SlideShare una empresa de Scribd logo
1 de 3
Descargar para leer sin conexión
NOTES AND FORMULAE ADDITIONAL MATHEMATICS FORM 5
1.   PROGRESSIONS                                             (iii)
     (a) Arithmetic Progression                         b                 c           c
         Tn = a + (n – 1)d
               n
                                                        
                                                        a
                                                                          
                                                            f ( x )dx  f ( x )dx 
                                                                          b
                                                                                       f ( x)dx
                                                                                      a
           Sn = [2a  ( n  1)d ]
               2                                        (d)   Area under a curve
               n                                                                                                       
                                                                                                                               
              = [ a  Tn ]                                                                                           AC  AB  BC
               2
     (b)   Geometric Progression
                                                                                                     (b)   A, B and C are collinear if
           Tn = ar
                   n–1
                                                                                                           
                                                                                                                 
                            n                                                                              AB   BC where  is a constant.
           Sn 
                    a (1  r )                                                                             
                                                                                                                  
                       1 r                                                                                AB and PQ are parallel if
           Sum to infinity
                                                                                                              
                                                                      b                   b
                                                                                                           PQ   AB where  is a constant.
                      a
           S 
                     1 r
                                                               A=
                                                                      
                                                                      a
                                                                          ydx     A=
                                                                                           xdy
                                                                                          a
                                                                                                     (c)   Subtraction of Two Vectors
     (c)   General
           Tn = Sn − Sn – 1
           T1 = a = S1                                  (e)   Volume of Revolution

2.   INTEGRATION
                        x n 1                                                                               
                                                                                                                    
     (a)
                xn dx        c
                        n 1                                                                               AB  OB  OA
                                (ax  b) n 1                                                        (d)   Vectors in the Cartesian Plane
     (b)
              ( ax  b) n dx                c
                                  (n  1)a
     (c)   Rules of Integration:
                     b              b                          b                              b
                                                        V   y 2 dx
                                                                                     V   x 2 dy
                                                                                              
           (i)
                      nf ( x)dx  n f ( x)dx
                     a              a                          a                              a
                     a             b
                                                   3.   VECTORS                                            
                                                                                                             
           (ii)
                      f ( x)dx   f ( x)dx
                     b             a
                                                        (a) Triangle Law of Vector Addition                OA  xi  yj
                                                                                                                   
                                                                                                           Magnitude of
                                                                                                            
                                                                                                                  
                                                                                                           OA  OA  x 2  y 2




Prepared by Mr. Sim Kwang Yaw                                                                                                               1
(g)   Double Angle Formulae
             Unit vector in the direction of    OA                                                         sin 2A = 2 sin A cos A
                r   xi  yj                                                                                              2
                                                                                                           cos 2A = cos A – sin A
                                                                                                                                 2
             r    
             ˆ                                                                                                             2
                                                                                                                  = 2cos A – 1
              r    x2  y 2                                                                                                 2
                                                                                                                  = 1 – 2sin A
                
4.    TRIGONOMETRIC FUNCTIONS                                                                                           2 tan A
                                                                                                           tan 2A =
                                                           (iii)   y = tan x                                          1  tan 2 A
(a)   Sign of trigonometric functions in the four
                                                                                                     5.    PROBABILITY
      quadrants.
                                                                                                     (a)   Probability of Event A
                                                                                                                    n( A)
                            Acronym:                                                                       P(A) =
                            “Add Sugar To Coffee”                                                                   n( S )
                                                                                                     (b)   Probability of Complementary Event
                                                                                                           P(A) = 1 – P(A)

                                                                                                     (c)   Probability of Mutually Exclusive Events
                                                           (iv) y = a sin nx
(b)   Definition and Relation                                                                              P(A or B) = P(A  B) = P(A) + P(B)
      sec x =
                 1          cosec x = 1                                                              (d)   Probability of Independent Events
               cos x                 sin x
                                                                                                           P(A and B) = P(A  B) = P(A) × P(B)
                  1                     sin x
      cot x =                 tan x =
                tan x                   cos x                                                        6.    PROBABILTY DISTRIBUTION
                                                                                                     (a)   Binomial Distribution
(c)   Supplementary Angles                                                                                             n
                                                                                                           P(X = r) = Cr p q
                                                                                                                              r   n r
             o
      sin (90 − x) = cos x                                       a = amplitude
             o
      cot (90 – x) = tan x                                       n = number of cycles                      n = number of trials
                                                     (e)   Basic Identities                                p = probability of success
                                                                    2       2
(d)   Graphs of Trigonometric Function                     (i) sin x + cos x = 1                           q = probability of failure
                                                                        2       2
      (i) y = sin x                                        (ii) 1 + tan x = sec x                          Mean = np
                                                                        2         2
                                                           (iii) 1 + cot x = cosec x
                                                                                                           Standard deviation =          npq
                                                     (f)   Addition Formulae
                                                           (i) sin (A  B)                           (b)   Normal Distribution
                                                                = sin A cos B  cos A sin B                     X 
                                                                                                           Z=
                                                           (ii) cos (A  B)                                      
                                                                = cos A cos B  sin A sin B                Z = Standard Score
      (ii)   y = cos x
                                                           (iii)   tan (A    B) = tan A  tan B           X = Normal Score
                                                                                   1  tan A tan B          = mean        = standard deviation




Prepared by Mr. Sim Kwang Yaw                                                                                                                         2
(b) Condition and Implication:
      (a)   Normal Distribution Graph              Condition            Implication
                                                   Returns to O         s=0
                                                   To the left of O     s<0
                                                   To the right of O    s>0
                                                   Maximum/Minimum       ds = 0
                                                   displacement          dt
                                                   Initial velocity     v when t = 0
                                                   Uniform velocity     a=0
                                                   Moves to the left    v<0
                                                   Moves to the right   v>0
                                                   Stops/change         v=0
                                                   direction of motion
P(Z < k) = 1 – P(Z >      P(Z < -k) = P(Z > k)     Maximum/Minimum       dv = 0
k)                                                 velocity              dt
                                                   Initial acceleration a when t = 0
                                                   Increasing speed     a>0
                                                   Decreasing speed     a<0

                                                   (c)   Total Distance Travelled in the Period
P(Z > -k) = 1 – P(Z < -   P(a < Z < b)                   0 ≤ t ≤ b Second
  k) = 1 – P(Z > k)       = P(Z > a) – P(Z > b)          (i) If the particle does not stop in the
                                                               period of 0 ≤ t ≤ b seconds
                                                               Total distance travelled
                                                               = displacement at t = b second
                                                         (ii) If the particle stops in t = a second
                                                               when t = a is in the interval of 0 ≤ t ≤
P(-b < Z < -a) = P(a <    P(- b < Z < a)                        b second,
Z < b) = P(Z > a) –       = 1 – P(z > b) – P(Z >               Total distance travelled in b second
P(Z > b)                  a)                                  =   Sa  S0  Sb  Sa
7.    MOTION ALONG A STRAIGHT LINE
(a)   Relation Between Displacement,
      Velocity and Acceleration



               vdt           adt




Prepared by Mr. Sim Kwang Yaw                                                                             3

Más contenido relacionado

La actualidad más candente

Notes and-formulae-mathematics
Notes and-formulae-mathematicsNotes and-formulae-mathematics
Notes and-formulae-mathematics
Ragulan Dev
 
Chapter 6 coordinate geometry
Chapter 6  coordinate geometryChapter 6  coordinate geometry
Chapter 6 coordinate geometry
atiqah ayie
 
Mathematics Mid Year Form 4 Paper 2 2010
Mathematics Mid Year Form 4 Paper 2 2010Mathematics Mid Year Form 4 Paper 2 2010
Mathematics Mid Year Form 4 Paper 2 2010
sue sha
 
Mathematics Mid Year Form 4 Paper 1 Mathematics
Mathematics Mid Year Form 4 Paper 1 MathematicsMathematics Mid Year Form 4 Paper 1 Mathematics
Mathematics Mid Year Form 4 Paper 1 Mathematics
sue sha
 
Add Maths Module
Add Maths ModuleAdd Maths Module
Add Maths Module
bspm
 
Guidelines on answering paper 2 and paper 3 questions
Guidelines on answering paper 2 and paper 3 questionsGuidelines on answering paper 2 and paper 3 questions
Guidelines on answering paper 2 and paper 3 questions
Noor Haslina
 
Chapter 5 indices & logarithms
Chapter 5  indices & logarithmsChapter 5  indices & logarithms
Chapter 5 indices & logarithms
atiqah ayie
 
Form 4 Add Maths Note
Form 4 Add Maths NoteForm 4 Add Maths Note
Form 4 Add Maths Note
Chek Wei Tan
 
Chapter 10 solution of triangles
Chapter 10  solution of trianglesChapter 10  solution of triangles
Chapter 10 solution of triangles
atiqah ayie
 
Chapter 4 simultaneous equations
Chapter 4  simultaneous equationsChapter 4  simultaneous equations
Chapter 4 simultaneous equations
atiqah ayie
 
Chapter 3 quadratc functions
Chapter 3  quadratc functionsChapter 3  quadratc functions
Chapter 3 quadratc functions
atiqah ayie
 
Chapter 11 index number
Chapter 11  index numberChapter 11  index number
Chapter 11 index number
atiqah ayie
 

La actualidad más candente (20)

Notes and-formulae-mathematics
Notes and-formulae-mathematicsNotes and-formulae-mathematics
Notes and-formulae-mathematics
 
Add maths complete f4 & f5 Notes
Add maths complete f4 & f5 NotesAdd maths complete f4 & f5 Notes
Add maths complete f4 & f5 Notes
 
Chapter 6 coordinate geometry
Chapter 6  coordinate geometryChapter 6  coordinate geometry
Chapter 6 coordinate geometry
 
1. functions
1. functions1. functions
1. functions
 
Mathematics Mid Year Form 4 Paper 2 2010
Mathematics Mid Year Form 4 Paper 2 2010Mathematics Mid Year Form 4 Paper 2 2010
Mathematics Mid Year Form 4 Paper 2 2010
 
Mathematics Mid Year Form 4 Paper 1 Mathematics
Mathematics Mid Year Form 4 Paper 1 MathematicsMathematics Mid Year Form 4 Paper 1 Mathematics
Mathematics Mid Year Form 4 Paper 1 Mathematics
 
Add Maths Module
Add Maths ModuleAdd Maths Module
Add Maths Module
 
Guidelines on answering paper 2 and paper 3 questions
Guidelines on answering paper 2 and paper 3 questionsGuidelines on answering paper 2 and paper 3 questions
Guidelines on answering paper 2 and paper 3 questions
 
Topik 1 fungsi (2)
Topik 1 fungsi (2)Topik 1 fungsi (2)
Topik 1 fungsi (2)
 
Chapter 5 indices & logarithms
Chapter 5  indices & logarithmsChapter 5  indices & logarithms
Chapter 5 indices & logarithms
 
Rumus matematik-tambahan
Rumus matematik-tambahanRumus matematik-tambahan
Rumus matematik-tambahan
 
Modul 1 algebra
Modul 1 algebraModul 1 algebra
Modul 1 algebra
 
Skema Fizik K1 K2 N9.pdf
Skema Fizik K1 K2 N9.pdfSkema Fizik K1 K2 N9.pdf
Skema Fizik K1 K2 N9.pdf
 
SPM PHYSICS-PAPER-3--GUIDE-
SPM PHYSICS-PAPER-3--GUIDE-SPM PHYSICS-PAPER-3--GUIDE-
SPM PHYSICS-PAPER-3--GUIDE-
 
Form 4 Add Maths Note
Form 4 Add Maths NoteForm 4 Add Maths Note
Form 4 Add Maths Note
 
F5 Physics Experiment List
F5 Physics Experiment List F5 Physics Experiment List
F5 Physics Experiment List
 
Chapter 10 solution of triangles
Chapter 10  solution of trianglesChapter 10  solution of triangles
Chapter 10 solution of triangles
 
Chapter 4 simultaneous equations
Chapter 4  simultaneous equationsChapter 4  simultaneous equations
Chapter 4 simultaneous equations
 
Chapter 3 quadratc functions
Chapter 3  quadratc functionsChapter 3  quadratc functions
Chapter 3 quadratc functions
 
Chapter 11 index number
Chapter 11  index numberChapter 11  index number
Chapter 11 index number
 

Destacado (9)

Mathematics form-5
Mathematics form-5Mathematics form-5
Mathematics form-5
 
Formula sheet
Formula sheetFormula sheet
Formula sheet
 
Form 4 formulae and note
Form 4 formulae and noteForm 4 formulae and note
Form 4 formulae and note
 
Geometry formula-sheet
Geometry formula-sheetGeometry formula-sheet
Geometry formula-sheet
 
Nota math-spm
Nota math-spmNota math-spm
Nota math-spm
 
Math(F4) Circle Iii 8.1
Math(F4) Circle Iii 8.1Math(F4) Circle Iii 8.1
Math(F4) Circle Iii 8.1
 
nota-pendidikan-moral-tingkatan-4-5
 nota-pendidikan-moral-tingkatan-4-5 nota-pendidikan-moral-tingkatan-4-5
nota-pendidikan-moral-tingkatan-4-5
 
Pendidikan moral nota
Pendidikan moral notaPendidikan moral nota
Pendidikan moral nota
 
Nota moral spm
Nota moral spmNota moral spm
Nota moral spm
 

Similar a Form 5 formulae and note

大規模日本語ブログコーパスにおける言語モデルの構築と評価
大規模日本語ブログコーパスにおける言語モデルの構築と評価大規模日本語ブログコーパスにおける言語モデルの構築と評価
大規模日本語ブログコーパスにおける言語モデルの構築と評価
Yahoo!デベロッパーネットワーク
 
Analisis Korespondensi
Analisis KorespondensiAnalisis Korespondensi
Analisis Korespondensi
dessybudiyanti
 
51955900 form-4-chapter-5
51955900 form-4-chapter-551955900 form-4-chapter-5
51955900 form-4-chapter-5
Ragulan Dev
 
Graphs of trigonometric functions
Graphs of trigonometric functionsGraphs of trigonometric functions
Graphs of trigonometric functions
Tarun Gehlot
 

Similar a Form 5 formulae and note (20)

Formula List Math 1230
Formula List Math 1230Formula List Math 1230
Formula List Math 1230
 
Figures
FiguresFigures
Figures
 
Figures
FiguresFigures
Figures
 
Day 05
Day 05Day 05
Day 05
 
Seismic
SeismicSeismic
Seismic
 
Lista exercintegrais
Lista exercintegraisLista exercintegrais
Lista exercintegrais
 
006 hyperbola
006 hyperbola006 hyperbola
006 hyperbola
 
Cepstral coefficients
Cepstral coefficientsCepstral coefficients
Cepstral coefficients
 
005 ellipse
005 ellipse005 ellipse
005 ellipse
 
大規模日本語ブログコーパスにおける言語モデルの構築と評価
大規模日本語ブログコーパスにおける言語モデルの構築と評価大規模日本語ブログコーパスにおける言語モデルの構築と評価
大規模日本語ブログコーパスにおける言語モデルの構築と評価
 
Reflections worksheet1student
Reflections worksheet1studentReflections worksheet1student
Reflections worksheet1student
 
Analisis Korespondensi
Analisis KorespondensiAnalisis Korespondensi
Analisis Korespondensi
 
JMM Mini4- Sydney Opera House Part 2
JMM Mini4- Sydney Opera House Part 2JMM Mini4- Sydney Opera House Part 2
JMM Mini4- Sydney Opera House Part 2
 
51955900 form-4-chapter-5
51955900 form-4-chapter-551955900 form-4-chapter-5
51955900 form-4-chapter-5
 
"Modern Tracking" Short Course Taught at University of Hawaii
"Modern Tracking" Short Course Taught at University of Hawaii"Modern Tracking" Short Course Taught at University of Hawaii
"Modern Tracking" Short Course Taught at University of Hawaii
 
Figures
FiguresFigures
Figures
 
Csr2011 june14 17_00_pospelov
Csr2011 june14 17_00_pospelovCsr2011 june14 17_00_pospelov
Csr2011 june14 17_00_pospelov
 
Graphs of trigonometric functions
Graphs of trigonometric functionsGraphs of trigonometric functions
Graphs of trigonometric functions
 
Lecture3
Lecture3Lecture3
Lecture3
 
Proj Geom Computing(Siggraph2000)
Proj Geom Computing(Siggraph2000)Proj Geom Computing(Siggraph2000)
Proj Geom Computing(Siggraph2000)
 

Más de smktsj2

NOTA RINGKAS KHB-TINGKATAN1
NOTA RINGKAS KHB-TINGKATAN1NOTA RINGKAS KHB-TINGKATAN1
NOTA RINGKAS KHB-TINGKATAN1
smktsj2
 
Teks ucapan perutusan tahun 2014 kpm
Teks ucapan perutusan tahun 2014 kpmTeks ucapan perutusan tahun 2014 kpm
Teks ucapan perutusan tahun 2014 kpm
smktsj2
 
Something
SomethingSomething
Something
smktsj2
 
SURAT SIARAN KEMENTERIAN PENDIDIKAN MALAYSIA BIL.14 TAHUN 2013: BERKAITAN JEREBU
SURAT SIARAN KEMENTERIAN PENDIDIKAN MALAYSIA BIL.14 TAHUN 2013: BERKAITAN JEREBUSURAT SIARAN KEMENTERIAN PENDIDIKAN MALAYSIA BIL.14 TAHUN 2013: BERKAITAN JEREBU
SURAT SIARAN KEMENTERIAN PENDIDIKAN MALAYSIA BIL.14 TAHUN 2013: BERKAITAN JEREBU
smktsj2
 
Taklimat pisa
Taklimat pisaTaklimat pisa
Taklimat pisa
smktsj2
 
Cara menulis pendahuluan karangan dengan menggunakan teknik faclk
Cara menulis pendahuluan karangan dengan menggunakan teknik faclkCara menulis pendahuluan karangan dengan menggunakan teknik faclk
Cara menulis pendahuluan karangan dengan menggunakan teknik faclk
smktsj2
 
Penanda wacana
Penanda wacanaPenanda wacana
Penanda wacana
smktsj2
 
Slot 1 mmi jpnj
Slot 1 mmi jpnjSlot 1 mmi jpnj
Slot 1 mmi jpnj
smktsj2
 
Slot 2 pengenalan mmi
Slot 2 pengenalan mmiSlot 2 pengenalan mmi
Slot 2 pengenalan mmi
smktsj2
 
Slot 1 mmi jpnj
Slot 1 mmi jpnjSlot 1 mmi jpnj
Slot 1 mmi jpnj
smktsj2
 
Jadual mmi
Jadual mmiJadual mmi
Jadual mmi
smktsj2
 

Más de smktsj2 (20)

SOALAN ANALISIS SPM 2014
SOALAN ANALISIS SPM 2014SOALAN ANALISIS SPM 2014
SOALAN ANALISIS SPM 2014
 
Nota kemahiran hidup tingkatan dua
Nota kemahiran hidup tingkatan duaNota kemahiran hidup tingkatan dua
Nota kemahiran hidup tingkatan dua
 
NOTA TAJWID TINGKATAN 3
NOTA TAJWID TINGKATAN 3NOTA TAJWID TINGKATAN 3
NOTA TAJWID TINGKATAN 3
 
NOTA TAJWID TINGKATAN 2
NOTA TAJWID TINGKATAN 2NOTA TAJWID TINGKATAN 2
NOTA TAJWID TINGKATAN 2
 
NOTA TAJWID TINGKATAN 1
NOTA TAJWID TINGKATAN 1NOTA TAJWID TINGKATAN 1
NOTA TAJWID TINGKATAN 1
 
NOTA RINGKAS KHB-TINGKATAN1
NOTA RINGKAS KHB-TINGKATAN1NOTA RINGKAS KHB-TINGKATAN1
NOTA RINGKAS KHB-TINGKATAN1
 
Himpunan peta ithink
Himpunan peta ithink Himpunan peta ithink
Himpunan peta ithink
 
Teks ucapan perutusan tahun 2014 kpm
Teks ucapan perutusan tahun 2014 kpmTeks ucapan perutusan tahun 2014 kpm
Teks ucapan perutusan tahun 2014 kpm
 
Something
SomethingSomething
Something
 
JADUAL WAKTU PEPERIKSAAN PMR 2013
JADUAL WAKTU PEPERIKSAAN PMR 2013JADUAL WAKTU PEPERIKSAAN PMR 2013
JADUAL WAKTU PEPERIKSAAN PMR 2013
 
SOALAN ANALISIS SPM 2013 :
SOALAN ANALISIS SPM 2013 :SOALAN ANALISIS SPM 2013 :
SOALAN ANALISIS SPM 2013 :
 
SURAT SIARAN KEMENTERIAN PENDIDIKAN MALAYSIA BIL.14 TAHUN 2013: BERKAITAN JEREBU
SURAT SIARAN KEMENTERIAN PENDIDIKAN MALAYSIA BIL.14 TAHUN 2013: BERKAITAN JEREBUSURAT SIARAN KEMENTERIAN PENDIDIKAN MALAYSIA BIL.14 TAHUN 2013: BERKAITAN JEREBU
SURAT SIARAN KEMENTERIAN PENDIDIKAN MALAYSIA BIL.14 TAHUN 2013: BERKAITAN JEREBU
 
Taklimat pisa
Taklimat pisaTaklimat pisa
Taklimat pisa
 
Cara menulis pendahuluan karangan dengan menggunakan teknik faclk
Cara menulis pendahuluan karangan dengan menggunakan teknik faclkCara menulis pendahuluan karangan dengan menggunakan teknik faclk
Cara menulis pendahuluan karangan dengan menggunakan teknik faclk
 
Penanda wacana
Penanda wacanaPenanda wacana
Penanda wacana
 
Aroundtheworldin80daysdraf6 120208102303-phpapp02
Aroundtheworldin80daysdraf6 120208102303-phpapp02Aroundtheworldin80daysdraf6 120208102303-phpapp02
Aroundtheworldin80daysdraf6 120208102303-phpapp02
 
Slot 1 mmi jpnj
Slot 1 mmi jpnjSlot 1 mmi jpnj
Slot 1 mmi jpnj
 
Slot 2 pengenalan mmi
Slot 2 pengenalan mmiSlot 2 pengenalan mmi
Slot 2 pengenalan mmi
 
Slot 1 mmi jpnj
Slot 1 mmi jpnjSlot 1 mmi jpnj
Slot 1 mmi jpnj
 
Jadual mmi
Jadual mmiJadual mmi
Jadual mmi
 

Form 5 formulae and note

  • 1. NOTES AND FORMULAE ADDITIONAL MATHEMATICS FORM 5 1. PROGRESSIONS (iii) (a) Arithmetic Progression b c c Tn = a + (n – 1)d n  a  f ( x )dx  f ( x )dx  b  f ( x)dx a Sn = [2a  ( n  1)d ] 2 (d) Area under a curve n      = [ a  Tn ] AC  AB  BC 2 (b) Geometric Progression (b) A, B and C are collinear if Tn = ar n–1    n AB   BC where  is a constant. Sn  a (1  r )    1 r AB and PQ are parallel if Sum to infinity   b b PQ   AB where  is a constant. a S  1 r A=  a ydx A=  xdy a (c) Subtraction of Two Vectors (c) General Tn = Sn − Sn – 1 T1 = a = S1 (e) Volume of Revolution 2. INTEGRATION x n 1       (a)  xn dx  c n 1 AB  OB  OA (ax  b) n 1 (d) Vectors in the Cartesian Plane (b)  ( ax  b) n dx  c (n  1)a (c) Rules of Integration: b b b b V   y 2 dx  V   x 2 dy  (i)  nf ( x)dx  n f ( x)dx a a a a a b 3. VECTORS   (ii)  f ( x)dx   f ( x)dx b a (a) Triangle Law of Vector Addition OA  xi  yj   Magnitude of     OA  OA  x 2  y 2 Prepared by Mr. Sim Kwang Yaw 1
  • 2. (g) Double Angle Formulae Unit vector in the direction of OA sin 2A = 2 sin A cos A r xi  yj 2 cos 2A = cos A – sin A 2 r     ˆ 2 = 2cos A – 1  r x2  y 2 2 = 1 – 2sin A  4. TRIGONOMETRIC FUNCTIONS 2 tan A tan 2A = (iii) y = tan x 1  tan 2 A (a) Sign of trigonometric functions in the four 5. PROBABILITY quadrants. (a) Probability of Event A n( A) Acronym: P(A) = “Add Sugar To Coffee” n( S ) (b) Probability of Complementary Event P(A) = 1 – P(A) (c) Probability of Mutually Exclusive Events (iv) y = a sin nx (b) Definition and Relation P(A or B) = P(A  B) = P(A) + P(B) sec x = 1 cosec x = 1 (d) Probability of Independent Events cos x sin x P(A and B) = P(A  B) = P(A) × P(B) 1 sin x cot x = tan x = tan x cos x 6. PROBABILTY DISTRIBUTION (a) Binomial Distribution (c) Supplementary Angles n P(X = r) = Cr p q r n r o sin (90 − x) = cos x a = amplitude o cot (90 – x) = tan x n = number of cycles n = number of trials (e) Basic Identities p = probability of success 2 2 (d) Graphs of Trigonometric Function (i) sin x + cos x = 1 q = probability of failure 2 2 (i) y = sin x (ii) 1 + tan x = sec x Mean = np 2 2 (iii) 1 + cot x = cosec x Standard deviation = npq (f) Addition Formulae (i) sin (A  B) (b) Normal Distribution = sin A cos B  cos A sin B X  Z= (ii) cos (A  B)  = cos A cos B  sin A sin B Z = Standard Score (ii) y = cos x (iii) tan (A  B) = tan A  tan B X = Normal Score 1  tan A tan B  = mean  = standard deviation Prepared by Mr. Sim Kwang Yaw 2
  • 3. (b) Condition and Implication: (a) Normal Distribution Graph Condition Implication Returns to O s=0 To the left of O s<0 To the right of O s>0 Maximum/Minimum ds = 0 displacement dt Initial velocity v when t = 0 Uniform velocity a=0 Moves to the left v<0 Moves to the right v>0 Stops/change v=0 direction of motion P(Z < k) = 1 – P(Z > P(Z < -k) = P(Z > k) Maximum/Minimum dv = 0 k) velocity dt Initial acceleration a when t = 0 Increasing speed a>0 Decreasing speed a<0 (c) Total Distance Travelled in the Period P(Z > -k) = 1 – P(Z < - P(a < Z < b) 0 ≤ t ≤ b Second k) = 1 – P(Z > k) = P(Z > a) – P(Z > b) (i) If the particle does not stop in the period of 0 ≤ t ≤ b seconds Total distance travelled = displacement at t = b second (ii) If the particle stops in t = a second when t = a is in the interval of 0 ≤ t ≤ P(-b < Z < -a) = P(a < P(- b < Z < a) b second, Z < b) = P(Z > a) – = 1 – P(z > b) – P(Z > Total distance travelled in b second P(Z > b) a) = Sa  S0  Sb  Sa 7. MOTION ALONG A STRAIGHT LINE (a) Relation Between Displacement, Velocity and Acceleration  vdt  adt Prepared by Mr. Sim Kwang Yaw 3