SlideShare una empresa de Scribd logo
1 de 140
1
Maxwell Equations
&
Propagation in
Anisotropic Electric Media
SOLO HERMELIN
Updated 12.06.06
23.12.12
http://www.solohermelin.com
2
Maxwell Equations & Propagation in Anisotropic MediaSOLO
TABLE OF CONTENT
Maxwell’s Equations
History of Maxwell’s Equations
Symmetric Maxwell’s Equations
Constitutive Relation
Boundary Conditions
Energy and Momentum
Monochromatic Planar Wave Equations
Planar Waves in an Source-less Anisotropic Electric Media
Lorentz’s Lemma
Planar Wave Group Velocity
Phase Velocity, Energy (Ray) Velocity for Planar Waves
Energy Flux and Poynting Vector
Energy Flux and Poynting Vector for a Bianisotropic Medium
Wave equation
Wave-Vector Surface
Double Refraction at a Uniaxial Crystal Boundary
Refractive Index of Some Typical Crystals
Polarization History
3
Maxwell Equations & Propagation in Anisotropic MediaSOLO
TABLE OF CONTENT
Planar Waves in an Source-less Anisotropic Electric Media
Orthogonality Properties of the Eigenmodes
Phase Velocity, Energy (Ray) Velocity for Planar Waves
Ray-Velocity Surface
Index Ellipsoid
Conical Refraction on the Optical Axis
Equation of Wave Normal
References
4
POLARIZATION
Erasmus Bartholinus,doctor of medicine and professor of
mathematics at the University of Copenhagen, showed in 1669 that
crystals of “Iceland spar” (which we now call calcite, CaCO3)
produced two refracted rays from a single incident beam. One ray,
the “ordinary ray”, followed Snell’s law, while the other, the
“extraordinary ray”, was not always even in the plan of incidence.
SOLO
History
Erasmus Bartholinus
1625-1698
http://www.polarization.com/history/history.html
5
POLARIZATIONSOLO
History
Étienne Louis Malus
1775-1812
Etienne Louis Malus, military engineer and captain in the army of
Napoleon, published in 1809 the Malus Law of irradiance through a
Linear polarizer: I(θ)=I(0) cos2
θ. In 1810 he won the French Academy
Prize with the discovery that reflected and scattered light also possessed
“sidedness” which he called “polarization”.
6
POLARIZATION
Arago and Fresnel investigated the interference of
polarized rays of light and found in 1816 that two
rays polarized at right angles to each other never
interface.
SOLO
History (continue)
Dominique François
Jean Arago
1786-1853
Augustin Jean
Fresnel
1788-1827
Arago relayed to Thomas Young in London the results
of the experiment he had performed with Fresnel. This
stimulate Young to propose in 1817 that the oscillations
in the optical wave where transverse, or perpendicular
to the direction of propagation, and not longitudinal as
every proponent of wave theory believed. Thomas Young
1773-1829
7
POLARIZATIONSOLO
http://hyperphysics.phy-astr.gsu.edu/hbase/hframe.html
Methods of Achieving Polarization
Polarization is based on one of four fundamental physical mechanisms:
1. Dichroism or selective absorbtion 3. Reflection
2. Scattering 4. Birefrigerence
To obtain Polarization we must have some asymmetry in the optical process.
8
POLARIZATIONSOLO
http://hyperphysics.phy-astr.gsu.edu/hbase/hframe.html
Methods of Achieving Polarization
Polarization by Birefrigerence (continue – 1)
Polarization can be achieved with crystalline materials which have a different index of
refraction in different planes. Such materials are said to be birefringent or doubly refracting.
Nicol Prism
The Nicol Prism (1828) is made
up from two prisms of calcite
cemented with Canada balsam.
The ordinary ray can be made to
totally reflect off the prism
boundary, leving only the
extraordinary ray.
William Nicol(1768 ?– 1851) Scottish physicist
9
POLARIZATIONSOLO
http://hyperphysics.phy-astr.gsu.edu/hbase/hframe.html
Methods of Achieving Polarization
Polarization by Birefrigerence (continue – 2)
Polarization can be achieved with crystalline materials which have a different index of
refraction in different planes. Such materials are said to be birefringent or doubly refracting.
Wollaston Prism
William Hyde
Wollaston
1766-1828
10
POLARIZATIONSOLO
http://hyperphysics.phy-astr.gsu.edu/hbase/hframe.html
Methods of Achieving Polarization
Polarization by Birefrigerence (continue – 3)
Polarization can be achieved with crystalline materials which have a different index of
refraction in different planes. Such materials are said to be birefringent or doubly refracting.
Glan-Foucault Polarizer
11
POLARIZATION
SOLO
Polarizations Prisms Overview
http://www.unitedcrystals.com/POverview.html
12
POLARIZATION
SOLO
Polarizations Prisms Overview
http://www.unitedcrystals.com/POverview.html
Return to Table of Content
13
MAXWELL’s EQUATIONSSOLO
Magnetic Field IntensityH

[ ]1−
⋅mA
Electric DisplacementD

[ ]2−
⋅⋅ msA
Electric Field IntensityE

[ ]1−
⋅mV
Magnetic InductionB

[ ]2−
⋅⋅ msV
Current DensityJ

[ ]2−
⋅mA
Free Charge Distributionρ [ ]3−
⋅⋅ msA
James Clerk Maxwell
(1831-1879)
A Dynamic Theory of Electromagnetic Field 1864
Treatise on Electricity and Magnetism 1874
Return to Table of Content
14
SOLO
Electrostatics
Charles-Augustin de Coulomb
1736 - 1806
In 1785 Coulomb presented his three reports on Electricity and
Magnetism:
-Premier Mémoire sur l’Electricité et le Magnétisme [2]. In this
publication Coulomb describes “How to construct and use an
electric balance (torsion balance) based on the property of the
metal wires of having a reaction torsion force proportional to the
torsion angle”. Coulomb also experimentally determined the law
that explains how “two bodies electrified of the same kind of
Electricity exert on each other”.
-Sécond Mémoire sur l’Electricité et le Magnétisme [3]. In this
publication Coulomb carries out the “determination according to
which laws both the Magnetic and the Electric fluids act, either
by repulsion or by attraction”.
-Troisième Mémoire sur l’Electricité et le Magnétisme [4]. “On
the quantity of Electricity that an isolated body loses in a certain
time period , either by contact with less humid air, or in the
supports more or less idio-electric”.
15
SOLO
Electrostatics
Charles-Augustin de Coulomb
1736 - 1806
1 2
12 123
0 12
1
4
q q
F r
rπ ε
=
 
Coulomb’s Law
q1 – electric charge located at 1r

q2 – electric charge located at 2r

12 1 2r r r= −
  
The electric force that the charge
q2 exerts on q1 is given by:
If the two electrical charges have the same sign the force is
repulsive, if they have opposite signs is attractive.
12
0 8.854187817 10 /Farad mε −
= ×Permittivity of
vacuum
Accord to the Third Newton Law of mechanics: 21 12F F= −
 
12 1 12F q E=
 
Define 2
12 123
0 12
1
4
q
E r
rπ ε
=
 
where is the Electric Field Intensity [N/C]
16
SOLO
During an evening lecture in April 1820, Ørsted discovered
experimental evidence of the relationship between electricity
and magnetism. While he was preparing an experiment for one
of his classes, he discovered something that surprised him. In
Oersted's time, scientists had tried to find some link between
electricity and magnets, but had failed. It was believed that
electricity and magnetism were not related. As Oersted was
setting up his materials, he brought a compass close to a live
electrical wire and the needle on the compass jumped and
pointed to the wire. Oersted was surprised so he repeated the
experiemnt several times. Each time the needle jumped toward
the wire. This phenomenon had been first discovered by the
Italian jurist Gian Domenico Romagnosi in 1802, but his
announcement was ignored.
1820Electromagnetism
Hans Christian Ørsted
1777- 1851
17
SOLO
1820Electromagnetism
André-Marie Ampère
1775 - 1836
Danish physicist Hans Christian Ørsted's discovered in 1820 that a
magnetic needle is deflected when the current in a nearby wire varies -
a phenomenon establishing a relationship between electricity and
magnetism. Ørsted's work was reported the Academy in Paris on 4
September 1820 by Arago and a week later Arago repeated Ørsted's
experiment at an Academy meeting. Ampère demonstrated various
magnetic / electrical effects to the Academy over the next weeks and he
had discovered electrodynamical forces between linear wires before the
end of September. He spoke on his law of addition of electrodynamical
forces at the Academy on 6 November 1820 and on the symmetry
principle in the following month. Ampère wrote up the work he had
described to the Academy with remarkable speed and it was published in
the Annales de Chimie et de Physique.
Ampère and Arago
investigate magnetism
dl
uu
an infinitesimal element of the contour C
J

curent density A/m2
dS
uu
a differential vector area of the surface S enclosed by contour C
Ampère’s Law
Magnetic Field IntensityH

[ ]1−
⋅mA
18
SOLO
1820
Electromagnetism
Biot-Savart Law
0
2
1
4
rI dL
dB
r
µ
π
×
=
uu u
uu
Magnetic Field of a current element
Jean-Baptiste Biot
1774-1862
( )( )
1
1 2
21 1 1 21
1 2 1 20
1 2 3
1 2
4
c
c c
F I dl B
dl dl r r
I I
r r
µ
π
= ×
× × −
=
−
∫
∫∫
uu 
uu uu  
 
Ampère was not the only one to react quickly
to Arago's report of Orsted's experiment. Biot,
with his assistant Savart, also quickly conducted
experiments and reported to the Academy in
October 1820. This led to the Biot-Savart Law.
Félix Savart
1791 - 1841
19
SOLO
1820
Electromagnetism
Biot-Savart Law
Jean-Baptiste Biot
1774-1862
( )
( )2 30
0
'
'
4 '
J r
A J A r d r
r r
µ
µ
π
∇ = − ⇒ =
−∫
   
 
0
0
H J B H
B B A
µ∇× = =
∇× = → = ∇×
   
 
( ) ( ) 2
0B A A A Jµ∇× = ∇× ∇× = ∇ ∇× −∇ =
   
choose 0A∇× =

( ) ( )
( ) ( ) ( )3 30 0
3
' ' '
' '
4 ' 4 '
r r
J r J r r r
B r A r d r d r
r r r r
µ µ
π π
  × −
= ∇ × = ∇ × = ÷ ÷− − 
∫ ∫
      
   
Where we used ( ) ( )
0
' : 1/ 'r r rJ J r J r rφ φ φ φ∇ × = ∇ × + ∇ × = −

    
14243
Derivation of Biot-Savart Law from Ampère’s Law
Poison’s Equation
Solution for an unbounded volume
Ampère Law
Félix Savart
1791 - 1841
20
SOLO
1831Electromagnetism
On 29th August 1831, using his "induction ring", Faraday made one
of his greatest discoveries - electromagnetic induction: the
"induction" or generation of electricity in a wire by means of the
electromagnetic effect of a current in another wire. The induction ring
was the first electric transformer. In a second series of experiments in
September he discovered magneto-electric induction: the production
of a steady electric current. To do this, Faraday attached two wires
through a sliding contact to a copper disc. By rotating the disc between
the poles of a horseshoe magnet he obtained a continuous direct
current. This was the first generator.
Michael Faraday
1791- 1867
Magnetic Field IntensityH

[ ]1−
⋅mA
Electric DisplacementD

[ ]2−
⋅⋅ msA
Electric Field IntensityE

[ ]1−
⋅mV
Magnetic InductionB

[ ]2−
⋅⋅ msV
→→
⋅
∂
∂
−=⋅ ∫∫∫ dS
t
B
dlE
SC


t
B
E
∂
∂
−=×∇

→
dl
→
dS
C
B

E

The voltage induced in a
coil moving through a
non-uniform magnetic
field was demonstrated
by this apparatus. As the
coil is removed from the
field of the bar magnets,
the coil circuit is broken
and a spark is observed
at the gap.
The first
transformer:
Two coils
wound on an
iron toroid.
http://www.ece.umd.edu/~taylor/frame1.htm
21
MAXWELL’s EQUATIONS
1. AMPÈRE’s CIRCUIT LW (A) (1820)
SOLO
2. FARADAY’s INDUCTION LAW (F) (1831)
Electric DisplacementD

[ ]2−
⋅⋅ msA
Magnetic Field IntensityH

[ ]1−
⋅mA
Current DensityJ

[ ]2−
⋅mA
André-Marie Ampère
1775-1836
→→
⋅
∂
∂
−=⋅ ∫∫∫ dS
t
B
dlE
SC


t
B
E
∂
∂
−=×∇

→
dl
→
dS
C
B

E

Electric Field IntensityE

[ ]1−
⋅mV
Magnetic InductionB

[ ]2−
⋅⋅ msV
Michael Faraday
1791-1867
The following four equations describe the Electromagnetic Field and where
first given by Maxwell in 1864 (in a different notation) and are known as
MAXWELL’s EQUATIONS
22
MAXWELL’s EQUATIONSSOLO
4. GAUSS’ LAW – MAGNETIC (GM)
dV
→
dS
V
0=⋅∫∫
→
S
dSB

B

0=⋅∇ B

Magnetic InductionB

[ ]2−
⋅⋅ msV
3. GAUSS’ LAW – ELECTRIC (GE)
dV
→
dS
V
∫∫∫∫∫ =⋅
→
VS
dVdSD ρ

D

ρ=⋅∇ D

ρ
Electric DisplacementD

[ ]2−
⋅⋅ msA
Free Charge Distributionρ [ ]3−
⋅⋅ msA
GAUSS’ ELECTRIC (GE) & MAGNETIC (GM) LAWS developed by Gauss
in 1835, but published in 1867.
Karl Friederich Gauss
1777-1855
Return to Table of Content
23
James C. Maxwell
(1831-1879)
ELECTROMAGNETICSSOLO
Magnetic Field IntensityH

[ ]1−
⋅mA
Electric DisplacementD

[ ]2−
⋅⋅ msA
Electric Field IntensityE

[ ]1−
⋅mV
Magnetic InductionB

[ ]2−
⋅⋅ msV
Electric Current DensityeJ

[ ]2−
⋅mA
Free Electric Charge Distributioneρ [ ]3−
⋅⋅ msA
Fictious Magnetic Current DensitymJ

[ ]2−
⋅mV
Fictious Free Magnetic Charge Distributionmρ
[ ]3−
⋅⋅ msV
MAXWELL’S SYMMETRIC EQUATIONS FOR THE
ELECTROMAGNETIC FIELD
e
S
e
C
J
t
D
HSd
t
D
JdlH





+
∂
∂
=×∇⇒•







∂
∂
+=• ∫∫∫
→
)1( AMPÈRE’S LAW
t
B
JESd
t
B
JdlE m
S
m
C
∂
∂
−−=×∇⇒•







∂
∂
+−=• ∫∫∫
→




)2( FARADAY’S LAW
e
V
e
S
DdvSdD ρρ =•∇⇒=• ∫∫∫∫∫

)3( GAUSS’ ELECTRIC LAW
m
V
m
S
BdvSdB ρρ =•∇⇒=• ∫∫∫∫∫

)4( GAUSS’ MAGNETIC LAW
24
ELECTROMAGNETICSSOLO
SYMMETRIC MAXWELL’s EQUATIONS
Magnetic Field IntensityH

[ ]1−
⋅mA
Electric DisplacementD

[ ]2−
⋅⋅ msA
Electric Field IntensityE

[ ]1−
⋅mV
Magnetic InductionB

[ ]2−
⋅⋅ msV
Electric Current DensityeJ

[ ]2−
⋅mA
Free Electric Charge Distributioneρ [ ]3−
⋅⋅ msA
Fictious Magnetic Current DensitymJ

[ ]2−
⋅mV
Fictious Free Magnetic Charge Distributionmρ
[ ]3−
⋅⋅ msV
1. AMPÈRE’S CIRCUIT LW (A) eJ
t
D
H



+
∂
∂
=×∇
2. FARADAY’S INDUCTION LAW (F)
mJ
t
B
E



−
∂
∂
−=×∇
3. GAUSS’ LAW – ELECTRIC (GE)
eD ρ=⋅∇

4. GAUSS’ LAW – MAGNETIC (GM) mB ρ=⋅∇

Although magnetic sources are not physical they are often introduced as electrical
equivalents to facilitate solutions of physical boundary-value problems.
André-Marie Ampère
1775-1836
Michael Faraday
1791-1867
Karl Friederich Gauss
1777-1855
25
ELECTROMAGNETICSSOLO
SYMMETRIC MAXWELL’s EQUATIONS (continue – 1)
eJ
t
D
H



+
∂
∂
=×∇mJ
t
B
E



−
∂
∂
−=×∇
eD ρ=⋅∇

mB ρ=⋅∇

From the Symmetric Maxwell’s Equations we can see that we obtain the same equations
by performing the following operations.
DUALITY










⇓










⇓










−
⇓










⇓












−
⇓












⇓












−
⇓












⇓












⇓












−
⇓
µ
ε
ε
µ
ρ
ρ
ρ
ρ
e
m
m
e
e
m
m
e
J
J
J
J
E
H
H
E
B
D
D
B












The Maxwell’s Equations are symmetric and dual.
eJ
t
D
H



+
∂
∂
=×∇ mJ
t
B
E



−
∂
∂
−=×∇
mB ρ=⋅∇

eD ρ=⋅∇

26
ELECTROMAGNETICSSOLO
SYMMETRIC MAXWELL’s EQUATIONS (continue – 2)
From the Symmetric Maxwell’s Equations
( ) 00 =
∂
∂
+⋅∇⇒⋅∇+⋅∇
∂
∂
=×∇⋅∇=⇒










=⋅∇
+
∂
∂
=×∇
t
JJD
t
H
D
J
t
D
H e
ee
e
e ρ
ρ





( ) 00 =
∂
∂
+⋅∇⇒⋅∇−⋅∇
∂
∂
−=×∇⋅∇=⇒










=⋅∇
−
∂
∂
−=×∇
t
JJB
t
E
B
J
t
B
E m
mm
m
m ρ
ρ





CONSERVATION OF ELECTRICAL AND MAGNETIC CHARGES
0=
∂
∂
+⋅∇
t
J e
e
ρ
0=
∂
∂
+⋅∇
t
J m
m
ρ
Therefore
Return to Table of Content
27
ELECTROMAGNETICSSOLO
CONSTITUTIVE RELATIONS
Homogeneous Medium – Medium properties do not vary from point to point
and are the same for all points.ε µ
Isotropic Medium – Medium properties are the same in all directions
and are scalars.ε µ
Linear Medium – The effects of all different fields can be added linearly
(Superposition of different fields).
For Linear and Isotropic Medium we have:
ED

ε=
HB

µ=
where: 0εε eK=
0µµ mK=
- Dielectric Constant (or Relative Permitivity)eK
- Relative PermeabilitymK
The simpler case:
28
ELECTROMAGNETICSSOLO
CONSTITUTIVE RELATIONS (continue - 1)
The most general form of Linear Constitutive Relations is:
Classification of Media
dyadicsxwhere
H
E
B
D
33,,, =
















=








µζξε
µζ
ξε 






Classification according to the functional dependence of the 6x6 matrix








µζ
ξε


1. Inhomogeneous: function of space coordinates
2. Nonstationary: function of time
3. Time-dispersive: function of time derivatives
4. Space-dispersive: function of space derivatives
5. Nonlinear: function of the electromagnetic field
29
ELECTROMAGNETICSSOLO
CONSTITUTIVE RELATIONS (continue - 3)
Classification of Media (continue - 2)
In general 0,0,0,0

≠==≠ µζξε
Anisotropic Electromagnetic - medium described by both 0,0

≠≠ µε
Anisotropic Electric - medium described by 0

≠ε
Anisotropic Magnetic - medium described by 0

≠µ
If is symmetric, it can be diagonalized0

≠ε










=
z
y
x
ε
ε
ε
ε
00
00
00

Uniaxial zyx εεε ≠= (thetragonal, hexagonal,
rombohedral crystals)
Biaxial zyx εεε ≠≠ (orthohombic, monoclinic,
triclinic crystals)
Isotropic zyx εεε ==
This is called an Anisotropic Medium.
If or is Hermitian; i.e.0

≠ε 0

≠µ
( )
Transposeconjugate
conjugateTranspose
a
aj
ja
T
z
-T,-*
,-H
UUUU *H
==










−=
00
0
0
α
α
Is gyroelectric or gyromagnetic depending
on whether stands for or . If both
tensors are of this form the medium is
gyroelectromagnetic.
ε

µ

U








µζ
ξε


30
ELECTROMAGNETICSSOLO
CONSTITUTIVE RELATIONS (continue - 4)
Classification of Media (continue - 3)
In general 0,0,0,0

≠≠≠≠ µζξε This is called an Bianisotropic Medium.
Such properties have been observed in antiferromagnatic chromium oxide
( antiferromagnetic materials are ones in which it is enerically favorable for
neighboring dipoles to take an antiparallel orientation; see Ramo, Whinery, and
Van Duzer (1965), pg. 145)
















−−
−−
−=
**
**
4 µµζζ
ξξεεω


j
G
mediumlosslessundefinite
mediumpassivedefinitenegative
mediumactivedefinitepositive
⇒
⇒
⇒
G
G
G
In this case, we have the following classification (see development later)
Return to Table of Content
31
SOLO ELECTROMAGNETICS BOUNDARY CONDITIONS
Boundary Conditions
( ) ( ) ldtHtHhldtHldtHldH
h
C
2211
0
2211
ˆˆˆˆ ⋅+⋅=Θ+⋅+⋅=⋅
→→
∫

where are unit vectors along C in region (1) and (2), respectively, and21
ˆ,ˆ tt
2121
ˆˆˆˆ −×=−= nbtt
- a unit vector normal to the boundary between region (1) and (2)21
ˆ −n
- a unit vector on the boundary and normal to the plane of curve Cbˆ
Using we obtainbaccba

⋅×≡×⋅
( ) ( ) ( )[ ] ldbkldbHHnldnbHHldtHH e
ˆˆˆˆˆˆ 21212121121 ⋅=⋅−×=×⋅−=⋅− −−

Since this must be true for any vector that lies on the boundary between
regions (1) and (2) we must have:
bˆ
( ) ekHHn

=−×− 2121
ˆ
∫∫∫ ⋅







∂
∂
+=⋅
→
S
e
C
Sd
t
D
JdlH



( ) dlbkbdlh
t
D
JSd
t
D
J e
h
e
S
e
ˆˆ
0
⋅=⋅







∂
∂
+=⋅







∂
∂
+
→
∫∫





AMPÈRE’S LAW
[ ]1
0
lim: −
→
⋅







∂
∂
+= mAh
t
D
Jk e
h
e


32
SOLO ELECTROMAGNETICS BOUNDARY CONDITIONS
Boundary Conditions (continue – 1)
( ) ( ) ldtEtEhldtEldtEldE
h
C
2211
0
2211
ˆˆˆˆ ⋅+⋅=Θ+⋅+⋅=⋅
→→
∫

where are unit vectors along C in region (1) and (2), respectively, and21
ˆ,ˆ tt
2121
ˆˆˆˆ −×=−= nbtt
- a unit vector normal to the boundary between region (1) and (2)21
ˆ −n
- a unit vector on the boundary and normal to the plane of curve Cbˆ
Using we obtainbaccba

⋅×≡×⋅
( ) ( ) ( )[ ] ldbkldbEEnldnbEEldtEE m
ˆˆˆˆˆˆ 21212121121 ⋅−=⋅−×=×⋅−=⋅− −−

Since this must be true for any vector that lies on the boundary between
regions (1) and (2) we must have:
bˆ
( ) mkEEn

−=−×− 2121
ˆ
∫∫∫ ⋅







∂
∂
+−=⋅
→
S
m
C
Sd
t
B
JdlE



( ) dlbkbdlh
t
B
JSd
t
B
J m
h
m
S
m
ˆˆ
0
⋅=⋅







∂
∂
+=⋅







∂
∂
+
→
∫∫





FARADAY’S LAW
[ ]1
0
lim: −
→
⋅







∂
∂
+= mVh
t
B
Jk m
h
m


33
SOLO ELECTROMAGNETICS BOUNDARY CONDITIONS
Boundary Conditions (continue – 2)
( ) ( ) SdnDnDhSdnDSdnDSdD
h
S
2211
0
2211
ˆˆˆˆ ⋅+⋅=Θ+⋅+⋅=⋅
→
∫∫

where are unit vectors normal to boundary pointing in region (1) and (2),
respectively, and
21
ˆ,ˆ nn
2121
ˆˆˆ −=−= nnn
- a unit vector normal to the boundary between region (1) and (2)21
ˆ −n
( ) ( ) SdSdnDDSdnDD eσ=⋅−=⋅− −2121121
ˆˆ

Since this must be true for any dS on the boundary between regions (1) and (2)
we must have:
( ) eDDn σ=−⋅− 2121
ˆ

( ) dSdShdv e
h
e
V
e σρρ
0→
==∫∫∫
GAUSS’ LAW - ELECTRIC
[ ]1
0
lim: −
→
⋅⋅= msAhe
h
e ρσ
∫∫∫∫∫ =•
V
e
S
dvSdD ρ

34
SOLO ELECTROMAGNETICS BOUNDARY CONDITIONS
Boundary Conditions (continue – 3)
( ) ( ) SdnBnBhSdnBSdnBSdB
h
S
2211
0
2211
ˆˆˆˆ ⋅+⋅=Θ+⋅+⋅=⋅
→
∫∫

where are unit vectors normal to boundary pointing in region (1) and (2),
respectively, and
21
ˆ,ˆ nn
2121
ˆˆˆ −=−= nnn
- a unit vector normal to the boundary between region (1) and (2)21
ˆ −n
( ) ( ) SdSdnBBSdnBB mσ=⋅−=⋅− −2121121
ˆˆ

Since this must be true for any dS on the boundary between regions (1) and (2)
we must have:
( ) mBBn σ=−⋅− 2121
ˆ

( ) dSdShdv m
h
m
V
m σρρ
0→
==∫∫∫
GAUSS’ LAW – MAGNETIC
[ ]1
0
lim: −
→
⋅⋅= msVhm
h
m ρσ
∫∫∫∫∫ =•
V
m
S
dvSdB ρ

35
SOLO ELECTROMAGNETICS BOUNDARY CONDITIONS
Boundary Conditions (summary)
( ) mkEEn

−=−×− 2121
ˆ FARADAY’S LAW
( ) ekHHn

=−×− 2121
ˆ AMPÈRE’S LAW [ ]1
0
lim: −
→
⋅







∂
∂
+= mAh
t
D
Jk e
h
e


[ ]1
0
lim: −
→
⋅







∂
∂
+= mVh
t
B
Jk m
h
m


( ) eDDn σ=−⋅− 2121
ˆ
 GAUSS’ LAW
ELECTRIC
[ ]1
0
lim: −
→
⋅⋅= msAhe
h
e ρσ
( ) mBBn σ=−⋅− 2121
ˆ
 GAUSS’ LAW
MAGNETIC
[ ]1
0
lim: −
→
⋅⋅= msVhm
h
m ρσ
36
SOLO ELECTROMAGNETICS BOUNDARY CONDITIONS
Boundary Conditions for Perfect Electric Conductor (PEC)
( ) 0ˆ 2121

=−×− EEn FARADAY’S LAW
( ) ekHHn

=−×− 2121
ˆ AMPÈRE’S LAW
( ) eDDn σ=−⋅− 2121
ˆ
 GAUSS’ LAW
ELECTRIC
( ) 0ˆ 2121 =−⋅− BBn
 GAUSS’ LAW
MAGNETIC
ekHn

=×− 121
ˆ
0ˆ 121

=×− En
eDn σ=⋅− 121
ˆ

0ˆ 121 =⋅− Bn

02

=H
02

=B
02

=E
02

=D
37
SOLO ELECTROMAGNETICS BOUNDARY CONDITIONS
Boundary Conditions for Perfect Magnetic Conductor (PMC)
( ) mkEEn

−=−×− 2121
ˆ FARADAY’S LAW
( ) 0ˆ 2121

=−×− HHn AMPÈRE’S LAW
( ) 0ˆ 2121 =−⋅− DDn
 GAUSS’ LAW
ELECTRIC
( ) mBBn σ=−⋅− 2121
ˆ
 GAUSS’ LAW
MAGNETIC
0ˆ 121

=×− Hn
mkEn

−=×− 121
ˆ
0ˆ 121 =⋅− Dn

mBn σ=⋅− 121
ˆ

02

=H
02

=B
02

=E
02

=D
Return to Table of Content
38
SOLO ELECTROMAGNETICS BOUNDARY CONDITIONS
Energy and Momentum
Let start from Ampère and Faraday Laws














∂
∂
−=×∇⋅
+
∂
∂
=×∇⋅−
t
B
EH
J
t
D
HE e





EJ
t
D
E
t
B
HHEEH e





⋅−
∂
∂
⋅−
∂
∂
⋅−=×∇⋅−×∇⋅
( )HEHEEH

×⋅∇=×∇⋅−×∇⋅But
Therefore we obtain
( ) EJ
t
D
E
t
B
HHE e





⋅−
∂
∂
⋅−
∂
∂
⋅−=×⋅∇
First way
This theorem was discovered by Poynting in 1884 and later in the same year by Heaviside.
39
SOLO ELECTROMAGNETICS BOUNDARY CONDITIONS
Energy and Momentum (continue -1)
We identify the following quantities
-Power density of the current densityEJe

⋅
( )HEDE
t
BH
t
EJe

×⋅∇−





⋅
∂
∂
−





⋅
∂
∂
−=⋅
2
1
2
1






⋅
∂
∂
=⋅= BH
t
pBHw mm

2
1
,
2
1






⋅
∂
∂
=⋅= DE
t
pDEw ee

2
1
,
2
1
( )HEpR

×⋅∇=
eJ

-Magnetic energy and power densities, respectively
-Electric energy and power densities, respectively
-Radiation power density
For linear, isotropic electro-magnetic materials we can write( )HBED

00 , µε ==
( )DE
tt
D
E
ED 



⋅
∂
∂
=
∂
∂
⋅
=
2
10ε
( )BH
tt
B
H
HB 



⋅
∂
∂
=
∂
∂
⋅
=
2
10µ
40
SOLO ELECTROMAGNETICS BOUNDARY CONDITIONS
Energy and Momentum (continue – 3)
Let start from the Lorentz Force Equation (1892) on the free charge
( )BvEF e

×+= ρ
Free Electric Chargeeρ [ ]3−
⋅⋅ msA
Velocity of the chargev

[ ]1−
⋅sm
Electric Field IntensityE

[ ]1−
⋅mV
Magnetic InductionB

[ ]2−
⋅⋅ msV
Hendrik Antoon Lorentz
1853-1928
eρ
Force on the free chargeF

[ ]Neρ
Second way
41
SOLO ELECTROMAGNETICS BOUNDARY CONDITIONS
Energy and Momentum (continue – 4)
The power density of the Lorentz Force the charge
( )
( )
EJBvEvp e
Bvv
Jv
e
ee


 ⋅=×+⋅=
=×⋅
=
0
ρ
ρ
or
( ) ( ) ( )
( ) ( )[ ]
( )HE
t
B
HE
t
D
E
t
D
HEEH
E
t
D
HEJp
t
B
E
HEHEEH
J
t
D
H
e
e
















×⋅∇−







∂
∂
⋅+⋅
∂
∂
−=
⋅
∂
∂
−×⋅∇−×∇⋅=
⋅







∂
∂
−×∇=⋅=
∂
∂
−=∇×
×⋅∇=∇×⋅−∇×⋅
+
∂
∂
=∇×
eρ
42
SOLO ELECTROMAGNETICS BOUNDARY CONDITIONS
Energy and Momentum (continue – 5)
( )HEDE
t
BH
t
EJe

×⋅∇−





⋅
∂
∂
−





⋅
∂
∂
−=⋅
2
1
2
1
Let integrate this equation over a constant volume V
∫∫∫∫∫∫∫∫∫∫∫∫ ×∇−





⋅−





⋅−=⋅
VVVV
e dvSdvDE
td
d
dvBH
td
d
dvEJ

2
1
2
1
If we have sources in V then instead of
we must use
E

source
EE

+
Use Ohm Law (1826)
( )source
ee EEJ

+= γ








=
∂
∂
∫∫∫∫∫∫ VV
td
d
t
Georg Simon Ohm
1789-1854
source
e
e
EJE

−=
γ
1
For linear, isotropic electro-magnetic materials ( )HBED

00 , µε ==
43
SOLO ELECTROMAGNETICS BOUNDARY CONDITIONS
Energy and Momentum (continue – 6)
∫∫∫∫∫∫∫∫∫∫∫∫∫ ⋅∇+





⋅+





⋅+=⋅
VVVR
n
V
source
e dvSdvDE
td
d
dvBH
td
d
dRIdvEJ

2
1
2
12
∫∫∫ 





⋅=
V
FieldMagnetic dvBH
td
d
P

2
1
∫∫∫ 





⋅=
V
FieldElectric dvDE
td
d
P

2
1
∫∫∫∫∫ ⋅=⋅∇=
SV
Radiation SdSdvSP

∫∫∫ ⋅=
V
source
eSource dvEJP

( ) ( )
∫∫∫∫
∫∫∫∫∫∫∫∫∫∫∫∫∫∫∫
⋅−=
⋅−⋅=⋅−⋅⋅=⋅
V
source
e
R
n
V
source
e
L S e
ee
V
source
e
L S e
ee
V
e
dvEJdRI
dvEJ
dS
dl
dSJdSJdvEJldSdJJdvEJ


2
11
γγ
∫=
R
nJoule dRIP
2
RadiationFieldMagneticFieldElectricJouleSource PPPPP +++=
For linear, isotropic electro-magnetic materials( )HBED

00 , µε ==
R – Electric Resistance
Define the Umov-Poynting vector: [ ]2
/ mwattHES

×=
The Umov-Poynting vector was discovered by Umov in 1873, and rediscovered by
Poynting in 1884 and later in the same year by Heaviside.
44
ELECTROMAGNETICSSOLO
EM People
John Henry Poynting
1852-1914
Oliver Heaviside
1850-1925
Nikolay Umov
1846-1915
1873
“Theory of interaction on final
distances and its exhibit to
conclusion of electrostatic and
electrodynamic laws”
1884 1884
Umov-Poynting vector
HES

×=
Return to Table of Content
45
ELECTROMAGNETICSSOLO
Monochromatic Planar Wave Equations
Let assume that can be written as:( ) ( )trHtrE ,,,

( ) ( ) ( ) ( ) ( ) ( )tjrHtrHtjrEtrE 00 exp,,exp, ωω

==
where are phasor (complex)
vectors.
( ) ( ){ } ( ){ } ( ) ( ){ } ( ){ }rHjrHrHrEjrErE

ImRe,ImRe +=+=
We have ( ) ( ) ( ) ( ) ( )tjrEjtj
t
rEtrE
t
00 expexp, ωωω

=
∂
∂
=
∂
∂
Hence
( )
( )
( )












=⋅∇
=⋅∇
−−=×∇
+=×∇
⇒










=⋅∇
=⋅∇
−
∂
∂
−=×∇
+
∂
∂
=×∇
=
∂
∂
m
e
m
e
j
t
m
e
m
e
B
D
JBjE
JDjH
BGM
DGE
J
t
B
EF
J
t
D
HA
ρ
ρ
ω
ω
ρ
ρ
ω








)(
46
ELECTROMAGNETICSSOLO
Note
The assumption that can be written as:( ) ( )trHtrE ,,,

( ) ( ) ( ) ( ) ( ) ( )tjrHtrHtjrEtrE 00 exp,,exp, ωω

==
is equivalent to saying that has a Fourier Transform; i.e.:( ) ( )trHtrE ,,,

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )∫∫
∫∫
∞
∞−
∞
∞−
∞
∞−
∞
∞−
=−=
=−=
ωωω
π
ωω
ωωω
π
ωω
dtjrHtrHdttjtrHrH
dtjrEtrEdttjtrErE
exp,
2
1
,&exp,,
exp,
2
1
,&exp,,


A Sufficient Condition for the Existence of the Fourier Transform is:
( ) ( )
( ) ( ) ∞<=
∞<=
∫∫
∫∫
∞
∞−
∞
∞−
∞
∞−
∞
∞−
ωω
π
ωω
π
drHdttrH
drEdttrE
22
22
,
2
1
,
,
2
1
,


( ) ( ) ( ) ( ) ( )[ ] ( )
( ) ( )[ ] ( ) ( )ωωδωω
ωωωω
−=−=
−=−=
∫
∫∫
∞
∞−
∞
∞−
∞
∞−
00
0
exp
expexpexp,,
rEdttjrE
dttjtjrEdttjtrErE


End Note
47
ELECTROMAGNETICSSOLO
Fourier Transform
The Fourier transform of can be written as:( ) ( )trHtrE ,,,

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )∫∫
∫∫
∞
∞−
∞
∞−
∞
∞−
∞
∞−
−==
−==
dttjtrHrHdtjrHtrH
dttjtrErEdtjrEtrE
ωωωωω
π
ωωωωω
π
exp,,&exp,
2
1
,
exp,,&exp,
2
1
,


( ) ( )
( ) ( ) ∞<=
∞<=
∫∫
∫∫
∞
∞−
∞
∞−
∞
∞−
∞
∞−
ωω
π
ωω
π
drHdttrH
drEdttrE
22
22
,
2
1
,
,
2
1
,


JEAN FOURIER
1768-1830
A Sufficient Condition for the Existence of the Fourier
Transform is:
48
ELECTROMAGNETICSSOLO
( )
( )






×∇−×∇−=×∇×∇
×∇+×∇=×∇×∇
−−=×∇
+=×∇
⇒




−−=×∇×∇
+=×∇×∇ =
=
m
e
m
e
ED
HB
m
e
JHjE
JEjH
JHjE
JEjH
JBjE
JDjH
ωµ
ωε
ωµ
ωε
ω
ω ε
µ
( ) me JJjEkE

×∇−−=−×∇×∇ ωµ2
( ) em JJjHkH

×∇+−=−×∇×∇ ωε2 λ
ππ
µεω
λ
22 f
c
c
f
k
=
∆
===
Using the vector identity ( ) ( ) ( ) AAA

∇⋅∇−⋅∇∇=×∇×∇
For a Homogeneous, Linear and Isotropic Media:






=⋅∇
=⋅∇
⇒



=⋅∇
=⋅∇ =
=
µ
ρ
ε
ρ
ρ
ρ ε
µ
m
e
ED
HB
m
e
H
E
B
D
ε
ρ
ωµ e
me JJjEkE
∇
+×∇+=+∇
22
µ
ρ
ωε m
em JJjHkH
∇
+×∇−=+∇
22
and
we obtain
Monochromatic Planar Wave Equations (continue - 1)
49
ELECTROMAGNETICSSOLO
Assume no sources:
we have
Monochromatic Planar Wave Equations (continue - 2)
0,0,0,0 ==== meme JJ ρρ

022
=+∇ EkE
022
=+∇ HkH
nkk
n
k
0
00
00
0
=








==
∆

 εµ
µε
εµωµεω
( ) ( ) ( )
( ) ( ) ( )



==
==
⋅−
⋅−
rktjtj
rktjtj
eHerHtrH
eEerEtrE




ωω
ωω
ω
ω
0
0
,,
,,
( ) 022
=+∇⇒
⋅−=∇⋅∇⇒−=∇
⋅−
⋅−⋅−⋅−⋅−
rkj
rkjrkjrkjrkj
ek
ekkeekje

 
Helmholtz Wave Equations
satisfy the Helmholtz wave equations( ) ( )ωω ,,, rHrE

( )
( )



=
=
⋅−
⋅−
rkj
rkj
eHrH
eErE




0
0
,
,
ω
ω
Assume a progressive wave of phase ( )rkt

⋅−ω (a regressive wave has the phase) ( )rkt

⋅+ω
For a Homogeneous, Linear and Isotropic Media
k

0E
0H
r
 t
k

Planes for which
constrkt =⋅−

ω
50
ELECTROMAGNETICSSOLO
To satisfy the Maxwell equations for a source free media we must have:
Monochromatic Planar Wave Equations (continue - 3)
we haveUsing: 1ˆˆ&ˆˆ =⋅== sss
c
n
sk ωεµω








=⋅∇
=⋅∇
−=×∇
=×∇
0
0
H
E
HjE
EjH
ωµ
ωε










=⋅
=⋅
=×
−=×
0ˆ
0ˆ
ˆ
ˆ
0
0
00
00
Hs
Es
HEs
EHs
ε
µ
µ
ε
sˆ
Planar Wave
0E
0H
r








=⋅−
=⋅−
−=×−
=×−
⇒
⋅−
⋅−
⋅−⋅−
⋅−⋅−
−=∇ ⋅−⋅−
0
0
0
0
00
00
rkj
rkj
rkjrkj
rkjrkj
ekje
eHkj
eEkj
eHjeEkj
eEjeHkj
rkjrkj










ωµ
ωε







=⋅
=⋅
=×
−=×
0
0
0
0
00
00
Hk
Ek
HEk
EHk




µω
εω
For a Homogeneous, Linear and Isotropic Media:
Return to Table of Content
51
SOLO ELECTROMAGNETICS
Planar Waves in an Source-less Anisotropic Electric Media




0
0
0
0
m
e
m
e
B
D
J
t
B
E
J
t
D
H
ρ
ρ
=⋅∇
=⋅∇
−
∂
∂
−=×∇
+
∂
∂
=×∇










( ) ( ) ( )
∫
+∞
∞−
⋅−
= dkekEtrE rktj

 ω
0,
ωω
ωω
j
t
eje
t
rs
c
n
tjrs
c
n
tj
→
∂
∂
⇒=
∂
∂ 





⋅−





⋅−

ˆˆ
kjs
c
n
jes
c
n
je
rs
c
n
tjrs
c
n
tj 
−=−→∇⇒−=∇






⋅−





⋅−
ˆˆ
ˆˆ
ωω
ωω
0ˆ
0ˆ
ˆ
ˆ
=⋅
=⋅
=×
−=×
Bs
Ds
BEs
c
n
DHs
c
n
( )
( )DEBH
tt
D
E
t
B
H
HEEHHES
HB
ED







 ⋅+⋅
∂
∂
−=
∂
∂
⋅−
∂
∂
⋅−=
×∇⋅−×∇⋅=×⋅∇=⋅∇
⋅=
⋅= 2
1µ
ε
( ) emUDEBHS
k
Ss
c
n
=⋅+⋅=⋅=⋅
2
1
ˆ
ω

Maxwell’s
Symmetric Equations
Planar Wave
0
0
=⋅
=⋅
=×
−=×
Bk
Dk
BEk
DHk




ω
ω
ωj
t
→
∂
∂
s
c
n
j ˆω−→∇
ωj
t
→
∂
∂
kj

−→∇
vector phasor
vector phasor
s
c
n
k ˆω=

52
SOLO ELECTROMAGNETICS
Planar Wave Group Velocity
Consider a Planar Wave composed of
frequencies centered around ω0.
( ) ( ) ( )( )
∫
+∞
∞−
⋅−
= dkekEtrE rktkj

 ω
0,
( ) ( ) +−







+= 0
0
0
kk
kd
d
k
ω
ωω
Expand ω(k), using Taylor series
around k0
( ) ( ) ( )
( )
∫
∞+
∞−
−








−
⋅−
−





⋅−
= dkekEetrE
kk
kk
rkk
t
kd
d
j
rktj
0
0
0
0
00
0,





ω
ω
The Phase of the Group of Waves is ( )
0
0
0
0
kk
kk
rkk
t
kd
d
g



−










−
⋅−
−





=
ω
ϕ
To find the velocity of phase of the group of
waves consider the points for which φg = const
( ) 0
0
0
0
=
−
⋅−
−





⇒
kk
rdkk
td
kd
d
g
d 

ω
ϕ
The Group Velocity of the Planar Wave is
( )
0
0
0 kk
kk
kd
d
krd
g td
rd
v 




−
−






=
=
=
ω
δ
Return to Table of Content
53
SOLO ELECTROMAGNETICS
Phase Velocity, Energy (Ray) Velocity for Planar Waves
The phase of the field is given by 





⋅−=⋅−= rs
c
n
trkt

ˆωωφ
For a constant phase front we have 





⋅−=⋅−=⋅−== rds
c
n
dtrdskdtrdkdtd

ˆˆ0 ωωωφ
s
n
c
s
kdt
rd
v
srr
const
p
ˆˆ:
ˆ
===
=
=
ω
φ


Phase Velocity B

D

pv

E

H

HES

×=α
α
k

ev

PlanarWaves
n
c
ktd
rd
s ==⋅
ω

ˆ
n
c
S
S
vs e =⋅ :ˆ
( ) α
α
cosˆ
ˆ
cos
p
S
Ss
e
v
Ss
S
n
c
v
⋅
=
=
⋅
=
Define the phase velocity as
Define the energy flow velocity in the Poynting vector direction as
S
S
vSv ee =
→
1
( ) emUDEBHS
k
Ss
c
n
=⋅+⋅=⋅=⋅
2
1
ˆ
ω
 ( ) em
ee
U
S
S
Ssn
c
S
S
vv =
⋅
==
ˆ
1
:

Energy (Ray) Velocity
The electro-magnetic energy propagates along the Poynting vector .
For anisotropic media the Poynting vector is not collinear with .k
 HES ×=
Return to Table of Content
Electromagnetic Energy Density
54
SOLO ELECTROMAGNETICS
Planar Waves in an Source-less Anisotropic Electric Media
A wave packet can be viewed as a superposition of monochromatic waves, with different
frequencies ω and wave vector that must satisfy the Maxwell’s equationsk

EHk
HEk
⋅−=×
⋅=×
εω
µω


Suppose that the wave vector changes by an infinitesimal amount , that determines
changes
k

k

δ
HE δδωδ ,,
HHHEkEk ⋅⋅+⋅=×+× δµωµωδδδ

( )EEEHkHk −⋅⋅−⋅−=×+× δεωεωδδδ

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )EEEEEHkHEk
HHHHHEkHEk
δεωεωδδδ
δµωµωδδδ
⋅⋅+⋅⋅=×⋅−×⋅
⋅⋅+⋅⋅=×⋅+×⋅


( ) ( )
( ) ( ) 0
2
00
=⋅+×⋅+⋅−×⋅−=
⋅⋅+⋅⋅−×⋅
  

  


EHkEHEkH
HHEEHEk
εωδµωδ
µεωδδ
( ) ( ) ( )BACACBCBA

×⋅≡×⋅≡×⋅
55
SOLO ELECTROMAGNETICS
Planar Waves in an Source-less Anisotropic Electric Media
( )
( )
e
em
vk
U
S
k
HHEE
HEk 




⋅=⋅=
⋅⋅+⋅⋅
×⋅
= δδ
µε
δ
ωδ
2
1
( ) gk vkk

⋅=∇⋅= δωδωδ
- Energy (Ray) Velocityev

From the definition of Group Velocity: gv

since those relations are true for all: k

δ eg vv

=
For a monochromatic wave δω=0, therefore
( ) 0=×⋅=⋅ HEkSk

δδ
( ) ( ) 02 =⋅⋅+⋅⋅−×⋅ HHEEHEk µεωδδ

56
ELECTROMAGNETICSSOLO
Consider an Electric Anisotropic Media
General Symmetric







=⋅∇
=⋅∇
−=×∇
⋅=×∇
0
0
B
D
HjE
EjH
µω
εω

For a Homogeneous, Linear and Anisotropic Media:










=
333231
232221
131211
εεε
εεε
εεε
ε











=
z
y
x
D
ε
ε
ε
ε
00
00
00

Diagonalized
Principal Axis
TTD

εε 1−
=




−−=×∇×∇
+⋅=×∇×∇
m
e
JHjE
JEjH
µω
εω

( )
( )


×∇−×∇−=×∇×∇
×∇+⋅×∇=×∇×∇
m
e
JHjE
JEjH
ωµ
εω

( ) me JJjEE ×∇−×∇−=×∇×∇ µω
ε
ε
µεω
0
0
2

Planar Waves in an Source-less Anisotropic Electric Media
Return to Table of Content
57
ELECTROMAGNETICSSOLO
According to the principle of superposition these two fields can exist separately or be
superimposed without disturbing each other.
( )1221 HEHE

×−×⋅∇
Consider two distinct fields and. 11, HE

22 , HE

Assumptions:
1.The two fields are harmonic functions of time and of the same frequency.
2.The medium is linear.
3.The point considered is not inside a source and Ohm Law applies.








∂
∂
+⋅+
∂
∂
⋅+







∂
∂
+⋅−
∂
∂
⋅=
t
D
JE
t
B
H
t
D
JE
t
B
H ee
1
12
2
1
2
21
1
2








12212112 HEEHHEEH

×∇⋅+×∇⋅−×∇⋅−×∇⋅=
( ) ( )1122122112 DjJEBHjDjJEBHj ee
j
t
ωωωω
ω
+⋅+⋅++⋅−⋅−=
=
∂
∂
( ) ( ) 0
0
1122122112
21 ==⋅=
⋅=
=⋅+⋅+⋅⋅+⋅+⋅−⋅⋅−=
ee JJ
ee
ED
HB
EjJEHHjEjJEHHj εωµωεωµω
ε
µ



Lorentz’s Lemma
58
ELECTROMAGNETICSSOLO
Lorentz’s Lemma (continue)
( ) ( )1221 HEHE

×⋅∇=×⋅∇
For the two distinct fields and. 11, HE

22 , HE

Hendrik Antoon Lorentz
1853-1928
For a Monochromatic Planar Wave
( ) ( ) ( )
( ) ( ) ( )



==
==
⋅−
⋅−
rktjtj
rktjtj
eHerHtrH
eEerEtrE




ωω
ωω
ω
ω
0
0
,,
,,
( ) ( ) ( )rktjrktjrktj
eskjekje
  ⋅−⋅−⋅−
−=−=∇ ωωω
ˆ
Lorentz’s Lemma can be written
( ) ( )1221 HEkHEk

×⋅=×⋅
59
ELECTROMAGNETICSSOLO
Lorentz’s Reciprocity Theorem
( )
( )222
111
se
se
EEJ
EEJ


+=
+=
σ
σ
This is the more general case that does not exclude the sources.
( ) 12211221 ee JEJEHEHE

⋅−⋅=×−×⋅∇Ohm’s Law:
are the applied electric field intensities within the sources21, ss EE

( )1221 HEHE

×−×⋅∇








∂
∂
+⋅+
∂
∂
⋅+







∂
∂
+⋅−
∂
∂
⋅=
t
D
JE
t
B
H
t
D
JE
t
B
H ee
1
12
2
1
2
21
1
2








12212112 HEEHHEEH

×∇⋅+×∇⋅−×∇⋅−×∇⋅=
( ) ( )1122122112 DjJEBHjDjJEBHj ee
j
t
ωωωω
ω
+⋅+⋅++⋅−⋅−=
=
∂
∂
( ) ( )
122112211212
21122211122112
esesssssss
ssssee
JEJEEEEEEEEE
EEEEEEEEEEJEJE


⋅−⋅=⋅−⋅−⋅+⋅=
⋅−⋅=+⋅−+⋅=⋅−⋅=
σσσσ
σσσσ
( ) ( )1122122112 EjJEHHjEjJEHHj ee
ED
HB
⋅+⋅+⋅⋅+⋅+⋅−⋅⋅−=
⋅=
⋅=
εωµωεωµω
ε
µ



60
ELECTROMAGNETICSSOLO
Lorentz’s Reciprocity Theorem (continue - 1)
Integrate over a very large volume:
( ) 12211221 ee JEJEHEHE

⋅−⋅=×−×⋅∇
( ) ( )∫∫ ×−×⋅∇=⋅−⋅
VV
eses dvHEHEdvJEJE 12211221

( ) 11
22
21
21
0
0
0
0
1221 0
VoutsideE
VoutsideE
EE
HH
S
s
s
S
S
sdHEHE




 =
=
==
==
⇐=⋅×−×=
→∞
→∞
∫
We obtained
( ) ( )∫∫ ⋅=⋅
V
es
V
es dvJEdvJE 1221

( ) 212121 bs
V
es
V
es IVdsJdlEdvJE =⋅=⋅ ∫∫

( ) 121212 bs
V
es
V
es IVdsJdlEdvJE =⋅=⋅ ∫∫

61
ELECTROMAGNETICSSOLO
Lorentz’s Reciprocity Theorem (continue - 2)
The Reciprocity Theorem
1221 bsbs IVIV =
The current induced in 2 when 1 is energized, divided by the
voltage applied on 1, is the same as the current induced in 1
when 2 is energized, divided by the applied voltage on 2, as
long as the frequency and the impedances remain unchanged.
1221 bbss IIVV =⇔=
Return to Table of Content
62
SOLO
( ) ( ) ( ) ( )
( ) ( )[ ]{ }
( ) ( ) ( ) ( )[ ] ( ) ( ) ( ) ( )[ ]
( ) ( ) ( ) ( ) ( ) ( )[ ]∫
∫
∫
∫∫
−+⋅+=
−+⋅−+=
=
⋅=⋅=
=
T
T
T
TEDT
e
dttjrErErEtjrE
T
dttjrEtjrEtjrEtjrE
T
dttjrEal
T
dttrEtrE
T
dttrDtrE
T
w
0
2**2
0
**
0
2
00
2exp,,,22exp,
4
1
exp,exp,exp,exp,
4
1
exp,Re
1
,,
1
,,
1
ωωωωωω
ε
ωωωωωωωω
ε
ωωε
ε
ε





But
( ) ( )[ ] ( )
( ) ( )[ ] ( ) 0
2
2exp
2exp
2
1
2exp
1
0
2
2exp
2exp
2
1
2exp
1
0
0
0
0
∞→
∞→
→
−
=−=−
→==
∫
∫
T
T
T
T
T
T
Tj
Tj
tj
Tj
dttj
T
Tj
Tj
tj
Tj
dttj
T
ω
ω
ω
ω
ω
ω
ω
ω
ω
ω
Therefore
( ) ( ) *
00
*
00
0
*
22
1
,,
2
EEeEeEdt
T
rErEw rkjrkj
T
e
εε
ωω
ε
=== ⋅−⋅
∫


Let compute the time averages of the electric and magnetic energy densities
ELECTROMAGNETICS
Energy Flux and Poynting Vector
For a Homogeneous, Linear and Isotropic Media
63
SOLO
In the same way
( ) ( ) ( ) ( ) *
00
00
2
,,
1
,,
1
HHdttrHtrH
T
dttrBtrH
T
w
TT
m
µ
µ === ∫∫

Using the relations
( ) 00
ˆ HsEA ×−=
ε
µ
( ) 00
ˆ EsHF ×=
µ
ε
since and are real values , where * is the
complex conjugate, we obtain
S∇ )**,( SS ∇=∇=
( ) ( )
( ) ( )
( ) ( )[ ] ( ) e
m
e
wHkEHkEHkE
EkHEkHHHw
HkEHkEEEw
=×⋅=×⋅=×⋅=
×⋅=×⋅=⋅=
×⋅=×⋅=⋅=
*
00
*
0
*
00
**
0
*
00
*
00
*
00
*
00
*
00
*
00
ˆ
2
ˆ
2
ˆ
2
ˆ
2
ˆ
22
ˆ
2
ˆ
22
µεµεµε
µε
µ
εµµ
µε
ε
µεε
ELECTROMAGNETICS
( ) ( ) *
00
*
00
0
*
22
1
,,
2
EEeEeEdt
T
rErEw rkjrkj
T
e
εε
ωω
ε
=== ⋅−⋅
∫


Energy Flux and Poynting Vector (continue – 1)
For a Homogeneous, Linear and Isotropic Media:
Time-averaged Electric Energy Density
Time-averaged Magnetic Energy Density
64
SOLO
Therefore
( ) ( )( )*
00
ˆ
2
rHkrEww me

×⋅==
µε
Within the accuracy of Geometrical Optics, the Time-averaged Electric and
Magnetic Energy Densities are equal.
( ) ( ) ( ) ( ) ( ) ( )( )*
0000
*
00
ˆ
22
rHkrErHrHrErEwww me

×⋅=⋅+⋅=+=
∗
µε
µε
The total energy will be:
The Poynting vector is defined as: ( ) ( ) ( )trHtrEtrS ,,:,

×=
( ) ( ) ( ) ( ) ( ) ( )[ ]
( ) ( )[ ] ( ) ( )[ ]∫
∫∫
−−
+×+=
×=×=×=
T
tjtjtjtj
T
tjtj
T
dterHerHerEerE
T
dterHerEal
T
dttrHtrE
T
trHtrES
0
**
00
,,
2
1
,,
2
11
,,Re
1
,,
1
,,
ωωωω
ωω
ϖϖϖϖ
ϖϖ

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ]
( ) ( ) ( ) ( )[ ]ωωωω
ωωωωωωωω ωω
,,,,
4
1
,,,,,,,,
4
11
**
0
2****2
rHrErHrE
dterHrErHrErHrEerHrE
T
T
tjtj
×+×=
∫ ×+×+×+×= −
[ ]
[ ]0
*
0
*
00
0
*
0
*
00
4
1
4
1
HEHE
eHeEeHeE rkjrkjrkjrkj
×+×=
×+×= ⋅−⋅⋅⋅−

The time average of the Poynting vector is:
John Henry Poynting
1852-1914
ELECTROMAGNETICS
Energy Flux and Poynting Vector (continue – 2)
For a Homogeneous, Linear and Isotropic Media:
Return to Table of Content
65
SOLO
Assume the linear general constitutive relations
ELECTROMAGNETICS
( )
( )
( )







=⋅∇
=⋅∇
−−=×∇
+=×∇
m
e
m
e
BGM
DGE
JBjEF
JDjHA
ρ
ρ
ω
ω
)(
dyadicsxwhere
H
E
B
D
33,,, =
















=








µζξε
µζ
ξε 






( ) ( )
( ) ( )



−⋅+⋅−=×∇
+⋅+⋅=×∇
m
e
JHEjEF
JHEjHA
µζω
ξεω


Energy Flux and Poynting Vector for a Bianisotropic Medium
66
SOLO ELECTROMAGNETICS
Let compute the following
( )
( )[ ] ( )[ ]
( ) me
HH
me
HH
JHJEHHEHHEEEj
JHEjHEJHEj
EHHEHE
⋅−⋅−⋅⋅−⋅⋅−⋅⋅+⋅⋅=
−⋅+⋅−⋅+⋅+⋅+⋅−−=
×∇⋅+×∇⋅−=×⋅∇
******
****
***
µζξεω
µζωξεω


( )
( )[ ] ( ) ( )[ ]
( ) ******
****
***
me
HH
m
HH
e
JHJEHHHEHEEEj
HJHEjJHEjE
EHHEHE
⋅−⋅−⋅⋅−⋅⋅−⋅⋅+⋅⋅−=
⋅−⋅+⋅−−++⋅+⋅⋅−=
×∇⋅+×∇⋅−=×⋅∇
µζξεω
µζωξεω


( ) ( )
( )
( ) ******
******
**
me
HH
me
HH
JHJEHHHEHEEEj
JHJEHHEHEHEEj
HEHE
⋅−⋅−⋅⋅−⋅⋅−⋅⋅+⋅⋅−
⋅−⋅−⋅⋅−⋅⋅−⋅⋅+⋅⋅=
×⋅∇+×⋅∇
µζξεω
µζξεω


( ) ( )
( ) ( )



−⋅+⋅−=×∇
+⋅+⋅=×∇
m
e
JHEjEF
JHEjHA
µζω
ξεω


Energy Flux and Poynting Vector for a Bianisotropic Medium (continue – 1)
67
SOLO ELECTROMAGNETICS
( ) ( )
( )
( )
( ) ( ) ( ) ( )[ ]
( ) ( )
[ ] ( ) ( )mmeeHH
HH
mmee
HHHH
me
HH
me
HH
JHJHJEJE
H
E
jHE
JHJHJEJE
HHEHHEEEj
JHJEHHHEHEEEj
JHJEHHEHEHEEj
HEHE
⋅+⋅−⋅+⋅−







⋅
















−−
−−
−⋅=
⋅+⋅−⋅+⋅+
⋅−⋅+⋅−⋅+⋅−⋅+⋅−⋅−=
⋅−⋅−⋅⋅−⋅⋅−⋅⋅+⋅⋅−
⋅−⋅−⋅⋅−⋅⋅−⋅⋅+⋅⋅=
×⋅∇+×⋅∇
******
****
****
******
******
**
µµζζ
ξξεε
ω
µµζζξξεεω
µζξεω
µζξεω





( ) ( ) ( ) ( )[ ] ( ) ( ) ( ) ( )[ ]ωωωωωω ,,,,
4
1
,,Re
2
1
,, **
rHrErHrErHrEaltrHtrES ×+×=×=×=

We found the time average of the Poynting vector
We see that
( ) ( )[ ] [ ]
( ) ( )mmee
HH
HH
JHJHJEJE
H
Ej
HEHEHES
⋅+⋅−⋅+⋅−








⋅
















−−
−−
−⋅=×⋅∇+×⋅∇=⋅∇
****
****
4
1
4
1
44
1
µµζζ
ξξεεω



Energy Flux and Poynting Vector for a Bianisotropic Medium (continue – 2)
68
SOLO ELECTROMAGNETICS
Let integrate the mean value of the Poynting vector over the volume V
[ ]
( ) ( )
( ) ( )[ ]
( ) ∫∫
∫
∫∫
∫∫
→→
⋅=⋅×+×=
×⋅∇+×⋅∇=
⋅+⋅−⋅+⋅−








⋅
















−−
−−
−⋅=⋅∇
SS
Gauss
V
V
mm
V
ee
V
HH
HH
V
dSnSdSnHEHE
dVHEHE
dVJHJHdVJEJE
dV
H
Ej
HEdVS
11
4
1
4
1
4
1
4
1
4
**
1
**
****
**




µµζζ
ξξεεω
( ) ( )[ ] [ ]
( ) ( )mmee
HH
HH
JHJHJEJE
H
Ej
HEHEHES
⋅+⋅−⋅+⋅−








⋅
















−−
−−
−⋅=×⋅∇+×⋅∇=⋅∇
****
****
4
1
4
1
44
1
µµζζ
ξξεεω



Energy Flux and Poynting Vector for a Bianisotropic Medium (continue – 3)
69
SOLO ELECTROMAGNETICS
We recognize the following
















−−
−−
−=
HH
HH
j
µµζζ
ξξεεω


4
G
mediumlosslessundefinite
mediumpassivedefinitenegative
mediumactivedefinitepositive
⇒
⇒
⇒
G
G
G
[ ]
( ) ( )∫∫
∫∫
⋅+⋅−⋅+⋅−








⋅
















−−
−−
−⋅=⋅
→
V
mm
V
ee
V
HH
HH
S
dVJHJHdVJEJE
dV
H
Ej
HEdSnS
****
**
4
1
4
1
4
1
µµζζ
ξξεεω



[ ] dV
H
Ej
HE
V
∫ 







⋅
















−−
−−
−⋅
**
**
**
4 µµζζ
ξξεεω


( )∫ ⋅+⋅
V
ee dVJEJE **
4
1
( )∫ ⋅+⋅
V
mm dVJHJH **
4
1
∫
→
⋅
S
dSnS 1
 Time average of the Radiated
Energy through S (Irradiance)
Time average of Electromagnetic
Energy in V
Time average of
Joule Energy in V
Time average of
Fictious Joule
Energy in V
Energy Flux and Poynting Vector for a Bianisotropic Medium (continue – 4)
Return to Table of Content
70
SOLO ELECTROMAGNETICS
Planar Waves in an Source-less Anisotropic Electric Media




0
0
0
0
m
e
m
e
B
D
J
t
B
E
J
t
D
H
ρ
ρ
=⋅∇
=⋅∇
−
∂
∂
−=×∇
+
∂
∂
=×∇










( ) 





⋅−
=
⋅−
==
rs
c
n
tj
s
c
n
k
rktj
eEeEE


 ˆ
0
ˆ
0
ω
ω
ω
ωω
ωω
j
t
eje
t
rs
c
n
tjrs
c
n
tj
→
∂
∂
⇒=
∂
∂ 





⋅−





⋅−

ˆˆ

sjks
c
n
jes
c
n
je
k
rs
c
n
tjrs
c
n
tj
ˆˆˆ
ˆˆ
−=−→∇⇒−=∇






⋅−





⋅−
ωω
ωω

0ˆ
0ˆ
ˆ
ˆ
=⋅
=⋅
=×
−=×
Bs
Ds
BEs
c
n
DHs
c
n
( )
( )DEBH
tt
D
E
t
B
H
HEEHHES
HB
ED







 ⋅+⋅
∂
∂
−=
∂
∂
⋅−
∂
∂
⋅−=
×∇⋅−×∇⋅=×⋅∇=⋅∇
=
⋅= 2
1µ
ε
( ) emUDEBHS
k
Ss
c
n
=⋅+⋅=⋅=⋅
2
1
ˆ
ω

Maxwell’s
Symmetric Equations
Planar
Monochromatic Wave
0
0
=⋅
=⋅
=×
−=×
Bk
Dk
BEk
DHk




ω
ω
ωj
t
→
∂
∂
s
c
n
j ˆω−→∇
ωj
t
→
∂
∂
kj

−→∇
vector phasor
vector phasor
c
n
k ω=:
71
SOLO ELECTROMAGNETICS
Planar Waves in an Source-less Anisotropic Electric Media
0ˆ
0ˆ
ˆ
ˆ
=⋅
=⋅
=×
−=×
Bs
Ds
BEs
c
n
DHs
c
n
dyadicsxwhere
H
E
B
D
33,,, µζξε
µζ
ξε 






















=








HHIB
ED


µµ
ε
=⋅=
⋅=
For Anisotropic Electric Media
the Linear Constitutive Relations are
Planar Waves in an Source-less Media
The most general form of Linear Constitutive Relations is:
HES ×= Poynting Vector
B

D

pv

E

H

HES

×=α
α
k

ev

PlanarWaves
( ) DHs
c
n
Bs
c
n
Ess
c
n
µµ −=×=×=××





ˆˆˆˆ
2
( ) ( )[ ]EssE
c
n
Ess
c
n
D ⋅−





=××





−= ˆˆ
1
ˆˆ
1
22
µµ SDEs ,,,ˆ
are coplanar
and normal to H
I

µµζξε === ,0,
72
SOLO ELECTROMAGNETICS
Planar Waves in an Source-less Anisotropic Electric Media
B

D

pv

E

H

HES

×=α
α
k

ev

PlanarWaves( ) ( )[ ]EssE
c
n
Ess
c
n
D ⋅−





=××





−= ˆˆ
1
ˆˆ
1
22
µµ
SDEs ,,,ˆ
are coplanar
and normal to H
 ( ) DEnEsDsDE
c
n
DD
c
⋅=





⋅⋅−⋅





=⋅
=
2
0
1
0
2 02
ˆˆ
1
ε
µ
µε
DE
DD
n
⋅
⋅
=
0
2 1
ε
( )
( )
( )
( )( )2222
2
2
2
2
2
ˆ
DEDED
DDEED
D
DE
E
D
DDE
E
D
D
D
D
EE
D
D
D
D
EE
s
⋅−
⋅−
=
⋅
−
⋅
−
=






⋅−






⋅−
=
( )
( )
( )
( )( )2222
2
2
2
2
2
:
DEDEE
EDEDE
E
DE
D
E
DDE
D
E
E
E
E
DD
E
E
E
E
DD
S
S
t
⋅−
⋅−
−=
⋅
−
⋅
−
−=






⋅−






⋅−
−==

If and are not collinear:DE
73
SOLO ELECTROMAGNETICS
Planar Waves in an Source-less Anisotropic Electric Media
Phase Velocity, Energy (Ray) Velocity
The phase of the field is given by 





⋅−=⋅−= rs
c
n
trkt

ˆωωφ
For a constant phase front we have 





⋅−=⋅−=⋅−== rds
c
n
dtrdskdtrdkdtd

ˆˆ0 ωωωφ
s
n
c
s
kdt
rd
v
srr
const
p
ˆˆ
ˆ
===
=
=
ω
φ


Phase Velocity B

D

pv

E

H

HES

×=α
α
k

ev

PlanarWaves
n
c
ktd
rd
s ==⋅
ω

ˆ
n
c
S
S
vs e =⋅ˆ
( ) α
α
cosˆ
ˆ
cos
p
S
Ss
e
v
Ss
S
n
c
v
⋅
=
=
⋅
=
Define the phase velocity as
Define the energy flow velocity in the Poynting vector direction as
S
S
vSv ee =
→
1
( ) emUDEBHS
k
Ss
c
n
=⋅+⋅=⋅=⋅
2
1
ˆ
ω
 ( ) em
ee
U
S
S
Ssn
c
S
S
vv =
⋅
==
ˆ
1
Energy (Ray) Velocity
The electro-magnetic energy propagates along the Poynting vector .
For anisotropic media the Poynting vector is not collinear with .k
 HES ×=
Return to Table of Content
s
c
n
k ˆω=

Electromagnetic Energy Density
74
SOLO ELECTROMAGNETICS
Planar Waves in an Source-less Anisotropic Electric Media
BEk
DHk
ω
ω
=×
−=×


HHIB
ED


µµ
ε
=⋅=
⋅=
Wave Equation
( ) EDHkBkEkk
EDDHkHBBEk
⋅−=−=×=×=××
⋅=−=×==×
εµωµωµωω
εωµω
 
22
2222
0
0
0
ˆ kkkkkk
kk
kk
kk
k
k
k
k
s
s
s
kskk zyx
xy
xz
yz
z
y
x
z
y
x
=++=⋅










−
−
−
=×⇒










=










==

( )
( )
( )
( )











+−
+−
+−
=










−
−
−










−
−
−
=××
22
22
22
0
0
0
0
0
0
yxzyzx
zyzxyx
zxyxzy
xy
xz
yz
xy
xz
yz
kkkkkk
kkkkkk
kkkkkk
kk
kk
kk
kk
kk
kk
kk











=
z
y
x
ε
ε
ε
ε
00
00
00







































=


















=
2
2
2
0
0
0
0
0
0
2
2
00
00
00
00
00
00
c
n
c
n
c
n
z
x
x
z
y
x
ω
ω
ω
εµ
εµ
εµ
εµ
εµ
εµ
εµ
εµ
εµω
εωµ

In principal dielectric axes:
0
2
0
2
0
2
,,
ε
ε
ε
ε
ε
ε z
z
y
y
x
x nnn ===
( ) 02
=⋅+×× EEkk εµω

( ) 021
=+×× −
DDkk µωε

or
75
SOLO ELECTROMAGNETICS
Planar Waves in an Source-less Anisotropic Electric Media
Wave Equation (continue – 1)
( ) 02
=⋅+×× EEkk εµω

( )
( )
( )
0
22
2
22
2
22
2
=




































+−





+−





+−





z
y
x
yx
z
zyzx
zyzx
y
yx
zxyxzy
x
E
E
E
kk
c
n
kkkk
kkkk
c
n
kk
kkkkkk
c
n
ω
ω
ω
A nonzero solution exists only when
( )
( )
( )
0det
22
2
22
2
22
2
=






















+−





+−





+−





yx
z
zyzx
zyzx
y
yx
zxyxzy
x
kk
c
n
kkkk
kkkk
c
n
kk
kkkkkk
c
n
ω
ω
ω
76
SOLO ELECTROMAGNETICS
Planar Waves in an Source-less Anisotropic Electric Media
Wave Equation (continue – 2)
( )
( )
( )






















+−





+−





+−





=






















+−





+−





+−





++=
22
2
22
2
22
2
22
2
22
2
22
2
2222
det
z
z
zyzx
zyy
y
yx
zxyxx
x
kkkk
yx
z
zyzx
zyzx
y
yx
zxyxzy
x
kk
c
n
kkkk
kkkk
c
n
kk
kkkkkk
c
n
kk
c
n
kkkk
kkkk
c
n
kk
kkkkkk
c
n
zyx
ω
ω
ω
ω
ω
ω
We obtain








−−







−−
















−+







−+







−








−







+−= 2
2
22
222
2
22
222
2
22
22
2
22
22
2
22
2
2
22
22
2
22
k
c
n
kkk
c
n
kkk
c
n
kk
c
n
kk
c
n
k
c
n
kk
c
n y
zx
z
yx
y
z
z
y
zy
x
x
ωωωωωωω
02
2
22
2
2
22
22
2
22
2
2
22
22
2
22
2
2
22
22
2
22
2
2
22
2
2
22
=








−







−+







−







−+







−








−+







−








−







−= k
c
n
k
c
n
kk
c
n
k
c
n
kk
c
n
k
c
n
kk
c
n
k
c
n
k
c
n yx
z
zx
y
zy
x
zyx
ωωωωωωωωω
Divide by (assumed nonzero!!)








−








−







−− 2
2
22
2
2
22
2
2
22
k
c
n
k
c
n
k
c
n zyx ωωω
1
2
22
2
2
2
22
2
2
2
22
2
2
=
−
+
−
+
−
c
n
k
k
c
n
k
k
c
n
k
k
z
z
y
y
x
x
ωωω
This is a quadratic equation
of k2
(k6
terms drop – next
slide). For each set sx, sy, sz it
yields two solutions for k2
:
k1
2
and k2
2










=










z
y
x
z
y
x
s
s
s
k
k
k
k
2
2
22
2
2
2
22
2
2
2
22
2
2
1
k
c
n
k
s
c
n
k
s
c
n
k
s
z
z
y
y
x
x
=
−
+
−
+
−
ωωω
( )skkk ˆ,, 21
ε

=
77
SOLO ELECTROMAGNETICS
Planar Waves in an Source-less Anisotropic Electric Media
02
2
22
2
2
22
222
2
22
2
2
22
222
2
22
2
2
22
222
2
22
2
2
22
2
2
22
=








−







−+







−







−+








−







−+







−








−







− k
c
n
k
c
n
skk
c
n
k
c
n
skk
c
n
k
c
n
skk
c
n
k
c
n
k
c
n yx
z
zx
y
yz
x
zyx
ωωωωωωωωω
( ) ( )
( ) ( ) ( ) 02222
4
4
4222
2
2
622222
4
4
4222
2
2
622222
4
4
4222
2
2
62
222
6
6
2222222
4
4
4222
2
2
6
=++−+++−+++−+
+++−+++−
ksnn
c
ksnn
c
ksksnn
c
ksnn
c
ksksnn
c
ksnn
c
ks
nnn
c
knnnnnn
c
knnn
c
k
zyxzyxzyzxyzxyxzyxzyx
zyxzyzxyxzyx
ωωωωωω
ωωω
( ) ( ) ( ) ( )[ ] 0111
222
6
6
2222222222
4
4
4222222
2
2
=+−+−+−−++ zyxxzyyzxzyxzzyyxx
nnn
c
ksnnsnnsnn
c
ksnsnsn
c
ωωω
This is a quadratic equation of k2
.
For each set sx, sy, sz it yields two solutions for k2
: k1
2
and k2
2
( )skkk ˆ,, 21 ε

=
2
2
22
2
2
2
22
2
2
2
22
2
2
1
k
c
n
k
s
c
n
k
s
c
n
k
s
z
z
y
y
x
x
=
−
+
−
+
−
ωωω
02
2
22
2
2
22
22
2
22
2
2
22
22
2
22
2
2
22
22
2
22
2
2
22
2
2
22
=








−







−+







−







−+







−








−+







−








−







− k
c
n
k
c
n
kk
c
n
k
c
n
kk
c
n
k
c
n
kk
c
n
k
c
n
k
c
n yx
z
zx
y
zy
x
zyx
ωωωωωωωωω










=










z
y
x
z
y
x
s
s
s
k
k
k
k
Wave Equation (continue – 2a)
1
222
=++ zyx sss
78
SOLO ELECTROMAGNETICS
Planar Waves in an Source-less Anisotropic Electric Media
Wave Equation (continue – 3)
( )
( )
( )
0
22
2
22
2
22
2
=




































+−





+−





+−





z
y
x
yx
z
zyzx
zyzx
y
yx
zxyxzy
x
E
E
E
kk
c
n
kkkk
kkkk
c
n
kk
kkkkkk
c
n
ω
ω
ω
A solution (self-mode) is:
( ) ( )
( ) ( )
( ) ( ) 0
0
0
222
2
222
2
222
2
=+++








++−





=+++








++−





=+++








++−





⋅
⋅
⋅
  
  
  



Ek
zzyyxxzzzyx
z
Ek
zzyyxxyyzyx
y
Ek
zzyyxxxxzyx
x
EkEkEkkEkkk
c
n
EkEkEkkEkkk
c
n
EkEkEkkEkkk
c
n
ω
ω
ω


































−





−





−





2
2
2
2
2
2
k
c
n
k
k
c
n
k
k
c
n
k
z
z
y
y
x
x
ω
ω
ω
( )Ek ⋅−

( )
( )
( )


































−





⋅
−





⋅
−





⋅
−=
























2
2
2
2
2
2
k
c
n
Ekk
k
c
n
Ekk
k
c
n
Ekk
E
E
E
z
z
y
y
x
x
z
y
x
ω
ω
ω



In principal dielectric axes
Return to Table of Content
79
SOLO ELECTROMAGNETICS
Planar Waves in an Source-less Anisotropic Electric Media
Wave-Vector Surface
The above equation can be represented by a three-dimensional surface in k space.
( )
( )
( )
0det
22
2
22
2
22
2
=




















+−





+−





+−





yx
z
zyzx
zyzx
y
yx
zxyxzy
x
kk
c
n
kkkk
kkkk
c
n
kk
kkkkkk
c
n
ω
ω
ω
The understand how this surface look let find the intersection of the surface with kz = 0.
( )
( ) 0
00
0
0
det
222
2
2
2
22
2
22
2
2
2
2
2
=








−








−













−













+−





=




















+−





−





−





yxx
y
y
x
yx
z
yx
z
x
y
yx
yxy
x
kkk
c
n
k
c
n
kk
c
n
kk
c
n
k
c
n
kk
kkk
c
n
ωωω
ω
ω
ω
80
SOLO ELECTROMAGNETICS
Planar Waves in an Source-less Anisotropic Electric Media
Wave-Vector Surface (continue – 1)
The intersection of the surface with kz = 0 is given by two equations, derived from:
( ) 0
22
2
222
2
2
2
=








+−













−








−













−





yx
z
yxx
y
y
x
kk
c
n
kkk
c
n
k
c
n ωωω
2
22






=+
c
n
kk z
yx
ω
( ) ( )
1
//
22
=+
cn
k
cn
k
x
y
y
x
ωω
( )
0
00
0
0
22
2
2
2
2
2
=




































+−





−





−





z
y
x
yx
z
x
y
yx
yxy
x
E
E
E
kk
c
n
k
c
n
kk
kkk
c
n
ω
ω
ω
















=
















=
zz
y
x
EE
E
E
E 0
0
2




















−





−
=
















=
0
2
2
1 y
x
yx
z
y
x
k
c
n
kk
E
E
E
E
ω
021 =⋅ EE
Ellipse
The electric fields corresponding to those two solutions are:
on Ellipse
on Circle
Since the coefficients of the electric fields are real the two
solutions represents two linear polarized planar waves.
Circle
81
SOLO ELECTROMAGNETICS
Planar Waves in an Source-less Anisotropic Electric Media
Wave-Vector Surface (continue -2)
Intersection of the surface with kz = 0,
are a circle and an ellipse in kx, ky plane.
2
22






=+
c
n
kk z
yx
ω
( ) ( )
1
//
2
2
2
2
=+
cn
k
cn
k
x
y
y
x
ωω
Intersection of the surface with ky = 0,
are a circle and an ellipse in kx, kz plane.
2
22






=+
c
n
kk
y
zx
ω
( ) ( )
1
//
2
2
2
2
=+
cn
k
cn
k
x
z
z
x
ωω
Intersection of the surface with kx = 0,
are a circle and an ellipse in ky, kz plane.
2
22






=+
c
n
kk x
zy
ω
( ) ( )
1
//
2
2
2
2
=+
cn
k
cn
k
y
z
z
y
ωω
Suppose nx < ny < nz.
( ) 0
222
2
2
2
22
2
=








−








−













−













+−





yxx
y
y
x
yx
z
kkk
c
n
k
c
n
kk
c
n ωωω
0
2
0
2
0
2
,,
ε
ε
ε
ε
ε
ε z
z
y
y
x
x nnn ===
82
SOLO ELECTROMAGNETICS
Planar Waves in an Source-less Anisotropic Electric Media
Wave-Vector Surface (continue – 3)
The complete k surface is double;
that is, it consists of an inner shell
and an outer shell.
For any given direction of the vector
k, there are two possible values for the
wave-number k (eigenmodes). Therefore
are also two values for the phase velocity.
From the figure we can see that the inner
and outer shells of the k surface intersect
at four points in each quadrant of the
kx, kz plane (for nx<ny<nz). Those points
define two directions for which the two
values of k are equal. Those two directions
are called Optical Axes.
The structure of an anisotropic medium
permits two monochromatic plane waves
that are polarized orthogonally with
respect to each other.
If nx,ny and nz are different the crystal has
two optical axes and is said to be biaxial.
0
2
0
2
0
2
,,
ε
ε
ε
ε
ε
ε z
z
y
y
x
x nnn ===
nx < ny < nz.
83
SOLO ELECTROMAGNETICS
Planar Waves in an Source-less Anisotropic Electric Media
Wave-Vector Surface (continue -4)
Let compute the Optical Axis direction.
0
2
0
2
0
2
,,
ε
ε
ε
ε
ε
ε z
z
y
y
x
x nnn ===
We can see that the Optical Axis is in
x, z plane, therefore










=










=










=
δ
δ
ω
cos
0
sin
c
n
s
s
s
k
k
k
k
k OA
OAz
y
x
OA
OAz
y
x
OA

2
22






=+
c
n
kk
y
zx
ω
( ) ( )
1
//
2
2
2
2
=+
cn
k
cn
k
x
z
z
x
ωω
22






=





c
n
c
n yOA
ωω 1
cossin
2
22
2
22
=+
x
OA
z
OA
n
n
n
n δδ
must be at the intersection ofOAk

and
yOA nn =
( )
1
coscos1
2
22
2
22
=+
−
x
y
z
y
n
n
n
n δδ
22
22
2
cos −−
−−
−
−
=
zx
zy
OA
nn
nn
δ 22
22
2
sin −−
−−
−
−
=
zx
yx
OA
nn
nn
δ 22
22
2
tan −−
−−
−
−
=
zy
yx
OA
nn
nn
δ
If δ is less than 45º, the crystal is said to be a positive biaxial crystal.
If δ is greater than 45º, the crystal is said to be a negative biaxial crystal.
nx < ny < nz.








−
−
±= −−
−−
−
22
22
1
2,1
sin
zx
yx
OA
nn
nn
δ
84
SOLO ELECTROMAGNETICS
Planar Waves in an Source-less Anisotropic Electric Media
Wave-Vector Surface (continue -5)
0
2
0
2
0
2
,,
ε
ε
ε
ε
ε
ε z
z
y
y
x
x nnn ===nx < ny < nz.
85
SOLO ELECTROMAGNETICS
Planar Waves in an Source-less Anisotropic Electric Media
Double Refraction at a Birefringent Crystal Boundary
( ) 0ˆ

=−× ti
kkn
At the Crystal Boundary defined by the normal
the following condition must be satisfied
nˆ
The refracted wave is, in general, a mixture of
two eigenmodes
( ) ( )222111 ,,, sn
c
ksn
c
k

ε
ω
ε
ω
==
We can write
( ) ( ) 222111
sin,sin,sin θεθεθ skskk ii

==
This looks like Snell’s Law but k1 and k2 are not constant, and we must add the
quadratic equation in k2
:
( ) ( ) ( ) ( )[ ] 0111
222
6
6
2222222222
4
4
4222222
2
2
=+−+−+−−++ zyxxzyyzxzyxzzyyxx nnn
c
ksnnsnnsnn
c
ksnsnsn
c
ωωω
0
2
0
2
0
2
,,
ε
ε
ε
ε
ε
ε z
z
y
y
x
x nnn ===
86
SOLO ELECTROMAGNETICS
Planar Waves in an Source-less Anisotropic Electric Media
Wave-Vector Surface (continue – 6)
If two of the refraction indices are equal
the crystal has one optical axis and is said
to be uniaxial.
zyx εεε ≠=nx = ny =no≠ nz=ne
For each set sx, sy, sz it yields two solutions
for k2
: k1 and k2 ( )skkk ˆ,, 21
ε

=
The quadratic equation of k2
is:
2
2
22
2
2
2
22
2
2
11
k
c
n
k
s
c
n
k
s
e
z
o
z
=
−
+
−
−
ωω
( )[ ] ( ) ( )[ ] 0111
24
6
6
222222
4
4
42222
2
2
=+++−−+− eozezoozezo nn
c
ksnsnn
c
ksnsn
c
ωωω
( ) ( ) ( ) ( )[ ] 0111
222
6
6
2222222222
4
4
4222222
2
2
=+−+−+−−++ zyxxzyyzxzyxzzyyxx nnn
c
ksnnsnnsnn
c
ksnsnsn
c
ωωω
nx = ny =no≠ nz=ne
Uniaxial Crystals
One other way is to substitute in:
87
SOLO ELECTROMAGNETICS
Planar Waves in an Source-less Anisotropic Electric Media
Wave-Vector Surface (continue – 7)
zyx εεε ≠=nx = ny =no≠ nz=ne
( )[ ] ( ) ( )[ ] 0111
24
6
6
222222
4
4
42222
2
2
=+++−−+− eozezoozezo
nn
c
ksnsnn
c
ksnsn
c
ωωω
( )( ) 01
2
2
2
22222
2
2
2
2
22
=





−−−+





− oeozoe n
c
kknnsn
c
kn
ωω
( )[ ] 01
22
2
2
222222
2
2
2
=






−+−





− eoezozo nn
c
knsnsn
c
k
ωω
The Wave-Vector surface decomposes into two separate shells
0
2
2
2
2
=− on
c
k
ω
( )[ ] 0
22
2
2
222222
=−++ eoezoyx
nn
c
knsnss
ω
0
2
2
2
222
=−++ ozyx n
c
kkk
ω
Spherical surface
01
2
2
2
2
2
2
2
22
=−+
+
o
z
e
yx
n
c
k
n
c
kk
ωω
Ellipsoid of Revolution
surface
These two surfaces are tangent along the z axis.
Uniaxial Crystals (continue – 1)
Return to Table of Content
88
SOLO ELECTROMAGNETICS
Planar Waves in an Source-less Anisotropic Electric Media
Double Refraction at a Uniaxial Crystal Boundary
For the Uniaxial Crystal is easy to solve the Boundary condition graphically:
( ) eeooii skkk θεθθ sin,sinsin 2

==
The Wave-Vector surface decomposes into two separate shells:
• the sphere of the ordinary wave with
• the ellipsoid of extraordinary wave with
.constko =
( )2, ske

ε
is found graphically using the equality: Snell’s Lawooii kk θθ sinsin =o
k

The intersection of the normal to the boundary from the
end with the ellipse defines the direction of
ek

o
k

The intersection of the plane defined by and passing
through the common centers of the sphere and the ellipsoid will
give a circle and an ellipse, respectively.
nki

,
ii
k θsin
ik
ok
i
θ
oθ
Intersection of
normal surface with
plane of incidence
in
ii
k θsin
Uniaxial
Crystal
Incident
ray
n

Optical
Axis
oE

eo nn >
89
SOLO ELECTROMAGNETICS
Planar Waves in an Source-less Anisotropic Electric Media
Double Refraction at a Uniaxial Crystal Boundary
90
SOLO ELECTROMAGNETICS
Planar Waves in an Source-less Anisotropic Electric Media
Wave-Vector Surface (continue – 8)
nx = ny = nz=n
If all three indices are equal, then the
Wave-vector surface degenerates to a single
sphere, and the crystal is optically isotropic.
εεεε === zyx
2
22
2
c
n
k
ω
=
0
2
2
2
=






















z
y
x
zzyzx
zyyyx
zxyxx
E
E
E
kkkkk
kkkkk
kkkkk
2222
zyx kkkk ++=
( ) 02
=⋅+×× EEkk εµω

We can see that:
{ }
{ }
{ }
0
,,
,,
,,
det
2
2
2
≡










=












zyxz
zyxy
zyxx
zzyzx
zyyyx
zxyxx
kkkk
kkkk
kkkk
kkkkk
kkkkk
kkkkk
and: 0=⋅=++ EkEkEkEk zzyyxx

0/εε=n
Isotropic Crystal
Return to Table of Content
91
SOLO ELECTROMAGNETICS
Optically Isotropic (Cubic) Crystals n
Sodium Chloride (NaCl)
Diamond
Fluorite
CdTe
GaAs
1.544
2.417
1.392
2.69
3.40
Uniaxial Positive Crystals nO nE
Ice
Quartz
Zircon
Rutile ( TiO2 )
BeO
ZnS
1.309 1.310
1.544 1.553
1.923 1.968
2.616 2.903
1.717 1.732
2.354 2.358
Uniaxial Negative Crystals nO nE
Beryl
Sodium Nitrate
Calcite
Tourmaline
1.598 1.590
1.587 1.336
1.658 1.486
1.669 1.638
Refractive Index of Some Typical Crystals
92
SOLO ELECTROMAGNETICS
Biaxial Crystals n1 n2 n3
Gypsum
Feldspar
Mica
Topaz
NaNO2
SbSI
YAlO3
1.520 1.523 1.530
1.522 1.526 1.530
1.552 1.582 1.588
1.619 1.620 1.627
1.344 1.411 1.651
2.7 3.2 3.8
1.923 1.938 1.947
Refractive Index of Some Typical Biaxial Crystals
93
SOLO ELECTROMAGNETICS
Planar Waves in an Source-less Anisotropic Electric Media
Crystal Types
94
SOLO ELECTROMAGNETICS
Planar Waves in an Source-less Anisotropic Electric Media
Crystal Types (continue -1)
95
SOLO ELECTROMAGNETICS
Planar Waves in an Source-less Anisotropic Electric Media
Crystal Types (continue – 2)
96
SOLO ELECTROMAGNETICS
Planar Waves in an Source-less Anisotropic Electric Media
Crystal Types (continue – 3)
A.Mermin, “Solid State Physics”,
Holt, Reinhart and Winston, 1976,
p.122
Return to Table of Content
97
SOLO ELECTROMAGNETICS
Planar Waves in an Source-less Anisotropic Electric Media
Orthogonality Properties of the Eigenmodes
Assume the two monochromatic waves corresponding to a given direction
are defined by and
sˆ
1111 ,,, nDEH

2222 ,,, nDEH

Start with Lorentz Reciprocity Theorem
Use
HB
BEs
c
n
µ=
=×

ˆ
Es
c
n
H ×= ˆ
µ
( )[ ] ( )[ ]12
2
21
1
ˆˆˆˆ EsEs
c
n
EsEs
c
n
××⋅=××⋅
µµ
( ) ( ) ( ) ( )12
2
21
1
ˆˆˆˆ EsEs
c
n
EsEs
c
n
×⋅×=×⋅×
µµ
( ) ( )1221
ˆˆ HEsHEs ×⋅=×⋅
Since we have21 nn ≠
( ) ( ) 0ˆˆ 21 =×⋅× EsEs ( ) ( ) 0ˆˆ 1221 =×⋅=×⋅ HEsHEs
( ) ( )1221 HEHE

×⋅∇=×⋅∇
s
c
n
j ˆω−→∇
0=⋅=⋅ sHEH

98
SOLO ELECTROMAGNETICS
Planar Waves in an Source-less Anisotropic Electric Media
Orthogonality Properties of the Eigenmodes (continue – 1)
We obtain
0ˆˆˆˆ 221121212121212121
=⋅=⋅=⋅=⋅=⋅=⋅=⋅=⋅=⋅=⋅=⋅ HEHEHsHsDsDsEEEDDEDDHH
( ) ( ) 0ˆˆ 1221 =×⋅=×⋅ HEsHEs
( ) ( )
( ) ( ) 0ˆˆ
0ˆˆ
21
1
2
21
2
ˆ
2121
21
1
ˆ
2121
2
2
2
1
1
1
11
=⋅=⋅=×⋅−=×⋅
=⋅=⋅×=×⋅
−
−=×
=×
=
DD
n
c
DE
n
c
HsEHEs
HH
n
c
HEsHEs
D
n
c
Hs
B
n
c
Es
HB
ε
µ
µ

( ) ( )
( ) ( ) 0ˆˆ
0ˆˆ
12
1
1
12
1
ˆ
1212
12
2
ˆ
1212
1
1
1
2
2
2
22
=⋅=⋅=×⋅−=×⋅
=⋅=⋅×=×⋅
−
−=×
=×
=
DD
n
c
DE
n
c
HsEHEs
HH
n
c
HEsHEs
D
n
c
Hs
B
n
c
Es
HB
ε
µ
µ

99
SOLO ELECTROMAGNETICS
Planar Waves in an Source-less Anisotropic Electric Media
Orthogonality Properties of the Eigenmodes (continue – 2)
We obtained
The two solutions correspond to two different possible linear polarizations of a
wave propagating in direction and these two solutions have mutually
orthogonal polarizations.
sˆ
0ˆˆˆˆ 221121212121212121
=⋅=⋅=⋅=⋅=⋅=⋅=⋅=⋅=⋅=⋅=⋅ HEHEHsHsDsDsEEEDDEDDHH
Return to Table of Content
100
SOLO ELECTROMAGNETICS
Phase Velocity, Energy (Ray) Velocity for Planar Waves
The phase of the field is given by 





⋅−=⋅−= rs
c
n
trkt

ˆωωφ
For a constant phase front we have 





⋅−=⋅−=⋅−== rds
c
n
dtrdskdtrdkdtd

ˆˆ0 ωωωφ
s
n
c
s
kdt
rd
v
srr
const
p
ˆˆ:
ˆ
===
=
=
ω
φ


Phase Velocity B

D

pv

E

H

HES

×=α
α
k

ev

PlanarWaves
n
c
ktd
rd
s ==⋅
ω

ˆ
n
c
S
S
vs e =⋅ :ˆ
( ) α
α
cosˆ
cos
ˆ
p
S
Ss
e
v
Ss
S
n
c
v
=
⋅
=
⋅
=
Define the phase velocity as
Define the energy flow velocity in the Poynting vector direction as
S
S
vSv ee =
→
1
( ) emUDEBHS
k
Ss
c
n
=⋅+⋅=⋅=⋅
2
1
ˆ
ω
 ( ) em
ee
U
S
S
Ssn
c
S
S
vv =
⋅
==
ˆ
1
:

Energy (Ray) Velocity
The electro-magnetic energy propagates along the Poynting vector .
For anisotropic media the Poynting vector is not collinear with .k
 HES ×=
Return to Table of Content
101
SOLO ELECTROMAGNETICS
Planar Waves in an Source-less Anisotropic Electric Media
Ray-Velocity Surface
We defined the Energy-Ray Velocity as
Let compute
( ) HDHEDEH
U
DHE
U
Dv
emUemem
e =














⋅−








⋅=××=× 

0
11
( ) ( ) DEHHEHEH
U
HHE
U
HvDvv
emUemem
eee
1
/0
1111 −
−=−=
















⋅−





⋅=××=×=×× ε
µµµ



In principal dielectric axes:




















=




















=−
2
2
2
2
2
2
1
00
00
00
1
00
0
1
0
00
1
1
z
y
x
z
y
x
n
c
n
c
n
c
εµ
εµ
εµ
ε
µ

( ) em
ee
U
S
S
Ssn
c
S
S
vv =
⋅
==
ˆ
1
:

102
SOLO ELECTROMAGNETICS
Planar Waves in an Source-less Anisotropic Electric Media
Ray-Velocity Surface (continue – 1)
We can write ( ) 0
1 1
=+×× −
DDvv ee ε
µ

as
( )
( )
( )
0
22
2
22
2
22
2
=






































+−





+−








+−





z
y
x
eyex
z
ezeyezex
ezeyezex
y
eyex
ezexeyexezey
x
D
D
D
vv
n
c
vvvv
vvvv
n
c
vv
vvvvvv
n
c
We obtain non-zero solutions only when
( )
( )
( )
0det
22
2
22
2
22
2
=






















+−





+−








+−





eyex
z
ezeyezex
ezeyezex
y
eyex
ezexeyexezey
x
vv
n
c
vvvv
vvvv
n
c
vv
vvvvvv
n
c
103
SOLO ELECTROMAGNETICS
Planar Waves in an Source-less Anisotropic Electric Media
Intersection of the surface with vez = 0,
are a circle and an ellipse in vex, vey plane.
2
22






=+
z
eyex
n
c
vv
( ) ( )
1
//
2
2
2
2
=+
x
ey
y
ex
nc
v
nc
v
Intersection of the surface with vey = 0,
are a circle and an ellipse in vex, vez plane.
2
22








=+
y
ezex
n
c
vv
( ) ( )
1
//
2
2
2
2
=+
x
z
z
ex
nc
k
nc
v
Intersection of the surface with vex = 0,
are a circle and an ellipse in vey, vez plane.
2
22








=+
x
ezey
n
c
vv
( ) ( )
1
//
2
2
2
2
=+
y
ez
z
ey
nc
v
nc
v
Suppose nx < ny < nz.
Ray-Velocity Surface (continue – 2)
The previous equation has the same structure as the Wave-Vector Surface, therefore
can be represented by a three-dimensional surface in ve space. vex, vey and vez are the
components of ve in the principal axes of the dielectric.
0
2
0
2
0
2
,,
ε
ε
ε
ε
ε
ε z
z
y
y
x
x nnn ===
104
SOLO ELECTROMAGNETICS
Planar Waves in an Source-less Anisotropic Electric Media
nx < ny < nz.
The complete ve surface is double;
that is, it consists of an inner shell
and an outer shell.
For any given direction of the vector
ve, there are two possible values for the
energy-ray velocity ve (eigenmodes):
ve1 and ve2.
From the figure we can see that the inner
and outer shells of the ve surface intersect
at four points in each quadrant of the
vex, vez plane (for nx<ny<nz). Those points
define two directions for which the two
values of ve are equal. Those directions are
called Ray Axes and are distinct from the
Optic Axes of the dielectric.
Ray-Velocity Surface (continue – 3)
105
SOLO ELECTROMAGNETICS
Planar Waves in an Source-less Anisotropic Electric Media
Let compute the Ray Axis direction.
We can see that the Ray Axis is in
x, z plane, therefore










==










=
→
RA
RA
RA
RARAe
RAez
ey
ex
RAe
n
c
Sv
v
v
v
v
δ
δ
cos
0
sin
1

2
22








=+
y
ezex
n
c
vv
( ) ( )
1
//
2
2
2
2
=+
x
ez
z
ex
nc
v
nc
v
22








=





yRA n
c
n
c 1
cossin
2
22
2
22
=+
RA
RAx
RA
RAz
n
n
n
n δδ
must be at the intersection ofRAev

and
yRA nn =
( ) 1
coscos1
2
22
2
22
=+
−
y
RAx
y
RAz
n
n
n
n δδ
22
22
2
cos
zx
zy
RA
nn
nn
−
−
=δ 22
22
2
sin
zx
yx
RA
nn
nn
−
−
=δ 22
22
2
tan
zy
yx
RA
nn
nn
−
−
=δ








−
−
±= −
22
22
1
2,1
sin
zx
yx
RA
nn
nn
δ
0
2
0
2
0
2
,,
ε
ε
ε
ε
ε
ε z
z
y
y
x
x nnn ===
Ray-Velocity Surface (continue – 4)
RA
x
z
yz
xy
x
z
OA
n
n
nn
nn
n
n
δδ 2
2
2
22
22
2
2
2
tantan =
−
−
=
Ray Axes are distinct from
Optical Axes.
106
SOLO ELECTROMAGNETICS
Planar Waves in an Source-less Anisotropic Electric Media
( )
( )
( ) 





















+−







+−








+−







=






















+−







+−








+−







++=
22
2
22
2
22
2
22
2
22
2
22
2
2222
det
eze
z
ezeyezex
ezeyeye
y
eyex
ezexeyexexe
x
vvvv
eyex
z
ezeyezex
ezeyezex
y
eyex
ezexeyexezey
x
vv
n
c
vvvv
vvvv
n
c
vv
vvvvvv
n
c
vv
n
c
vvvv
vvvv
n
c
vv
vvvvvv
n
c
ezeyexe
We obtain








−−







−−
















−+







−+







−








−







+−=
2
2
2
222
2
2
222
2
2
22
2
2
22
2
2
2
2
2
22
2
2
e
y
ezexe
z
eyexe
y
eze
z
eye
z
e
y
exe
x
v
n
c
vvv
n
c
vvv
n
c
vv
n
c
vv
n
c
v
n
c
vv
n
c
0
2
2
2
2
2
2
22
2
2
2
2
2
22
2
2
2
2
2
22
2
2
2
2
2
2
2
2
=








−







−+







−







−+







−








−+







−








−







−= e
y
e
x
eze
z
e
x
eye
z
e
y
exe
z
e
y
e
x
v
n
c
v
n
c
vv
n
c
v
n
c
vv
n
c
v
n
c
vv
n
c
v
n
c
v
n
c
Divide by (assumed nonzero!!(








−








−







−−
2
2
2
2
2
2
2
2
2
e
z
e
y
e
x
v
n
c
v
n
c
v
n
c
1
2
2
2
2
2
2
2
2
2
2
2
2
=
−
+
−
+
−
z
e
ez
y
e
ey
x
e
ex
n
c
v
v
n
c
v
v
n
c
v
v
Ray-Velocity Surface (continue – 5(
Return to Table of Content
107
SOLO ELECTROMAGNETICS
Planar Waves in an Source-less Anisotropic Electric Media
Index Ellipsoid
The electric energy density is given by: ∗∗−∗
⋅⋅=⋅⋅=⋅= EEDDDEUe εε

2
1
2
1
2
1 1
Let find the Surfaces of Equal Energy expressed in the principal dielectric axes:
z
z
y
y
x
x
e
DDD
DDU
εεε
ε
222
1
2 ++=⋅⋅= ∗−
We have: ( ) ( ) zyxin iii ,,// 00
2
=== εεεµεµ
Define: ezeyex UEzUEyUEx 2/:2/:2/: 000 εεε ===
The surfaces of equal energy expressed in the principal dielectric axes are:
1
/1/1/1
2
2
2
2
2
2
=++
zyx n
z
n
y
n
x
Fresnel’s Ellipsoid
0ˆˆˆˆ 221121212121212121
=⋅=⋅=⋅=⋅=⋅=⋅=⋅=⋅=⋅=⋅=⋅ HEHEHsHsDsDsEEEDDEDDHH
We found that the two eigenmodes, of each
direction , must satisfy:
s

222
2 zzyyxxe EEEEEU εεεε ++=⋅⋅= ∗
108
SOLO ELECTROMAGNETICS
Planar Waves in an Source-less Anisotropic Electric Media
Index Ellipsoid (continue – 1(
The electric energy density is given by: ∗∗−∗
⋅⋅=⋅⋅=⋅= EEDDDEUe εε

2
1
2
1
2
1 1
z
z
y
y
x
x
e
DDD
DDU
εεε
ε
222
1
2 ++=⋅⋅= ∗−
We have: ( ) ( ) zyxin iii ,,// 00
2
=== εεεµεµ
Define: 000 2/:2/:2/: εεε ezeyex UDzUDyUDx ===
The surfaces of equal energy expressed in the principal dielectric axes are:
12
2
2
2
2
2
=++
zyx n
z
n
y
n
x
Index Ellipsoid,
Optical Indicatrix,
Reciprocal Ellipsoid
0ˆˆˆˆ 221121212121212121
=⋅=⋅=⋅=⋅=⋅=⋅=⋅=⋅=⋅=⋅=⋅ HEHEHsHsDsDsEEEDDEDDHH
We found that the two eigenmodes, of each
direction , must satisfy:
s

222
2 zzyyxxe EEEEEU εεεε ++=⋅⋅= ∗
Let find the Surfaces of Equal Energy expressed in the principal dielectric axes:
109
SOLO ELECTROMAGNETICS
Planar Waves in an Source-less Anisotropic Electric Media
Index Ellipsoid (continue – 2(
Since we found that the index ellipsoid is used to find the two indexes
of refraction and the two corresponding directions that are in the plane
normal to that passes through ellipsoid center O and defines the ellipse.
0ˆˆ 21 =⋅=⋅ DsDs
21 DandD
sˆ
Sπ
Assume that is one of
the expected solutions.
0
2/ εe
UDOP =
→
The normal at P to the ellipsoid PV is:
E
U
z
D
y
D
x
D
U
z
z
y
y
x
x
ez
z
y
y
x
x
e
zyx
PV

2
111
2
111
00
0
ε
εεε
ε
εεε
ε
=








++=








++=
∧∧∧
∧∧∧→
Since are coplanar PV is in the
plane defined by and sˆDπ D
sED

,,
The plane tangent to ellipsoid at P
is normal to PV ( (, intersects plane
along PT that will be normal to and
, therefore it gives direction.
Tπ
E
E
H
Sπ
sˆ 0ˆˆ 221121 =⋅=⋅=⋅=⋅ HEHEHsHs
110
SOLO ELECTROMAGNETICS
Planar Waves in an Source-less Anisotropic Electric Media
Index Ellipsoid (continue – 3(
PT is at the intersection of the tangent plane to the ellipsoid at P to the plane
normal to and containing PO. Therefore PT is tangent to the ellipse containing PO.
Tπ Sπ
sˆ
- Since PT is in , it is normal toSπ sˆ
E
- Since PT is in the tangent plane to
the ellipsoid, it is normal to PV ( (
Tπ
sˆ
H
EH- Since is also normal to and
PT defines the direction of
is also normal toH D
The tangent to an ellipse is only normal
to the radius vector if it is one of the
axes of the ellipse.
We conclude that the directions of
are the directions of the axes of the
ellipse obtained by the intersection of
the ellipsoid with the plane normal
to .
21 DandD
sˆ
111
SOLO ELECTROMAGNETICS
Planar Waves in an Source-less Anisotropic Electric Media
Index Ellipsoid (continue – 4(
To find for the propagation direction we find the ellipse obtained by the
intersection of the plane normal to , at the origin O, with the Index Ellipsoid.
21 DandD sˆ
sˆSπ
21
DandD are in the direction of ellipsoid axes, and therefore perpendicular to
each other
is on the normal to ellipsoid
at OP = and in the plane
of and . In the same plane
and normal to is
E
sˆ
E
Dπ
D
Dπ
HE
HE
S
×
×
=
→
1
112
SOLO ELECTROMAGNETICS
Planar Waves in an Source-less Anisotropic Electric Media
Index Ellipsoid (continue – 5( 12
2
2
2
2
2
=++
zyx n
z
n
y
n
xnx < ny < nz.
For the propagation direction of the Optical Axis
the intersection of the plane normal to ,
at the origin O, with the Index Ellipsoid is a Circle.
OAsˆSπ
OAsˆ
1
D
21 DandD are in any direction on this circle, and therefore
for any we can find the perpendicular to it.2
D
Conical Refraction on the Optical Axis
We want to find the direction of vectors. E
We have: [ ] ET
E
E
E
EsDs
z
y
x
zxOAOA ⋅=










⋅=⋅⋅=⋅=

δεδεε cos0sinˆˆ0
where: [ ]T
zxT δεδε cos0sin:=











=
δ
δ
cos
0
sin
ˆOAsFor nx < ny < nz we found that in principal dielectric axes 







−
−
±= −−
−−
−
22
22
1
2,1
sin
zx
yx
nn
nn
δ
SDEs ,,,ˆ
are coplanar
and normal toH
We also found:
DE
DD
n
⋅
⋅
=
0
2 1
ε
const
n
D
DE
y
==⋅ 2
0
2
ε
We found: y
nn =
113
SOLO ELECTROMAGNETICS
Planar Waves in an Source-less Anisotropic Electric Media
Index Ellipsoid (continue – 6( 12
2
2
2
2
2
=++
zyx n
z
n
y
n
xnx < ny < nz.
Conical Refraction on the Optical Axis (continue – 1(
OAsˆ
Let draw in principal dielectric axes coordinate O,x,y,z,
starting from O, the vectors and . They define the
plane Bπ
T

0=⋅ ET

Since we can find in vectors such thatEBπ
constDE =⋅
and , , and are in the same plane. E OAsˆD
HE
HE
S
×
×
=
→
1
Tπ
Therefore the locus of is the projection of the
circle of from plane to an ellipse in plane
having the Oy axis in common.
E
D Sπ
Since are in the same plane with and
will be on a conical surface with O as a vertex having
and on its surfacesT

OAsˆDHE
HE
S
×
×
=
→
1
→
S1
OAsˆ
114
SOLO ELECTROMAGNETICS
Planar Waves in an Source-less Anisotropic Electric Media
Index Ellipsoid (continue – 7(
Conical Refraction on the Optical Axis (continue – 2(
Take a biaxial crystal and cut it so that two parallel faces
are perpendicular to the Optical Axis. If a monochromatic
unpolarized light is normal to one of the crystal faces, the
energy will spread out in the plate in a hollow cone, the
cone of internal conical refraction.
When the light exits the crystal the energy and wave
directions coincide, and the light will form a hollow cylinder.
This phenomenon was predicted by William Rowan Hamilton
in 1832 and confirmed experimentally by Lloyd, a year later
(Born & Wolf(.
Because it is no easy to obtain an accurate parallel beam of
monochromatic light on obtained two bright circles
(Born & Wolf(.
William Rowan
Hamilton
(1805-1855(
115
SOLO ELECTROMAGNETICS
Planar Waves in an Source-less Anisotropic Electric Media
Index Ellipsoid (continue – 8(
Conical Refraction on the Optical Axis (continue – 3(
Return to Table of Content
116
SOLO ELECTROMAGNETICS
Planar Waves in an Source-less Anisotropic Electric Media
BEs
c
n
DHs
c
n


=×
−=×
ˆ
ˆ
HHIB
ED


µµ
ε
=⋅=
⋅=
( ) E
n
c
D
n
c
Hs
n
c
Bs
n
c
Ess ⋅−=−=×=×=×× εµµµ

2
2
2
2
ˆˆˆˆ
1ˆˆ
0
0
0
ˆˆ 222
=++=⋅










−
−
−
=×⇒










= zyx
xy
xz
yz
z
y
x
sssss
ss
ss
ss
s
s
s
s
s










=
z
y
x
ε
ε
ε
ε
00
00
00



















==
0
2
0
2
0
2
22
2
00
00
00
1
ε
ε
ε
ε
ε
ε
ε
µε
µεµ
n
n
n
nn
c
z
y
x

( )
( )
( )
( )












+−
+−
+−
=












+−
+−
+−
=










−
−
−










−
−
−
=××
2
2
2
22
22
22
1
1
1
0
0
0
0
0
0
ˆˆ
zzyzx
zyyyx
zxyxx
yxzyzx
zyzxyx
zxyxzy
xy
xz
yz
xy
xz
yz
sssss
sssss
sssss
ssssss
ssssss
ssssss
ss
ss
ss
ss
ss
ss
ss
Equation of Wave Normal
( ) 0ˆˆ 2
2
=⋅+×× E
n
c
Ess εµ

( ) 0ˆˆ 2
2
1
=+×× −
D
n
c
Dss µε

or
117
SOLO ELECTROMAGNETICS
Planar Waves in an Source-less Anisotropic Electric Media
( ) 0ˆˆ 2
2
=⋅+×× E
n
c
Ess εµ

0
1
1
1
2
0
2
2
0
2
2
0
2
=




























+−
+−
+−
z
y
x
z
z
zyzx
zyy
y
yx
zxyxx
x
E
E
E
s
n
ssss
sss
n
ss
sssss
n
ε
ε
ε
ε
ε
ε
The solution is obtained when






−





−+





−





−+





−





−+





−





−





−= 111111111
0
2
0
2
2
0
2
0
2
2
0
2
0
2
2
0
2
0
2
0
2
ε
ε
ε
ε
ε
ε
ε
ε
ε
ε
ε
ε
ε
ε
ε
ε
ε
ε
nn
s
nn
s
nn
s
nnn
yx
z
zx
y
yz
x
zyx


















+−
+−
+−
=
2
0
2
2
0
2
2
0
2
1
1
1
det0
z
z
zyzx
zyy
y
yx
zxyxx
x
s
n
ssss
sss
n
ss
sssss
n
ε
ε
ε
ε
ε
ε






−−





−−











−+





−+





−





−





+−= 1111111
0
2
22
0
2
22
0
2
2
0
2
2
0
2
0
2
2
0
2
ε
ε
ε
ε
ε
ε
ε
ε
ε
ε
ε
ε
ε
ε
n
ss
n
ss
n
s
n
s
nn
s
n
y
zx
z
yx
y
z
z
y
zy
x
x
Equation of Wave Normal (continue – 1(
118
SOLO ELECTROMAGNETICS
Planar Waves in an Source-less Anisotropic Electric Media
0111111111
1
1
1
det
0
2
0
2
2
0
2
0
2
2
0
2
0
2
2
0
2
0
2
0
2
2
0
2
2
0
2
2
0
2
=







−







−+







−







−+







−







−+







−







−







−=
=




















+−
+−
+−
ε
ε
ε
ε
ε
ε
ε
ε
ε
ε
ε
ε
ε
ε
ε
ε
ε
ε
ε
ε
ε
ε
ε
ε
nn
s
nn
s
nn
s
nnn
s
n
ssss
sss
n
ss
sssss
n
yx
z
zx
y
yz
x
zyx
z
z
zyzx
zyy
y
yx
zxyxx
x
Divide by (assumed nonzero!!( 





−





−





−− 111
0
2
0
2
0
2
2
ε
ε
ε
ε
ε
ε
nnn
n zyx
2
0
2
2
0
2
2
0
2
2
1
nn
s
n
s
n
s
z
z
y
y
x
x
=
−
+
−
+
−
ε
ε
ε
ε
ε
ε 222
2
22
2
22
2
1
nnn
s
nn
s
nn
s
z
z
y
y
x
x
=
−
+
−
+
−
0
2
0
2
0
2
,,
ε
ε
ε
ε
ε
ε z
z
y
y
x
x nnn ===
Equation of Wave Normal (continue – 2(
Fresnel equation of wave normal
Fresnel's wave surface, found by Augustin-Jean Fresnel in 1821, is a quartic
surface describing the propagation of light in an optically biaxial crystal
Augustin-Jean Fresnel
(1788 – 1827(
119
SOLO ELECTROMAGNETICS
Planar Waves in an Source-less Anisotropic Electric Media
Equation of Wave Normal (continue – 3(
Fresnel equation of wave normal
02
0
2
0
222
0
2
0
222
0
2
0
222
0
2
0
2
0
=







−







−+







−







−+







−







−+







−







−







− nnsnnnsnnnsnnnn
yx
z
zx
y
yz
x
zyx
ε
ε
ε
ε
ε
ε
ε
ε
ε
ε
ε
ε
ε
ε
ε
ε
ε
ε
022
00
42
00
6222
00
42
00
6222
00
42
00
62
000
2
000000
4
000
6
=+







+−++







+−++







+−+
+







++−







+++−
nsnsnsnsnsnsnsnsns
nnn
z
yx
z
yx
zy
zx
y
zx
yx
zy
x
zy
x
zyxzyzxyxzyx
ε
ε
ε
ε
ε
ε
ε
ε
ε
ε
ε
ε
ε
ε
ε
ε
ε
ε
ε
ε
ε
ε
ε
ε
ε
ε
ε
ε
ε
ε
ε
ε
ε
ε
ε
ε
ε
ε
ε
ε
ε
ε
ε
ε
ε
ε
ε
ε
( ) ( ) ( ) 0111
000
22
00
2
00
2
00
42
0
2
0
2
0
=+





−+−+−−







++
ε
ε
ε
ε
ε
ε
ε
ε
ε
ε
ε
ε
ε
ε
ε
ε
ε
ε
ε
ε
ε
ε
ε
ε zyx
x
zy
y
zx
z
yx
z
z
y
y
x
x
nsssnsss
0111111111
0
2
0
2
2
0
2
0
2
2
0
2
0
2
2
0
2
0
2
0
2
=







−







−+







−







−+







−







−+







−







−







−
ε
ε
ε
ε
ε
ε
ε
ε
ε
ε
ε
ε
ε
ε
ε
ε
ε
ε
nn
s
nn
s
nn
s
nnn
yx
z
zx
y
yz
x
zyx 6
n
This is a quadratic equation of n2
.
For each set sx, sy, sz it yields two solutions for n2
: n1
2
and n2
2
( )snnn ˆ,, 21 ε

=
222
2
22
2
22
2
1
nnn
s
nn
s
nn
s
z
z
y
y
x
x
=
−
+
−
+
−
1
222
=++ zyx sss
Return to Table of Content
Maxwell Equations & Propagation in Anisotropic Media (39
Maxwell Equations & Propagation in Anisotropic Media (39
Maxwell Equations & Propagation in Anisotropic Media (39
Maxwell Equations & Propagation in Anisotropic Media (39
Maxwell Equations & Propagation in Anisotropic Media (39
Maxwell Equations & Propagation in Anisotropic Media (39
Maxwell Equations & Propagation in Anisotropic Media (39
Maxwell Equations & Propagation in Anisotropic Media (39
Maxwell Equations & Propagation in Anisotropic Media (39
Maxwell Equations & Propagation in Anisotropic Media (39
Maxwell Equations & Propagation in Anisotropic Media (39
Maxwell Equations & Propagation in Anisotropic Media (39
Maxwell Equations & Propagation in Anisotropic Media (39
Maxwell Equations & Propagation in Anisotropic Media (39
Maxwell Equations & Propagation in Anisotropic Media (39
Maxwell Equations & Propagation in Anisotropic Media (39
Maxwell Equations & Propagation in Anisotropic Media (39
Maxwell Equations & Propagation in Anisotropic Media (39
Maxwell Equations & Propagation in Anisotropic Media (39
Maxwell Equations & Propagation in Anisotropic Media (39
Maxwell Equations & Propagation in Anisotropic Media (39

Más contenido relacionado

La actualidad más candente

Difference between plane waves and laser
Difference between plane waves and laserDifference between plane waves and laser
Difference between plane waves and laserLahiru Da Silva
 
Chapter4 semiconductor in equilibrium
Chapter4 semiconductor in equilibriumChapter4 semiconductor in equilibrium
Chapter4 semiconductor in equilibriumK. M.
 
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3edKadu Brito
 
POLARIZATION
POLARIZATIONPOLARIZATION
POLARIZATIONKANNAN
 
Maxwell equation
Maxwell equationMaxwell equation
Maxwell equationKumar
 
Non linear optics and SHG
Non linear optics and SHGNon linear optics and SHG
Non linear optics and SHGsahil rajput
 
structure_factor_calculations.ppt
structure_factor_calculations.pptstructure_factor_calculations.ppt
structure_factor_calculations.pptRoss188526
 
Polarization and its Application
Polarization and its ApplicationPolarization and its Application
Polarization and its ApplicationTariq Al Fayad
 
Maxwells equation and Electromagnetic Waves
Maxwells equation and Electromagnetic WavesMaxwells equation and Electromagnetic Waves
Maxwells equation and Electromagnetic WavesA K Mishra
 
UCSD NANO106 - 03 - Lattice Directions and Planes, Reciprocal Lattice and Coo...
UCSD NANO106 - 03 - Lattice Directions and Planes, Reciprocal Lattice and Coo...UCSD NANO106 - 03 - Lattice Directions and Planes, Reciprocal Lattice and Coo...
UCSD NANO106 - 03 - Lattice Directions and Planes, Reciprocal Lattice and Coo...University of California, San Diego
 
Electromagnetic Field Theory Lecture Notes
Electromagnetic Field Theory Lecture NotesElectromagnetic Field Theory Lecture Notes
Electromagnetic Field Theory Lecture NotesFellowBuddy.com
 
Kittel c. introduction to solid state physics 8 th edition - solution manual
Kittel c.  introduction to solid state physics 8 th edition - solution manualKittel c.  introduction to solid state physics 8 th edition - solution manual
Kittel c. introduction to solid state physics 8 th edition - solution manualamnahnura
 
Polarization of light class note
Polarization of light class notePolarization of light class note
Polarization of light class noteOlbira Dufera
 

La actualidad más candente (20)

Difference between plane waves and laser
Difference between plane waves and laserDifference between plane waves and laser
Difference between plane waves and laser
 
Chapter4 semiconductor in equilibrium
Chapter4 semiconductor in equilibriumChapter4 semiconductor in equilibrium
Chapter4 semiconductor in equilibrium
 
Lecture 21
Lecture 21Lecture 21
Lecture 21
 
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed
 
5 slides
5 slides5 slides
5 slides
 
POLARIZATION
POLARIZATIONPOLARIZATION
POLARIZATION
 
Maxwell equation
Maxwell equationMaxwell equation
Maxwell equation
 
Non linear optics and SHG
Non linear optics and SHGNon linear optics and SHG
Non linear optics and SHG
 
08 chapter 1
08 chapter 108 chapter 1
08 chapter 1
 
structure_factor_calculations.ppt
structure_factor_calculations.pptstructure_factor_calculations.ppt
structure_factor_calculations.ppt
 
Polarization and its Application
Polarization and its ApplicationPolarization and its Application
Polarization and its Application
 
Maxwells equation and Electromagnetic Waves
Maxwells equation and Electromagnetic WavesMaxwells equation and Electromagnetic Waves
Maxwells equation and Electromagnetic Waves
 
Polarisation
PolarisationPolarisation
Polarisation
 
UCSD NANO106 - 03 - Lattice Directions and Planes, Reciprocal Lattice and Coo...
UCSD NANO106 - 03 - Lattice Directions and Planes, Reciprocal Lattice and Coo...UCSD NANO106 - 03 - Lattice Directions and Planes, Reciprocal Lattice and Coo...
UCSD NANO106 - 03 - Lattice Directions and Planes, Reciprocal Lattice and Coo...
 
Electromagnetic Field Theory Lecture Notes
Electromagnetic Field Theory Lecture NotesElectromagnetic Field Theory Lecture Notes
Electromagnetic Field Theory Lecture Notes
 
Kittel c. introduction to solid state physics 8 th edition - solution manual
Kittel c.  introduction to solid state physics 8 th edition - solution manualKittel c.  introduction to solid state physics 8 th edition - solution manual
Kittel c. introduction to solid state physics 8 th edition - solution manual
 
StarkEffect.ppt
StarkEffect.pptStarkEffect.ppt
StarkEffect.ppt
 
Polarization of light class note
Polarization of light class notePolarization of light class note
Polarization of light class note
 
Semiconductor laser
Semiconductor laserSemiconductor laser
Semiconductor laser
 
Anamolous zeeman effect
Anamolous zeeman effectAnamolous zeeman effect
Anamolous zeeman effect
 

Destacado

Exercise intro to physics
Exercise intro to physicsExercise intro to physics
Exercise intro to physicsmarjerin
 
IB Biology 2.6 & 7.1 Slides: DNA Structure
IB Biology 2.6 & 7.1 Slides: DNA StructureIB Biology 2.6 & 7.1 Slides: DNA Structure
IB Biology 2.6 & 7.1 Slides: DNA StructureJacob Cedarbaum
 
Binomial probability distributions ppt
Binomial probability distributions pptBinomial probability distributions ppt
Binomial probability distributions pptTayab Ali
 
Basic blueprint reading
Basic blueprint readingBasic blueprint reading
Basic blueprint readingJames Shearer
 
2 classical field theories
2 classical field theories2 classical field theories
2 classical field theoriesSolo Hermelin
 
Reduced order observers
Reduced order observersReduced order observers
Reduced order observersSolo Hermelin
 
6 radar range-doppler-angular loops
6 radar range-doppler-angular loops6 radar range-doppler-angular loops
6 radar range-doppler-angular loopsSolo Hermelin
 
Introduction to elasticity, part i
Introduction to elasticity, part iIntroduction to elasticity, part i
Introduction to elasticity, part iSolo Hermelin
 
5 cramer-rao lower bound
5 cramer-rao lower bound5 cramer-rao lower bound
5 cramer-rao lower boundSolo Hermelin
 
11 fighter aircraft avionics - part iv
11 fighter aircraft avionics - part iv11 fighter aircraft avionics - part iv
11 fighter aircraft avionics - part ivSolo Hermelin
 
Keplerian trajectories
Keplerian trajectoriesKeplerian trajectories
Keplerian trajectoriesSolo Hermelin
 
Sliding Mode Observers
Sliding Mode ObserversSliding Mode Observers
Sliding Mode ObserversSolo Hermelin
 
Equation of motion of a variable mass system2
Equation of motion of a variable mass system2Equation of motion of a variable mass system2
Equation of motion of a variable mass system2Solo Hermelin
 
6 computing gunsight, hud and hms
6 computing gunsight, hud and hms6 computing gunsight, hud and hms
6 computing gunsight, hud and hmsSolo Hermelin
 
Fiber optics ray theory
Fiber optics ray theoryFiber optics ray theory
Fiber optics ray theorySolo Hermelin
 
14 fixed wing fighter aircraft- flight performance - ii
14 fixed wing fighter aircraft- flight performance - ii14 fixed wing fighter aircraft- flight performance - ii
14 fixed wing fighter aircraft- flight performance - iiSolo Hermelin
 

Destacado (20)

Maxwell's equations
Maxwell's equationsMaxwell's equations
Maxwell's equations
 
Exercise intro to physics
Exercise intro to physicsExercise intro to physics
Exercise intro to physics
 
IB Biology 2.6 & 7.1 Slides: DNA Structure
IB Biology 2.6 & 7.1 Slides: DNA StructureIB Biology 2.6 & 7.1 Slides: DNA Structure
IB Biology 2.6 & 7.1 Slides: DNA Structure
 
Binomial probability distributions ppt
Binomial probability distributions pptBinomial probability distributions ppt
Binomial probability distributions ppt
 
Basic blueprint reading
Basic blueprint readingBasic blueprint reading
Basic blueprint reading
 
1 tracking systems1
1 tracking systems11 tracking systems1
1 tracking systems1
 
2 estimators
2 estimators2 estimators
2 estimators
 
2 classical field theories
2 classical field theories2 classical field theories
2 classical field theories
 
Reduced order observers
Reduced order observersReduced order observers
Reduced order observers
 
6 radar range-doppler-angular loops
6 radar range-doppler-angular loops6 radar range-doppler-angular loops
6 radar range-doppler-angular loops
 
Introduction to elasticity, part i
Introduction to elasticity, part iIntroduction to elasticity, part i
Introduction to elasticity, part i
 
Optical aberrations
Optical aberrationsOptical aberrations
Optical aberrations
 
5 cramer-rao lower bound
5 cramer-rao lower bound5 cramer-rao lower bound
5 cramer-rao lower bound
 
11 fighter aircraft avionics - part iv
11 fighter aircraft avionics - part iv11 fighter aircraft avionics - part iv
11 fighter aircraft avionics - part iv
 
Keplerian trajectories
Keplerian trajectoriesKeplerian trajectories
Keplerian trajectories
 
Sliding Mode Observers
Sliding Mode ObserversSliding Mode Observers
Sliding Mode Observers
 
Equation of motion of a variable mass system2
Equation of motion of a variable mass system2Equation of motion of a variable mass system2
Equation of motion of a variable mass system2
 
6 computing gunsight, hud and hms
6 computing gunsight, hud and hms6 computing gunsight, hud and hms
6 computing gunsight, hud and hms
 
Fiber optics ray theory
Fiber optics ray theoryFiber optics ray theory
Fiber optics ray theory
 
14 fixed wing fighter aircraft- flight performance - ii
14 fixed wing fighter aircraft- flight performance - ii14 fixed wing fighter aircraft- flight performance - ii
14 fixed wing fighter aircraft- flight performance - ii
 

Similar a Maxwell Equations & Propagation in Anisotropic Media (39

History of atomic structure pisay version
History of atomic structure   pisay versionHistory of atomic structure   pisay version
History of atomic structure pisay versionjdielpee
 
History Of Atomic Structure Pisay Version
History Of Atomic Structure   Pisay VersionHistory Of Atomic Structure   Pisay Version
History Of Atomic Structure Pisay Versionjeksespina
 
Electricity and Magnetism
Electricity and MagnetismElectricity and Magnetism
Electricity and MagnetismHanna Elise
 
Electromagnetic spectrum, interaction with matter
Electromagnetic spectrum, interaction with matterElectromagnetic spectrum, interaction with matter
Electromagnetic spectrum, interaction with matterRoshen Reji Idiculla
 
Electro 0
Electro 0Electro 0
Electro 0zanko99
 
Electro 0
Electro 0Electro 0
Electro 0Omed
 
4. Racial Polarization 02 miss mahreen tarar
4. Racial Polarization 02 miss mahreen tarar4. Racial Polarization 02 miss mahreen tarar
4. Racial Polarization 02 miss mahreen tararUmar266202
 
THE PHOTOELECTRIC EFFECT !!!!!!
THE PHOTOELECTRIC EFFECT !!!!!!THE PHOTOELECTRIC EFFECT !!!!!!
THE PHOTOELECTRIC EFFECT !!!!!!hiteshborha
 
Physics Holi
Physics HoliPhysics Holi
Physics Holirockstarr
 
518901864-Physics-Project-Class-XII-2021-22-Investigatory-Project.pdf
518901864-Physics-Project-Class-XII-2021-22-Investigatory-Project.pdf518901864-Physics-Project-Class-XII-2021-22-Investigatory-Project.pdf
518901864-Physics-Project-Class-XII-2021-22-Investigatory-Project.pdfVaishanaviG1
 
Electricity and Magnetism
Electricity and MagnetismElectricity and Magnetism
Electricity and MagnetismHanna Elise
 
Electricity and Magnetism (Timeline).ppt
Electricity and Magnetism (Timeline).pptElectricity and Magnetism (Timeline).ppt
Electricity and Magnetism (Timeline).pptLeanderJamesGalas
 
Structure of atoms .pdf
Structure of atoms .pdfStructure of atoms .pdf
Structure of atoms .pdfTincymolck
 
Chapter2-Structure of Atom 2023.pptx
Chapter2-Structure of Atom 2023.pptxChapter2-Structure of Atom 2023.pptx
Chapter2-Structure of Atom 2023.pptxValarmathiRajendran1
 

Similar a Maxwell Equations & Propagation in Anisotropic Media (39 (20)

History of atomic structure pisay version
History of atomic structure   pisay versionHistory of atomic structure   pisay version
History of atomic structure pisay version
 
History Of Atomic Structure Pisay Version
History Of Atomic Structure   Pisay VersionHistory Of Atomic Structure   Pisay Version
History Of Atomic Structure Pisay Version
 
SUMAN LOKHANDE.pptx
SUMAN LOKHANDE.pptxSUMAN LOKHANDE.pptx
SUMAN LOKHANDE.pptx
 
Electricity and Magnetism
Electricity and MagnetismElectricity and Magnetism
Electricity and Magnetism
 
Clausius Mossotti Equation.pptx
Clausius Mossotti Equation.pptxClausius Mossotti Equation.pptx
Clausius Mossotti Equation.pptx
 
Electromagnetic spectrum, interaction with matter
Electromagnetic spectrum, interaction with matterElectromagnetic spectrum, interaction with matter
Electromagnetic spectrum, interaction with matter
 
Electro 0
Electro 0Electro 0
Electro 0
 
Electro 0
Electro 0Electro 0
Electro 0
 
How is electricity_produced
How is electricity_producedHow is electricity_produced
How is electricity_produced
 
4. Racial Polarization 02 miss mahreen tarar
4. Racial Polarization 02 miss mahreen tarar4. Racial Polarization 02 miss mahreen tarar
4. Racial Polarization 02 miss mahreen tarar
 
THE PHOTOELECTRIC EFFECT !!!!!!
THE PHOTOELECTRIC EFFECT !!!!!!THE PHOTOELECTRIC EFFECT !!!!!!
THE PHOTOELECTRIC EFFECT !!!!!!
 
Physics Holi
Physics HoliPhysics Holi
Physics Holi
 
518901864-Physics-Project-Class-XII-2021-22-Investigatory-Project.pdf
518901864-Physics-Project-Class-XII-2021-22-Investigatory-Project.pdf518901864-Physics-Project-Class-XII-2021-22-Investigatory-Project.pdf
518901864-Physics-Project-Class-XII-2021-22-Investigatory-Project.pdf
 
Physics investigatory project
Physics investigatory projectPhysics investigatory project
Physics investigatory project
 
Magnetic field
Magnetic fieldMagnetic field
Magnetic field
 
Electricity and Magnetism
Electricity and MagnetismElectricity and Magnetism
Electricity and Magnetism
 
Electricity and Magnetism (Timeline).ppt
Electricity and Magnetism (Timeline).pptElectricity and Magnetism (Timeline).ppt
Electricity and Magnetism (Timeline).ppt
 
Structure of atoms .pdf
Structure of atoms .pdfStructure of atoms .pdf
Structure of atoms .pdf
 
Chapter2-Structure of Atom 2023.pptx
Chapter2-Structure of Atom 2023.pptxChapter2-Structure of Atom 2023.pptx
Chapter2-Structure of Atom 2023.pptx
 
Peizolelectric Sensors Explained
Peizolelectric Sensors ExplainedPeizolelectric Sensors Explained
Peizolelectric Sensors Explained
 

Más de Solo Hermelin

5 introduction to quantum mechanics
5 introduction to quantum mechanics5 introduction to quantum mechanics
5 introduction to quantum mechanicsSolo Hermelin
 
Stabilization of linear time invariant systems, Factorization Approach
Stabilization of linear time invariant systems, Factorization ApproachStabilization of linear time invariant systems, Factorization Approach
Stabilization of linear time invariant systems, Factorization ApproachSolo Hermelin
 
Slide Mode Control (S.M.C.)
Slide Mode Control (S.M.C.)Slide Mode Control (S.M.C.)
Slide Mode Control (S.M.C.)Solo Hermelin
 
Inner outer and spectral factorizations
Inner outer and spectral factorizationsInner outer and spectral factorizations
Inner outer and spectral factorizationsSolo Hermelin
 
Anti ballistic missiles ii
Anti ballistic missiles iiAnti ballistic missiles ii
Anti ballistic missiles iiSolo Hermelin
 
Anti ballistic missiles i
Anti ballistic missiles iAnti ballistic missiles i
Anti ballistic missiles iSolo Hermelin
 
12 performance of an aircraft with parabolic polar
12 performance of an aircraft with parabolic polar12 performance of an aircraft with parabolic polar
12 performance of an aircraft with parabolic polarSolo Hermelin
 
10 fighter aircraft avionics - part iii
10 fighter aircraft avionics - part iii10 fighter aircraft avionics - part iii
10 fighter aircraft avionics - part iiiSolo Hermelin
 
9 fighter aircraft avionics-part ii
9 fighter aircraft avionics-part ii9 fighter aircraft avionics-part ii
9 fighter aircraft avionics-part iiSolo Hermelin
 
8 fighter aircraft avionics-part i
8 fighter aircraft avionics-part i8 fighter aircraft avionics-part i
8 fighter aircraft avionics-part iSolo Hermelin
 
4 navigation systems
4 navigation systems4 navigation systems
4 navigation systemsSolo Hermelin
 
2 aircraft flight instruments
2 aircraft flight instruments2 aircraft flight instruments
2 aircraft flight instrumentsSolo Hermelin
 
3 modern aircraft cutaway
3 modern aircraft cutaway3 modern aircraft cutaway
3 modern aircraft cutawaySolo Hermelin
 
2Anti-aircraft Warhead
2Anti-aircraft Warhead2Anti-aircraft Warhead
2Anti-aircraft WarheadSolo Hermelin
 
1 susceptibility vulnerability
1 susceptibility vulnerability1 susceptibility vulnerability
1 susceptibility vulnerabilitySolo Hermelin
 
13 fixed wing fighter aircraft- flight performance - i
13 fixed wing fighter aircraft- flight performance - i13 fixed wing fighter aircraft- flight performance - i
13 fixed wing fighter aircraft- flight performance - iSolo Hermelin
 
Calculus of variation problems
Calculus of variation   problemsCalculus of variation   problems
Calculus of variation problemsSolo Hermelin
 

Más de Solo Hermelin (20)

5 introduction to quantum mechanics
5 introduction to quantum mechanics5 introduction to quantum mechanics
5 introduction to quantum mechanics
 
Stabilization of linear time invariant systems, Factorization Approach
Stabilization of linear time invariant systems, Factorization ApproachStabilization of linear time invariant systems, Factorization Approach
Stabilization of linear time invariant systems, Factorization Approach
 
Slide Mode Control (S.M.C.)
Slide Mode Control (S.M.C.)Slide Mode Control (S.M.C.)
Slide Mode Control (S.M.C.)
 
Inner outer and spectral factorizations
Inner outer and spectral factorizationsInner outer and spectral factorizations
Inner outer and spectral factorizations
 
Anti ballistic missiles ii
Anti ballistic missiles iiAnti ballistic missiles ii
Anti ballistic missiles ii
 
Anti ballistic missiles i
Anti ballistic missiles iAnti ballistic missiles i
Anti ballistic missiles i
 
Analytic dynamics
Analytic dynamicsAnalytic dynamics
Analytic dynamics
 
12 performance of an aircraft with parabolic polar
12 performance of an aircraft with parabolic polar12 performance of an aircraft with parabolic polar
12 performance of an aircraft with parabolic polar
 
10 fighter aircraft avionics - part iii
10 fighter aircraft avionics - part iii10 fighter aircraft avionics - part iii
10 fighter aircraft avionics - part iii
 
9 fighter aircraft avionics-part ii
9 fighter aircraft avionics-part ii9 fighter aircraft avionics-part ii
9 fighter aircraft avionics-part ii
 
8 fighter aircraft avionics-part i
8 fighter aircraft avionics-part i8 fighter aircraft avionics-part i
8 fighter aircraft avionics-part i
 
4 navigation systems
4 navigation systems4 navigation systems
4 navigation systems
 
3 earth atmosphere
3 earth atmosphere3 earth atmosphere
3 earth atmosphere
 
2 aircraft flight instruments
2 aircraft flight instruments2 aircraft flight instruments
2 aircraft flight instruments
 
3 modern aircraft cutaway
3 modern aircraft cutaway3 modern aircraft cutaway
3 modern aircraft cutaway
 
2Anti-aircraft Warhead
2Anti-aircraft Warhead2Anti-aircraft Warhead
2Anti-aircraft Warhead
 
1 susceptibility vulnerability
1 susceptibility vulnerability1 susceptibility vulnerability
1 susceptibility vulnerability
 
15 sky cars
15 sky cars15 sky cars
15 sky cars
 
13 fixed wing fighter aircraft- flight performance - i
13 fixed wing fighter aircraft- flight performance - i13 fixed wing fighter aircraft- flight performance - i
13 fixed wing fighter aircraft- flight performance - i
 
Calculus of variation problems
Calculus of variation   problemsCalculus of variation   problems
Calculus of variation problems
 

Último

Pests of Bengal gram_Identification_Dr.UPR.pdf
Pests of Bengal gram_Identification_Dr.UPR.pdfPests of Bengal gram_Identification_Dr.UPR.pdf
Pests of Bengal gram_Identification_Dr.UPR.pdfPirithiRaju
 
REVISTA DE BIOLOGIA E CIÊNCIAS DA TERRA ISSN 1519-5228 - Artigo_Bioterra_V24_...
REVISTA DE BIOLOGIA E CIÊNCIAS DA TERRA ISSN 1519-5228 - Artigo_Bioterra_V24_...REVISTA DE BIOLOGIA E CIÊNCIAS DA TERRA ISSN 1519-5228 - Artigo_Bioterra_V24_...
REVISTA DE BIOLOGIA E CIÊNCIAS DA TERRA ISSN 1519-5228 - Artigo_Bioterra_V24_...Universidade Federal de Sergipe - UFS
 
Base editing, prime editing, Cas13 & RNA editing and organelle base editing
Base editing, prime editing, Cas13 & RNA editing and organelle base editingBase editing, prime editing, Cas13 & RNA editing and organelle base editing
Base editing, prime editing, Cas13 & RNA editing and organelle base editingNetHelix
 
User Guide: Pulsar™ Weather Station (Columbia Weather Systems)
User Guide: Pulsar™ Weather Station (Columbia Weather Systems)User Guide: Pulsar™ Weather Station (Columbia Weather Systems)
User Guide: Pulsar™ Weather Station (Columbia Weather Systems)Columbia Weather Systems
 
ECG Graph Monitoring with AD8232 ECG Sensor & Arduino.pptx
ECG Graph Monitoring with AD8232 ECG Sensor & Arduino.pptxECG Graph Monitoring with AD8232 ECG Sensor & Arduino.pptx
ECG Graph Monitoring with AD8232 ECG Sensor & Arduino.pptxmaryFF1
 
GenBio2 - Lesson 1 - Introduction to Genetics.pptx
GenBio2 - Lesson 1 - Introduction to Genetics.pptxGenBio2 - Lesson 1 - Introduction to Genetics.pptx
GenBio2 - Lesson 1 - Introduction to Genetics.pptxBerniceCayabyab1
 
Dubai Calls Girl Lisa O525547819 Lexi Call Girls In Dubai
Dubai Calls Girl Lisa O525547819 Lexi Call Girls In DubaiDubai Calls Girl Lisa O525547819 Lexi Call Girls In Dubai
Dubai Calls Girl Lisa O525547819 Lexi Call Girls In Dubaikojalkojal131
 
The dark energy paradox leads to a new structure of spacetime.pptx
The dark energy paradox leads to a new structure of spacetime.pptxThe dark energy paradox leads to a new structure of spacetime.pptx
The dark energy paradox leads to a new structure of spacetime.pptxEran Akiva Sinbar
 
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝soniya singh
 
《Queensland毕业文凭-昆士兰大学毕业证成绩单》
《Queensland毕业文凭-昆士兰大学毕业证成绩单》《Queensland毕业文凭-昆士兰大学毕业证成绩单》
《Queensland毕业文凭-昆士兰大学毕业证成绩单》rnrncn29
 
OECD bibliometric indicators: Selected highlights, April 2024
OECD bibliometric indicators: Selected highlights, April 2024OECD bibliometric indicators: Selected highlights, April 2024
OECD bibliometric indicators: Selected highlights, April 2024innovationoecd
 
Four Spheres of the Earth Presentation.ppt
Four Spheres of the Earth Presentation.pptFour Spheres of the Earth Presentation.ppt
Four Spheres of the Earth Presentation.pptJoemSTuliba
 
Topic 9- General Principles of International Law.pptx
Topic 9- General Principles of International Law.pptxTopic 9- General Principles of International Law.pptx
Topic 9- General Principles of International Law.pptxJorenAcuavera1
 
Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...
Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...
Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...lizamodels9
 
Call Girls In Nihal Vihar Delhi ❤️8860477959 Looking Escorts In 24/7 Delhi NCR
Call Girls In Nihal Vihar Delhi ❤️8860477959 Looking Escorts In 24/7 Delhi NCRCall Girls In Nihal Vihar Delhi ❤️8860477959 Looking Escorts In 24/7 Delhi NCR
Call Girls In Nihal Vihar Delhi ❤️8860477959 Looking Escorts In 24/7 Delhi NCRlizamodels9
 
User Guide: Magellan MX™ Weather Station
User Guide: Magellan MX™ Weather StationUser Guide: Magellan MX™ Weather Station
User Guide: Magellan MX™ Weather StationColumbia Weather Systems
 
Pests of safflower_Binomics_Identification_Dr.UPR.pdf
Pests of safflower_Binomics_Identification_Dr.UPR.pdfPests of safflower_Binomics_Identification_Dr.UPR.pdf
Pests of safflower_Binomics_Identification_Dr.UPR.pdfPirithiRaju
 
THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptx
THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptxTHE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptx
THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptxNandakishor Bhaurao Deshmukh
 
Forensic limnology of diatoms by Sanjai.pptx
Forensic limnology of diatoms by Sanjai.pptxForensic limnology of diatoms by Sanjai.pptx
Forensic limnology of diatoms by Sanjai.pptxkumarsanjai28051
 

Último (20)

Pests of Bengal gram_Identification_Dr.UPR.pdf
Pests of Bengal gram_Identification_Dr.UPR.pdfPests of Bengal gram_Identification_Dr.UPR.pdf
Pests of Bengal gram_Identification_Dr.UPR.pdf
 
REVISTA DE BIOLOGIA E CIÊNCIAS DA TERRA ISSN 1519-5228 - Artigo_Bioterra_V24_...
REVISTA DE BIOLOGIA E CIÊNCIAS DA TERRA ISSN 1519-5228 - Artigo_Bioterra_V24_...REVISTA DE BIOLOGIA E CIÊNCIAS DA TERRA ISSN 1519-5228 - Artigo_Bioterra_V24_...
REVISTA DE BIOLOGIA E CIÊNCIAS DA TERRA ISSN 1519-5228 - Artigo_Bioterra_V24_...
 
Base editing, prime editing, Cas13 & RNA editing and organelle base editing
Base editing, prime editing, Cas13 & RNA editing and organelle base editingBase editing, prime editing, Cas13 & RNA editing and organelle base editing
Base editing, prime editing, Cas13 & RNA editing and organelle base editing
 
User Guide: Pulsar™ Weather Station (Columbia Weather Systems)
User Guide: Pulsar™ Weather Station (Columbia Weather Systems)User Guide: Pulsar™ Weather Station (Columbia Weather Systems)
User Guide: Pulsar™ Weather Station (Columbia Weather Systems)
 
ECG Graph Monitoring with AD8232 ECG Sensor & Arduino.pptx
ECG Graph Monitoring with AD8232 ECG Sensor & Arduino.pptxECG Graph Monitoring with AD8232 ECG Sensor & Arduino.pptx
ECG Graph Monitoring with AD8232 ECG Sensor & Arduino.pptx
 
GenBio2 - Lesson 1 - Introduction to Genetics.pptx
GenBio2 - Lesson 1 - Introduction to Genetics.pptxGenBio2 - Lesson 1 - Introduction to Genetics.pptx
GenBio2 - Lesson 1 - Introduction to Genetics.pptx
 
Dubai Calls Girl Lisa O525547819 Lexi Call Girls In Dubai
Dubai Calls Girl Lisa O525547819 Lexi Call Girls In DubaiDubai Calls Girl Lisa O525547819 Lexi Call Girls In Dubai
Dubai Calls Girl Lisa O525547819 Lexi Call Girls In Dubai
 
The dark energy paradox leads to a new structure of spacetime.pptx
The dark energy paradox leads to a new structure of spacetime.pptxThe dark energy paradox leads to a new structure of spacetime.pptx
The dark energy paradox leads to a new structure of spacetime.pptx
 
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
 
Hot Sexy call girls in Moti Nagar,🔝 9953056974 🔝 escort Service
Hot Sexy call girls in  Moti Nagar,🔝 9953056974 🔝 escort ServiceHot Sexy call girls in  Moti Nagar,🔝 9953056974 🔝 escort Service
Hot Sexy call girls in Moti Nagar,🔝 9953056974 🔝 escort Service
 
《Queensland毕业文凭-昆士兰大学毕业证成绩单》
《Queensland毕业文凭-昆士兰大学毕业证成绩单》《Queensland毕业文凭-昆士兰大学毕业证成绩单》
《Queensland毕业文凭-昆士兰大学毕业证成绩单》
 
OECD bibliometric indicators: Selected highlights, April 2024
OECD bibliometric indicators: Selected highlights, April 2024OECD bibliometric indicators: Selected highlights, April 2024
OECD bibliometric indicators: Selected highlights, April 2024
 
Four Spheres of the Earth Presentation.ppt
Four Spheres of the Earth Presentation.pptFour Spheres of the Earth Presentation.ppt
Four Spheres of the Earth Presentation.ppt
 
Topic 9- General Principles of International Law.pptx
Topic 9- General Principles of International Law.pptxTopic 9- General Principles of International Law.pptx
Topic 9- General Principles of International Law.pptx
 
Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...
Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...
Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...
 
Call Girls In Nihal Vihar Delhi ❤️8860477959 Looking Escorts In 24/7 Delhi NCR
Call Girls In Nihal Vihar Delhi ❤️8860477959 Looking Escorts In 24/7 Delhi NCRCall Girls In Nihal Vihar Delhi ❤️8860477959 Looking Escorts In 24/7 Delhi NCR
Call Girls In Nihal Vihar Delhi ❤️8860477959 Looking Escorts In 24/7 Delhi NCR
 
User Guide: Magellan MX™ Weather Station
User Guide: Magellan MX™ Weather StationUser Guide: Magellan MX™ Weather Station
User Guide: Magellan MX™ Weather Station
 
Pests of safflower_Binomics_Identification_Dr.UPR.pdf
Pests of safflower_Binomics_Identification_Dr.UPR.pdfPests of safflower_Binomics_Identification_Dr.UPR.pdf
Pests of safflower_Binomics_Identification_Dr.UPR.pdf
 
THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptx
THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptxTHE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptx
THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptx
 
Forensic limnology of diatoms by Sanjai.pptx
Forensic limnology of diatoms by Sanjai.pptxForensic limnology of diatoms by Sanjai.pptx
Forensic limnology of diatoms by Sanjai.pptx
 

Maxwell Equations & Propagation in Anisotropic Media (39

  • 1. 1 Maxwell Equations & Propagation in Anisotropic Electric Media SOLO HERMELIN Updated 12.06.06 23.12.12 http://www.solohermelin.com
  • 2. 2 Maxwell Equations & Propagation in Anisotropic MediaSOLO TABLE OF CONTENT Maxwell’s Equations History of Maxwell’s Equations Symmetric Maxwell’s Equations Constitutive Relation Boundary Conditions Energy and Momentum Monochromatic Planar Wave Equations Planar Waves in an Source-less Anisotropic Electric Media Lorentz’s Lemma Planar Wave Group Velocity Phase Velocity, Energy (Ray) Velocity for Planar Waves Energy Flux and Poynting Vector Energy Flux and Poynting Vector for a Bianisotropic Medium Wave equation Wave-Vector Surface Double Refraction at a Uniaxial Crystal Boundary Refractive Index of Some Typical Crystals Polarization History
  • 3. 3 Maxwell Equations & Propagation in Anisotropic MediaSOLO TABLE OF CONTENT Planar Waves in an Source-less Anisotropic Electric Media Orthogonality Properties of the Eigenmodes Phase Velocity, Energy (Ray) Velocity for Planar Waves Ray-Velocity Surface Index Ellipsoid Conical Refraction on the Optical Axis Equation of Wave Normal References
  • 4. 4 POLARIZATION Erasmus Bartholinus,doctor of medicine and professor of mathematics at the University of Copenhagen, showed in 1669 that crystals of “Iceland spar” (which we now call calcite, CaCO3) produced two refracted rays from a single incident beam. One ray, the “ordinary ray”, followed Snell’s law, while the other, the “extraordinary ray”, was not always even in the plan of incidence. SOLO History Erasmus Bartholinus 1625-1698 http://www.polarization.com/history/history.html
  • 5. 5 POLARIZATIONSOLO History Étienne Louis Malus 1775-1812 Etienne Louis Malus, military engineer and captain in the army of Napoleon, published in 1809 the Malus Law of irradiance through a Linear polarizer: I(θ)=I(0) cos2 θ. In 1810 he won the French Academy Prize with the discovery that reflected and scattered light also possessed “sidedness” which he called “polarization”.
  • 6. 6 POLARIZATION Arago and Fresnel investigated the interference of polarized rays of light and found in 1816 that two rays polarized at right angles to each other never interface. SOLO History (continue) Dominique François Jean Arago 1786-1853 Augustin Jean Fresnel 1788-1827 Arago relayed to Thomas Young in London the results of the experiment he had performed with Fresnel. This stimulate Young to propose in 1817 that the oscillations in the optical wave where transverse, or perpendicular to the direction of propagation, and not longitudinal as every proponent of wave theory believed. Thomas Young 1773-1829
  • 7. 7 POLARIZATIONSOLO http://hyperphysics.phy-astr.gsu.edu/hbase/hframe.html Methods of Achieving Polarization Polarization is based on one of four fundamental physical mechanisms: 1. Dichroism or selective absorbtion 3. Reflection 2. Scattering 4. Birefrigerence To obtain Polarization we must have some asymmetry in the optical process.
  • 8. 8 POLARIZATIONSOLO http://hyperphysics.phy-astr.gsu.edu/hbase/hframe.html Methods of Achieving Polarization Polarization by Birefrigerence (continue – 1) Polarization can be achieved with crystalline materials which have a different index of refraction in different planes. Such materials are said to be birefringent or doubly refracting. Nicol Prism The Nicol Prism (1828) is made up from two prisms of calcite cemented with Canada balsam. The ordinary ray can be made to totally reflect off the prism boundary, leving only the extraordinary ray. William Nicol(1768 ?– 1851) Scottish physicist
  • 9. 9 POLARIZATIONSOLO http://hyperphysics.phy-astr.gsu.edu/hbase/hframe.html Methods of Achieving Polarization Polarization by Birefrigerence (continue – 2) Polarization can be achieved with crystalline materials which have a different index of refraction in different planes. Such materials are said to be birefringent or doubly refracting. Wollaston Prism William Hyde Wollaston 1766-1828
  • 10. 10 POLARIZATIONSOLO http://hyperphysics.phy-astr.gsu.edu/hbase/hframe.html Methods of Achieving Polarization Polarization by Birefrigerence (continue – 3) Polarization can be achieved with crystalline materials which have a different index of refraction in different planes. Such materials are said to be birefringent or doubly refracting. Glan-Foucault Polarizer
  • 13. 13 MAXWELL’s EQUATIONSSOLO Magnetic Field IntensityH  [ ]1− ⋅mA Electric DisplacementD  [ ]2− ⋅⋅ msA Electric Field IntensityE  [ ]1− ⋅mV Magnetic InductionB  [ ]2− ⋅⋅ msV Current DensityJ  [ ]2− ⋅mA Free Charge Distributionρ [ ]3− ⋅⋅ msA James Clerk Maxwell (1831-1879) A Dynamic Theory of Electromagnetic Field 1864 Treatise on Electricity and Magnetism 1874 Return to Table of Content
  • 14. 14 SOLO Electrostatics Charles-Augustin de Coulomb 1736 - 1806 In 1785 Coulomb presented his three reports on Electricity and Magnetism: -Premier Mémoire sur l’Electricité et le Magnétisme [2]. In this publication Coulomb describes “How to construct and use an electric balance (torsion balance) based on the property of the metal wires of having a reaction torsion force proportional to the torsion angle”. Coulomb also experimentally determined the law that explains how “two bodies electrified of the same kind of Electricity exert on each other”. -Sécond Mémoire sur l’Electricité et le Magnétisme [3]. In this publication Coulomb carries out the “determination according to which laws both the Magnetic and the Electric fluids act, either by repulsion or by attraction”. -Troisième Mémoire sur l’Electricité et le Magnétisme [4]. “On the quantity of Electricity that an isolated body loses in a certain time period , either by contact with less humid air, or in the supports more or less idio-electric”.
  • 15. 15 SOLO Electrostatics Charles-Augustin de Coulomb 1736 - 1806 1 2 12 123 0 12 1 4 q q F r rπ ε =   Coulomb’s Law q1 – electric charge located at 1r  q2 – electric charge located at 2r  12 1 2r r r= −    The electric force that the charge q2 exerts on q1 is given by: If the two electrical charges have the same sign the force is repulsive, if they have opposite signs is attractive. 12 0 8.854187817 10 /Farad mε − = ×Permittivity of vacuum Accord to the Third Newton Law of mechanics: 21 12F F= −   12 1 12F q E=   Define 2 12 123 0 12 1 4 q E r rπ ε =   where is the Electric Field Intensity [N/C]
  • 16. 16 SOLO During an evening lecture in April 1820, Ørsted discovered experimental evidence of the relationship between electricity and magnetism. While he was preparing an experiment for one of his classes, he discovered something that surprised him. In Oersted's time, scientists had tried to find some link between electricity and magnets, but had failed. It was believed that electricity and magnetism were not related. As Oersted was setting up his materials, he brought a compass close to a live electrical wire and the needle on the compass jumped and pointed to the wire. Oersted was surprised so he repeated the experiemnt several times. Each time the needle jumped toward the wire. This phenomenon had been first discovered by the Italian jurist Gian Domenico Romagnosi in 1802, but his announcement was ignored. 1820Electromagnetism Hans Christian Ørsted 1777- 1851
  • 17. 17 SOLO 1820Electromagnetism André-Marie Ampère 1775 - 1836 Danish physicist Hans Christian Ørsted's discovered in 1820 that a magnetic needle is deflected when the current in a nearby wire varies - a phenomenon establishing a relationship between electricity and magnetism. Ørsted's work was reported the Academy in Paris on 4 September 1820 by Arago and a week later Arago repeated Ørsted's experiment at an Academy meeting. Ampère demonstrated various magnetic / electrical effects to the Academy over the next weeks and he had discovered electrodynamical forces between linear wires before the end of September. He spoke on his law of addition of electrodynamical forces at the Academy on 6 November 1820 and on the symmetry principle in the following month. Ampère wrote up the work he had described to the Academy with remarkable speed and it was published in the Annales de Chimie et de Physique. Ampère and Arago investigate magnetism dl uu an infinitesimal element of the contour C J  curent density A/m2 dS uu a differential vector area of the surface S enclosed by contour C Ampère’s Law Magnetic Field IntensityH  [ ]1− ⋅mA
  • 18. 18 SOLO 1820 Electromagnetism Biot-Savart Law 0 2 1 4 rI dL dB r µ π × = uu u uu Magnetic Field of a current element Jean-Baptiste Biot 1774-1862 ( )( ) 1 1 2 21 1 1 21 1 2 1 20 1 2 3 1 2 4 c c c F I dl B dl dl r r I I r r µ π = × × × − = − ∫ ∫∫ uu  uu uu     Ampère was not the only one to react quickly to Arago's report of Orsted's experiment. Biot, with his assistant Savart, also quickly conducted experiments and reported to the Academy in October 1820. This led to the Biot-Savart Law. Félix Savart 1791 - 1841
  • 19. 19 SOLO 1820 Electromagnetism Biot-Savart Law Jean-Baptiste Biot 1774-1862 ( ) ( )2 30 0 ' ' 4 ' J r A J A r d r r r µ µ π ∇ = − ⇒ = −∫       0 0 H J B H B B A µ∇× = = ∇× = → = ∇×       ( ) ( ) 2 0B A A A Jµ∇× = ∇× ∇× = ∇ ∇× −∇ =     choose 0A∇× =  ( ) ( ) ( ) ( ) ( )3 30 0 3 ' ' ' ' ' 4 ' 4 ' r r J r J r r r B r A r d r d r r r r r µ µ π π   × − = ∇ × = ∇ × = ÷ ÷− −  ∫ ∫            Where we used ( ) ( ) 0 ' : 1/ 'r r rJ J r J r rφ φ φ φ∇ × = ∇ × + ∇ × = −       14243 Derivation of Biot-Savart Law from Ampère’s Law Poison’s Equation Solution for an unbounded volume Ampère Law Félix Savart 1791 - 1841
  • 20. 20 SOLO 1831Electromagnetism On 29th August 1831, using his "induction ring", Faraday made one of his greatest discoveries - electromagnetic induction: the "induction" or generation of electricity in a wire by means of the electromagnetic effect of a current in another wire. The induction ring was the first electric transformer. In a second series of experiments in September he discovered magneto-electric induction: the production of a steady electric current. To do this, Faraday attached two wires through a sliding contact to a copper disc. By rotating the disc between the poles of a horseshoe magnet he obtained a continuous direct current. This was the first generator. Michael Faraday 1791- 1867 Magnetic Field IntensityH  [ ]1− ⋅mA Electric DisplacementD  [ ]2− ⋅⋅ msA Electric Field IntensityE  [ ]1− ⋅mV Magnetic InductionB  [ ]2− ⋅⋅ msV →→ ⋅ ∂ ∂ −=⋅ ∫∫∫ dS t B dlE SC   t B E ∂ ∂ −=×∇  → dl → dS C B  E  The voltage induced in a coil moving through a non-uniform magnetic field was demonstrated by this apparatus. As the coil is removed from the field of the bar magnets, the coil circuit is broken and a spark is observed at the gap. The first transformer: Two coils wound on an iron toroid. http://www.ece.umd.edu/~taylor/frame1.htm
  • 21. 21 MAXWELL’s EQUATIONS 1. AMPÈRE’s CIRCUIT LW (A) (1820) SOLO 2. FARADAY’s INDUCTION LAW (F) (1831) Electric DisplacementD  [ ]2− ⋅⋅ msA Magnetic Field IntensityH  [ ]1− ⋅mA Current DensityJ  [ ]2− ⋅mA André-Marie Ampère 1775-1836 →→ ⋅ ∂ ∂ −=⋅ ∫∫∫ dS t B dlE SC   t B E ∂ ∂ −=×∇  → dl → dS C B  E  Electric Field IntensityE  [ ]1− ⋅mV Magnetic InductionB  [ ]2− ⋅⋅ msV Michael Faraday 1791-1867 The following four equations describe the Electromagnetic Field and where first given by Maxwell in 1864 (in a different notation) and are known as MAXWELL’s EQUATIONS
  • 22. 22 MAXWELL’s EQUATIONSSOLO 4. GAUSS’ LAW – MAGNETIC (GM) dV → dS V 0=⋅∫∫ → S dSB  B  0=⋅∇ B  Magnetic InductionB  [ ]2− ⋅⋅ msV 3. GAUSS’ LAW – ELECTRIC (GE) dV → dS V ∫∫∫∫∫ =⋅ → VS dVdSD ρ  D  ρ=⋅∇ D  ρ Electric DisplacementD  [ ]2− ⋅⋅ msA Free Charge Distributionρ [ ]3− ⋅⋅ msA GAUSS’ ELECTRIC (GE) & MAGNETIC (GM) LAWS developed by Gauss in 1835, but published in 1867. Karl Friederich Gauss 1777-1855 Return to Table of Content
  • 23. 23 James C. Maxwell (1831-1879) ELECTROMAGNETICSSOLO Magnetic Field IntensityH  [ ]1− ⋅mA Electric DisplacementD  [ ]2− ⋅⋅ msA Electric Field IntensityE  [ ]1− ⋅mV Magnetic InductionB  [ ]2− ⋅⋅ msV Electric Current DensityeJ  [ ]2− ⋅mA Free Electric Charge Distributioneρ [ ]3− ⋅⋅ msA Fictious Magnetic Current DensitymJ  [ ]2− ⋅mV Fictious Free Magnetic Charge Distributionmρ [ ]3− ⋅⋅ msV MAXWELL’S SYMMETRIC EQUATIONS FOR THE ELECTROMAGNETIC FIELD e S e C J t D HSd t D JdlH      + ∂ ∂ =×∇⇒•        ∂ ∂ +=• ∫∫∫ → )1( AMPÈRE’S LAW t B JESd t B JdlE m S m C ∂ ∂ −−=×∇⇒•        ∂ ∂ +−=• ∫∫∫ →     )2( FARADAY’S LAW e V e S DdvSdD ρρ =•∇⇒=• ∫∫∫∫∫  )3( GAUSS’ ELECTRIC LAW m V m S BdvSdB ρρ =•∇⇒=• ∫∫∫∫∫  )4( GAUSS’ MAGNETIC LAW
  • 24. 24 ELECTROMAGNETICSSOLO SYMMETRIC MAXWELL’s EQUATIONS Magnetic Field IntensityH  [ ]1− ⋅mA Electric DisplacementD  [ ]2− ⋅⋅ msA Electric Field IntensityE  [ ]1− ⋅mV Magnetic InductionB  [ ]2− ⋅⋅ msV Electric Current DensityeJ  [ ]2− ⋅mA Free Electric Charge Distributioneρ [ ]3− ⋅⋅ msA Fictious Magnetic Current DensitymJ  [ ]2− ⋅mV Fictious Free Magnetic Charge Distributionmρ [ ]3− ⋅⋅ msV 1. AMPÈRE’S CIRCUIT LW (A) eJ t D H    + ∂ ∂ =×∇ 2. FARADAY’S INDUCTION LAW (F) mJ t B E    − ∂ ∂ −=×∇ 3. GAUSS’ LAW – ELECTRIC (GE) eD ρ=⋅∇  4. GAUSS’ LAW – MAGNETIC (GM) mB ρ=⋅∇  Although magnetic sources are not physical they are often introduced as electrical equivalents to facilitate solutions of physical boundary-value problems. André-Marie Ampère 1775-1836 Michael Faraday 1791-1867 Karl Friederich Gauss 1777-1855
  • 25. 25 ELECTROMAGNETICSSOLO SYMMETRIC MAXWELL’s EQUATIONS (continue – 1) eJ t D H    + ∂ ∂ =×∇mJ t B E    − ∂ ∂ −=×∇ eD ρ=⋅∇  mB ρ=⋅∇  From the Symmetric Maxwell’s Equations we can see that we obtain the same equations by performing the following operations. DUALITY           ⇓           ⇓           − ⇓           ⇓             − ⇓             ⇓             − ⇓             ⇓             ⇓             − ⇓ µ ε ε µ ρ ρ ρ ρ e m m e e m m e J J J J E H H E B D D B             The Maxwell’s Equations are symmetric and dual. eJ t D H    + ∂ ∂ =×∇ mJ t B E    − ∂ ∂ −=×∇ mB ρ=⋅∇  eD ρ=⋅∇ 
  • 26. 26 ELECTROMAGNETICSSOLO SYMMETRIC MAXWELL’s EQUATIONS (continue – 2) From the Symmetric Maxwell’s Equations ( ) 00 = ∂ ∂ +⋅∇⇒⋅∇+⋅∇ ∂ ∂ =×∇⋅∇=⇒           =⋅∇ + ∂ ∂ =×∇ t JJD t H D J t D H e ee e e ρ ρ      ( ) 00 = ∂ ∂ +⋅∇⇒⋅∇−⋅∇ ∂ ∂ −=×∇⋅∇=⇒           =⋅∇ − ∂ ∂ −=×∇ t JJB t E B J t B E m mm m m ρ ρ      CONSERVATION OF ELECTRICAL AND MAGNETIC CHARGES 0= ∂ ∂ +⋅∇ t J e e ρ 0= ∂ ∂ +⋅∇ t J m m ρ Therefore Return to Table of Content
  • 27. 27 ELECTROMAGNETICSSOLO CONSTITUTIVE RELATIONS Homogeneous Medium – Medium properties do not vary from point to point and are the same for all points.ε µ Isotropic Medium – Medium properties are the same in all directions and are scalars.ε µ Linear Medium – The effects of all different fields can be added linearly (Superposition of different fields). For Linear and Isotropic Medium we have: ED  ε= HB  µ= where: 0εε eK= 0µµ mK= - Dielectric Constant (or Relative Permitivity)eK - Relative PermeabilitymK The simpler case:
  • 28. 28 ELECTROMAGNETICSSOLO CONSTITUTIVE RELATIONS (continue - 1) The most general form of Linear Constitutive Relations is: Classification of Media dyadicsxwhere H E B D 33,,, =                 =         µζξε µζ ξε        Classification according to the functional dependence of the 6x6 matrix         µζ ξε   1. Inhomogeneous: function of space coordinates 2. Nonstationary: function of time 3. Time-dispersive: function of time derivatives 4. Space-dispersive: function of space derivatives 5. Nonlinear: function of the electromagnetic field
  • 29. 29 ELECTROMAGNETICSSOLO CONSTITUTIVE RELATIONS (continue - 3) Classification of Media (continue - 2) In general 0,0,0,0  ≠==≠ µζξε Anisotropic Electromagnetic - medium described by both 0,0  ≠≠ µε Anisotropic Electric - medium described by 0  ≠ε Anisotropic Magnetic - medium described by 0  ≠µ If is symmetric, it can be diagonalized0  ≠ε           = z y x ε ε ε ε 00 00 00  Uniaxial zyx εεε ≠= (thetragonal, hexagonal, rombohedral crystals) Biaxial zyx εεε ≠≠ (orthohombic, monoclinic, triclinic crystals) Isotropic zyx εεε == This is called an Anisotropic Medium. If or is Hermitian; i.e.0  ≠ε 0  ≠µ ( ) Transposeconjugate conjugateTranspose a aj ja T z -T,-* ,-H UUUU *H ==           −= 00 0 0 α α Is gyroelectric or gyromagnetic depending on whether stands for or . If both tensors are of this form the medium is gyroelectromagnetic. ε  µ  U         µζ ξε  
  • 30. 30 ELECTROMAGNETICSSOLO CONSTITUTIVE RELATIONS (continue - 4) Classification of Media (continue - 3) In general 0,0,0,0  ≠≠≠≠ µζξε This is called an Bianisotropic Medium. Such properties have been observed in antiferromagnatic chromium oxide ( antiferromagnetic materials are ones in which it is enerically favorable for neighboring dipoles to take an antiparallel orientation; see Ramo, Whinery, and Van Duzer (1965), pg. 145)                 −− −− −= ** ** 4 µµζζ ξξεεω   j G mediumlosslessundefinite mediumpassivedefinitenegative mediumactivedefinitepositive ⇒ ⇒ ⇒ G G G In this case, we have the following classification (see development later) Return to Table of Content
  • 31. 31 SOLO ELECTROMAGNETICS BOUNDARY CONDITIONS Boundary Conditions ( ) ( ) ldtHtHhldtHldtHldH h C 2211 0 2211 ˆˆˆˆ ⋅+⋅=Θ+⋅+⋅=⋅ →→ ∫  where are unit vectors along C in region (1) and (2), respectively, and21 ˆ,ˆ tt 2121 ˆˆˆˆ −×=−= nbtt - a unit vector normal to the boundary between region (1) and (2)21 ˆ −n - a unit vector on the boundary and normal to the plane of curve Cbˆ Using we obtainbaccba  ⋅×≡×⋅ ( ) ( ) ( )[ ] ldbkldbHHnldnbHHldtHH e ˆˆˆˆˆˆ 21212121121 ⋅=⋅−×=×⋅−=⋅− −−  Since this must be true for any vector that lies on the boundary between regions (1) and (2) we must have: bˆ ( ) ekHHn  =−×− 2121 ˆ ∫∫∫ ⋅        ∂ ∂ +=⋅ → S e C Sd t D JdlH    ( ) dlbkbdlh t D JSd t D J e h e S e ˆˆ 0 ⋅=⋅        ∂ ∂ +=⋅        ∂ ∂ + → ∫∫      AMPÈRE’S LAW [ ]1 0 lim: − → ⋅        ∂ ∂ += mAh t D Jk e h e  
  • 32. 32 SOLO ELECTROMAGNETICS BOUNDARY CONDITIONS Boundary Conditions (continue – 1) ( ) ( ) ldtEtEhldtEldtEldE h C 2211 0 2211 ˆˆˆˆ ⋅+⋅=Θ+⋅+⋅=⋅ →→ ∫  where are unit vectors along C in region (1) and (2), respectively, and21 ˆ,ˆ tt 2121 ˆˆˆˆ −×=−= nbtt - a unit vector normal to the boundary between region (1) and (2)21 ˆ −n - a unit vector on the boundary and normal to the plane of curve Cbˆ Using we obtainbaccba  ⋅×≡×⋅ ( ) ( ) ( )[ ] ldbkldbEEnldnbEEldtEE m ˆˆˆˆˆˆ 21212121121 ⋅−=⋅−×=×⋅−=⋅− −−  Since this must be true for any vector that lies on the boundary between regions (1) and (2) we must have: bˆ ( ) mkEEn  −=−×− 2121 ˆ ∫∫∫ ⋅        ∂ ∂ +−=⋅ → S m C Sd t B JdlE    ( ) dlbkbdlh t B JSd t B J m h m S m ˆˆ 0 ⋅=⋅        ∂ ∂ +=⋅        ∂ ∂ + → ∫∫      FARADAY’S LAW [ ]1 0 lim: − → ⋅        ∂ ∂ += mVh t B Jk m h m  
  • 33. 33 SOLO ELECTROMAGNETICS BOUNDARY CONDITIONS Boundary Conditions (continue – 2) ( ) ( ) SdnDnDhSdnDSdnDSdD h S 2211 0 2211 ˆˆˆˆ ⋅+⋅=Θ+⋅+⋅=⋅ → ∫∫  where are unit vectors normal to boundary pointing in region (1) and (2), respectively, and 21 ˆ,ˆ nn 2121 ˆˆˆ −=−= nnn - a unit vector normal to the boundary between region (1) and (2)21 ˆ −n ( ) ( ) SdSdnDDSdnDD eσ=⋅−=⋅− −2121121 ˆˆ  Since this must be true for any dS on the boundary between regions (1) and (2) we must have: ( ) eDDn σ=−⋅− 2121 ˆ  ( ) dSdShdv e h e V e σρρ 0→ ==∫∫∫ GAUSS’ LAW - ELECTRIC [ ]1 0 lim: − → ⋅⋅= msAhe h e ρσ ∫∫∫∫∫ =• V e S dvSdD ρ 
  • 34. 34 SOLO ELECTROMAGNETICS BOUNDARY CONDITIONS Boundary Conditions (continue – 3) ( ) ( ) SdnBnBhSdnBSdnBSdB h S 2211 0 2211 ˆˆˆˆ ⋅+⋅=Θ+⋅+⋅=⋅ → ∫∫  where are unit vectors normal to boundary pointing in region (1) and (2), respectively, and 21 ˆ,ˆ nn 2121 ˆˆˆ −=−= nnn - a unit vector normal to the boundary between region (1) and (2)21 ˆ −n ( ) ( ) SdSdnBBSdnBB mσ=⋅−=⋅− −2121121 ˆˆ  Since this must be true for any dS on the boundary between regions (1) and (2) we must have: ( ) mBBn σ=−⋅− 2121 ˆ  ( ) dSdShdv m h m V m σρρ 0→ ==∫∫∫ GAUSS’ LAW – MAGNETIC [ ]1 0 lim: − → ⋅⋅= msVhm h m ρσ ∫∫∫∫∫ =• V m S dvSdB ρ 
  • 35. 35 SOLO ELECTROMAGNETICS BOUNDARY CONDITIONS Boundary Conditions (summary) ( ) mkEEn  −=−×− 2121 ˆ FARADAY’S LAW ( ) ekHHn  =−×− 2121 ˆ AMPÈRE’S LAW [ ]1 0 lim: − → ⋅        ∂ ∂ += mAh t D Jk e h e   [ ]1 0 lim: − → ⋅        ∂ ∂ += mVh t B Jk m h m   ( ) eDDn σ=−⋅− 2121 ˆ  GAUSS’ LAW ELECTRIC [ ]1 0 lim: − → ⋅⋅= msAhe h e ρσ ( ) mBBn σ=−⋅− 2121 ˆ  GAUSS’ LAW MAGNETIC [ ]1 0 lim: − → ⋅⋅= msVhm h m ρσ
  • 36. 36 SOLO ELECTROMAGNETICS BOUNDARY CONDITIONS Boundary Conditions for Perfect Electric Conductor (PEC) ( ) 0ˆ 2121  =−×− EEn FARADAY’S LAW ( ) ekHHn  =−×− 2121 ˆ AMPÈRE’S LAW ( ) eDDn σ=−⋅− 2121 ˆ  GAUSS’ LAW ELECTRIC ( ) 0ˆ 2121 =−⋅− BBn  GAUSS’ LAW MAGNETIC ekHn  =×− 121 ˆ 0ˆ 121  =×− En eDn σ=⋅− 121 ˆ  0ˆ 121 =⋅− Bn  02  =H 02  =B 02  =E 02  =D
  • 37. 37 SOLO ELECTROMAGNETICS BOUNDARY CONDITIONS Boundary Conditions for Perfect Magnetic Conductor (PMC) ( ) mkEEn  −=−×− 2121 ˆ FARADAY’S LAW ( ) 0ˆ 2121  =−×− HHn AMPÈRE’S LAW ( ) 0ˆ 2121 =−⋅− DDn  GAUSS’ LAW ELECTRIC ( ) mBBn σ=−⋅− 2121 ˆ  GAUSS’ LAW MAGNETIC 0ˆ 121  =×− Hn mkEn  −=×− 121 ˆ 0ˆ 121 =⋅− Dn  mBn σ=⋅− 121 ˆ  02  =H 02  =B 02  =E 02  =D Return to Table of Content
  • 38. 38 SOLO ELECTROMAGNETICS BOUNDARY CONDITIONS Energy and Momentum Let start from Ampère and Faraday Laws               ∂ ∂ −=×∇⋅ + ∂ ∂ =×∇⋅− t B EH J t D HE e      EJ t D E t B HHEEH e      ⋅− ∂ ∂ ⋅− ∂ ∂ ⋅−=×∇⋅−×∇⋅ ( )HEHEEH  ×⋅∇=×∇⋅−×∇⋅But Therefore we obtain ( ) EJ t D E t B HHE e      ⋅− ∂ ∂ ⋅− ∂ ∂ ⋅−=×⋅∇ First way This theorem was discovered by Poynting in 1884 and later in the same year by Heaviside.
  • 39. 39 SOLO ELECTROMAGNETICS BOUNDARY CONDITIONS Energy and Momentum (continue -1) We identify the following quantities -Power density of the current densityEJe  ⋅ ( )HEDE t BH t EJe  ×⋅∇−      ⋅ ∂ ∂ −      ⋅ ∂ ∂ −=⋅ 2 1 2 1       ⋅ ∂ ∂ =⋅= BH t pBHw mm  2 1 , 2 1       ⋅ ∂ ∂ =⋅= DE t pDEw ee  2 1 , 2 1 ( )HEpR  ×⋅∇= eJ  -Magnetic energy and power densities, respectively -Electric energy and power densities, respectively -Radiation power density For linear, isotropic electro-magnetic materials we can write( )HBED  00 , µε == ( )DE tt D E ED     ⋅ ∂ ∂ = ∂ ∂ ⋅ = 2 10ε ( )BH tt B H HB     ⋅ ∂ ∂ = ∂ ∂ ⋅ = 2 10µ
  • 40. 40 SOLO ELECTROMAGNETICS BOUNDARY CONDITIONS Energy and Momentum (continue – 3) Let start from the Lorentz Force Equation (1892) on the free charge ( )BvEF e  ×+= ρ Free Electric Chargeeρ [ ]3− ⋅⋅ msA Velocity of the chargev  [ ]1− ⋅sm Electric Field IntensityE  [ ]1− ⋅mV Magnetic InductionB  [ ]2− ⋅⋅ msV Hendrik Antoon Lorentz 1853-1928 eρ Force on the free chargeF  [ ]Neρ Second way
  • 41. 41 SOLO ELECTROMAGNETICS BOUNDARY CONDITIONS Energy and Momentum (continue – 4) The power density of the Lorentz Force the charge ( ) ( ) EJBvEvp e Bvv Jv e ee    ⋅=×+⋅= =×⋅ = 0 ρ ρ or ( ) ( ) ( ) ( ) ( )[ ] ( )HE t B HE t D E t D HEEH E t D HEJp t B E HEHEEH J t D H e e                 ×⋅∇−        ∂ ∂ ⋅+⋅ ∂ ∂ −= ⋅ ∂ ∂ −×⋅∇−×∇⋅= ⋅        ∂ ∂ −×∇=⋅= ∂ ∂ −=∇× ×⋅∇=∇×⋅−∇×⋅ + ∂ ∂ =∇× eρ
  • 42. 42 SOLO ELECTROMAGNETICS BOUNDARY CONDITIONS Energy and Momentum (continue – 5) ( )HEDE t BH t EJe  ×⋅∇−      ⋅ ∂ ∂ −      ⋅ ∂ ∂ −=⋅ 2 1 2 1 Let integrate this equation over a constant volume V ∫∫∫∫∫∫∫∫∫∫∫∫ ×∇−      ⋅−      ⋅−=⋅ VVVV e dvSdvDE td d dvBH td d dvEJ  2 1 2 1 If we have sources in V then instead of we must use E  source EE  + Use Ohm Law (1826) ( )source ee EEJ  += γ         = ∂ ∂ ∫∫∫∫∫∫ VV td d t Georg Simon Ohm 1789-1854 source e e EJE  −= γ 1 For linear, isotropic electro-magnetic materials ( )HBED  00 , µε ==
  • 43. 43 SOLO ELECTROMAGNETICS BOUNDARY CONDITIONS Energy and Momentum (continue – 6) ∫∫∫∫∫∫∫∫∫∫∫∫∫ ⋅∇+      ⋅+      ⋅+=⋅ VVVR n V source e dvSdvDE td d dvBH td d dRIdvEJ  2 1 2 12 ∫∫∫       ⋅= V FieldMagnetic dvBH td d P  2 1 ∫∫∫       ⋅= V FieldElectric dvDE td d P  2 1 ∫∫∫∫∫ ⋅=⋅∇= SV Radiation SdSdvSP  ∫∫∫ ⋅= V source eSource dvEJP  ( ) ( ) ∫∫∫∫ ∫∫∫∫∫∫∫∫∫∫∫∫∫∫∫ ⋅−= ⋅−⋅=⋅−⋅⋅=⋅ V source e R n V source e L S e ee V source e L S e ee V e dvEJdRI dvEJ dS dl dSJdSJdvEJldSdJJdvEJ   2 11 γγ ∫= R nJoule dRIP 2 RadiationFieldMagneticFieldElectricJouleSource PPPPP +++= For linear, isotropic electro-magnetic materials( )HBED  00 , µε == R – Electric Resistance Define the Umov-Poynting vector: [ ]2 / mwattHES  ×= The Umov-Poynting vector was discovered by Umov in 1873, and rediscovered by Poynting in 1884 and later in the same year by Heaviside.
  • 44. 44 ELECTROMAGNETICSSOLO EM People John Henry Poynting 1852-1914 Oliver Heaviside 1850-1925 Nikolay Umov 1846-1915 1873 “Theory of interaction on final distances and its exhibit to conclusion of electrostatic and electrodynamic laws” 1884 1884 Umov-Poynting vector HES  ×= Return to Table of Content
  • 45. 45 ELECTROMAGNETICSSOLO Monochromatic Planar Wave Equations Let assume that can be written as:( ) ( )trHtrE ,,,  ( ) ( ) ( ) ( ) ( ) ( )tjrHtrHtjrEtrE 00 exp,,exp, ωω  == where are phasor (complex) vectors. ( ) ( ){ } ( ){ } ( ) ( ){ } ( ){ }rHjrHrHrEjrErE  ImRe,ImRe +=+= We have ( ) ( ) ( ) ( ) ( )tjrEjtj t rEtrE t 00 expexp, ωωω  = ∂ ∂ = ∂ ∂ Hence ( ) ( ) ( )             =⋅∇ =⋅∇ −−=×∇ +=×∇ ⇒           =⋅∇ =⋅∇ − ∂ ∂ −=×∇ + ∂ ∂ =×∇ = ∂ ∂ m e m e j t m e m e B D JBjE JDjH BGM DGE J t B EF J t D HA ρ ρ ω ω ρ ρ ω         )(
  • 46. 46 ELECTROMAGNETICSSOLO Note The assumption that can be written as:( ) ( )trHtrE ,,,  ( ) ( ) ( ) ( ) ( ) ( )tjrHtrHtjrEtrE 00 exp,,exp, ωω  == is equivalent to saying that has a Fourier Transform; i.e.:( ) ( )trHtrE ,,,  ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )∫∫ ∫∫ ∞ ∞− ∞ ∞− ∞ ∞− ∞ ∞− =−= =−= ωωω π ωω ωωω π ωω dtjrHtrHdttjtrHrH dtjrEtrEdttjtrErE exp, 2 1 ,&exp,, exp, 2 1 ,&exp,,   A Sufficient Condition for the Existence of the Fourier Transform is: ( ) ( ) ( ) ( ) ∞<= ∞<= ∫∫ ∫∫ ∞ ∞− ∞ ∞− ∞ ∞− ∞ ∞− ωω π ωω π drHdttrH drEdttrE 22 22 , 2 1 , , 2 1 ,   ( ) ( ) ( ) ( ) ( )[ ] ( ) ( ) ( )[ ] ( ) ( )ωωδωω ωωωω −=−= −=−= ∫ ∫∫ ∞ ∞− ∞ ∞− ∞ ∞− 00 0 exp expexpexp,, rEdttjrE dttjtjrEdttjtrErE   End Note
  • 47. 47 ELECTROMAGNETICSSOLO Fourier Transform The Fourier transform of can be written as:( ) ( )trHtrE ,,,  ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )∫∫ ∫∫ ∞ ∞− ∞ ∞− ∞ ∞− ∞ ∞− −== −== dttjtrHrHdtjrHtrH dttjtrErEdtjrEtrE ωωωωω π ωωωωω π exp,,&exp, 2 1 , exp,,&exp, 2 1 ,   ( ) ( ) ( ) ( ) ∞<= ∞<= ∫∫ ∫∫ ∞ ∞− ∞ ∞− ∞ ∞− ∞ ∞− ωω π ωω π drHdttrH drEdttrE 22 22 , 2 1 , , 2 1 ,   JEAN FOURIER 1768-1830 A Sufficient Condition for the Existence of the Fourier Transform is:
  • 48. 48 ELECTROMAGNETICSSOLO ( ) ( )       ×∇−×∇−=×∇×∇ ×∇+×∇=×∇×∇ −−=×∇ +=×∇ ⇒     −−=×∇×∇ +=×∇×∇ = = m e m e ED HB m e JHjE JEjH JHjE JEjH JBjE JDjH ωµ ωε ωµ ωε ω ω ε µ ( ) me JJjEkE  ×∇−−=−×∇×∇ ωµ2 ( ) em JJjHkH  ×∇+−=−×∇×∇ ωε2 λ ππ µεω λ 22 f c c f k = ∆ === Using the vector identity ( ) ( ) ( ) AAA  ∇⋅∇−⋅∇∇=×∇×∇ For a Homogeneous, Linear and Isotropic Media:       =⋅∇ =⋅∇ ⇒    =⋅∇ =⋅∇ = = µ ρ ε ρ ρ ρ ε µ m e ED HB m e H E B D ε ρ ωµ e me JJjEkE ∇ +×∇+=+∇ 22 µ ρ ωε m em JJjHkH ∇ +×∇−=+∇ 22 and we obtain Monochromatic Planar Wave Equations (continue - 1)
  • 49. 49 ELECTROMAGNETICSSOLO Assume no sources: we have Monochromatic Planar Wave Equations (continue - 2) 0,0,0,0 ==== meme JJ ρρ  022 =+∇ EkE 022 =+∇ HkH nkk n k 0 00 00 0 =         == ∆   εµ µε εµωµεω ( ) ( ) ( ) ( ) ( ) ( )    == == ⋅− ⋅− rktjtj rktjtj eHerHtrH eEerEtrE     ωω ωω ω ω 0 0 ,, ,, ( ) 022 =+∇⇒ ⋅−=∇⋅∇⇒−=∇ ⋅− ⋅−⋅−⋅−⋅− rkj rkjrkjrkjrkj ek ekkeekje    Helmholtz Wave Equations satisfy the Helmholtz wave equations( ) ( )ωω ,,, rHrE  ( ) ( )    = = ⋅− ⋅− rkj rkj eHrH eErE     0 0 , , ω ω Assume a progressive wave of phase ( )rkt  ⋅−ω (a regressive wave has the phase) ( )rkt  ⋅+ω For a Homogeneous, Linear and Isotropic Media k  0E 0H r  t k  Planes for which constrkt =⋅−  ω
  • 50. 50 ELECTROMAGNETICSSOLO To satisfy the Maxwell equations for a source free media we must have: Monochromatic Planar Wave Equations (continue - 3) we haveUsing: 1ˆˆ&ˆˆ =⋅== sss c n sk ωεµω         =⋅∇ =⋅∇ −=×∇ =×∇ 0 0 H E HjE EjH ωµ ωε           =⋅ =⋅ =× −=× 0ˆ 0ˆ ˆ ˆ 0 0 00 00 Hs Es HEs EHs ε µ µ ε sˆ Planar Wave 0E 0H r         =⋅− =⋅− −=×− =×− ⇒ ⋅− ⋅− ⋅−⋅− ⋅−⋅− −=∇ ⋅−⋅− 0 0 0 0 00 00 rkj rkj rkjrkj rkjrkj ekje eHkj eEkj eHjeEkj eEjeHkj rkjrkj           ωµ ωε        =⋅ =⋅ =× −=× 0 0 0 0 00 00 Hk Ek HEk EHk     µω εω For a Homogeneous, Linear and Isotropic Media: Return to Table of Content
  • 51. 51 SOLO ELECTROMAGNETICS Planar Waves in an Source-less Anisotropic Electric Media     0 0 0 0 m e m e B D J t B E J t D H ρ ρ =⋅∇ =⋅∇ − ∂ ∂ −=×∇ + ∂ ∂ =×∇           ( ) ( ) ( ) ∫ +∞ ∞− ⋅− = dkekEtrE rktj   ω 0, ωω ωω j t eje t rs c n tjrs c n tj → ∂ ∂ ⇒= ∂ ∂       ⋅−      ⋅−  ˆˆ kjs c n jes c n je rs c n tjrs c n tj  −=−→∇⇒−=∇       ⋅−      ⋅− ˆˆ ˆˆ ωω ωω 0ˆ 0ˆ ˆ ˆ =⋅ =⋅ =× −=× Bs Ds BEs c n DHs c n ( ) ( )DEBH tt D E t B H HEEHHES HB ED         ⋅+⋅ ∂ ∂ −= ∂ ∂ ⋅− ∂ ∂ ⋅−= ×∇⋅−×∇⋅=×⋅∇=⋅∇ ⋅= ⋅= 2 1µ ε ( ) emUDEBHS k Ss c n =⋅+⋅=⋅=⋅ 2 1 ˆ ω  Maxwell’s Symmetric Equations Planar Wave 0 0 =⋅ =⋅ =× −=× Bk Dk BEk DHk     ω ω ωj t → ∂ ∂ s c n j ˆω−→∇ ωj t → ∂ ∂ kj  −→∇ vector phasor vector phasor s c n k ˆω= 
  • 52. 52 SOLO ELECTROMAGNETICS Planar Wave Group Velocity Consider a Planar Wave composed of frequencies centered around ω0. ( ) ( ) ( )( ) ∫ +∞ ∞− ⋅− = dkekEtrE rktkj   ω 0, ( ) ( ) +−        += 0 0 0 kk kd d k ω ωω Expand ω(k), using Taylor series around k0 ( ) ( ) ( ) ( ) ∫ ∞+ ∞− −         − ⋅− −      ⋅− = dkekEetrE kk kk rkk t kd d j rktj 0 0 0 0 00 0,      ω ω The Phase of the Group of Waves is ( ) 0 0 0 0 kk kk rkk t kd d g    −           − ⋅− −      = ω ϕ To find the velocity of phase of the group of waves consider the points for which φg = const ( ) 0 0 0 0 = − ⋅− −      ⇒ kk rdkk td kd d g d   ω ϕ The Group Velocity of the Planar Wave is ( ) 0 0 0 kk kk kd d krd g td rd v      − −       = = = ω δ Return to Table of Content
  • 53. 53 SOLO ELECTROMAGNETICS Phase Velocity, Energy (Ray) Velocity for Planar Waves The phase of the field is given by       ⋅−=⋅−= rs c n trkt  ˆωωφ For a constant phase front we have       ⋅−=⋅−=⋅−== rds c n dtrdskdtrdkdtd  ˆˆ0 ωωωφ s n c s kdt rd v srr const p ˆˆ: ˆ === = = ω φ   Phase Velocity B  D  pv  E  H  HES  ×=α α k  ev  PlanarWaves n c ktd rd s ==⋅ ω  ˆ n c S S vs e =⋅ :ˆ ( ) α α cosˆ ˆ cos p S Ss e v Ss S n c v ⋅ = = ⋅ = Define the phase velocity as Define the energy flow velocity in the Poynting vector direction as S S vSv ee = → 1 ( ) emUDEBHS k Ss c n =⋅+⋅=⋅=⋅ 2 1 ˆ ω  ( ) em ee U S S Ssn c S S vv = ⋅ == ˆ 1 :  Energy (Ray) Velocity The electro-magnetic energy propagates along the Poynting vector . For anisotropic media the Poynting vector is not collinear with .k  HES ×= Return to Table of Content Electromagnetic Energy Density
  • 54. 54 SOLO ELECTROMAGNETICS Planar Waves in an Source-less Anisotropic Electric Media A wave packet can be viewed as a superposition of monochromatic waves, with different frequencies ω and wave vector that must satisfy the Maxwell’s equationsk  EHk HEk ⋅−=× ⋅=× εω µω   Suppose that the wave vector changes by an infinitesimal amount , that determines changes k  k  δ HE δδωδ ,, HHHEkEk ⋅⋅+⋅=×+× δµωµωδδδ  ( )EEEHkHk −⋅⋅−⋅−=×+× δεωεωδδδ  ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )EEEEEHkHEk HHHHHEkHEk δεωεωδδδ δµωµωδδδ ⋅⋅+⋅⋅=×⋅−×⋅ ⋅⋅+⋅⋅=×⋅+×⋅   ( ) ( ) ( ) ( ) 0 2 00 =⋅+×⋅+⋅−×⋅−= ⋅⋅+⋅⋅−×⋅          EHkEHEkH HHEEHEk εωδµωδ µεωδδ ( ) ( ) ( )BACACBCBA  ×⋅≡×⋅≡×⋅
  • 55. 55 SOLO ELECTROMAGNETICS Planar Waves in an Source-less Anisotropic Electric Media ( ) ( ) e em vk U S k HHEE HEk      ⋅=⋅= ⋅⋅+⋅⋅ ×⋅ = δδ µε δ ωδ 2 1 ( ) gk vkk  ⋅=∇⋅= δωδωδ - Energy (Ray) Velocityev  From the definition of Group Velocity: gv  since those relations are true for all: k  δ eg vv  = For a monochromatic wave δω=0, therefore ( ) 0=×⋅=⋅ HEkSk  δδ ( ) ( ) 02 =⋅⋅+⋅⋅−×⋅ HHEEHEk µεωδδ 
  • 56. 56 ELECTROMAGNETICSSOLO Consider an Electric Anisotropic Media General Symmetric        =⋅∇ =⋅∇ −=×∇ ⋅=×∇ 0 0 B D HjE EjH µω εω  For a Homogeneous, Linear and Anisotropic Media:           = 333231 232221 131211 εεε εεε εεε ε            = z y x D ε ε ε ε 00 00 00  Diagonalized Principal Axis TTD  εε 1− =     −−=×∇×∇ +⋅=×∇×∇ m e JHjE JEjH µω εω  ( ) ( )   ×∇−×∇−=×∇×∇ ×∇+⋅×∇=×∇×∇ m e JHjE JEjH ωµ εω  ( ) me JJjEE ×∇−×∇−=×∇×∇ µω ε ε µεω 0 0 2  Planar Waves in an Source-less Anisotropic Electric Media Return to Table of Content
  • 57. 57 ELECTROMAGNETICSSOLO According to the principle of superposition these two fields can exist separately or be superimposed without disturbing each other. ( )1221 HEHE  ×−×⋅∇ Consider two distinct fields and. 11, HE  22 , HE  Assumptions: 1.The two fields are harmonic functions of time and of the same frequency. 2.The medium is linear. 3.The point considered is not inside a source and Ohm Law applies.         ∂ ∂ +⋅+ ∂ ∂ ⋅+        ∂ ∂ +⋅− ∂ ∂ ⋅= t D JE t B H t D JE t B H ee 1 12 2 1 2 21 1 2         12212112 HEEHHEEH  ×∇⋅+×∇⋅−×∇⋅−×∇⋅= ( ) ( )1122122112 DjJEBHjDjJEBHj ee j t ωωωω ω +⋅+⋅++⋅−⋅−= = ∂ ∂ ( ) ( ) 0 0 1122122112 21 ==⋅= ⋅= =⋅+⋅+⋅⋅+⋅+⋅−⋅⋅−= ee JJ ee ED HB EjJEHHjEjJEHHj εωµωεωµω ε µ    Lorentz’s Lemma
  • 58. 58 ELECTROMAGNETICSSOLO Lorentz’s Lemma (continue) ( ) ( )1221 HEHE  ×⋅∇=×⋅∇ For the two distinct fields and. 11, HE  22 , HE  Hendrik Antoon Lorentz 1853-1928 For a Monochromatic Planar Wave ( ) ( ) ( ) ( ) ( ) ( )    == == ⋅− ⋅− rktjtj rktjtj eHerHtrH eEerEtrE     ωω ωω ω ω 0 0 ,, ,, ( ) ( ) ( )rktjrktjrktj eskjekje   ⋅−⋅−⋅− −=−=∇ ωωω ˆ Lorentz’s Lemma can be written ( ) ( )1221 HEkHEk  ×⋅=×⋅
  • 59. 59 ELECTROMAGNETICSSOLO Lorentz’s Reciprocity Theorem ( ) ( )222 111 se se EEJ EEJ   += += σ σ This is the more general case that does not exclude the sources. ( ) 12211221 ee JEJEHEHE  ⋅−⋅=×−×⋅∇Ohm’s Law: are the applied electric field intensities within the sources21, ss EE  ( )1221 HEHE  ×−×⋅∇         ∂ ∂ +⋅+ ∂ ∂ ⋅+        ∂ ∂ +⋅− ∂ ∂ ⋅= t D JE t B H t D JE t B H ee 1 12 2 1 2 21 1 2         12212112 HEEHHEEH  ×∇⋅+×∇⋅−×∇⋅−×∇⋅= ( ) ( )1122122112 DjJEBHjDjJEBHj ee j t ωωωω ω +⋅+⋅++⋅−⋅−= = ∂ ∂ ( ) ( ) 122112211212 21122211122112 esesssssss ssssee JEJEEEEEEEEE EEEEEEEEEEJEJE   ⋅−⋅=⋅−⋅−⋅+⋅= ⋅−⋅=+⋅−+⋅=⋅−⋅= σσσσ σσσσ ( ) ( )1122122112 EjJEHHjEjJEHHj ee ED HB ⋅+⋅+⋅⋅+⋅+⋅−⋅⋅−= ⋅= ⋅= εωµωεωµω ε µ   
  • 60. 60 ELECTROMAGNETICSSOLO Lorentz’s Reciprocity Theorem (continue - 1) Integrate over a very large volume: ( ) 12211221 ee JEJEHEHE  ⋅−⋅=×−×⋅∇ ( ) ( )∫∫ ×−×⋅∇=⋅−⋅ VV eses dvHEHEdvJEJE 12211221  ( ) 11 22 21 21 0 0 0 0 1221 0 VoutsideE VoutsideE EE HH S s s S S sdHEHE      = = == == ⇐=⋅×−×= →∞ →∞ ∫ We obtained ( ) ( )∫∫ ⋅=⋅ V es V es dvJEdvJE 1221  ( ) 212121 bs V es V es IVdsJdlEdvJE =⋅=⋅ ∫∫  ( ) 121212 bs V es V es IVdsJdlEdvJE =⋅=⋅ ∫∫ 
  • 61. 61 ELECTROMAGNETICSSOLO Lorentz’s Reciprocity Theorem (continue - 2) The Reciprocity Theorem 1221 bsbs IVIV = The current induced in 2 when 1 is energized, divided by the voltage applied on 1, is the same as the current induced in 1 when 2 is energized, divided by the applied voltage on 2, as long as the frequency and the impedances remain unchanged. 1221 bbss IIVV =⇔= Return to Table of Content
  • 62. 62 SOLO ( ) ( ) ( ) ( ) ( ) ( )[ ]{ } ( ) ( ) ( ) ( )[ ] ( ) ( ) ( ) ( )[ ] ( ) ( ) ( ) ( ) ( ) ( )[ ]∫ ∫ ∫ ∫∫ −+⋅+= −+⋅−+= = ⋅=⋅= = T T T TEDT e dttjrErErEtjrE T dttjrEtjrEtjrEtjrE T dttjrEal T dttrEtrE T dttrDtrE T w 0 2**2 0 ** 0 2 00 2exp,,,22exp, 4 1 exp,exp,exp,exp, 4 1 exp,Re 1 ,, 1 ,, 1 ωωωωωω ε ωωωωωωωω ε ωωε ε ε      But ( ) ( )[ ] ( ) ( ) ( )[ ] ( ) 0 2 2exp 2exp 2 1 2exp 1 0 2 2exp 2exp 2 1 2exp 1 0 0 0 0 ∞→ ∞→ → − =−=− →== ∫ ∫ T T T T T T Tj Tj tj Tj dttj T Tj Tj tj Tj dttj T ω ω ω ω ω ω ω ω ω ω Therefore ( ) ( ) * 00 * 00 0 * 22 1 ,, 2 EEeEeEdt T rErEw rkjrkj T e εε ωω ε === ⋅−⋅ ∫   Let compute the time averages of the electric and magnetic energy densities ELECTROMAGNETICS Energy Flux and Poynting Vector For a Homogeneous, Linear and Isotropic Media
  • 63. 63 SOLO In the same way ( ) ( ) ( ) ( ) * 00 00 2 ,, 1 ,, 1 HHdttrHtrH T dttrBtrH T w TT m µ µ === ∫∫  Using the relations ( ) 00 ˆ HsEA ×−= ε µ ( ) 00 ˆ EsHF ×= µ ε since and are real values , where * is the complex conjugate, we obtain S∇ )**,( SS ∇=∇= ( ) ( ) ( ) ( ) ( ) ( )[ ] ( ) e m e wHkEHkEHkE EkHEkHHHw HkEHkEEEw =×⋅=×⋅=×⋅= ×⋅=×⋅=⋅= ×⋅=×⋅=⋅= * 00 * 0 * 00 ** 0 * 00 * 00 * 00 * 00 * 00 * 00 ˆ 2 ˆ 2 ˆ 2 ˆ 2 ˆ 22 ˆ 2 ˆ 22 µεµεµε µε µ εµµ µε ε µεε ELECTROMAGNETICS ( ) ( ) * 00 * 00 0 * 22 1 ,, 2 EEeEeEdt T rErEw rkjrkj T e εε ωω ε === ⋅−⋅ ∫   Energy Flux and Poynting Vector (continue – 1) For a Homogeneous, Linear and Isotropic Media: Time-averaged Electric Energy Density Time-averaged Magnetic Energy Density
  • 64. 64 SOLO Therefore ( ) ( )( )* 00 ˆ 2 rHkrEww me  ×⋅== µε Within the accuracy of Geometrical Optics, the Time-averaged Electric and Magnetic Energy Densities are equal. ( ) ( ) ( ) ( ) ( ) ( )( )* 0000 * 00 ˆ 22 rHkrErHrHrErEwww me  ×⋅=⋅+⋅=+= ∗ µε µε The total energy will be: The Poynting vector is defined as: ( ) ( ) ( )trHtrEtrS ,,:,  ×= ( ) ( ) ( ) ( ) ( ) ( )[ ] ( ) ( )[ ] ( ) ( )[ ]∫ ∫∫ −− +×+= ×=×=×= T tjtjtjtj T tjtj T dterHerHerEerE T dterHerEal T dttrHtrE T trHtrES 0 ** 00 ,, 2 1 ,, 2 11 ,,Re 1 ,, 1 ,, ωωωω ωω ϖϖϖϖ ϖϖ  ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ] ( ) ( ) ( ) ( )[ ]ωωωω ωωωωωωωω ωω ,,,, 4 1 ,,,,,,,, 4 11 ** 0 2****2 rHrErHrE dterHrErHrErHrEerHrE T T tjtj ×+×= ∫ ×+×+×+×= − [ ] [ ]0 * 0 * 00 0 * 0 * 00 4 1 4 1 HEHE eHeEeHeE rkjrkjrkjrkj ×+×= ×+×= ⋅−⋅⋅⋅−  The time average of the Poynting vector is: John Henry Poynting 1852-1914 ELECTROMAGNETICS Energy Flux and Poynting Vector (continue – 2) For a Homogeneous, Linear and Isotropic Media: Return to Table of Content
  • 65. 65 SOLO Assume the linear general constitutive relations ELECTROMAGNETICS ( ) ( ) ( )        =⋅∇ =⋅∇ −−=×∇ +=×∇ m e m e BGM DGE JBjEF JDjHA ρ ρ ω ω )( dyadicsxwhere H E B D 33,,, =                 =         µζξε µζ ξε        ( ) ( ) ( ) ( )    −⋅+⋅−=×∇ +⋅+⋅=×∇ m e JHEjEF JHEjHA µζω ξεω   Energy Flux and Poynting Vector for a Bianisotropic Medium
  • 66. 66 SOLO ELECTROMAGNETICS Let compute the following ( ) ( )[ ] ( )[ ] ( ) me HH me HH JHJEHHEHHEEEj JHEjHEJHEj EHHEHE ⋅−⋅−⋅⋅−⋅⋅−⋅⋅+⋅⋅= −⋅+⋅−⋅+⋅+⋅+⋅−−= ×∇⋅+×∇⋅−=×⋅∇ ****** **** *** µζξεω µζωξεω   ( ) ( )[ ] ( ) ( )[ ] ( ) ****** **** *** me HH m HH e JHJEHHHEHEEEj HJHEjJHEjE EHHEHE ⋅−⋅−⋅⋅−⋅⋅−⋅⋅+⋅⋅−= ⋅−⋅+⋅−−++⋅+⋅⋅−= ×∇⋅+×∇⋅−=×⋅∇ µζξεω µζωξεω   ( ) ( ) ( ) ( ) ****** ****** ** me HH me HH JHJEHHHEHEEEj JHJEHHEHEHEEj HEHE ⋅−⋅−⋅⋅−⋅⋅−⋅⋅+⋅⋅− ⋅−⋅−⋅⋅−⋅⋅−⋅⋅+⋅⋅= ×⋅∇+×⋅∇ µζξεω µζξεω   ( ) ( ) ( ) ( )    −⋅+⋅−=×∇ +⋅+⋅=×∇ m e JHEjEF JHEjHA µζω ξεω   Energy Flux and Poynting Vector for a Bianisotropic Medium (continue – 1)
  • 67. 67 SOLO ELECTROMAGNETICS ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ] ( ) ( ) [ ] ( ) ( )mmeeHH HH mmee HHHH me HH me HH JHJHJEJE H E jHE JHJHJEJE HHEHHEEEj JHJEHHHEHEEEj JHJEHHEHEHEEj HEHE ⋅+⋅−⋅+⋅−        ⋅                 −− −− −⋅= ⋅+⋅−⋅+⋅+ ⋅−⋅+⋅−⋅+⋅−⋅+⋅−⋅−= ⋅−⋅−⋅⋅−⋅⋅−⋅⋅+⋅⋅− ⋅−⋅−⋅⋅−⋅⋅−⋅⋅+⋅⋅= ×⋅∇+×⋅∇ ****** **** **** ****** ****** ** µµζζ ξξεε ω µµζζξξεεω µζξεω µζξεω      ( ) ( ) ( ) ( )[ ] ( ) ( ) ( ) ( )[ ]ωωωωωω ,,,, 4 1 ,,Re 2 1 ,, ** rHrErHrErHrEaltrHtrES ×+×=×=×=  We found the time average of the Poynting vector We see that ( ) ( )[ ] [ ] ( ) ( )mmee HH HH JHJHJEJE H Ej HEHEHES ⋅+⋅−⋅+⋅−         ⋅                 −− −− −⋅=×⋅∇+×⋅∇=⋅∇ **** **** 4 1 4 1 44 1 µµζζ ξξεεω    Energy Flux and Poynting Vector for a Bianisotropic Medium (continue – 2)
  • 68. 68 SOLO ELECTROMAGNETICS Let integrate the mean value of the Poynting vector over the volume V [ ] ( ) ( ) ( ) ( )[ ] ( ) ∫∫ ∫ ∫∫ ∫∫ →→ ⋅=⋅×+×= ×⋅∇+×⋅∇= ⋅+⋅−⋅+⋅−         ⋅                 −− −− −⋅=⋅∇ SS Gauss V V mm V ee V HH HH V dSnSdSnHEHE dVHEHE dVJHJHdVJEJE dV H Ej HEdVS 11 4 1 4 1 4 1 4 1 4 ** 1 ** **** **     µµζζ ξξεεω ( ) ( )[ ] [ ] ( ) ( )mmee HH HH JHJHJEJE H Ej HEHEHES ⋅+⋅−⋅+⋅−         ⋅                 −− −− −⋅=×⋅∇+×⋅∇=⋅∇ **** **** 4 1 4 1 44 1 µµζζ ξξεεω    Energy Flux and Poynting Vector for a Bianisotropic Medium (continue – 3)
  • 69. 69 SOLO ELECTROMAGNETICS We recognize the following                 −− −− −= HH HH j µµζζ ξξεεω   4 G mediumlosslessundefinite mediumpassivedefinitenegative mediumactivedefinitepositive ⇒ ⇒ ⇒ G G G [ ] ( ) ( )∫∫ ∫∫ ⋅+⋅−⋅+⋅−         ⋅                 −− −− −⋅=⋅ → V mm V ee V HH HH S dVJHJHdVJEJE dV H Ej HEdSnS **** ** 4 1 4 1 4 1 µµζζ ξξεεω    [ ] dV H Ej HE V ∫         ⋅                 −− −− −⋅ ** ** ** 4 µµζζ ξξεεω   ( )∫ ⋅+⋅ V ee dVJEJE ** 4 1 ( )∫ ⋅+⋅ V mm dVJHJH ** 4 1 ∫ → ⋅ S dSnS 1  Time average of the Radiated Energy through S (Irradiance) Time average of Electromagnetic Energy in V Time average of Joule Energy in V Time average of Fictious Joule Energy in V Energy Flux and Poynting Vector for a Bianisotropic Medium (continue – 4) Return to Table of Content
  • 70. 70 SOLO ELECTROMAGNETICS Planar Waves in an Source-less Anisotropic Electric Media     0 0 0 0 m e m e B D J t B E J t D H ρ ρ =⋅∇ =⋅∇ − ∂ ∂ −=×∇ + ∂ ∂ =×∇           ( )       ⋅− = ⋅− == rs c n tj s c n k rktj eEeEE    ˆ 0 ˆ 0 ω ω ω ωω ωω j t eje t rs c n tjrs c n tj → ∂ ∂ ⇒= ∂ ∂       ⋅−      ⋅−  ˆˆ  sjks c n jes c n je k rs c n tjrs c n tj ˆˆˆ ˆˆ −=−→∇⇒−=∇       ⋅−      ⋅− ωω ωω  0ˆ 0ˆ ˆ ˆ =⋅ =⋅ =× −=× Bs Ds BEs c n DHs c n ( ) ( )DEBH tt D E t B H HEEHHES HB ED         ⋅+⋅ ∂ ∂ −= ∂ ∂ ⋅− ∂ ∂ ⋅−= ×∇⋅−×∇⋅=×⋅∇=⋅∇ = ⋅= 2 1µ ε ( ) emUDEBHS k Ss c n =⋅+⋅=⋅=⋅ 2 1 ˆ ω  Maxwell’s Symmetric Equations Planar Monochromatic Wave 0 0 =⋅ =⋅ =× −=× Bk Dk BEk DHk     ω ω ωj t → ∂ ∂ s c n j ˆω−→∇ ωj t → ∂ ∂ kj  −→∇ vector phasor vector phasor c n k ω=:
  • 71. 71 SOLO ELECTROMAGNETICS Planar Waves in an Source-less Anisotropic Electric Media 0ˆ 0ˆ ˆ ˆ =⋅ =⋅ =× −=× Bs Ds BEs c n DHs c n dyadicsxwhere H E B D 33,,, µζξε µζ ξε                        =         HHIB ED   µµ ε =⋅= ⋅= For Anisotropic Electric Media the Linear Constitutive Relations are Planar Waves in an Source-less Media The most general form of Linear Constitutive Relations is: HES ×= Poynting Vector B  D  pv  E  H  HES  ×=α α k  ev  PlanarWaves ( ) DHs c n Bs c n Ess c n µµ −=×=×=××      ˆˆˆˆ 2 ( ) ( )[ ]EssE c n Ess c n D ⋅−      =××      −= ˆˆ 1 ˆˆ 1 22 µµ SDEs ,,,ˆ are coplanar and normal to H I  µµζξε === ,0,
  • 72. 72 SOLO ELECTROMAGNETICS Planar Waves in an Source-less Anisotropic Electric Media B  D  pv  E  H  HES  ×=α α k  ev  PlanarWaves( ) ( )[ ]EssE c n Ess c n D ⋅−      =××      −= ˆˆ 1 ˆˆ 1 22 µµ SDEs ,,,ˆ are coplanar and normal to H  ( ) DEnEsDsDE c n DD c ⋅=      ⋅⋅−⋅      =⋅ = 2 0 1 0 2 02 ˆˆ 1 ε µ µε DE DD n ⋅ ⋅ = 0 2 1 ε ( ) ( ) ( ) ( )( )2222 2 2 2 2 2 ˆ DEDED DDEED D DE E D DDE E D D D D EE D D D D EE s ⋅− ⋅− = ⋅ − ⋅ − =       ⋅−       ⋅− = ( ) ( ) ( ) ( )( )2222 2 2 2 2 2 : DEDEE EDEDE E DE D E DDE D E E E E DD E E E E DD S S t ⋅− ⋅− −= ⋅ − ⋅ − −=       ⋅−       ⋅− −==  If and are not collinear:DE
  • 73. 73 SOLO ELECTROMAGNETICS Planar Waves in an Source-less Anisotropic Electric Media Phase Velocity, Energy (Ray) Velocity The phase of the field is given by       ⋅−=⋅−= rs c n trkt  ˆωωφ For a constant phase front we have       ⋅−=⋅−=⋅−== rds c n dtrdskdtrdkdtd  ˆˆ0 ωωωφ s n c s kdt rd v srr const p ˆˆ ˆ === = = ω φ   Phase Velocity B  D  pv  E  H  HES  ×=α α k  ev  PlanarWaves n c ktd rd s ==⋅ ω  ˆ n c S S vs e =⋅ˆ ( ) α α cosˆ ˆ cos p S Ss e v Ss S n c v ⋅ = = ⋅ = Define the phase velocity as Define the energy flow velocity in the Poynting vector direction as S S vSv ee = → 1 ( ) emUDEBHS k Ss c n =⋅+⋅=⋅=⋅ 2 1 ˆ ω  ( ) em ee U S S Ssn c S S vv = ⋅ == ˆ 1 Energy (Ray) Velocity The electro-magnetic energy propagates along the Poynting vector . For anisotropic media the Poynting vector is not collinear with .k  HES ×= Return to Table of Content s c n k ˆω=  Electromagnetic Energy Density
  • 74. 74 SOLO ELECTROMAGNETICS Planar Waves in an Source-less Anisotropic Electric Media BEk DHk ω ω =× −=×   HHIB ED   µµ ε =⋅= ⋅= Wave Equation ( ) EDHkBkEkk EDDHkHBBEk ⋅−=−=×=×=×× ⋅=−=×==× εµωµωµωω εωµω   22 2222 0 0 0 ˆ kkkkkk kk kk kk k k k k s s s kskk zyx xy xz yz z y x z y x =++=⋅           − − − =×⇒           =           ==  ( ) ( ) ( ) ( )            +− +− +− =           − − −           − − − =×× 22 22 22 0 0 0 0 0 0 yxzyzx zyzxyx zxyxzy xy xz yz xy xz yz kkkkkk kkkkkk kkkkkk kk kk kk kk kk kk kk            = z y x ε ε ε ε 00 00 00                                        =                   = 2 2 2 0 0 0 0 0 0 2 2 00 00 00 00 00 00 c n c n c n z x x z y x ω ω ω εµ εµ εµ εµ εµ εµ εµ εµ εµω εωµ  In principal dielectric axes: 0 2 0 2 0 2 ,, ε ε ε ε ε ε z z y y x x nnn === ( ) 02 =⋅+×× EEkk εµω  ( ) 021 =+×× − DDkk µωε  or
  • 75. 75 SOLO ELECTROMAGNETICS Planar Waves in an Source-less Anisotropic Electric Media Wave Equation (continue – 1) ( ) 02 =⋅+×× EEkk εµω  ( ) ( ) ( ) 0 22 2 22 2 22 2 =                                     +−      +−      +−      z y x yx z zyzx zyzx y yx zxyxzy x E E E kk c n kkkk kkkk c n kk kkkkkk c n ω ω ω A nonzero solution exists only when ( ) ( ) ( ) 0det 22 2 22 2 22 2 =                       +−      +−      +−      yx z zyzx zyzx y yx zxyxzy x kk c n kkkk kkkk c n kk kkkkkk c n ω ω ω
  • 76. 76 SOLO ELECTROMAGNETICS Planar Waves in an Source-less Anisotropic Electric Media Wave Equation (continue – 2) ( ) ( ) ( )                       +−      +−      +−      =                       +−      +−      +−      ++= 22 2 22 2 22 2 22 2 22 2 22 2 2222 det z z zyzx zyy y yx zxyxx x kkkk yx z zyzx zyzx y yx zxyxzy x kk c n kkkk kkkk c n kk kkkkkk c n kk c n kkkk kkkk c n kk kkkkkk c n zyx ω ω ω ω ω ω We obtain         −−        −−                 −+        −+        −         −        +−= 2 2 22 222 2 22 222 2 22 22 2 22 22 2 22 2 2 22 22 2 22 k c n kkk c n kkk c n kk c n kk c n k c n kk c n y zx z yx y z z y zy x x ωωωωωωω 02 2 22 2 2 22 22 2 22 2 2 22 22 2 22 2 2 22 22 2 22 2 2 22 2 2 22 =         −        −+        −        −+        −         −+        −         −        −= k c n k c n kk c n k c n kk c n k c n kk c n k c n k c n yx z zx y zy x zyx ωωωωωωωωω Divide by (assumed nonzero!!)         −         −        −− 2 2 22 2 2 22 2 2 22 k c n k c n k c n zyx ωωω 1 2 22 2 2 2 22 2 2 2 22 2 2 = − + − + − c n k k c n k k c n k k z z y y x x ωωω This is a quadratic equation of k2 (k6 terms drop – next slide). For each set sx, sy, sz it yields two solutions for k2 : k1 2 and k2 2           =           z y x z y x s s s k k k k 2 2 22 2 2 2 22 2 2 2 22 2 2 1 k c n k s c n k s c n k s z z y y x x = − + − + − ωωω ( )skkk ˆ,, 21 ε  =
  • 77. 77 SOLO ELECTROMAGNETICS Planar Waves in an Source-less Anisotropic Electric Media 02 2 22 2 2 22 222 2 22 2 2 22 222 2 22 2 2 22 222 2 22 2 2 22 2 2 22 =         −        −+        −        −+         −        −+        −         −        − k c n k c n skk c n k c n skk c n k c n skk c n k c n k c n yx z zx y yz x zyx ωωωωωωωωω ( ) ( ) ( ) ( ) ( ) 02222 4 4 4222 2 2 622222 4 4 4222 2 2 622222 4 4 4222 2 2 62 222 6 6 2222222 4 4 4222 2 2 6 =++−+++−+++−+ +++−+++− ksnn c ksnn c ksksnn c ksnn c ksksnn c ksnn c ks nnn c knnnnnn c knnn c k zyxzyxzyzxyzxyxzyxzyx zyxzyzxyxzyx ωωωωωω ωωω ( ) ( ) ( ) ( )[ ] 0111 222 6 6 2222222222 4 4 4222222 2 2 =+−+−+−−++ zyxxzyyzxzyxzzyyxx nnn c ksnnsnnsnn c ksnsnsn c ωωω This is a quadratic equation of k2 . For each set sx, sy, sz it yields two solutions for k2 : k1 2 and k2 2 ( )skkk ˆ,, 21 ε  = 2 2 22 2 2 2 22 2 2 2 22 2 2 1 k c n k s c n k s c n k s z z y y x x = − + − + − ωωω 02 2 22 2 2 22 22 2 22 2 2 22 22 2 22 2 2 22 22 2 22 2 2 22 2 2 22 =         −        −+        −        −+        −         −+        −         −        − k c n k c n kk c n k c n kk c n k c n kk c n k c n k c n yx z zx y zy x zyx ωωωωωωωωω           =           z y x z y x s s s k k k k Wave Equation (continue – 2a) 1 222 =++ zyx sss
  • 78. 78 SOLO ELECTROMAGNETICS Planar Waves in an Source-less Anisotropic Electric Media Wave Equation (continue – 3) ( ) ( ) ( ) 0 22 2 22 2 22 2 =                                     +−      +−      +−      z y x yx z zyzx zyzx y yx zxyxzy x E E E kk c n kkkk kkkk c n kk kkkkkk c n ω ω ω A solution (self-mode) is: ( ) ( ) ( ) ( ) ( ) ( ) 0 0 0 222 2 222 2 222 2 =+++         ++−      =+++         ++−      =+++         ++−      ⋅ ⋅ ⋅             Ek zzyyxxzzzyx z Ek zzyyxxyyzyx y Ek zzyyxxxxzyx x EkEkEkkEkkk c n EkEkEkkEkkk c n EkEkEkkEkkk c n ω ω ω                                   −      −      −      2 2 2 2 2 2 k c n k k c n k k c n k z z y y x x ω ω ω ( )Ek ⋅−  ( ) ( ) ( )                                   −      ⋅ −      ⋅ −      ⋅ −=                         2 2 2 2 2 2 k c n Ekk k c n Ekk k c n Ekk E E E z z y y x x z y x ω ω ω    In principal dielectric axes Return to Table of Content
  • 79. 79 SOLO ELECTROMAGNETICS Planar Waves in an Source-less Anisotropic Electric Media Wave-Vector Surface The above equation can be represented by a three-dimensional surface in k space. ( ) ( ) ( ) 0det 22 2 22 2 22 2 =                     +−      +−      +−      yx z zyzx zyzx y yx zxyxzy x kk c n kkkk kkkk c n kk kkkkkk c n ω ω ω The understand how this surface look let find the intersection of the surface with kz = 0. ( ) ( ) 0 00 0 0 det 222 2 2 2 22 2 22 2 2 2 2 2 =         −         −              −              +−      =                     +−      −      −      yxx y y x yx z yx z x y yx yxy x kkk c n k c n kk c n kk c n k c n kk kkk c n ωωω ω ω ω
  • 80. 80 SOLO ELECTROMAGNETICS Planar Waves in an Source-less Anisotropic Electric Media Wave-Vector Surface (continue – 1) The intersection of the surface with kz = 0 is given by two equations, derived from: ( ) 0 22 2 222 2 2 2 =         +−              −         −              −      yx z yxx y y x kk c n kkk c n k c n ωωω 2 22       =+ c n kk z yx ω ( ) ( ) 1 // 22 =+ cn k cn k x y y x ωω ( ) 0 00 0 0 22 2 2 2 2 2 =                                     +−      −      −      z y x yx z x y yx yxy x E E E kk c n k c n kk kkk c n ω ω ω                 =                 = zz y x EE E E E 0 0 2                     −      − =                 = 0 2 2 1 y x yx z y x k c n kk E E E E ω 021 =⋅ EE Ellipse The electric fields corresponding to those two solutions are: on Ellipse on Circle Since the coefficients of the electric fields are real the two solutions represents two linear polarized planar waves. Circle
  • 81. 81 SOLO ELECTROMAGNETICS Planar Waves in an Source-less Anisotropic Electric Media Wave-Vector Surface (continue -2) Intersection of the surface with kz = 0, are a circle and an ellipse in kx, ky plane. 2 22       =+ c n kk z yx ω ( ) ( ) 1 // 2 2 2 2 =+ cn k cn k x y y x ωω Intersection of the surface with ky = 0, are a circle and an ellipse in kx, kz plane. 2 22       =+ c n kk y zx ω ( ) ( ) 1 // 2 2 2 2 =+ cn k cn k x z z x ωω Intersection of the surface with kx = 0, are a circle and an ellipse in ky, kz plane. 2 22       =+ c n kk x zy ω ( ) ( ) 1 // 2 2 2 2 =+ cn k cn k y z z y ωω Suppose nx < ny < nz. ( ) 0 222 2 2 2 22 2 =         −         −              −              +−      yxx y y x yx z kkk c n k c n kk c n ωωω 0 2 0 2 0 2 ,, ε ε ε ε ε ε z z y y x x nnn ===
  • 82. 82 SOLO ELECTROMAGNETICS Planar Waves in an Source-less Anisotropic Electric Media Wave-Vector Surface (continue – 3) The complete k surface is double; that is, it consists of an inner shell and an outer shell. For any given direction of the vector k, there are two possible values for the wave-number k (eigenmodes). Therefore are also two values for the phase velocity. From the figure we can see that the inner and outer shells of the k surface intersect at four points in each quadrant of the kx, kz plane (for nx<ny<nz). Those points define two directions for which the two values of k are equal. Those two directions are called Optical Axes. The structure of an anisotropic medium permits two monochromatic plane waves that are polarized orthogonally with respect to each other. If nx,ny and nz are different the crystal has two optical axes and is said to be biaxial. 0 2 0 2 0 2 ,, ε ε ε ε ε ε z z y y x x nnn === nx < ny < nz.
  • 83. 83 SOLO ELECTROMAGNETICS Planar Waves in an Source-less Anisotropic Electric Media Wave-Vector Surface (continue -4) Let compute the Optical Axis direction. 0 2 0 2 0 2 ,, ε ε ε ε ε ε z z y y x x nnn === We can see that the Optical Axis is in x, z plane, therefore           =           =           = δ δ ω cos 0 sin c n s s s k k k k k OA OAz y x OA OAz y x OA  2 22       =+ c n kk y zx ω ( ) ( ) 1 // 2 2 2 2 =+ cn k cn k x z z x ωω 22       =      c n c n yOA ωω 1 cossin 2 22 2 22 =+ x OA z OA n n n n δδ must be at the intersection ofOAk  and yOA nn = ( ) 1 coscos1 2 22 2 22 =+ − x y z y n n n n δδ 22 22 2 cos −− −− − − = zx zy OA nn nn δ 22 22 2 sin −− −− − − = zx yx OA nn nn δ 22 22 2 tan −− −− − − = zy yx OA nn nn δ If δ is less than 45º, the crystal is said to be a positive biaxial crystal. If δ is greater than 45º, the crystal is said to be a negative biaxial crystal. nx < ny < nz.         − − ±= −− −− − 22 22 1 2,1 sin zx yx OA nn nn δ
  • 84. 84 SOLO ELECTROMAGNETICS Planar Waves in an Source-less Anisotropic Electric Media Wave-Vector Surface (continue -5) 0 2 0 2 0 2 ,, ε ε ε ε ε ε z z y y x x nnn ===nx < ny < nz.
  • 85. 85 SOLO ELECTROMAGNETICS Planar Waves in an Source-less Anisotropic Electric Media Double Refraction at a Birefringent Crystal Boundary ( ) 0ˆ  =−× ti kkn At the Crystal Boundary defined by the normal the following condition must be satisfied nˆ The refracted wave is, in general, a mixture of two eigenmodes ( ) ( )222111 ,,, sn c ksn c k  ε ω ε ω == We can write ( ) ( ) 222111 sin,sin,sin θεθεθ skskk ii  == This looks like Snell’s Law but k1 and k2 are not constant, and we must add the quadratic equation in k2 : ( ) ( ) ( ) ( )[ ] 0111 222 6 6 2222222222 4 4 4222222 2 2 =+−+−+−−++ zyxxzyyzxzyxzzyyxx nnn c ksnnsnnsnn c ksnsnsn c ωωω 0 2 0 2 0 2 ,, ε ε ε ε ε ε z z y y x x nnn ===
  • 86. 86 SOLO ELECTROMAGNETICS Planar Waves in an Source-less Anisotropic Electric Media Wave-Vector Surface (continue – 6) If two of the refraction indices are equal the crystal has one optical axis and is said to be uniaxial. zyx εεε ≠=nx = ny =no≠ nz=ne For each set sx, sy, sz it yields two solutions for k2 : k1 and k2 ( )skkk ˆ,, 21 ε  = The quadratic equation of k2 is: 2 2 22 2 2 2 22 2 2 11 k c n k s c n k s e z o z = − + − − ωω ( )[ ] ( ) ( )[ ] 0111 24 6 6 222222 4 4 42222 2 2 =+++−−+− eozezoozezo nn c ksnsnn c ksnsn c ωωω ( ) ( ) ( ) ( )[ ] 0111 222 6 6 2222222222 4 4 4222222 2 2 =+−+−+−−++ zyxxzyyzxzyxzzyyxx nnn c ksnnsnnsnn c ksnsnsn c ωωω nx = ny =no≠ nz=ne Uniaxial Crystals One other way is to substitute in:
  • 87. 87 SOLO ELECTROMAGNETICS Planar Waves in an Source-less Anisotropic Electric Media Wave-Vector Surface (continue – 7) zyx εεε ≠=nx = ny =no≠ nz=ne ( )[ ] ( ) ( )[ ] 0111 24 6 6 222222 4 4 42222 2 2 =+++−−+− eozezoozezo nn c ksnsnn c ksnsn c ωωω ( )( ) 01 2 2 2 22222 2 2 2 2 22 =      −−−+      − oeozoe n c kknnsn c kn ωω ( )[ ] 01 22 2 2 222222 2 2 2 =       −+−      − eoezozo nn c knsnsn c k ωω The Wave-Vector surface decomposes into two separate shells 0 2 2 2 2 =− on c k ω ( )[ ] 0 22 2 2 222222 =−++ eoezoyx nn c knsnss ω 0 2 2 2 222 =−++ ozyx n c kkk ω Spherical surface 01 2 2 2 2 2 2 2 22 =−+ + o z e yx n c k n c kk ωω Ellipsoid of Revolution surface These two surfaces are tangent along the z axis. Uniaxial Crystals (continue – 1) Return to Table of Content
  • 88. 88 SOLO ELECTROMAGNETICS Planar Waves in an Source-less Anisotropic Electric Media Double Refraction at a Uniaxial Crystal Boundary For the Uniaxial Crystal is easy to solve the Boundary condition graphically: ( ) eeooii skkk θεθθ sin,sinsin 2  == The Wave-Vector surface decomposes into two separate shells: • the sphere of the ordinary wave with • the ellipsoid of extraordinary wave with .constko = ( )2, ske  ε is found graphically using the equality: Snell’s Lawooii kk θθ sinsin =o k  The intersection of the normal to the boundary from the end with the ellipse defines the direction of ek  o k  The intersection of the plane defined by and passing through the common centers of the sphere and the ellipsoid will give a circle and an ellipse, respectively. nki  , ii k θsin ik ok i θ oθ Intersection of normal surface with plane of incidence in ii k θsin Uniaxial Crystal Incident ray n  Optical Axis oE  eo nn >
  • 89. 89 SOLO ELECTROMAGNETICS Planar Waves in an Source-less Anisotropic Electric Media Double Refraction at a Uniaxial Crystal Boundary
  • 90. 90 SOLO ELECTROMAGNETICS Planar Waves in an Source-less Anisotropic Electric Media Wave-Vector Surface (continue – 8) nx = ny = nz=n If all three indices are equal, then the Wave-vector surface degenerates to a single sphere, and the crystal is optically isotropic. εεεε === zyx 2 22 2 c n k ω = 0 2 2 2 =                       z y x zzyzx zyyyx zxyxx E E E kkkkk kkkkk kkkkk 2222 zyx kkkk ++= ( ) 02 =⋅+×× EEkk εµω  We can see that: { } { } { } 0 ,, ,, ,, det 2 2 2 ≡           =             zyxz zyxy zyxx zzyzx zyyyx zxyxx kkkk kkkk kkkk kkkkk kkkkk kkkkk and: 0=⋅=++ EkEkEkEk zzyyxx  0/εε=n Isotropic Crystal Return to Table of Content
  • 91. 91 SOLO ELECTROMAGNETICS Optically Isotropic (Cubic) Crystals n Sodium Chloride (NaCl) Diamond Fluorite CdTe GaAs 1.544 2.417 1.392 2.69 3.40 Uniaxial Positive Crystals nO nE Ice Quartz Zircon Rutile ( TiO2 ) BeO ZnS 1.309 1.310 1.544 1.553 1.923 1.968 2.616 2.903 1.717 1.732 2.354 2.358 Uniaxial Negative Crystals nO nE Beryl Sodium Nitrate Calcite Tourmaline 1.598 1.590 1.587 1.336 1.658 1.486 1.669 1.638 Refractive Index of Some Typical Crystals
  • 92. 92 SOLO ELECTROMAGNETICS Biaxial Crystals n1 n2 n3 Gypsum Feldspar Mica Topaz NaNO2 SbSI YAlO3 1.520 1.523 1.530 1.522 1.526 1.530 1.552 1.582 1.588 1.619 1.620 1.627 1.344 1.411 1.651 2.7 3.2 3.8 1.923 1.938 1.947 Refractive Index of Some Typical Biaxial Crystals
  • 93. 93 SOLO ELECTROMAGNETICS Planar Waves in an Source-less Anisotropic Electric Media Crystal Types
  • 94. 94 SOLO ELECTROMAGNETICS Planar Waves in an Source-less Anisotropic Electric Media Crystal Types (continue -1)
  • 95. 95 SOLO ELECTROMAGNETICS Planar Waves in an Source-less Anisotropic Electric Media Crystal Types (continue – 2)
  • 96. 96 SOLO ELECTROMAGNETICS Planar Waves in an Source-less Anisotropic Electric Media Crystal Types (continue – 3) A.Mermin, “Solid State Physics”, Holt, Reinhart and Winston, 1976, p.122 Return to Table of Content
  • 97. 97 SOLO ELECTROMAGNETICS Planar Waves in an Source-less Anisotropic Electric Media Orthogonality Properties of the Eigenmodes Assume the two monochromatic waves corresponding to a given direction are defined by and sˆ 1111 ,,, nDEH  2222 ,,, nDEH  Start with Lorentz Reciprocity Theorem Use HB BEs c n µ= =×  ˆ Es c n H ×= ˆ µ ( )[ ] ( )[ ]12 2 21 1 ˆˆˆˆ EsEs c n EsEs c n ××⋅=××⋅ µµ ( ) ( ) ( ) ( )12 2 21 1 ˆˆˆˆ EsEs c n EsEs c n ×⋅×=×⋅× µµ ( ) ( )1221 ˆˆ HEsHEs ×⋅=×⋅ Since we have21 nn ≠ ( ) ( ) 0ˆˆ 21 =×⋅× EsEs ( ) ( ) 0ˆˆ 1221 =×⋅=×⋅ HEsHEs ( ) ( )1221 HEHE  ×⋅∇=×⋅∇ s c n j ˆω−→∇ 0=⋅=⋅ sHEH 
  • 98. 98 SOLO ELECTROMAGNETICS Planar Waves in an Source-less Anisotropic Electric Media Orthogonality Properties of the Eigenmodes (continue – 1) We obtain 0ˆˆˆˆ 221121212121212121 =⋅=⋅=⋅=⋅=⋅=⋅=⋅=⋅=⋅=⋅=⋅ HEHEHsHsDsDsEEEDDEDDHH ( ) ( ) 0ˆˆ 1221 =×⋅=×⋅ HEsHEs ( ) ( ) ( ) ( ) 0ˆˆ 0ˆˆ 21 1 2 21 2 ˆ 2121 21 1 ˆ 2121 2 2 2 1 1 1 11 =⋅=⋅=×⋅−=×⋅ =⋅=⋅×=×⋅ − −=× =× = DD n c DE n c HsEHEs HH n c HEsHEs D n c Hs B n c Es HB ε µ µ  ( ) ( ) ( ) ( ) 0ˆˆ 0ˆˆ 12 1 1 12 1 ˆ 1212 12 2 ˆ 1212 1 1 1 2 2 2 22 =⋅=⋅=×⋅−=×⋅ =⋅=⋅×=×⋅ − −=× =× = DD n c DE n c HsEHEs HH n c HEsHEs D n c Hs B n c Es HB ε µ µ 
  • 99. 99 SOLO ELECTROMAGNETICS Planar Waves in an Source-less Anisotropic Electric Media Orthogonality Properties of the Eigenmodes (continue – 2) We obtained The two solutions correspond to two different possible linear polarizations of a wave propagating in direction and these two solutions have mutually orthogonal polarizations. sˆ 0ˆˆˆˆ 221121212121212121 =⋅=⋅=⋅=⋅=⋅=⋅=⋅=⋅=⋅=⋅=⋅ HEHEHsHsDsDsEEEDDEDDHH Return to Table of Content
  • 100. 100 SOLO ELECTROMAGNETICS Phase Velocity, Energy (Ray) Velocity for Planar Waves The phase of the field is given by       ⋅−=⋅−= rs c n trkt  ˆωωφ For a constant phase front we have       ⋅−=⋅−=⋅−== rds c n dtrdskdtrdkdtd  ˆˆ0 ωωωφ s n c s kdt rd v srr const p ˆˆ: ˆ === = = ω φ   Phase Velocity B  D  pv  E  H  HES  ×=α α k  ev  PlanarWaves n c ktd rd s ==⋅ ω  ˆ n c S S vs e =⋅ :ˆ ( ) α α cosˆ cos ˆ p S Ss e v Ss S n c v = ⋅ = ⋅ = Define the phase velocity as Define the energy flow velocity in the Poynting vector direction as S S vSv ee = → 1 ( ) emUDEBHS k Ss c n =⋅+⋅=⋅=⋅ 2 1 ˆ ω  ( ) em ee U S S Ssn c S S vv = ⋅ == ˆ 1 :  Energy (Ray) Velocity The electro-magnetic energy propagates along the Poynting vector . For anisotropic media the Poynting vector is not collinear with .k  HES ×= Return to Table of Content
  • 101. 101 SOLO ELECTROMAGNETICS Planar Waves in an Source-less Anisotropic Electric Media Ray-Velocity Surface We defined the Energy-Ray Velocity as Let compute ( ) HDHEDEH U DHE U Dv emUemem e =               ⋅−         ⋅=××=×   0 11 ( ) ( ) DEHHEHEH U HHE U HvDvv emUemem eee 1 /0 1111 − −=−=                 ⋅−      ⋅=××=×=×× ε µµµ    In principal dielectric axes:                     =                     =− 2 2 2 2 2 2 1 00 00 00 1 00 0 1 0 00 1 1 z y x z y x n c n c n c εµ εµ εµ ε µ  ( ) em ee U S S Ssn c S S vv = ⋅ == ˆ 1 : 
  • 102. 102 SOLO ELECTROMAGNETICS Planar Waves in an Source-less Anisotropic Electric Media Ray-Velocity Surface (continue – 1) We can write ( ) 0 1 1 =+×× − DDvv ee ε µ  as ( ) ( ) ( ) 0 22 2 22 2 22 2 =                                       +−      +−         +−      z y x eyex z ezeyezex ezeyezex y eyex ezexeyexezey x D D D vv n c vvvv vvvv n c vv vvvvvv n c We obtain non-zero solutions only when ( ) ( ) ( ) 0det 22 2 22 2 22 2 =                       +−      +−         +−      eyex z ezeyezex ezeyezex y eyex ezexeyexezey x vv n c vvvv vvvv n c vv vvvvvv n c
  • 103. 103 SOLO ELECTROMAGNETICS Planar Waves in an Source-less Anisotropic Electric Media Intersection of the surface with vez = 0, are a circle and an ellipse in vex, vey plane. 2 22       =+ z eyex n c vv ( ) ( ) 1 // 2 2 2 2 =+ x ey y ex nc v nc v Intersection of the surface with vey = 0, are a circle and an ellipse in vex, vez plane. 2 22         =+ y ezex n c vv ( ) ( ) 1 // 2 2 2 2 =+ x z z ex nc k nc v Intersection of the surface with vex = 0, are a circle and an ellipse in vey, vez plane. 2 22         =+ x ezey n c vv ( ) ( ) 1 // 2 2 2 2 =+ y ez z ey nc v nc v Suppose nx < ny < nz. Ray-Velocity Surface (continue – 2) The previous equation has the same structure as the Wave-Vector Surface, therefore can be represented by a three-dimensional surface in ve space. vex, vey and vez are the components of ve in the principal axes of the dielectric. 0 2 0 2 0 2 ,, ε ε ε ε ε ε z z y y x x nnn ===
  • 104. 104 SOLO ELECTROMAGNETICS Planar Waves in an Source-less Anisotropic Electric Media nx < ny < nz. The complete ve surface is double; that is, it consists of an inner shell and an outer shell. For any given direction of the vector ve, there are two possible values for the energy-ray velocity ve (eigenmodes): ve1 and ve2. From the figure we can see that the inner and outer shells of the ve surface intersect at four points in each quadrant of the vex, vez plane (for nx<ny<nz). Those points define two directions for which the two values of ve are equal. Those directions are called Ray Axes and are distinct from the Optic Axes of the dielectric. Ray-Velocity Surface (continue – 3)
  • 105. 105 SOLO ELECTROMAGNETICS Planar Waves in an Source-less Anisotropic Electric Media Let compute the Ray Axis direction. We can see that the Ray Axis is in x, z plane, therefore           ==           = → RA RA RA RARAe RAez ey ex RAe n c Sv v v v v δ δ cos 0 sin 1  2 22         =+ y ezex n c vv ( ) ( ) 1 // 2 2 2 2 =+ x ez z ex nc v nc v 22         =      yRA n c n c 1 cossin 2 22 2 22 =+ RA RAx RA RAz n n n n δδ must be at the intersection ofRAev  and yRA nn = ( ) 1 coscos1 2 22 2 22 =+ − y RAx y RAz n n n n δδ 22 22 2 cos zx zy RA nn nn − − =δ 22 22 2 sin zx yx RA nn nn − − =δ 22 22 2 tan zy yx RA nn nn − − =δ         − − ±= − 22 22 1 2,1 sin zx yx RA nn nn δ 0 2 0 2 0 2 ,, ε ε ε ε ε ε z z y y x x nnn === Ray-Velocity Surface (continue – 4) RA x z yz xy x z OA n n nn nn n n δδ 2 2 2 22 22 2 2 2 tantan = − − = Ray Axes are distinct from Optical Axes.
  • 106. 106 SOLO ELECTROMAGNETICS Planar Waves in an Source-less Anisotropic Electric Media ( ) ( ) ( )                       +−        +−         +−        =                       +−        +−         +−        ++= 22 2 22 2 22 2 22 2 22 2 22 2 2222 det eze z ezeyezex ezeyeye y eyex ezexeyexexe x vvvv eyex z ezeyezex ezeyezex y eyex ezexeyexezey x vv n c vvvv vvvv n c vv vvvvvv n c vv n c vvvv vvvv n c vv vvvvvv n c ezeyexe We obtain         −−        −−                 −+        −+        −         −        +−= 2 2 2 222 2 2 222 2 2 22 2 2 22 2 2 2 2 2 22 2 2 e y ezexe z eyexe y eze z eye z e y exe x v n c vvv n c vvv n c vv n c vv n c v n c vv n c 0 2 2 2 2 2 2 22 2 2 2 2 2 22 2 2 2 2 2 22 2 2 2 2 2 2 2 2 =         −        −+        −        −+        −         −+        −         −        −= e y e x eze z e x eye z e y exe z e y e x v n c v n c vv n c v n c vv n c v n c vv n c v n c v n c Divide by (assumed nonzero!!(         −         −        −− 2 2 2 2 2 2 2 2 2 e z e y e x v n c v n c v n c 1 2 2 2 2 2 2 2 2 2 2 2 2 = − + − + − z e ez y e ey x e ex n c v v n c v v n c v v Ray-Velocity Surface (continue – 5( Return to Table of Content
  • 107. 107 SOLO ELECTROMAGNETICS Planar Waves in an Source-less Anisotropic Electric Media Index Ellipsoid The electric energy density is given by: ∗∗−∗ ⋅⋅=⋅⋅=⋅= EEDDDEUe εε  2 1 2 1 2 1 1 Let find the Surfaces of Equal Energy expressed in the principal dielectric axes: z z y y x x e DDD DDU εεε ε 222 1 2 ++=⋅⋅= ∗− We have: ( ) ( ) zyxin iii ,,// 00 2 === εεεµεµ Define: ezeyex UEzUEyUEx 2/:2/:2/: 000 εεε === The surfaces of equal energy expressed in the principal dielectric axes are: 1 /1/1/1 2 2 2 2 2 2 =++ zyx n z n y n x Fresnel’s Ellipsoid 0ˆˆˆˆ 221121212121212121 =⋅=⋅=⋅=⋅=⋅=⋅=⋅=⋅=⋅=⋅=⋅ HEHEHsHsDsDsEEEDDEDDHH We found that the two eigenmodes, of each direction , must satisfy: s  222 2 zzyyxxe EEEEEU εεεε ++=⋅⋅= ∗
  • 108. 108 SOLO ELECTROMAGNETICS Planar Waves in an Source-less Anisotropic Electric Media Index Ellipsoid (continue – 1( The electric energy density is given by: ∗∗−∗ ⋅⋅=⋅⋅=⋅= EEDDDEUe εε  2 1 2 1 2 1 1 z z y y x x e DDD DDU εεε ε 222 1 2 ++=⋅⋅= ∗− We have: ( ) ( ) zyxin iii ,,// 00 2 === εεεµεµ Define: 000 2/:2/:2/: εεε ezeyex UDzUDyUDx === The surfaces of equal energy expressed in the principal dielectric axes are: 12 2 2 2 2 2 =++ zyx n z n y n x Index Ellipsoid, Optical Indicatrix, Reciprocal Ellipsoid 0ˆˆˆˆ 221121212121212121 =⋅=⋅=⋅=⋅=⋅=⋅=⋅=⋅=⋅=⋅=⋅ HEHEHsHsDsDsEEEDDEDDHH We found that the two eigenmodes, of each direction , must satisfy: s  222 2 zzyyxxe EEEEEU εεεε ++=⋅⋅= ∗ Let find the Surfaces of Equal Energy expressed in the principal dielectric axes:
  • 109. 109 SOLO ELECTROMAGNETICS Planar Waves in an Source-less Anisotropic Electric Media Index Ellipsoid (continue – 2( Since we found that the index ellipsoid is used to find the two indexes of refraction and the two corresponding directions that are in the plane normal to that passes through ellipsoid center O and defines the ellipse. 0ˆˆ 21 =⋅=⋅ DsDs 21 DandD sˆ Sπ Assume that is one of the expected solutions. 0 2/ εe UDOP = → The normal at P to the ellipsoid PV is: E U z D y D x D U z z y y x x ez z y y x x e zyx PV  2 111 2 111 00 0 ε εεε ε εεε ε =         ++=         ++= ∧∧∧ ∧∧∧→ Since are coplanar PV is in the plane defined by and sˆDπ D sED  ,, The plane tangent to ellipsoid at P is normal to PV ( (, intersects plane along PT that will be normal to and , therefore it gives direction. Tπ E E H Sπ sˆ 0ˆˆ 221121 =⋅=⋅=⋅=⋅ HEHEHsHs
  • 110. 110 SOLO ELECTROMAGNETICS Planar Waves in an Source-less Anisotropic Electric Media Index Ellipsoid (continue – 3( PT is at the intersection of the tangent plane to the ellipsoid at P to the plane normal to and containing PO. Therefore PT is tangent to the ellipse containing PO. Tπ Sπ sˆ - Since PT is in , it is normal toSπ sˆ E - Since PT is in the tangent plane to the ellipsoid, it is normal to PV ( ( Tπ sˆ H EH- Since is also normal to and PT defines the direction of is also normal toH D The tangent to an ellipse is only normal to the radius vector if it is one of the axes of the ellipse. We conclude that the directions of are the directions of the axes of the ellipse obtained by the intersection of the ellipsoid with the plane normal to . 21 DandD sˆ
  • 111. 111 SOLO ELECTROMAGNETICS Planar Waves in an Source-less Anisotropic Electric Media Index Ellipsoid (continue – 4( To find for the propagation direction we find the ellipse obtained by the intersection of the plane normal to , at the origin O, with the Index Ellipsoid. 21 DandD sˆ sˆSπ 21 DandD are in the direction of ellipsoid axes, and therefore perpendicular to each other is on the normal to ellipsoid at OP = and in the plane of and . In the same plane and normal to is E sˆ E Dπ D Dπ HE HE S × × = → 1
  • 112. 112 SOLO ELECTROMAGNETICS Planar Waves in an Source-less Anisotropic Electric Media Index Ellipsoid (continue – 5( 12 2 2 2 2 2 =++ zyx n z n y n xnx < ny < nz. For the propagation direction of the Optical Axis the intersection of the plane normal to , at the origin O, with the Index Ellipsoid is a Circle. OAsˆSπ OAsˆ 1 D 21 DandD are in any direction on this circle, and therefore for any we can find the perpendicular to it.2 D Conical Refraction on the Optical Axis We want to find the direction of vectors. E We have: [ ] ET E E E EsDs z y x zxOAOA ⋅=           ⋅=⋅⋅=⋅=  δεδεε cos0sinˆˆ0 where: [ ]T zxT δεδε cos0sin:=            = δ δ cos 0 sin ˆOAsFor nx < ny < nz we found that in principal dielectric axes         − − ±= −− −− − 22 22 1 2,1 sin zx yx nn nn δ SDEs ,,,ˆ are coplanar and normal toH We also found: DE DD n ⋅ ⋅ = 0 2 1 ε const n D DE y ==⋅ 2 0 2 ε We found: y nn =
  • 113. 113 SOLO ELECTROMAGNETICS Planar Waves in an Source-less Anisotropic Electric Media Index Ellipsoid (continue – 6( 12 2 2 2 2 2 =++ zyx n z n y n xnx < ny < nz. Conical Refraction on the Optical Axis (continue – 1( OAsˆ Let draw in principal dielectric axes coordinate O,x,y,z, starting from O, the vectors and . They define the plane Bπ T  0=⋅ ET  Since we can find in vectors such thatEBπ constDE =⋅ and , , and are in the same plane. E OAsˆD HE HE S × × = → 1 Tπ Therefore the locus of is the projection of the circle of from plane to an ellipse in plane having the Oy axis in common. E D Sπ Since are in the same plane with and will be on a conical surface with O as a vertex having and on its surfacesT  OAsˆDHE HE S × × = → 1 → S1 OAsˆ
  • 114. 114 SOLO ELECTROMAGNETICS Planar Waves in an Source-less Anisotropic Electric Media Index Ellipsoid (continue – 7( Conical Refraction on the Optical Axis (continue – 2( Take a biaxial crystal and cut it so that two parallel faces are perpendicular to the Optical Axis. If a monochromatic unpolarized light is normal to one of the crystal faces, the energy will spread out in the plate in a hollow cone, the cone of internal conical refraction. When the light exits the crystal the energy and wave directions coincide, and the light will form a hollow cylinder. This phenomenon was predicted by William Rowan Hamilton in 1832 and confirmed experimentally by Lloyd, a year later (Born & Wolf(. Because it is no easy to obtain an accurate parallel beam of monochromatic light on obtained two bright circles (Born & Wolf(. William Rowan Hamilton (1805-1855(
  • 115. 115 SOLO ELECTROMAGNETICS Planar Waves in an Source-less Anisotropic Electric Media Index Ellipsoid (continue – 8( Conical Refraction on the Optical Axis (continue – 3( Return to Table of Content
  • 116. 116 SOLO ELECTROMAGNETICS Planar Waves in an Source-less Anisotropic Electric Media BEs c n DHs c n   =× −=× ˆ ˆ HHIB ED   µµ ε =⋅= ⋅= ( ) E n c D n c Hs n c Bs n c Ess ⋅−=−=×=×=×× εµµµ  2 2 2 2 ˆˆˆˆ 1ˆˆ 0 0 0 ˆˆ 222 =++=⋅           − − − =×⇒           = zyx xy xz yz z y x sssss ss ss ss s s s s s           = z y x ε ε ε ε 00 00 00                    == 0 2 0 2 0 2 22 2 00 00 00 1 ε ε ε ε ε ε ε µε µεµ n n n nn c z y x  ( ) ( ) ( ) ( )             +− +− +− =             +− +− +− =           − − −           − − − =×× 2 2 2 22 22 22 1 1 1 0 0 0 0 0 0 ˆˆ zzyzx zyyyx zxyxx yxzyzx zyzxyx zxyxzy xy xz yz xy xz yz sssss sssss sssss ssssss ssssss ssssss ss ss ss ss ss ss ss Equation of Wave Normal ( ) 0ˆˆ 2 2 =⋅+×× E n c Ess εµ  ( ) 0ˆˆ 2 2 1 =+×× − D n c Dss µε  or
  • 117. 117 SOLO ELECTROMAGNETICS Planar Waves in an Source-less Anisotropic Electric Media ( ) 0ˆˆ 2 2 =⋅+×× E n c Ess εµ  0 1 1 1 2 0 2 2 0 2 2 0 2 =                             +− +− +− z y x z z zyzx zyy y yx zxyxx x E E E s n ssss sss n ss sssss n ε ε ε ε ε ε The solution is obtained when       −      −+      −      −+      −      −+      −      −      −= 111111111 0 2 0 2 2 0 2 0 2 2 0 2 0 2 2 0 2 0 2 0 2 ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε nn s nn s nn s nnn yx z zx y yz x zyx                   +− +− +− = 2 0 2 2 0 2 2 0 2 1 1 1 det0 z z zyzx zyy y yx zxyxx x s n ssss sss n ss sssss n ε ε ε ε ε ε       −−      −−            −+      −+      −      −      +−= 1111111 0 2 22 0 2 22 0 2 2 0 2 2 0 2 0 2 2 0 2 ε ε ε ε ε ε ε ε ε ε ε ε ε ε n ss n ss n s n s nn s n y zx z yx y z z y zy x x Equation of Wave Normal (continue – 1(
  • 118. 118 SOLO ELECTROMAGNETICS Planar Waves in an Source-less Anisotropic Electric Media 0111111111 1 1 1 det 0 2 0 2 2 0 2 0 2 2 0 2 0 2 2 0 2 0 2 0 2 2 0 2 2 0 2 2 0 2 =        −        −+        −        −+        −        −+        −        −        −= =                     +− +− +− ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε nn s nn s nn s nnn s n ssss sss n ss sssss n yx z zx y yz x zyx z z zyzx zyy y yx zxyxx x Divide by (assumed nonzero!!(       −      −      −− 111 0 2 0 2 0 2 2 ε ε ε ε ε ε nnn n zyx 2 0 2 2 0 2 2 0 2 2 1 nn s n s n s z z y y x x = − + − + − ε ε ε ε ε ε 222 2 22 2 22 2 1 nnn s nn s nn s z z y y x x = − + − + − 0 2 0 2 0 2 ,, ε ε ε ε ε ε z z y y x x nnn === Equation of Wave Normal (continue – 2( Fresnel equation of wave normal Fresnel's wave surface, found by Augustin-Jean Fresnel in 1821, is a quartic surface describing the propagation of light in an optically biaxial crystal Augustin-Jean Fresnel (1788 – 1827(
  • 119. 119 SOLO ELECTROMAGNETICS Planar Waves in an Source-less Anisotropic Electric Media Equation of Wave Normal (continue – 3( Fresnel equation of wave normal 02 0 2 0 222 0 2 0 222 0 2 0 222 0 2 0 2 0 =        −        −+        −        −+        −        −+        −        −        − nnsnnnsnnnsnnnn yx z zx y yz x zyx ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε 022 00 42 00 6222 00 42 00 6222 00 42 00 62 000 2 000000 4 000 6 =+        +−++        +−++        +−+ +        ++−        +++− nsnsnsnsnsnsnsnsns nnn z yx z yx zy zx y zx yx zy x zy x zyxzyzxyxzyx ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ( ) ( ) ( ) 0111 000 22 00 2 00 2 00 42 0 2 0 2 0 =+      −+−+−−        ++ ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε zyx x zy y zx z yx z z y y x x nsssnsss 0111111111 0 2 0 2 2 0 2 0 2 2 0 2 0 2 2 0 2 0 2 0 2 =        −        −+        −        −+        −        −+        −        −        − ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε nn s nn s nn s nnn yx z zx y yz x zyx 6 n This is a quadratic equation of n2 . For each set sx, sy, sz it yields two solutions for n2 : n1 2 and n2 2 ( )snnn ˆ,, 21 ε  = 222 2 22 2 22 2 1 nnn s nn s nn s z z y y x x = − + − + − 1 222 =++ zyx sss Return to Table of Content

Notas del editor

  1. M.V.Klein, T.Furtak,&amp;quot;Optics&amp;quot;, pp.34-35 E. Hecht, A. Zajac,&amp;quot;Optics&amp;quot;,pp.8, pp.225-226 W.Swindell,Ed.,&amp;quot;Polrized Light&amp;quot;, BenchmarkPapers in Optics, V.1, pg.10 and 25
  2. M.V.Klein, T.Furtak,&amp;quot;Optics&amp;quot;, pp.34-35 E. Hecht, A. Zajac,&amp;quot;Optics&amp;quot;,pp.8, pp.225-226
  3. M. Born, E. Wolf,&amp;quot;Principles of Optics&amp;quot;, pp. xxiii M.V. Klein, T. Furtak,&amp;quot;Optics&amp;quot;, pp.35
  4. http://en.wikipedia.org/wiki/Charles-Augustin_de_Coulomb
  5. http://en.wikipedia.org/wiki/Charles-Augustin_de_Coulomb
  6. http://chem.ch.huji.ac.il/history/oersted.htm
  7. http://en.wikipedia.org/wiki/Amp%C3%A8re%27s_Law http://www-history.mcs.st-andrews.ac.uk/Biographies/Ampere.html http://www.ampere.cnrs.fr/activites/act_ampere_recherche.php?qt=titre&amp;titre=Rapport&amp;page=7&amp;total=205&amp;lang=fr
  8. http://www-history.mcs.st-andrews.ac.uk/history/Biographies/Biot.html http://www-history.mcs.st-andrews.ac.uk/Biographies/Ampere.html http://www.cec.uchile.cl/~cutreras/apuntes/node82.html#SECTION00710000000000000000
  9. http://www-history.mcs.st-andrews.ac.uk/history/Biographies/Biot.html http://www.cec.uchile.cl/~cutreras/apuntes/node82.html#SECTION00710000000000000000
  10. http://chem.ch.huji.ac.il/history/faraday.htm http://www.ece.umd.edu/~taylor/frame1.htm
  11. Maffett, &amp;quot;Topics for a Statistical Description of Radar Cross Section&amp;quot;, pp.47
  12. Maffett, &amp;quot;Topics of Statistical Description of Radar Cross Section&amp;quot;, 1988, pp.25-27 and 287-289
  13. Maffett, &amp;quot;Topics of Statistical Description of Radar Cross Section&amp;quot;, 1988, pp.25-27 and 287-289
  14. Maffett, &amp;quot;Topics of Statistical Description of Radar Cross Section&amp;quot;, 1988, pp.25-27 and 287-289
  15. A. Yariv, P. Yeh,&amp;quot;Optical Waves in Crystals&amp;quot;, John Wiley &amp; Sons, 1984, pp.79-82 A. Maffett,&amp;quot;Topics of Statistical Description of Radar Cross Sections&amp;quot;, John Wiley &amp; Sons, 1988, pp.314
  16. G.R. Fowles,&amp;quot;Introduction to Modern Optics&amp;quot;, 2nd Ed., Dover, p. 176 Yariv &amp; Yeh,&amp;quot;Optical Waves in Crystals&amp;quot;, John Wiley &amp; Sons, 1984, p.85
  17. Yariv &amp; Yeh, &amp;quot;Optical Waves in Crystals&amp;quot;,John Willey &amp; Sons, 1984, p.85 G.R. Fowles, &amp;quot;Introduction to Modern Optics&amp;quot;, 2nd Ed., Dover, 1975, p.176
  18. A. Yariv, P. Yeh &amp;quot;Optical Waves in Crystals&amp;quot;,1984, John Wiley &amp; Sons, p.83 A. Mermin, &amp;quot;Solid State Physics&amp;quot;,Holt, Reinhart and Winston, 1976, p.116 http://www.tulane.edu/~sanelson/eens211/32crystalclass.htm
  19. A. Yariv, P. Yeh &amp;quot;Optical Waves in Crystals&amp;quot;,1984, John Wiley &amp; Sons, p.83 A. Mermin, &amp;quot;Solid State Physics&amp;quot;,Holt, Reinhart and Winston, 1976, p.116 http://www.tulane.edu/~sanelson/eens211/32crystalclass.htm
  20. A. Yariv, P. Yeh &amp;quot;Optical Waves in Crystals&amp;quot;,1984, John Wiley &amp; Sons, p.83 A. Mermin, &amp;quot;Solid State Physics&amp;quot;,Holt, Reinhart and Winston, 1976, p.116 http://www.tulane.edu/~sanelson/eens211/32crystalclass.htm
  21. A. Yariv, P. Yeh,&amp;quot;Optical Waves in Crystals&amp;quot;, John Wiley &amp; Sons, 1984, pp.79-82 A. Maffett,&amp;quot;Topics of Statistical Description of Radar Cross Sections&amp;quot;, John Wiley &amp; Sons, 1988, pp.314
  22. G.R. Fowles,&amp;quot;Introduction to Modern Optics&amp;quot;, Dover, 1975, pp.178-180
  23. Born &amp; Wolf, &amp;quot;Principle of Optics&amp;quot;, 6th Ed., pp.686-690 M.V. Klein,&amp;quot;Optics&amp;quot;, 1970, pp.609
  24. Born &amp; Wolf, &amp;quot;Principle of Optics&amp;quot;, 6th Ed., pp.686-690 M.V. Klein,&amp;quot;Optics&amp;quot;, 1970, pp.609
  25. http://en.wikipedia.org/wiki/Wave_surface