SlideShare una empresa de Scribd logo
1 de 32
CONSERVATION LAW
 1
X
A  2
x
A
    V
A
A
t
V
G
x
x 








 2
1
 
G
x
V
A
t










c
x
m
x
x ,
, 

 

x
m
x




 
 ,
x
c
x V


,

 
 
G
c
x
m
x
V
A
t











 ,
,
   
G
x
m
x
V
V
A
V
A
t













 ,      
G
x
m
x
x
V
AV
V
A
V
A
V
t

















 ,
   
G
x
x
V
AV
V
x
A
V
A
V
t


































  G
t

 






.
      G
m V
V
t

 












.
.
.
      G
V
V
t

 













.
.
.
3-D PROPERTY
CONSERVATION EQUATION
MOLECULER AND CONVECTION HEAT TRANSPORT
PROCESS (APPLICATION OF EQUATION OF CHANGE)
Property
Accumulation
Rate
=
Inlet Property
Rate -
Outlet Property
Rate +
Property
Generation
Rate
HEAT TRANSPORT
MOLECULER AND CONVECTION HEAT TRANSPORT
PROCESS (APPLICATION OF EQUATION OF CHANGE)
General heat transport phenomena is expressed as equation of change. Equation
of change concerning conduction and convection heat transport is called Energy
Equation basically as microscopic energy conservation equation.
      G
m V
V
t

 












.
.
.
=CpT, m
 T
k
q 



    
     G
T
V
CpT
CpT
CpT
V
t
CpT 
















.
.
. 




 
CpT



 G
G T

 

Cp
k

  = thermal diffusivity
HEAT TRANSPORT
       
v
v
p
q
v
U
t
U











:
.
.
ˆ
.
ˆ



     
v
v
T
p
T
q
T
v
t
T
v
C
V































:
.
.
.
ˆ
ˆ


      Dt
Dp
v
q
v
H
t
H










:
.
ˆ
.
ˆ



   
v
Dt
Dp
T
q
T
v
t
T
p
C
p
























:
ln
ln
.
.
ˆ 


OTHER FORMS OF ENERGY EQUATION
Expressed in 𝑈
:
Expressed in 𝐶𝑣 and T
Expressed in 𝐻
Expressed in 𝐶𝑝 and T
  V
V 


 
 : V
 Tabel $B.7
MOLECULER AND CONVECTION HEAT TRANSPORT
PROCESS (APPLICATION OF EQUATION OF CHANGE)
V
T
k
Dt
DT
p
C 


 
 2
ˆ
HEAT TRANSPORT
2B
x
y
z
L
W
EXAMPLE -2
Determine temprature
distribution in a viscous liquid
flowing downward in steady
state and laminar between two
vertical paralell plate. The two
plates are maintained at
constant temprature of 𝑇0.
Assume constant  and k.
Solution:
First, we draw sketsc of flow
system,
Assumptions:
1.Steady state,
2.Laminar flow,
3.Vx=Vy=0, VZ is not function of y
4. Newtonian Fluid,
5.Constant , , k
6.
𝜕𝑇
𝜕𝑦
=
𝜕𝑇
𝜕𝑧
= 0
7. No slip at wall
8. End effect is neglected
MOLECULER AND CONVECTION HEAT TRANSPORT
PROCESS (APPLICATION OF EQUATION OF CHANGE)
HEAT TRANSPORT
0












z
V
y
V
x
V
t
z
y
x 



0



z
Vz

0



z
Vz
z
z
z
z
z
z
z
y
x
x
z
g
z
V
y
V
x
V
z
P
z
V
V
y
V
V
x
V
V
t
V


 








































2
2
2
2
2
2
z
z
g
dx
V
d
z
P

 




 2
2
0
L
dx
V
d L
z 0
2
2




 z
g
P z




1
0
K
x
L
dx
dV L
z






0
0 


dx
dV
x z
x
L
dx
dV L
z

0




2
2
0
2
K
x
L
V L
z 





0


 z
V
B
x
2
0
2
2
B
L
K L






SOLUTION
MOLECULER AND CONVECTION HEAT TRANSPORT
PROCESS (APPLICATION OF EQUATION OF CHANGE)
K1=0
HEAT TRANSPORT


















2
2
1
2 B
x
L
B
Vz
 















2
max
, 1
B
x
Vz
L
B
Vz

2
2
max
,



2
max
.
2
B
x
V
dx
dV
z
z







































2
2
2
2
2
2
z
T
y
T
x
T
k
z
T
V
y
T
V
x
T
V
t
T
C z
y
x
P





















































































2
2
2
2
2
2
2
y
V
z
V
x
V
z
V
x
V
y
V
z
V
y
V
x
V z
y
z
x
y
x
z
y
x


0
2
2
2








dx
dV
dx
T
d
k z
 0
4
. 4
2
2
max
,
2
2








B
x
V
dx
T
d
k z

3
3
4
2
max
,
3
4
K
x
kB
V
dx
dT z




4
3
4
4
2
max
,
3
K
x
K
x
kB
V
T z





ENERGY EQUATION
SOLUTION
MOLECULER AND CONVECTION HEAT TRANSPORT
PROCESS (APPLICATION OF EQUATION OF CHANGE)
From table A-5
HEAT TRANSPORT
4
3
4
4
2
max
,
3
K
x
K
x
kB
V
T z





0
0 


dx
dT
x
4
4
4
2
max
,
3
K
x
kB
V
T z




0
T
T
B
x 


B.C-1:
B.C.-2:
0
3 
K
k
V
T
K z
3
2
max
,
0
4




















4
2
max
,
0 1
3 B
x
k
V
T
T z

 



















4
2
4
0 1
12 B
x
k
L
B
T
T

SOLUTION
MOLECULER AND CONVECTION HEAT TRANSPORT
PROCESS (APPLICATION OF EQUATION OF CHANGE)
HEAT TRANSPORT
Example 3
Inlet air at T1
Cooler
A system consist of two porous concentric spherical walls with radius R1 and R2.
Outer surfase of inner wall is maintained at temprature T1 and inner surface of
outer wall is maintained at tempratrure T2. Dry air at temprature T1 is blown
radially from inner wall to outer wall. Develop an expression for heat removal
rate needed from inner wall as a function of air mass flow rate. Assume steady
state laminar flow and low gas rate.
MOLECULER AND CONVECTION HEAT TRANSPORT
PROCESS (APPLICATION OF EQUATION OF CHANGE)
HEAT TRANSPORT
Solution:
Assumption:
0
.
1 
 
 V
V )
(r
f
Vr 
2. T=T(r)
)
(
.
3 r



  0
1 2
2

r
V
r
dr
d
r
 
r
V
r 
2

4
r
w

constant
Continuity Equation:
  














 r
r
r V
r
dr
d
r
dr
d
dr
d
dr
dV
V 2
2
1


Equation of Motion
dr
d
dr
r
w
d
r
w
r
r 








2
2
4
4


dr
d
r
wr 



5
2
2
8 
  
 

 



2
2
5
2
2
8
R
r
r
R
r
r
dr
w
d


    












 4
4
2
2
2
2
1
1
32 r
R
w
r
R r


   



















4
2
4
2
2
2
2 1
32 r
R
R
w
R
r r


MOLECULER AND CONVECTION HEAT TRANSPORT
PROCESS (APPLICATION OF EQUATION OF CHANGE)
r
2
r
2
2
2
r
2
2
r
2
2
2
2
2
θ
r
r
θ
r
r
r
ρg
v
θ
sin
r
1
θ
v
sinθ
θ
sinθ
r
1
r
)
v
(r
r
1
μ
r
r
v
v
v
θ
sin
r
v
θ
v
r
v
r
v
v
t
v
ρ



































 
















p
𝜕
𝜕𝑟
1
𝑟2
𝜕
𝜕𝑟
𝑟2𝑣𝑟
HEAT TRANSPORT







dr
dT
r
dr
d
r
k
dr
dT
V
C r
p
2
2
1
ˆ
 






dr
dT
r
dr
d
C
w
k
dr
dT
p
r
2
ˆ
4
𝑢 = 𝑟2
𝑑𝑇
𝑑𝑟
= 𝐾1𝑒−
𝑅0
𝑟
2
0
1
0
2
0
0
2
1
2
R
R
R
R
R
R
r
R
e
e
e
e
T
T
T
T
/
/
/
/








 k
C
w
R P
r 
4
0 /
ˆ

1
2
1
4
R
r
r
q
R
Q


 
1
2
1
4
R
r
dr
dT
k
R

 
 
  
  1
1
4
2
1
1
0
1
2
0




R
R
R
R
T
T
k
R
Q
/
/
exp
  
2
1
1
2
1
0
1
4
R
R
T
T
k
R
Q
/




1
1
0
0






e
Q
Q
Q    
k
R
R
R
C
w
R
R
R
R P
r
1
2
1
1
1
0
4
1
1


/
ˆ
/ 



Energy Equation:
Substitution:
Heat transafer rate to inner wall is
Cooling requirement at inner wall,
If there is no air flow
MOLECULER AND CONVECTION HEAT TRANSPORT
PROCESS (APPLICATION OF EQUATION OF CHANGE)
𝑢
𝑟2
=
1
𝑅0
𝑑
𝑑𝑟
𝑢 →
𝑑𝑟
𝑟2
=
1
𝑅0
𝑑𝑢
𝑢
−
𝑅0
𝑟
+ ln 𝐾1 = ln 𝑢 → 𝑢 = 𝐾1𝑒−
𝑅0
𝑟
𝑑𝑇 = 𝐾1
𝑒−
𝑅0
𝑟
𝑟2 𝑑𝑟
𝑠 =
𝑅0
𝑟
→ 𝑑𝑠 = −
𝑅0
𝑟2 𝑑𝑟 𝑑𝑇 = 𝑇 = 𝐾1
𝑒−
𝑅0
𝑟
𝑟2 𝑑𝑟 = −
𝐾1
𝑅0
𝑒−𝑠
𝑑𝑠 =
𝐾1
𝑅0
𝑒−
𝑅0
𝑟 + 𝐾2
𝑢 = 𝑟2
𝑑𝑇
𝑑𝑟
EQUATION OF
CHANGE TABLE
     
0
z
ρv
y
ρv
x
ρv
t
ρ z
y
x












     
0
z
v
ρ
θ
v
ρ
r
1
r
v
r
ρ
r
1
t
ρ z
θ
r












     
0
v
ρ
rsinθ
1
θ
sinθ
v
ρ
rsinθ
1
r
v
r
ρ
r
1
t
ρ θ
r
2
2














Cartesian Coordinate System:
Cylindrical Coordinate System:
Spherical Coordinate System
Table A-1 Continuity Equation
-Table A2Equation of Motion (Equation of Momentum)
x
zx
yx
xx
x
z
x
y
x
z
x
ρg
z
τ
y
τ
x
τ
x
z
v
v
y
v
v
x
v
v
t
v
ρ 







































 p
y
zy
yy
xy
y
z
y
y
y
z
y
ρg
z
τ
y
τ
x
τ
y
z
v
v
y
v
v
x
v
v
t
v
ρ 







































 p
z
zz
yz
xz
z
z
z
y
z
z
z
ρg
z
τ
y
τ
x
τ
z
z
v
v
y
v
v
x
v
v
t
v
ρ 







































 p
Cartesian Coordinate System:
 
r
rz
θθ
rθ
rr
r
z
2
θ
r
θ
r
r
r
ρg
z
τ
r
τ
θ
τ
r
1
r
rτ
r
1
r
z
v
v
r
v
θ
v
r
v
r
v
v
t
v
ρ








































 p
 
θ
zθ
θθ
rθ
2
2
θ
z
θ
r
θ
θ
θ
r
θ
ρg
z
τ
θ
τ
r
1
r
τ
r
r
1
θ
r
1
z
v
v
r
v
v
θ
v
r
v
r
v
v
t
v
ρ







































 p
 
z
zz
θz
rz
z
z
z
θ
z
r
z
ρg
z
τ
θ
τ
r
1
x
rτ
r
1
z
z
v
v
θ
v
r
v
r
v
v
t
v
ρ 



































 p
Cylindrical Coordinate System
-Table A2Equation of Motion (Equation of Momentum)
Spherical Coordinate System
 
r
r
θθ
rθ
rr
2
2
2
2
θ
r
r
θ
r
r
r
ρg
τ
rsinθ
1
r
τ
τ
θ
sinθ
τ
rsinθ
1
r
τ
r
r
1
r
r
v
v
v
rsinθ
v
θ
v
r
v
r
v
v
t
v
ρ































 

















 p
 
θ
rθ
θ
θθ
rθ
2
2
2
θ
r
θ
θ
θ
θ
r
θ
ρg
τ
r
cotθ
r
τ
τ
rsinθ
1
θ
sinθ
τ
rsinθ
1
r
τ
r
r
1
θ
r
1
r
cotθ
v
r
v
v
v
rsinθ
v
θ
v
r
v
r
v
v
t
v
ρ



















































p
 














ρg
τ
r
cotθ
2
r
τ
τ
rsinθ
1
θ
τ
r
1
r
τ
r
r
1
rsinθ
1
cotθ
r
v
v
r
v
v
v
rsinθ
v
θ
v
r
v
r
v
v
t
v
ρ
θ
r
θ
r
2
2
θ
r
θ
φ
r
φ












































 p
-Table A2Equation of Motion (Equation of Momentum)
x
2
x
2
x
2
2
x
2
x
z
x
y
x
z
x
ρg
z
v
y
v
x
v
μ
x
z
v
v
y
v
v
x
v
v
t
v
ρ 







































 p
y
2
y
2
2
y
2
2
y
2
y
z
y
y
y
z
y
ρg
z
v
y
v
x
v
μ
y
z
v
v
y
v
v
x
v
v
t
v
ρ 







































 p
z
2
z
2
2
z
2
2
z
2
z
z
z
y
z
z
z
ρg
z
v
y
v
x
v
μ
z
z
v
v
y
v
v
x
v
v
t
v
ρ 







































 p
-Table A2Equation of Motion (Equation of Momentum)
(Incompressible Newtonian Fluid)
Cartesian Coordinate System:
Table A-3 Equation of Motion (Equation of Momentum)
(Incompresiible Newtonian Fluid)
Cylindrical Coordinate:
  r
2
r
2
θ
2
2
r
2
2
r
r
z
2
θ
r
θ
r
r
r
ρg
z
v
θ
v
r
2
θ
v
r
1
rv
r
r
1
r
μ
r
z
v
v
r
v
θ
v
r
v
r
v
v
t
v
ρ


















































 p
  θ
2
θ
2
r
2
2
θ
2
2
θ
θ
z
θ
r
θ
θ
θ
r
θ
ρg
z
v
θ
v
r
2
θ
v
r
1
rv
r
r
1
r
μ
θ
r
1
z
v
v
r
v
v
θ
v
r
v
r
v
v
t
v
ρ
















































 p
x
2
z
2
2
z
2
2
z
z
z
z
θ
z
r
z
ρg
z
v
θ
v
r
1
r
v
r
r
r
1
μ
z
z
v
v
θ
v
r
v
r
v
v
t
v
ρ 











































 p
Table A-3 Equation of Motion ( Equation of Momentum)
(Incompressible Newtonian Fluid)
Spherical Coordinate
r
2
r
2
2
2
r
2
2
r
2
2
2
2
2
θ
r
r
θ
r
r
r
ρg
v
θ
sin
r
1
θ
v
sinθ
θ
sinθ
r
1
r
)
v
(r
r
1
μ
r
r
v
v
v
θ
sin
r
v
θ
v
r
v
r
v
v
t
v
ρ



































 
















p
θ
2
2
r
2
2
θ
2
2
2
θ
2
θ
2
2
2
θ
r
θ
θ
θ
θ
r
θ
ρg
v
θ
sin
r
cosθ
2
θ
v
r
2
v
θ
sin
r
1
θ
sinθ
v
sinθ
1
θ
r
1
r
v
r
r
r
1
μ
θ
r
1
r
cotθ
v
r
v
v
v
rsinθ
v
θ
v
r
v
r
v
v
t
v
ρ






































































 p
















ρg
v
θ
sin
r
cosθ
2
v
sinθ
r
2
v
θ
sin
r
1
θ
sinθ
v
sinθ
1
θ
r
1
r
v
r
r
r
1
μ
rsinθ
1
cotθ
r
v
v
r
v
v
v
rsinθ
v
θ
v
r
v
r
v
v
t
v
ρ
θ
2
2
r
2
2
2
2
2
2
2
2
θ
r
θ
r




































































 p
Table A-4 Components of stress tensor for Newtonian Fluid
Koordinat Silinder Koordinat Bola
 










 v
.
κ
x
v
2
μ
τ x
xx
 










 v
.
κ
y
v
2
μ
τ
y
yy
 










 v
z
vz
xx .
2 
















x
v
y
v
μ
τ
τ
y
x
yx
xy














y
v
z
v
μ
τ
τ z
y
zy
yz














z
v
x
v
μ
τ
τ x
z
xz
zx
 










 v
.
κ
r
v
2
μ
τ r
rr
 

















 v
.
κ
r
v
θ
v
r
1
2
μ
τ r
θ
θθ
 










 v
.
κ
z
v
2
μ
τ z
zz
 














θ
v
r
1
r
/r
v
r
μ
τ
τ r
θ
θr
rθ














θ
v
r
1
z
v
μ
τ
τ z
θ
zθ
θz














z
v
r
v
μ
τ
τ r
z
rz
zr
 










 v
.
κ
r
v
2
μ
τ r
rr
 

















 v
.
κ
r
v
θ
v
r
1
2
μ
τ r
θ
θθ
 




















 v
.
κ
r
cotθ
v
r
v
v
rsinθ
1
2
μ
τ θ
r

















θ
v
r
1
r
/r)
(v
r
μ
τ
τ r
θ
θr
rθ


























θ
θ
θ
v
rsinθ
1
sinθ
v
θ
r
sinθ
μ
τ
τ














r
/r)
(v
r
φ
v
rsinθ
1
μ
τ
τ
φ
r
r
r 

3
2
κ 
Cartesian Coordinate System
Cylindrical Coordinate
Spherical Coordinate
 
v
.

z
v
y
v
x
v z
y
x








 
z
v
θ
v
r
1
rv
r
r
1 z
θ
r








   









 v
rsinθ
1
sinθ
v
θ
rsinθ
1
v
r
r
r
1
θ
r
2
2
Cartesian Coordinate System:
Tabel A-5
Fungsi untuk fluida Newton
Coordinate System
Cartesian
Sylindrical
Spherical
v

 2
2
z
x
2
y
z
2
x
y
2
z
2
y
2
x
v
.
3
2
x
v
z
v
z
v
y
v
y
v
x
v
z
v
y
v
x
v
2










































































 2
2
z
r
2
θ
z
2
r
θ
2
z
2
r
θ
2
r
v
.
3
2
r
v
z
v
z
v
θ
v
r
1
θ
v
r
1
r
v
r
r
z
v
r
v
θ
v
r
1
r
v
2














































































 2
2
r
2
θ
2
r
θ
2
θ
r
2
r
θ
2
r
v
.
3
2
r
v
r
r
v
rsi
n θ
1
v
rsi
n θ
1
si
n θ
v
θ
r
si
n θ
θ
v
r
1
r
v
r
r
r
cotθ
v
r
v
v
rsi
n θ
1
r
v
θ
v
r
1
r
v
2









































































































Table A-6
Component of Energy Flux
Cartesian Cylindrical Spherical
z
T
k
q
y
T
k
q
x
T
k
q
z
y
x












z
T
k
q
θ
T
r
1
k
q
r
T
k
q
z
θ
r

























T
rsinθ
1
k
q
θ
T
r
1
k
q
r
T
k
q
φ
θ
r
Tabel A-7
Energy Equation in energy and momentum flux
 










































































































y
v
z
v
τ
x
v
z
v
τ
x
v
y
v
τ
z
v
τ
y
v
τ
x
v
τ
v
.
T
p
T
z
q
y
q
x
q
z
T
v
y
T
v
x
T
v
t
T
ρC
z
y
yz
z
x
xz
y
x
xy
z
zz
y
yy
x
xx
ρ
z
y
x
z
y
x
v
   

















































































































z
v
θ
v
r
1
τ
z
v
r
v
τ
θ
v
r
1
r
v
r
r
τ
z
v
τ
v
θ
v
r
1
τ
r
v
τ
v
.
T
p
T
z
q
θ
q
r
1
rq
r
r
1
z
T
v
θ
T
r
v
r
T
v
t
T
ρC
θ
z
θz
r
z
rz
r
θ
rθ
z
zz
r
θ
θθ
r
rr
ρ
z
θ
r
z
θ
r
v
 
 





















































































































































v
r
cotθ
v
rsinθ
1
θ
v
r
1
τ
r
v
v
rsinθ
1
r
v
τ
r
v
θ
v
r
1
r
v
τ
r
cotθ
v
r
v
v
rsinθ
1
τ
v
θ
v
r
1
τ
r
v
τ
v
.
T
p
T
q
rsinθ
1
θ
sinθ
q
rsinθ
1
q
r
r
r
1
T
rsinθ
v
θ
T
r
v
r
T
v
t
T
ρC
θ
θ
r
r
θ
r
θ
rθ
θ
r
r
θ
θθ
r
rr
ρ
θ
r
2
2
θ
r
v
Cartesian
Cylindrical
Spherical
Tabel A-8
V




































μ
z
T
y
T
x
T
k
z
T
v
y
T
v
x
T
v
t
T
ρC 2
2
2
2
2
2
z
y
x
p
V










































μ
z
T
θ
T
r
1
r
T
r
r
r
1
k
z
T
v
θ
T
r
v
r
T
v
t
T
ρC 2
2
2
2
2
z
θ
r
p
V




















































μ
T
θ
sin
r
1
θ
T
sinθ
θ
sinθ
r
1
r
T
r
r
r
1
k
T
rsinθ
v
θ
T
r
v
r
T
v
t
T
ρ 2
2
2
2
2
2
2
θ
r
p



Energy Equation For Incompressible Newtonian Fluid with constant properties
Spherical
Cylindrical
Cartesian
𝜌𝐶𝑝
V




















































μ
T
θ
sin
r
1
θ
T
sinθ
θ
sinθ
r
1
r
T
r
r
r
1
k
T
rsinθ
v
θ
T
r
v
r
T
v
t
T
ρ 2
2
2
2
2
2
2
θ
r
p



Tabel A-9
Components of molecular Diffusion Flux
Spherical
z
C
D
J
y
C
D
J
x
C
D
J
A
AB
Az
A
AB
Ay
A
AB
Ax












z
C
D
J
θ
C
r
1
D
J
r
C
D
J
A
AB
Az
A
AB
Aθ
A
AB
Ar

























A
AB
Az
A
AB
Aθ
A
AB
Ar
C
rsinθ
1
D
J
θ
C
r
1
D
J
r
C
D
J
Cartesian Cylindrical
Tabel A-10
Continuity Equation of Component A
A
Az
Ay
Ax
A
R
z
N
y
N
x
N
t
C




















  A
Az
Aθ
Ar
A
R
z
N
θ
N
r
1
rN
r
r
1
t
C


















    A
A
Aθ
Ar
2
2
A
R
N
rsinθ
1
sinθ
N
θ
rsinθ
1
N
r
r
r
1
t
C






















Cartesian
Cylindrical
Spherical
TabLE A-11
Continuity equation of component A for constant properties
A
2
A
2
2
A
2
2
A
2
AB
A
z
A
y
A
x
A
R
z
C
y
C
x
C
D
z
C
v
y
C
v
x
C
v
t
C





































A
2
A
2
2
A
2
2
A
AB
A
z
A
θ
A
r
A
R
z
C
θ
C
r
1
r
C
r
r
r
1
D
z
C
v
θ
C
r
1
v
r
C
v
t
C











































A
2
A
2
2
2
A
2
A
2
2
AB
A
A
θ
A
r
A
R
C
θ
sin
r
1
θ
C
sinθ
θ
sinθ
r
1
r
C
r
r
r
1
D
C
rsin θ
1
v
θ
C
r
1
v
r
C
v
t
C
























































Cartesian
Cylindrical
Spherical
P(x,y,z)
y
z
x
y
x
z
CARTESIAN COORDINATE SYSTEM
z
 
z
r
P ,
,

r
CYLINDRICAL COORDINATE SYSTEM
 

,
,
r
P


SPHERICAL COORDINATE SYSTEM
NON NEWTONIAN FLUID
 




















:
2
1
0
0


   2
0
:
2
1


 
0

   2
0
:
2
1


 
0
0 

 




y
Vx
yx 2
0
2

 
yx
0



y
Vx 2
0
2

 
yx
  












1
:
2
1
n
m

 























 

2
0
0
:
2
1
1







BINGHAM PLASTIC
POWER LAW
Model Reiner-Philippof
NON NEWTONIAN FLUID
 




















:
2
1
0
0


   2
0
:
2
1


 
0

   2
0
:
2
1


 
0
0 

 




y
Vx
yx 2
0
2

 
yx
0



y
Vx 2
0
2

 
yx
  












1
:
2
1
n
m

 























 

2
0
0
:
2
1
1







BINGHAM PLASTIC
POWER LAW
Model Reiner-Philippof

Más contenido relacionado

Similar a PR_TMP_IUP_2021_CHAP3.pptx

free Video lecture in india
free Video lecture in indiafree Video lecture in india
free Video lecture in indiaEdhole.com
 
Free video lecture in india
Free video lecture in indiaFree video lecture in india
Free video lecture in indiaCss Founder
 
Open channel flow
Open channel flowOpen channel flow
Open channel flowAdnan Aslam
 
Oil Spill Simulation near The Red Sea Coast using The Random Walk Technique
Oil Spill Simulation near The Red Sea Coast using The Random Walk TechniqueOil Spill Simulation near The Red Sea Coast using The Random Walk Technique
Oil Spill Simulation near The Red Sea Coast using The Random Walk TechniqueAmro Elfeki
 
Vol. 1 (1), 2014, 7–11
Vol. 1 (1), 2014, 7–11Vol. 1 (1), 2014, 7–11
Vol. 1 (1), 2014, 7–11Said Benramache
 
The Minimum Total Heating Lander By The Maximum Principle Pontryagin
The Minimum Total Heating Lander By The Maximum Principle PontryaginThe Minimum Total Heating Lander By The Maximum Principle Pontryagin
The Minimum Total Heating Lander By The Maximum Principle PontryaginIJERA Editor
 
On the dynamic behavior of the current in the condenser of a boost converter ...
On the dynamic behavior of the current in the condenser of a boost converter ...On the dynamic behavior of the current in the condenser of a boost converter ...
On the dynamic behavior of the current in the condenser of a boost converter ...TELKOMNIKA JOURNAL
 
Gas Dynamics, Lecture 2.pptx
Gas Dynamics, Lecture 2.pptxGas Dynamics, Lecture 2.pptx
Gas Dynamics, Lecture 2.pptxNamLe218588
 
Ch07a Entropy (1).pptx
Ch07a Entropy (1).pptxCh07a Entropy (1).pptx
Ch07a Entropy (1).pptxMercyjiren
 
Heat Conduction Simulation with FDM
Heat Conduction Simulation with FDMHeat Conduction Simulation with FDM
Heat Conduction Simulation with FDMXueer Zhang
 
Lecture slides Ist & 2nd Order Circuits[282].pdf
Lecture slides Ist & 2nd Order Circuits[282].pdfLecture slides Ist & 2nd Order Circuits[282].pdf
Lecture slides Ist & 2nd Order Circuits[282].pdfsami717280
 
009b (PPT) Viscous Flow -2.pdf .
009b (PPT) Viscous Flow -2.pdf           .009b (PPT) Viscous Flow -2.pdf           .
009b (PPT) Viscous Flow -2.pdf .happycocoman
 

Similar a PR_TMP_IUP_2021_CHAP3.pptx (20)

free Video lecture in india
free Video lecture in indiafree Video lecture in india
free Video lecture in india
 
Free video lecture in india
Free video lecture in indiaFree video lecture in india
Free video lecture in india
 
Ostwald
OstwaldOstwald
Ostwald
 
Ostwald
OstwaldOstwald
Ostwald
 
Open channel flow
Open channel flowOpen channel flow
Open channel flow
 
Oil Spill Simulation near The Red Sea Coast using The Random Walk Technique
Oil Spill Simulation near The Red Sea Coast using The Random Walk TechniqueOil Spill Simulation near The Red Sea Coast using The Random Walk Technique
Oil Spill Simulation near The Red Sea Coast using The Random Walk Technique
 
Fluid dynamics
Fluid dynamicsFluid dynamics
Fluid dynamics
 
Vol. 1 (1), 2014, 7–11
Vol. 1 (1), 2014, 7–11Vol. 1 (1), 2014, 7–11
Vol. 1 (1), 2014, 7–11
 
2. fluids 2
2. fluids 22. fluids 2
2. fluids 2
 
N3 l penelet_final
N3 l penelet_finalN3 l penelet_final
N3 l penelet_final
 
The Minimum Total Heating Lander By The Maximum Principle Pontryagin
The Minimum Total Heating Lander By The Maximum Principle PontryaginThe Minimum Total Heating Lander By The Maximum Principle Pontryagin
The Minimum Total Heating Lander By The Maximum Principle Pontryagin
 
On the dynamic behavior of the current in the condenser of a boost converter ...
On the dynamic behavior of the current in the condenser of a boost converter ...On the dynamic behavior of the current in the condenser of a boost converter ...
On the dynamic behavior of the current in the condenser of a boost converter ...
 
Gas Dynamics, Lecture 2.pptx
Gas Dynamics, Lecture 2.pptxGas Dynamics, Lecture 2.pptx
Gas Dynamics, Lecture 2.pptx
 
Ch07a Entropy (1).pptx
Ch07a Entropy (1).pptxCh07a Entropy (1).pptx
Ch07a Entropy (1).pptx
 
Drift flux
Drift fluxDrift flux
Drift flux
 
Simple & Fast Fluids
Simple & Fast FluidsSimple & Fast Fluids
Simple & Fast Fluids
 
Heat Conduction Simulation with FDM
Heat Conduction Simulation with FDMHeat Conduction Simulation with FDM
Heat Conduction Simulation with FDM
 
Fl35967977
Fl35967977Fl35967977
Fl35967977
 
Lecture slides Ist & 2nd Order Circuits[282].pdf
Lecture slides Ist & 2nd Order Circuits[282].pdfLecture slides Ist & 2nd Order Circuits[282].pdf
Lecture slides Ist & 2nd Order Circuits[282].pdf
 
009b (PPT) Viscous Flow -2.pdf .
009b (PPT) Viscous Flow -2.pdf           .009b (PPT) Viscous Flow -2.pdf           .
009b (PPT) Viscous Flow -2.pdf .
 

Último

BỘ LUYỆN NGHE TIẾNG ANH 8 GLOBAL SUCCESS CẢ NĂM (GỒM 12 UNITS, MỖI UNIT GỒM 3...
BỘ LUYỆN NGHE TIẾNG ANH 8 GLOBAL SUCCESS CẢ NĂM (GỒM 12 UNITS, MỖI UNIT GỒM 3...BỘ LUYỆN NGHE TIẾNG ANH 8 GLOBAL SUCCESS CẢ NĂM (GỒM 12 UNITS, MỖI UNIT GỒM 3...
BỘ LUYỆN NGHE TIẾNG ANH 8 GLOBAL SUCCESS CẢ NĂM (GỒM 12 UNITS, MỖI UNIT GỒM 3...Nguyen Thanh Tu Collection
 
slides CapTechTalks Webinar May 2024 Alexander Perry.pptx
slides CapTechTalks Webinar May 2024 Alexander Perry.pptxslides CapTechTalks Webinar May 2024 Alexander Perry.pptx
slides CapTechTalks Webinar May 2024 Alexander Perry.pptxCapitolTechU
 
Dementia (Alzheimer & vasular dementia).
Dementia (Alzheimer & vasular dementia).Dementia (Alzheimer & vasular dementia).
Dementia (Alzheimer & vasular dementia).Mohamed Rizk Khodair
 
REPRODUCTIVE TOXICITY STUDIE OF MALE AND FEMALEpptx
REPRODUCTIVE TOXICITY  STUDIE OF MALE AND FEMALEpptxREPRODUCTIVE TOXICITY  STUDIE OF MALE AND FEMALEpptx
REPRODUCTIVE TOXICITY STUDIE OF MALE AND FEMALEpptxmanishaJyala2
 
Basic Civil Engg Notes_Chapter-6_Environment Pollution & Engineering
Basic Civil Engg Notes_Chapter-6_Environment Pollution & EngineeringBasic Civil Engg Notes_Chapter-6_Environment Pollution & Engineering
Basic Civil Engg Notes_Chapter-6_Environment Pollution & EngineeringDenish Jangid
 
Behavioral-sciences-dr-mowadat rana (1).pdf
Behavioral-sciences-dr-mowadat rana (1).pdfBehavioral-sciences-dr-mowadat rana (1).pdf
Behavioral-sciences-dr-mowadat rana (1).pdfaedhbteg
 
ppt your views.ppt your views of your college in your eyes
ppt your views.ppt your views of your college in your eyesppt your views.ppt your views of your college in your eyes
ppt your views.ppt your views of your college in your eyesashishpaul799
 
MichaelStarkes_UncutGemsProjectSummary.pdf
MichaelStarkes_UncutGemsProjectSummary.pdfMichaelStarkes_UncutGemsProjectSummary.pdf
MichaelStarkes_UncutGemsProjectSummary.pdfmstarkes24
 
Incoming and Outgoing Shipments in 2 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 2 STEPS Using Odoo 17Incoming and Outgoing Shipments in 2 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 2 STEPS Using Odoo 17Celine George
 
Neurulation and the formation of the neural tube
Neurulation and the formation of the neural tubeNeurulation and the formation of the neural tube
Neurulation and the formation of the neural tubeSaadHumayun7
 
Features of Video Calls in the Discuss Module in Odoo 17
Features of Video Calls in the Discuss Module in Odoo 17Features of Video Calls in the Discuss Module in Odoo 17
Features of Video Calls in the Discuss Module in Odoo 17Celine George
 
Removal Strategy _ FEFO _ Working with Perishable Products in Odoo 17
Removal Strategy _ FEFO _ Working with Perishable Products in Odoo 17Removal Strategy _ FEFO _ Working with Perishable Products in Odoo 17
Removal Strategy _ FEFO _ Working with Perishable Products in Odoo 17Celine George
 
Pragya Champions Chalice 2024 Prelims & Finals Q/A set, General Quiz
Pragya Champions Chalice 2024 Prelims & Finals Q/A set, General QuizPragya Champions Chalice 2024 Prelims & Finals Q/A set, General Quiz
Pragya Champions Chalice 2024 Prelims & Finals Q/A set, General QuizPragya - UEM Kolkata Quiz Club
 
The Last Leaf, a short story by O. Henry
The Last Leaf, a short story by O. HenryThe Last Leaf, a short story by O. Henry
The Last Leaf, a short story by O. HenryEugene Lysak
 
Basic Civil Engineering notes on Transportation Engineering, Modes of Transpo...
Basic Civil Engineering notes on Transportation Engineering, Modes of Transpo...Basic Civil Engineering notes on Transportation Engineering, Modes of Transpo...
Basic Civil Engineering notes on Transportation Engineering, Modes of Transpo...Denish Jangid
 
會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文
會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文
會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文中 央社
 
An Overview of the Odoo 17 Discuss App.pptx
An Overview of the Odoo 17 Discuss App.pptxAn Overview of the Odoo 17 Discuss App.pptx
An Overview of the Odoo 17 Discuss App.pptxCeline George
 
Championnat de France de Tennis de table/
Championnat de France de Tennis de table/Championnat de France de Tennis de table/
Championnat de France de Tennis de table/siemaillard
 

Último (20)

BỘ LUYỆN NGHE TIẾNG ANH 8 GLOBAL SUCCESS CẢ NĂM (GỒM 12 UNITS, MỖI UNIT GỒM 3...
BỘ LUYỆN NGHE TIẾNG ANH 8 GLOBAL SUCCESS CẢ NĂM (GỒM 12 UNITS, MỖI UNIT GỒM 3...BỘ LUYỆN NGHE TIẾNG ANH 8 GLOBAL SUCCESS CẢ NĂM (GỒM 12 UNITS, MỖI UNIT GỒM 3...
BỘ LUYỆN NGHE TIẾNG ANH 8 GLOBAL SUCCESS CẢ NĂM (GỒM 12 UNITS, MỖI UNIT GỒM 3...
 
slides CapTechTalks Webinar May 2024 Alexander Perry.pptx
slides CapTechTalks Webinar May 2024 Alexander Perry.pptxslides CapTechTalks Webinar May 2024 Alexander Perry.pptx
slides CapTechTalks Webinar May 2024 Alexander Perry.pptx
 
Dementia (Alzheimer & vasular dementia).
Dementia (Alzheimer & vasular dementia).Dementia (Alzheimer & vasular dementia).
Dementia (Alzheimer & vasular dementia).
 
REPRODUCTIVE TOXICITY STUDIE OF MALE AND FEMALEpptx
REPRODUCTIVE TOXICITY  STUDIE OF MALE AND FEMALEpptxREPRODUCTIVE TOXICITY  STUDIE OF MALE AND FEMALEpptx
REPRODUCTIVE TOXICITY STUDIE OF MALE AND FEMALEpptx
 
Basic Civil Engg Notes_Chapter-6_Environment Pollution & Engineering
Basic Civil Engg Notes_Chapter-6_Environment Pollution & EngineeringBasic Civil Engg Notes_Chapter-6_Environment Pollution & Engineering
Basic Civil Engg Notes_Chapter-6_Environment Pollution & Engineering
 
Behavioral-sciences-dr-mowadat rana (1).pdf
Behavioral-sciences-dr-mowadat rana (1).pdfBehavioral-sciences-dr-mowadat rana (1).pdf
Behavioral-sciences-dr-mowadat rana (1).pdf
 
Post Exam Fun(da) Intra UEM General Quiz - Finals.pdf
Post Exam Fun(da) Intra UEM General Quiz - Finals.pdfPost Exam Fun(da) Intra UEM General Quiz - Finals.pdf
Post Exam Fun(da) Intra UEM General Quiz - Finals.pdf
 
ppt your views.ppt your views of your college in your eyes
ppt your views.ppt your views of your college in your eyesppt your views.ppt your views of your college in your eyes
ppt your views.ppt your views of your college in your eyes
 
MichaelStarkes_UncutGemsProjectSummary.pdf
MichaelStarkes_UncutGemsProjectSummary.pdfMichaelStarkes_UncutGemsProjectSummary.pdf
MichaelStarkes_UncutGemsProjectSummary.pdf
 
Incoming and Outgoing Shipments in 2 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 2 STEPS Using Odoo 17Incoming and Outgoing Shipments in 2 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 2 STEPS Using Odoo 17
 
Neurulation and the formation of the neural tube
Neurulation and the formation of the neural tubeNeurulation and the formation of the neural tube
Neurulation and the formation of the neural tube
 
Features of Video Calls in the Discuss Module in Odoo 17
Features of Video Calls in the Discuss Module in Odoo 17Features of Video Calls in the Discuss Module in Odoo 17
Features of Video Calls in the Discuss Module in Odoo 17
 
Removal Strategy _ FEFO _ Working with Perishable Products in Odoo 17
Removal Strategy _ FEFO _ Working with Perishable Products in Odoo 17Removal Strategy _ FEFO _ Working with Perishable Products in Odoo 17
Removal Strategy _ FEFO _ Working with Perishable Products in Odoo 17
 
Word Stress rules esl .pptx
Word Stress rules esl               .pptxWord Stress rules esl               .pptx
Word Stress rules esl .pptx
 
Pragya Champions Chalice 2024 Prelims & Finals Q/A set, General Quiz
Pragya Champions Chalice 2024 Prelims & Finals Q/A set, General QuizPragya Champions Chalice 2024 Prelims & Finals Q/A set, General Quiz
Pragya Champions Chalice 2024 Prelims & Finals Q/A set, General Quiz
 
The Last Leaf, a short story by O. Henry
The Last Leaf, a short story by O. HenryThe Last Leaf, a short story by O. Henry
The Last Leaf, a short story by O. Henry
 
Basic Civil Engineering notes on Transportation Engineering, Modes of Transpo...
Basic Civil Engineering notes on Transportation Engineering, Modes of Transpo...Basic Civil Engineering notes on Transportation Engineering, Modes of Transpo...
Basic Civil Engineering notes on Transportation Engineering, Modes of Transpo...
 
會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文
會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文
會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文
 
An Overview of the Odoo 17 Discuss App.pptx
An Overview of the Odoo 17 Discuss App.pptxAn Overview of the Odoo 17 Discuss App.pptx
An Overview of the Odoo 17 Discuss App.pptx
 
Championnat de France de Tennis de table/
Championnat de France de Tennis de table/Championnat de France de Tennis de table/
Championnat de France de Tennis de table/
 

PR_TMP_IUP_2021_CHAP3.pptx

  • 1. CONSERVATION LAW  1 X A  2 x A     V A A t V G x x           2 1   G x V A t           c x m x x , ,      x m x        , x c x V   ,      G c x m x V A t             , ,     G x m x V V A V A t               ,       G x m x x V AV V A V A V t                   ,     G x x V AV V x A V A V t                                     G t          .       G m V V t                . . .       G V V t                 . . . 3-D PROPERTY CONSERVATION EQUATION MOLECULER AND CONVECTION HEAT TRANSPORT PROCESS (APPLICATION OF EQUATION OF CHANGE) Property Accumulation Rate = Inlet Property Rate - Outlet Property Rate + Property Generation Rate
  • 2. HEAT TRANSPORT MOLECULER AND CONVECTION HEAT TRANSPORT PROCESS (APPLICATION OF EQUATION OF CHANGE) General heat transport phenomena is expressed as equation of change. Equation of change concerning conduction and convection heat transport is called Energy Equation basically as microscopic energy conservation equation.       G m V V t                . . . =CpT, m  T k q               G T V CpT CpT CpT V t CpT                  . . .        CpT     G G T     Cp k    = thermal diffusivity
  • 3. HEAT TRANSPORT         v v p q v U t U            : . . ˆ . ˆ          v v T p T q T v t T v C V                                : . . . ˆ ˆ         Dt Dp v q v H t H           : . ˆ . ˆ        v Dt Dp T q T v t T p C p                         : ln ln . . ˆ    OTHER FORMS OF ENERGY EQUATION Expressed in 𝑈 : Expressed in 𝐶𝑣 and T Expressed in 𝐻 Expressed in 𝐶𝑝 and T   V V       : V  Tabel $B.7 MOLECULER AND CONVECTION HEAT TRANSPORT PROCESS (APPLICATION OF EQUATION OF CHANGE) V T k Dt DT p C       2 ˆ
  • 4. HEAT TRANSPORT 2B x y z L W EXAMPLE -2 Determine temprature distribution in a viscous liquid flowing downward in steady state and laminar between two vertical paralell plate. The two plates are maintained at constant temprature of 𝑇0. Assume constant  and k. Solution: First, we draw sketsc of flow system, Assumptions: 1.Steady state, 2.Laminar flow, 3.Vx=Vy=0, VZ is not function of y 4. Newtonian Fluid, 5.Constant , , k 6. 𝜕𝑇 𝜕𝑦 = 𝜕𝑇 𝜕𝑧 = 0 7. No slip at wall 8. End effect is neglected MOLECULER AND CONVECTION HEAT TRANSPORT PROCESS (APPLICATION OF EQUATION OF CHANGE)
  • 5. HEAT TRANSPORT 0             z V y V x V t z y x     0    z Vz  0    z Vz z z z z z z z y x x z g z V y V x V z P z V V y V V x V V t V                                             2 2 2 2 2 2 z z g dx V d z P         2 2 0 L dx V d L z 0 2 2      z g P z     1 0 K x L dx dV L z       0 0    dx dV x z x L dx dV L z  0     2 2 0 2 K x L V L z       0    z V B x 2 0 2 2 B L K L       SOLUTION MOLECULER AND CONVECTION HEAT TRANSPORT PROCESS (APPLICATION OF EQUATION OF CHANGE) K1=0
  • 6. HEAT TRANSPORT                   2 2 1 2 B x L B Vz                  2 max , 1 B x Vz L B Vz  2 2 max ,    2 max . 2 B x V dx dV z z                                        2 2 2 2 2 2 z T y T x T k z T V y T V x T V t T C z y x P                                                                                      2 2 2 2 2 2 2 y V z V x V z V x V y V z V y V x V z y z x y x z y x   0 2 2 2         dx dV dx T d k z  0 4 . 4 2 2 max , 2 2         B x V dx T d k z  3 3 4 2 max , 3 4 K x kB V dx dT z     4 3 4 4 2 max , 3 K x K x kB V T z      ENERGY EQUATION SOLUTION MOLECULER AND CONVECTION HEAT TRANSPORT PROCESS (APPLICATION OF EQUATION OF CHANGE) From table A-5
  • 7. HEAT TRANSPORT 4 3 4 4 2 max , 3 K x K x kB V T z      0 0    dx dT x 4 4 4 2 max , 3 K x kB V T z     0 T T B x    B.C-1: B.C.-2: 0 3  K k V T K z 3 2 max , 0 4                     4 2 max , 0 1 3 B x k V T T z                       4 2 4 0 1 12 B x k L B T T  SOLUTION MOLECULER AND CONVECTION HEAT TRANSPORT PROCESS (APPLICATION OF EQUATION OF CHANGE)
  • 8. HEAT TRANSPORT Example 3 Inlet air at T1 Cooler A system consist of two porous concentric spherical walls with radius R1 and R2. Outer surfase of inner wall is maintained at temprature T1 and inner surface of outer wall is maintained at tempratrure T2. Dry air at temprature T1 is blown radially from inner wall to outer wall. Develop an expression for heat removal rate needed from inner wall as a function of air mass flow rate. Assume steady state laminar flow and low gas rate. MOLECULER AND CONVECTION HEAT TRANSPORT PROCESS (APPLICATION OF EQUATION OF CHANGE)
  • 9. HEAT TRANSPORT Solution: Assumption: 0 . 1     V V ) (r f Vr  2. T=T(r) ) ( . 3 r      0 1 2 2  r V r dr d r   r V r  2  4 r w  constant Continuity Equation:                   r r r V r dr d r dr d dr d dr dV V 2 2 1   Equation of Motion dr d dr r w d r w r r          2 2 4 4   dr d r wr     5 2 2 8             2 2 5 2 2 8 R r r R r r dr w d                     4 4 2 2 2 2 1 1 32 r R w r R r                          4 2 4 2 2 2 2 1 32 r R R w R r r   MOLECULER AND CONVECTION HEAT TRANSPORT PROCESS (APPLICATION OF EQUATION OF CHANGE) r 2 r 2 2 2 r 2 2 r 2 2 2 2 2 θ r r θ r r r ρg v θ sin r 1 θ v sinθ θ sinθ r 1 r ) v (r r 1 μ r r v v v θ sin r v θ v r v r v v t v ρ                                                      p 𝜕 𝜕𝑟 1 𝑟2 𝜕 𝜕𝑟 𝑟2𝑣𝑟
  • 10. HEAT TRANSPORT        dr dT r dr d r k dr dT V C r p 2 2 1 ˆ         dr dT r dr d C w k dr dT p r 2 ˆ 4 𝑢 = 𝑟2 𝑑𝑇 𝑑𝑟 = 𝐾1𝑒− 𝑅0 𝑟 2 0 1 0 2 0 0 2 1 2 R R R R R R r R e e e e T T T T / / / /          k C w R P r  4 0 / ˆ  1 2 1 4 R r r q R Q     1 2 1 4 R r dr dT k R           1 1 4 2 1 1 0 1 2 0     R R R R T T k R Q / / exp    2 1 1 2 1 0 1 4 R R T T k R Q /     1 1 0 0       e Q Q Q     k R R R C w R R R R P r 1 2 1 1 1 0 4 1 1   / ˆ /     Energy Equation: Substitution: Heat transafer rate to inner wall is Cooling requirement at inner wall, If there is no air flow MOLECULER AND CONVECTION HEAT TRANSPORT PROCESS (APPLICATION OF EQUATION OF CHANGE) 𝑢 𝑟2 = 1 𝑅0 𝑑 𝑑𝑟 𝑢 → 𝑑𝑟 𝑟2 = 1 𝑅0 𝑑𝑢 𝑢 − 𝑅0 𝑟 + ln 𝐾1 = ln 𝑢 → 𝑢 = 𝐾1𝑒− 𝑅0 𝑟 𝑑𝑇 = 𝐾1 𝑒− 𝑅0 𝑟 𝑟2 𝑑𝑟 𝑠 = 𝑅0 𝑟 → 𝑑𝑠 = − 𝑅0 𝑟2 𝑑𝑟 𝑑𝑇 = 𝑇 = 𝐾1 𝑒− 𝑅0 𝑟 𝑟2 𝑑𝑟 = − 𝐾1 𝑅0 𝑒−𝑠 𝑑𝑠 = 𝐾1 𝑅0 𝑒− 𝑅0 𝑟 + 𝐾2 𝑢 = 𝑟2 𝑑𝑇 𝑑𝑟
  • 12.       0 z ρv y ρv x ρv t ρ z y x                   0 z v ρ θ v ρ r 1 r v r ρ r 1 t ρ z θ r                   0 v ρ rsinθ 1 θ sinθ v ρ rsinθ 1 r v r ρ r 1 t ρ θ r 2 2               Cartesian Coordinate System: Cylindrical Coordinate System: Spherical Coordinate System Table A-1 Continuity Equation
  • 13. -Table A2Equation of Motion (Equation of Momentum) x zx yx xx x z x y x z x ρg z τ y τ x τ x z v v y v v x v v t v ρ                                          p y zy yy xy y z y y y z y ρg z τ y τ x τ y z v v y v v x v v t v ρ                                          p z zz yz xz z z z y z z z ρg z τ y τ x τ z z v v y v v x v v t v ρ                                          p Cartesian Coordinate System:
  • 14.   r rz θθ rθ rr r z 2 θ r θ r r r ρg z τ r τ θ τ r 1 r rτ r 1 r z v v r v θ v r v r v v t v ρ                                          p   θ zθ θθ rθ 2 2 θ z θ r θ θ θ r θ ρg z τ θ τ r 1 r τ r r 1 θ r 1 z v v r v v θ v r v r v v t v ρ                                         p   z zz θz rz z z z θ z r z ρg z τ θ τ r 1 x rτ r 1 z z v v θ v r v r v v t v ρ                                      p Cylindrical Coordinate System -Table A2Equation of Motion (Equation of Momentum)
  • 15. Spherical Coordinate System   r r θθ rθ rr 2 2 2 2 θ r r θ r r r ρg τ rsinθ 1 r τ τ θ sinθ τ rsinθ 1 r τ r r 1 r r v v v rsinθ v θ v r v r v v t v ρ                                                    p   θ rθ θ θθ rθ 2 2 2 θ r θ θ θ θ r θ ρg τ r cotθ r τ τ rsinθ 1 θ sinθ τ rsinθ 1 r τ r r 1 θ r 1 r cotθ v r v v v rsinθ v θ v r v r v v t v ρ                                                    p                 ρg τ r cotθ 2 r τ τ rsinθ 1 θ τ r 1 r τ r r 1 rsinθ 1 cotθ r v v r v v v rsinθ v θ v r v r v v t v ρ θ r θ r 2 2 θ r θ φ r φ                                              p -Table A2Equation of Motion (Equation of Momentum)
  • 16. x 2 x 2 x 2 2 x 2 x z x y x z x ρg z v y v x v μ x z v v y v v x v v t v ρ                                          p y 2 y 2 2 y 2 2 y 2 y z y y y z y ρg z v y v x v μ y z v v y v v x v v t v ρ                                          p z 2 z 2 2 z 2 2 z 2 z z z y z z z ρg z v y v x v μ z z v v y v v x v v t v ρ                                          p -Table A2Equation of Motion (Equation of Momentum) (Incompressible Newtonian Fluid) Cartesian Coordinate System:
  • 17. Table A-3 Equation of Motion (Equation of Momentum) (Incompresiible Newtonian Fluid) Cylindrical Coordinate:   r 2 r 2 θ 2 2 r 2 2 r r z 2 θ r θ r r r ρg z v θ v r 2 θ v r 1 rv r r 1 r μ r z v v r v θ v r v r v v t v ρ                                                    p   θ 2 θ 2 r 2 2 θ 2 2 θ θ z θ r θ θ θ r θ ρg z v θ v r 2 θ v r 1 rv r r 1 r μ θ r 1 z v v r v v θ v r v r v v t v ρ                                                  p x 2 z 2 2 z 2 2 z z z z θ z r z ρg z v θ v r 1 r v r r r 1 μ z z v v θ v r v r v v t v ρ                                              p
  • 18. Table A-3 Equation of Motion ( Equation of Momentum) (Incompressible Newtonian Fluid) Spherical Coordinate r 2 r 2 2 2 r 2 2 r 2 2 2 2 2 θ r r θ r r r ρg v θ sin r 1 θ v sinθ θ sinθ r 1 r ) v (r r 1 μ r r v v v θ sin r v θ v r v r v v t v ρ                                                      p θ 2 2 r 2 2 θ 2 2 2 θ 2 θ 2 2 2 θ r θ θ θ θ r θ ρg v θ sin r cosθ 2 θ v r 2 v θ sin r 1 θ sinθ v sinθ 1 θ r 1 r v r r r 1 μ θ r 1 r cotθ v r v v v rsinθ v θ v r v r v v t v ρ                                                                        p                 ρg v θ sin r cosθ 2 v sinθ r 2 v θ sin r 1 θ sinθ v sinθ 1 θ r 1 r v r r r 1 μ rsinθ 1 cotθ r v v r v v v rsinθ v θ v r v r v v t v ρ θ 2 2 r 2 2 2 2 2 2 2 2 θ r θ r                                                                      p
  • 19. Table A-4 Components of stress tensor for Newtonian Fluid Koordinat Silinder Koordinat Bola              v . κ x v 2 μ τ x xx              v . κ y v 2 μ τ y yy              v z vz xx . 2                  x v y v μ τ τ y x yx xy               y v z v μ τ τ z y zy yz               z v x v μ τ τ x z xz zx              v . κ r v 2 μ τ r rr                     v . κ r v θ v r 1 2 μ τ r θ θθ              v . κ z v 2 μ τ z zz                 θ v r 1 r /r v r μ τ τ r θ θr rθ               θ v r 1 z v μ τ τ z θ zθ θz               z v r v μ τ τ r z rz zr              v . κ r v 2 μ τ r rr                     v . κ r v θ v r 1 2 μ τ r θ θθ                        v . κ r cotθ v r v v rsinθ 1 2 μ τ θ r                  θ v r 1 r /r) (v r μ τ τ r θ θr rθ                           θ θ θ v rsinθ 1 sinθ v θ r sinθ μ τ τ               r /r) (v r φ v rsinθ 1 μ τ τ φ r r r   3 2 κ  Cartesian Coordinate System
  • 20. Cylindrical Coordinate Spherical Coordinate   v .  z v y v x v z y x           z v θ v r 1 rv r r 1 z θ r                       v rsinθ 1 sinθ v θ rsinθ 1 v r r r 1 θ r 2 2 Cartesian Coordinate System:
  • 21. Tabel A-5 Fungsi untuk fluida Newton Coordinate System Cartesian Sylindrical Spherical v   2 2 z x 2 y z 2 x y 2 z 2 y 2 x v . 3 2 x v z v z v y v y v x v z v y v x v 2                                                                            2 2 z r 2 θ z 2 r θ 2 z 2 r θ 2 r v . 3 2 r v z v z v θ v r 1 θ v r 1 r v r r z v r v θ v r 1 r v 2                                                                                2 2 r 2 θ 2 r θ 2 θ r 2 r θ 2 r v . 3 2 r v r r v rsi n θ 1 v rsi n θ 1 si n θ v θ r si n θ θ v r 1 r v r r r cotθ v r v v rsi n θ 1 r v θ v r 1 r v 2                                                                                                         
  • 22. Table A-6 Component of Energy Flux Cartesian Cylindrical Spherical z T k q y T k q x T k q z y x             z T k q θ T r 1 k q r T k q z θ r                          T rsinθ 1 k q θ T r 1 k q r T k q φ θ r
  • 23. Tabel A-7 Energy Equation in energy and momentum flux                                                                                                             y v z v τ x v z v τ x v y v τ z v τ y v τ x v τ v . T p T z q y q x q z T v y T v x T v t T ρC z y yz z x xz y x xy z zz y yy x xx ρ z y x z y x v                                                                                                                      z v θ v r 1 τ z v r v τ θ v r 1 r v r r τ z v τ v θ v r 1 τ r v τ v . T p T z q θ q r 1 rq r r 1 z T v θ T r v r T v t T ρC θ z θz r z rz r θ rθ z zz r θ θθ r rr ρ z θ r z θ r v                                                                                                                                                          v r cotθ v rsinθ 1 θ v r 1 τ r v v rsinθ 1 r v τ r v θ v r 1 r v τ r cotθ v r v v rsinθ 1 τ v θ v r 1 τ r v τ v . T p T q rsinθ 1 θ sinθ q rsinθ 1 q r r r 1 T rsinθ v θ T r v r T v t T ρC θ θ r r θ r θ rθ θ r r θ θθ r rr ρ θ r 2 2 θ r v Cartesian Cylindrical Spherical
  • 24. Tabel A-8 V                                     μ z T y T x T k z T v y T v x T v t T ρC 2 2 2 2 2 2 z y x p V                                           μ z T θ T r 1 r T r r r 1 k z T v θ T r v r T v t T ρC 2 2 2 2 2 z θ r p V                                                     μ T θ sin r 1 θ T sinθ θ sinθ r 1 r T r r r 1 k T rsinθ v θ T r v r T v t T ρ 2 2 2 2 2 2 2 θ r p    Energy Equation For Incompressible Newtonian Fluid with constant properties Spherical Cylindrical Cartesian 𝜌𝐶𝑝 V                                                     μ T θ sin r 1 θ T sinθ θ sinθ r 1 r T r r r 1 k T rsinθ v θ T r v r T v t T ρ 2 2 2 2 2 2 2 θ r p   
  • 25. Tabel A-9 Components of molecular Diffusion Flux Spherical z C D J y C D J x C D J A AB Az A AB Ay A AB Ax             z C D J θ C r 1 D J r C D J A AB Az A AB Aθ A AB Ar                          A AB Az A AB Aθ A AB Ar C rsinθ 1 D J θ C r 1 D J r C D J Cartesian Cylindrical
  • 26. Tabel A-10 Continuity Equation of Component A A Az Ay Ax A R z N y N x N t C                       A Az Aθ Ar A R z N θ N r 1 rN r r 1 t C                       A A Aθ Ar 2 2 A R N rsinθ 1 sinθ N θ rsinθ 1 N r r r 1 t C                       Cartesian Cylindrical Spherical
  • 27. TabLE A-11 Continuity equation of component A for constant properties A 2 A 2 2 A 2 2 A 2 AB A z A y A x A R z C y C x C D z C v y C v x C v t C                                      A 2 A 2 2 A 2 2 A AB A z A θ A r A R z C θ C r 1 r C r r r 1 D z C v θ C r 1 v r C v t C                                            A 2 A 2 2 2 A 2 A 2 2 AB A A θ A r A R C θ sin r 1 θ C sinθ θ sinθ r 1 r C r r r 1 D C rsin θ 1 v θ C r 1 v r C v t C                                                         Cartesian Cylindrical Spherical
  • 31. NON NEWTONIAN FLUID                       : 2 1 0 0      2 0 : 2 1     0     2 0 : 2 1     0 0         y Vx yx 2 0 2    yx 0    y Vx 2 0 2    yx                1 : 2 1 n m                              2 0 0 : 2 1 1        BINGHAM PLASTIC POWER LAW Model Reiner-Philippof
  • 32. NON NEWTONIAN FLUID                       : 2 1 0 0      2 0 : 2 1     0     2 0 : 2 1     0 0         y Vx yx 2 0 2    yx 0    y Vx 2 0 2    yx                1 : 2 1 n m                              2 0 0 : 2 1 1        BINGHAM PLASTIC POWER LAW Model Reiner-Philippof