  14. Flip NRIs
  15. Refer to proposal