SlideShare una empresa de Scribd logo
1 de 26
Descargar para leer sin conexión
Design Kit
PV Ni-MH Battery System (DC Out)

         All Rights Reserved Copyright (C) Bee Technologies Corporation 2013   1
Contents
                                                                                                                                    Slide #

    1. Nickel - Metal Hydride Battery
       1.1 Ni-MH Battery Specification.................................................................................             3
       1.2 Discharge Time Characteristics...........................................................................                4
       1.3 Battery Voltage vs. SOC Discharge Characteristics.............................................                           5
       1.4 Charge Time Characteristics................................................................................              6
       1.5 Battery Voltage vs. SOC Charge Characteristics.................................................                          7
    2. Solar Cells
       2.1 Solar Cells Specification......................................................................................          8
       2.2 Output Characteristics vs. Incident Solar Radiation.............................................                         9
    3. Solar Cell Battery Charger.........................................................................................          10
       3.1 Concept of Simulation PV Ni-MH Battery Charger Circuit....................................                               11
       3.2 PV Ni-MH Battery Charger Circuit........................................................................                 12
       3.3 Charging Time Characteristics vs. Weather Condition.........................................                             13
       3.4 Concept of Simulation PV Ni-MH Battery Charger Circuit + Constant Current.....                                           14
       3.5 Constant Current PV Ni-MH Battery Charger Circuit............................................                            15
       3.6 Charging Time Characteristics vs. Weather Condition + Constant Current..........                                         16
    4. Simulation PV Ni-MH Battery System in 24hr.
       4.1 Concept of Simulation PV Ni-MH Battery System in 24hr....................................                                17
       4.2 Short-Circuit Current vs. Time (24hr.)..................................................................                 18
       4.3 PV-Battery System Simulation Circuit..................................................................                   19
       4.3 PV-Battery System Simulation Result..................................................................                    20-25
    Simulations index............................................................................................................   26

                                  All Rights Reserved Copyright (C) Bee Technologies Corporation 2013                                         2
1.1 Ni-MH Battery Specification


  KAWAZAKI’s Ni-MH Batteries : Gigacell (10-180)

  • Rated Voltage ..................12 [V]

  • Capacity............................177 [Ah] (Approximately)

  • Energy Capacity................2.1 [kWh]

  • Max Output........................48 [kW]                                        10 Ni-MH cells are
                                                                                         in series.
  • Rated Charge................ 0.2C5 [A] ( SoC=100% )




                        All Rights Reserved Copyright (C) Bee Technologies Corporation 2013               3
1.2 Discharge Time Characteristics



17V                                                                                  PARAMETERS:
                                                                                     rate = 0.2
                                                                                     CAh = 177
16V                                                                                                                      Hi


15V                                                                                                                C1           U1          0
                         1C ( 177A )                                    IN+    OUT+                                1n     +   - GIGACELL_10-180
14V        2C ( 354A )                                                  IN-    OUT-                                             TSCALE = 3600
                                                                     G1                                        0                NS = 1
                                                                     GVALUE                                                     SOC1 = 1
13V                                       0.2C ( 35.4A )             limit(V(%IN+, %IN-)/0.1m, 0, rate*CAh )

                                                                                                                          TSCALE=3600
12V                                                                                   0
                         0.5C ( 88.5A )                                                                                 means “Time Scale”
11V                                                                                                                      (Simulation time :
                                                                                                                        Real time) is 1:3600
10V
                                                                    Batteries Pack Model Parameters

 9V
                                                                    NS (number of batteries in series) = 1 Unit (10 Ni-MH cells)
                                                                    C (capacity) = 177 Ah
 8V                                                                 SOC1 (initial state of charge) = 1 (100%)
                                                                    TSCALE (time scale) ,           simulation : real time
 7V                                                                                                 1 : 3600s or
      0s   1.0s     2.0s       3.0s       4.0s     5.0s    6.0s                                     1s : 1h
            V(HI)
                               Time
                                                                    Discharge Rate : 0.2C(35.4A), 0.5C(88.5A), 1C(177A) and 2C(354A)




                                 All Rights Reserved Copyright (C) Bee Technologies Corporation 2013                                        4
1.3 Battery Voltage vs. SOC Discharge Characteristics

                                                                                                         10 Ni-MH cells are in series for
                                                                                                          total rated current 12V (Each
                                                                                                          cell have 1.2V rated voltage).




     Measurement                                                                                                  Simulation

                                                                                           0.2C, Dch       2.0C, Dch       5.0C, Dch         8.0C, Dch         11C, Dch


                                                                                  17

                                                                                  16

                                                                                  15




                                                            Battery Voltage (V)
                                                                                  14

                                                                                  13

                                                                                  12

                                                                                  11

                                                                                  10

                                                                                   9

                                                                                   8

                                                                                   7
                                                                                       0           0.2             0.4                 0.6               0.8              1

                                                                                                                         SOC (%)



•   VBAT vs. SOC Discharge Characteristics are compared between measurement data and simulation
    data.


                        All Rights Reserved Copyright (C) Bee Technologies Corporation 2013                                                                               5
1.4 Charge Time Characteristics

                                                                                  PARAMETERS:
                                                                                  rate = 0.2
                                                                                  CAh = 177

17V                                                                               G1
                                                                                  GVALUE
                                                                                  Limit(V(%IN+, %IN-)/0.1m, 0, rate*CAh )
16V                                                                                                                                    Hi




                                                                                   OUT+
                                                                                   OUT-
15V        1C ( 177A )                                                                                                          C1            U1          0
                                                                                                                                1n      +   - GIGACELL_10-180




                                                                                   IN+
                                                                                   IN-
14V                                                                                                                                           TSCALE = 3600
                                                                                                                            0                 NS = 1
                                                                                                                                              SOC1 = 0
13V                       0.2C ( 35.4A )                                  Vin
                                                                          18Vdc

12V
                   0.5C ( 88.5A )                                                                                                      TSCALE=3600
                                                                          0
                                                                                                                                     means “Time Scale”
11V
                                                                                                                                      (Simulation time :
10V
                                                                                                                                     Real time) is 1:3600
                                                                       Batteries Pack Model Parameters
 9V
                                                                       NS (number of batteries in series) = 1 Unit (10 Ni-MH cells)
 8V                                                                    C (capacity) = 177 Ah
                                                                       SOC1 (initial state of charge) = 1 (100%)
 7V                                                                    TSCALE (time scale) ,           simulation : real time
      0s         1.0s        2.0s          3.0s      4.0s      5.0s                                    1 : 3600s or
             V(HI)                                                                                     1s : 1h
                                    Time

                                                                       Charge Rate : 0.2C(35.4A), 0.5C(88.5A), and 1C(177A)




                                    All Rights Reserved Copyright (C) Bee Technologies Corporation 2013                                                   6
1.5 Battery Voltage vs. SOC Charge Characteristics



     Measurement                                                                                      Simulation

                                                                                           0.2C, Ch   2.0C, Ch          3.0C, Ch         5.0C, Ch


                                                                                  17

                                                                                  16

                                                                                  15




                                                            Battery Voltage (V)
                                                                                  14

                                                                                  13

                                                                                  12

                                                                                  11

                                                                                  10

                                                                                   9

                                                                                   8

                                                                                   7
                                                                                       0      0.2      0.4             0.6         0.8              1

                                                                                                             SOC (%)




•   VBAT vs. SOC Charge Characteristics are compared between measurement data and simulation
    data.


                        All Rights Reserved Copyright (C) Bee Technologies Corporation 2013                                                         7
2.1 Solar Cells Specification


  Suntech’s photovoltaic module : STP140D-12/TEA

  • Maximum power (Pmax)............140[W]

  • Voltage at Pmax (Vmp).............17.6[V]

  • Current at Pmax (Imp)...............7.95[A]

  • Short-circuit current (Isc)...........8.33[A]

  • Open-circuit voltage(Voc)..........22.4[V]




                                                                                            1482mm
                      All Rights Reserved Copyright (C) Bee Technologies Corporation 2013            8
2.2 Output Characteristics vs. Incident Solar Radiation

                                              STP140D-12/TEA Output Characteristics vs. Incident Solar Radiation

                                                                      10A
                                                                                            SOL=1
                                                                        8A




                                                     Current (A)
                                                                        6A
                                                                                        SOL=0.5
                                                                        4A
         +
                U1                                                      2A              SOL=0.16
                STP140D-12TEA
                                                                        0A
                SOL = 1                                                         I(Isense)
                                                                     150W
                                                                                              SOL=1



                                                         Power (W)
                                                                     100W

       Parameter, SOL is added as                                                                        SOL=0.5

       normalized incident radiation,
                                                                      50W
         where SOL=1 for AM1.5                                                                        SOL=0.16
                conditions                                           SEL>>
                                                                        0W
                                                                           0V      5V       10V      15V           20V   25V
                                                                                V(V1:+)*I(Isense)
                                                                                                V_V1
                                                                                                Voltage (V)



                      All Rights Reserved Copyright (C) Bee Technologies Corporation 2013                                      9
3. Solar Cell Battery Charger

•   Solar Cell charges the Ni-MH battery pack (STP140D-12/TEA) with direct connect
    technique. Choose the solar cell that is able to provide current at charging rate or more
    with the maximum power voltage (Vmp) nears the batteries pack charging voltage.


•   Gigacell 10-180 (Ni-MH Battery)
     – Charging time is approximately 5 hours with charging rate 0.2C or 35.4A
     – Voltage during charging with 0.2C is between 11.8 to 14.2 V

                          17V

                          16V

                          15V

                          14V
                                                                                        14.2 V
                          13V
                                                    0.2C or 35.4A
                          12V                                                           11.8 V
                          11V

                          10V

                           9V

                           8V

                           7V
                                0s           1.0s   2.0s          3.0s   4.0s    5.0s
                                     V(HI)
                                                           Time



                       All Rights Reserved Copyright (C) Bee Technologies Corporation 2013       10
3.1 Concept of Simulation PV Ni-MH Battery Charger Circuit



                                                                    Over Voltage
                                                                    Protection Circuit
   Short circuit current ISC
 depends on condition: SOL
                                                                   14.01V Clamp Circuit



         Photovoltaic
                                                                               Ni-MH Battery
         Module



       STP140D-12/TEA (Suntech)                                              Gigacell 10-180 (Kawasaki)
       10 panels (parallel)                                                 DC12V (10 cells)
       Vmp=17.6V                                                             177Ah
       Pmax=1.4kW




                         All Rights Reserved Copyright (C) Bee Technologies Corporation 2013              11
3.2 PV Ni-MH Battery Charger Circuit

                                                                                                              D1


                         PARAMETERS:                                                                          DMOD
                         sol = 1
                                                                                                                        Voch
                                                                                                                        14.01dc
                                                                                  pv                                   0
                                                                                                             Hi

       +             +             +             +            +                                               +    -
               U6            U5            U4            U3           U2                               C1              0
                                                                           STP140D-12TEA               1n
                                                                           SOL = {sol}
                                                                                                   0
           0             0             0             0            0                                          U1
                                                                                                             GIGACELL_10-180
                                                                                                             TSCALE = 3600
                                                                                                             NS = 1
       +             +             +             +            +                                              SOC1 = 0
               U11           U10           U9            U8           U7




           0             0             0             0            0



   •       Input value between 0-1 in the “PARAMETERS: sol = ” to set the normalized incident
           radiation, where SOL=1 for AM1.5 conditions.



                                       All Rights Reserved Copyright (C) Bee Technologies Corporation 2013                        12
3.3 Charging Time Characteristics vs. Weather Condition


       1.00V




       0.75V




       0.50V




       0.25V                                                                                      sol = 1.00
                                                                                                  sol = 0.50
                                                                                                  sol = 0.16
          0V
               0s     1s        2s        3s        4s         5s        6s         7s            8s     9s    10s
                    V(X_U1.SOC)
                                                             Time



   •     Simulation result shows the charging time for sol = 1, 0.5, and 0.16.



                            All Rights Reserved Copyright (C) Bee Technologies Corporation 2013                      13
3.4 Concept of Simulation PV Ni-MH Battery Charger Circuit
+ Constant Current



                                                                         Over Voltage
                                                                         Protection Circuit
   Short circuit current ISC
 depends on condition: SOL
                                                                        14.01V Clamp Circuit


                                Constant
      Photovoltaic              Current
                                                                                    Ni-MH Battery
      Module                    Control
                                Circuit


     STP140D-12/TEA        Icharge=0.2C (35.4A)                                   Gigacell 10-180 (Kawasaki)
     (Suntech)                                                                    DC12V (10 cells)
     10 panels (parallel)                                                        177Ah
     Vmp=17.6V
     Pmax=1.4kW



                         All Rights Reserved Copyright (C) Bee Technologies Corporation 2013               14
3.5 Constant Current PV Ni-MH Battery Charger Circuit


                                                                                                                                     D1

                                                                                          PARAMETERS:
                         PARAMETERS:                                                                                                 DMOD
                                                                                          rate = 0.2
                         sol = 1                                                          CAh = 177
                                                                                                                                               Voch
                                                                                                                                               14.01dc
                                                                                   pv                                                         0
                                                                                                                                    Hi




                                                                                             OUT+
                                                                                             OUT-
       +             +             +            +            +                                                                       +    -
               U6            U5            U4           U3           U2                                                    C1                 0
                                                                          STP140D-12TEA                                    1n
                                                                          SOL = {sol}




                                                                                             IN+
                                                                                             IN-
                                                                                                                       0
           0             0             0            0            0                          G1                                      U1
                                                                                            GVALUE                                  GIGACELL_10-180
                                                                                            Limit(V(%IN+, %IN-)/0.1, 0, rate*CAh)   TSCALE = 3600
                                                                                                                                    NS = 1
       +             +             +            +            +                                                                      SOC1 = 0
               U11           U10           U9           U8           U7




           0             0             0            0            0




   •           Input the battery capacity (Ah) and charging current rate (e.g. 0.2*CAh) in the
   •           “PARAMETERS: CAh = 177 and rate = 0.2 ” to set the charging current.



                                           All Rights Reserved Copyright (C) Bee Technologies Corporation 2013                                           15
3.6 Charging Time Characteristics vs. Weather Condition
(Constant Current)


       1.00V




       0.75V




       0.50V




       0.25V                                                                                           sol = 1.00
                                                                                                       sol = 0.50
                                                                                                       sol = 0.16
          0V
               0s     1s        2s        3s        4s         5s        6s         7s            8s        9s      10s
                    V(X_U1.SOC)
                                                              Time

   •     Simulation result shows the charging time for sol = 1, 0.5, and 0.16. If PV can
         generate current more than the constant charge rate (0.2C), battery can be fully
         charged in about 5 hour.


                            All Rights Reserved Copyright (C) Bee Technologies Corporation 2013                           16
4.1 Concept of Simulation PV Ni-MH Battery System in 24hr.


                                                                                       Over Voltage
   The model contains 24hr.                                                            Protection Circuit
  solar power data (example).
                                                                                     14.01V Clamp Circuit



  Photovoltaic
                                                                                       Ni-MH Battery
  Module

                               Low-Voltage                                           Gigacell 10-180 (Kawasaki)
 STP140D-12/TEA                Shutdown                                              DC12V (10 cells)
 (Suntech)                     Circuit                Vopen=11. 6(V)                 177Ah
 10 panels (parallel)                                Vclose= 13.8(V)
 Vmp=17.6V
 Pmax=1.4kW
                                                    DC/DC
                                                                                   DC Load
                                                    Converter

                                                  VIN=10~18V                      VL = 5V
                                                  VOUT=5V                         IL = 50A


                         All Rights Reserved Copyright (C) Bee Technologies Corporation 2013                      17
4.2 Short-Circuit Current vs. Time (24hr.)
                                                                                                           The model contains
                                                                                                          24hr. solar power data
                                                                                                                (example).
 15A




 10A                                                                                                       U1
                                                                                                     +




                                                                                                         STP140D-12TEA_24H_TS3600
  5A




  0A
       0s 1s 2s 3s 4s 5s 6s 7s 8s 9s 10s    12s    14s    16s    18s     20s    22s   24s
          I(Isense)
                                            Time




        •    Short-circuit current vs. time characteristics of photovoltaic module STP140D-12/TEA
             for 24hours as the solar power profile (example) is included to the model.



                               All Rights Reserved Copyright (C) Bee Technologies Corporation 2013                            18
4.3 PV-Battery System Simulation Circuit

    Solar cell model
    with 24hr. solar
     power data.
                                                                                                                                                                              Set initial battery                                        D1

                                                                                                                                                                            voltage, IC=13.7, for                                        DMOD

                                                                                                                                                                             convergence aid.                                                         Voch
                                                                                                                                                                                                                                                      14.01Vdc
                                                                      pv                                                                                                                                                                              0
                                                                                     D2
                                                                                                                                                                                                                                      batt
                                                                                     DMOD
+       U6    +       U5    +       U4   +       U3   +       U2
                                                                                                                                                                                                                          C1                                  0
                                                                                                                                          Low-Voltage Shutdown Circuit                                                    10n             +   -
                                                          STP140D-12TEA_24H_TS3600                                                                                                                                        IC = 13.7
                                                                                            VON = 0.7                                                                                                                 0
    0             0             0            0            0                                 VOFF = 0.3                             E1
                                                                                            RON = 0.01m                  Ronof f   EVALUE
                                                                                            ROFF = 10MEG                 100       IF(V(batt1)>V(dchth),5,0)                        Ronof f 1                                            U1
                                                                                                +                Lctrl                                                    batt1                                                          GIGACELL_10-180
                                                                                                    +                              OUT+    IN+
+       U11   +       U10   +       U9   +       U8   +       U7                     C3                                                                                                                                                  TSCALE = 3600
                                                                                            -       -                              OUT-    IN-       dchth                               100
                                                                                     100n                          Conof f                                                                                                               NS = 1
                                                                                            S2                     1n                                                                                                                    SOC1 = 1
                                                                                                        0                                             OUT+     IN+
                                                                                            S                      IC = 5                                                             Conof f 1
                                                                                                                                                      OUT-     IN-                    100n
                                                                                            PARAMETERS:                                                 E2
    0             0             0            0            0                                                                                             EVALUE
                                                                                            Lopen = 11.6
                                                                                                                                             IF( V(lctrl) > 0.25 ,Lopen ,Lclose)                                          SOC1 value is initial
                                                                                            Lclose = 13.8                                                                            0
                                                                                                                                                                                                                           State Of Charge of
                                                                                                                                                                                                                          the battery, is set as
                                                                                                                                                                                   DC/DC Converter
                                                      Lopen value is load                                                                                                                                                  70% of full voltage.
                                                       shutdown voltage.                                                                                                   PARAMETERS:
                                                                                                                                                                                                                                out_dc
                                                                                                                                                                           n=1
                                                      Lclose value is load                                  IN                                                                                    OUT
                                                                                                                                                          Iomax
                                                       reconnect voltage                                         G1                                                        E3                                                                         I1
                                                                                                                 IN+  OUT+                 IN+    OUT+                     IN+    OUT+
                                                                                                                 IN-  OUT-                 IN-    OUT-                     IN-    OUT-
                                                                                                                                                                                                                                                      50Adc
                                                                                                                 GVALUE                    ecal_Iomax                      EVALUE
                                                                                                                                           EVALUE                          IF( I(OUT)-V(Iomax) > 0 ,n*V(%IN+, %IN-)*I(IN)/(I(OUT)+1u), 5 )
                                                                                                                                                         0
                                                                                                                                           n*V(%IN+, %IN-)*I(IN)/5

                                                                                                            Limit( V(%IN+, %IN-)/0.1, 1m, 5*I(out)/(n*limit(V(%IN+, %IN-),10,25)) )
                                                                                                                                                                                                           250W Load                              0

                                                                                                                                                                                                            (5Vx50A).
                                                                                            0


                                                                                                                                              Simulation at 500W load, change I1 from 50A to 100A



                                                                    All Rights Reserved Copyright (C) Bee Technologies Corporation 2013                                                                                                                    19
4.3.1 Simulation Result (SOC1=1, IL=50A or 250W load)

                                    150A

PV generated current                100A
                                     50A
                                      0A
                                               I(pv)                               PV module charge the battery
                 16V                100A
             1              2
Battery voltage
                 14V                  0A
Battery current                   >>
                 12V            -100A                                                                                      Battery supplies current when solar
                                           1      V(batt)     2       I(U1:PLUS)                                           power drops.
                                    1.0V
                                                                                                Fully charged,
Battery SOC                                    SOC1=1 (100%)                                    stop charging
                                SEL>>
                                   0V
                                               V(X_U1.SOC)
                  7.5V               50A
DC output voltage
             1                  2
                  5.0V
DC/DC input current
                  2.5V
                                      >>
                       0V             0A
                                         0s            3s              6s          9s          12s          15s           18s           21s         24s
                                          1       V(out_dc)       2     I(IN)
                                                                              Charging       Time
                                                                              time
                                        When battery is discharging , current I(U1:PLUS) is minus and when the battery is charging, the current is plus.

                                                                                               •      .Options
         •       C1: IC=13.7
                                                                                                        •    RELTOL=0.01
         •       Run to time: 24s (24hours in real world)
                                                                                                        •    ABSTOL=1.0u
         •       Step size: 0.01s
                                                                                                        •    ITL4=1000


                                                  All Rights Reserved Copyright (C) Bee Technologies Corporation 2013                                            20
4.3.2 Simulation Result (SOC1=0.7, IL=50A or 250W load)

                              150A

PV generated current          100A
                               50A
                                0A
                                         I(pv)
                  15V
             1           2     50A                  V=Lopen
Battery voltage
                                0A
                                                                       (8.3138,13.797)
Battery current    >>         -50A                                                 V=Lclose
                                                                (5.7490,11.595)
                  10V                                                                                              Battery supplies current when solar
                                     1      V(batt)     2        I(U1:PLUS)                                        power drops.
                              1.0V
                                         SOC1=0.7
Battery SOC                                                                                    Fully charged,
                                                                                               stop charging
                              SEL>> 699.201m)
                                 0V
                                     V(X_U1.SOC)
                  7.5V          50A                                    Shutdown
DC output voltage
           1                 2
                  5.0V          38A
DC/DC input current             25A
                  2.5V                                                             Reconnect
                                >>
                    0V          0A
                                   0s            3s                6s         9s              12s          15s     18s         21s         24s
                                    1       V(out_dc)       2      I(IN)
                                                                           Charging
                                                                                              Time
                                                                           time



                                                                                              •      .Options
         •        C1: IC=13.7
                                                                                                       •    RELTOL=0.01
         •        Run to time: 24s (24hours in real world)
                                                                                                       •    ABSTOL=1.0u
         •        Step size: 0.01s
                                                                                                       •    ITL4=1000


                                             All Rights Reserved Copyright (C) Bee Technologies Corporation 2013                                         21
4.3.3 Simulation Result (SOC1=0.3, IL=50A or 250W load)

                              150A

PV generated current          100A
                               50A
                                0A
                                          I(pv)
                  15V          75A
             1           2
Battery voltage                25A       (2.0552,11.595)
                                                                      (8.2938,13.798)
Battery current                 >>                                                 V=Lclose
                  10V         -75A
                                                      V=Lopen                                                      Battery supplies current when solar
                                     1       V(batt)     2       I(U1:PLUS)                                        power drops.
                              1.0V
                                                                                               Fully charged,
                                         ,299.176m)
Battery SOC                                                                                    stop charging
                             SEL>>          SOC1=0.3
                                0V
                                          V(X_U1.SOC)
                  7.5V         50A
DC output voltage
           1                 2
                  5.0V         38A                    Shutdown
DC/DC input current            25A
                  2.5V
                                >>                                                 Reconnect
                    0V          0A
                                   0s             3s              6s          9s              12s          15s     18s         21s         24s
                                    1        V(out_dc)       2    I(IN)
                                                                       Charging time
                                                                                           Time




                                                                                               •     .Options
         •        C1: IC=13.7
                                                                                                       •    RELTOL=0.01
         •        Run to time: 24s (24hours in real world)
                                                                                                       •    ABSTOL=1.0u
         •        Step size: 0.01s
                                                                                                       •    ITL4=1000


                                             All Rights Reserved Copyright (C) Bee Technologies Corporation 2013                                         22
4.3.4 Simulation Result (SOC1=0.07, IL=50A or 250W load)

                                  150A

PV generated current              100A
                                   50A
                                    0A
                                              I(pv)
                  15V             100A
             1               2
Battery voltage
                                    0A
Battery current                  SEL>>                                         (8.2938,13.798)
                  10V            -100A
                                                                                  V=Lclose                            Battery supplies current when solar
                                         1       V(batt)     2       I(U1:PLUS)                                       power drops.
                                  1.0V

Battery SOC                                                                                        Fully charged,
                                              SOC1=0.07                                            stop charging
                                    0V
                                              V(X_U1.SOC)
                   7.5V            50A
DC output voltage
             1                   2
                   5.0V            38A
                                              Shutdown
DC/DC input current                25A
                                                                                       Reconnect
                        >>         13A
                        0V          0A
                                         0s          3s              6s           9s           12s            15s    18s         21s         24s
                                          1      V(out_dc)       2    I(IN)
                                                                                              Time
                                                                         Charging time



                                                                                                   •     .Options
         •        C1: IC=13.7
                                                                                                           •    RELTOL=0.01
         •        Run to time: 24s (24hours in real world)
                                                                                                           •    ABSTOL=1.0u
         •        Step size: 0.01s
                                                                                                           •    ITL4=1000


                                                All Rights Reserved Copyright (C) Bee Technologies Corporation 2013                                         23
4.3.5 Simulation Result (SOC1=1, IL=100A or 500W load)

                                       150A

PV generated current                   100A
                                        50A
                                         0A
                                                  I(pv)                               V=Lclose
                                                                     V=Lopen
                  15.0V                100A
             1                 2                  (4.2247,11.627)                                                                              V=Lopen
                                                                                                                                  (21.778,11.600)
Battery voltage
                  12.5V                  0A
Battery current                                                                (8.2850,13.799)
                                   SEL>>
                  10.0V            -100A
                                              1      V(batt)     2         I(U1:PLUS)                                       Battery supplies current when solar
                                       1.0V                                                                                 power drops.

Battery SOC                                                                                                Fully charged,
                                                  SOC1=100                                                 stop charging
                                         0V
                                                  V(X_U1.SOC)
                     7.5V               50A
DC output voltage
               1                   2                                     Shutdown                                                                      Shutdown
                     5.0V
DC/DC input current
                     2.5V                                                                Reconnected
                                         >>
                          0V             0A
                                            0s           3s                6s           9s           12s           15s         18s           21s        24s
                                             1       V(out_dc)       2      I(IN)
                                                                                    Charging     Time
                                                                                    time


                                                                                                 •         .Options
         •        C1: IC=13.7
                                                                                                             •    RELTOL=0.01
         •        Run to time: 24s (24hours in real world)
                                                                                                             •    ABSTOL=1.0u
         •        Step size: 0.01s
                                                                                                             •    ITL4=1000


                                                   All Rights Reserved Copyright (C) Bee Technologies Corporation 2013                                            24
4.3.4 Simulation Result (Example of Conclusion)
The simulation start from midnight(time=0). The system supplies DC load 250W.
•   If initial SOC is 100%,
      – this system will never shutdown.
•   If initial SOC is 70%,
      – this system will shutdown after 5.749 hours (about 5:45AM.).
      – system load will reconnect again at 8:19AM.
•   If initial SOC is 30%,
      – this system will shutdown after 2.055 hours (about 2:03AM.).
      – system load will reconnect again at 8:18AM.
•   If initial SOC is 7%,
      – this system will start shutdown.
      – this system will reconnect again at 8:18AM (Morning).
•   With the PV generated current profile, battery will fully charged in about 5.7 hours.


The simulation start from midnight(time=0). The system supplies DC load 500W.
•   If initial SOC is 100%,
      – this system will shutdown after 4.225 hours (about 4:14AM.).
      – system load will reconnect again at 8:17AM.
      – this system will shutdown again at 9:47PM.
•   With the PV generated current profile, battery will fully charged in about 6.7 hours.

                           All Rights Reserved Copyright (C) Bee Technologies Corporation 2013   25
Simulations index



 Simulations                                                                                 Folder name

 1.   PV Ni-MH Battery Charger Circuit..................................................     charge-sol

 2.   Constant Current PV Ni-MH Battery Charger Circuit.....................                 charge-sol-const

 3.   PV-Battery System Simulation Circuit (SOC1=1, 250W)...............                     sol_24h_soc100

 4.   PV-Battery System Simulation Circuit (SOC1=0.7, 250W)............                      sol_24h_soc70

 5.   PV-Battery System Simulation Circuit (SOC1=0.3, 250W)............                      sol_24h_soc30

 6.   PV-Battery System Simulation Circuit (SOC1=0.07, 250W)..........                       sol_24h_soc7

 7.   PV-Battery System Simulation Circuit (SOC1=1, 500W)...............                     sol_24h_soc100_500W




                             All Rights Reserved Copyright (C) Bee Technologies Corporation 2013                   26

Más contenido relacionado

La actualidad más candente

SPICE MODEL of 1MB05D-120 (Professional+FWDS Model) in SPICE PARK
SPICE MODEL of 1MB05D-120 (Professional+FWDS Model) in SPICE PARKSPICE MODEL of 1MB05D-120 (Professional+FWDS Model) in SPICE PARK
SPICE MODEL of 1MB05D-120 (Professional+FWDS Model) in SPICE PARKTsuyoshi Horigome
 
SPICE MODEL of 2SC5505 in SPICE PARK
SPICE MODEL of 2SC5505 in SPICE PARKSPICE MODEL of 2SC5505 in SPICE PARK
SPICE MODEL of 2SC5505 in SPICE PARKTsuyoshi Horigome
 
SPICE MODEL of 1MB03D120 (Professional+FWDS Model) in SPICE PARK
SPICE MODEL of 1MB03D120 (Professional+FWDS Model) in SPICE PARKSPICE MODEL of 1MB03D120 (Professional+FWDS Model) in SPICE PARK
SPICE MODEL of 1MB03D120 (Professional+FWDS Model) in SPICE PARKTsuyoshi Horigome
 
SPICE MODEL of 1MBH03D-120 (Professional+FWDP Model) in SPICE PARK
SPICE MODEL of 1MBH03D-120 (Professional+FWDP Model) in SPICE PARKSPICE MODEL of 1MBH03D-120 (Professional+FWDP Model) in SPICE PARK
SPICE MODEL of 1MBH03D-120 (Professional+FWDP Model) in SPICE PARKTsuyoshi Horigome
 
SPICE MODEL of 1MBH15D-060 (Professional+FWDS Model) in SPICE PARK
SPICE MODEL of 1MBH15D-060 (Professional+FWDS Model) in SPICE PARKSPICE MODEL of 1MBH15D-060 (Professional+FWDS Model) in SPICE PARK
SPICE MODEL of 1MBH15D-060 (Professional+FWDS Model) in SPICE PARKTsuyoshi Horigome
 
SPICE MODEL of TPC8018-H (Professional+BDP Model) in SPICE PARK
SPICE MODEL of TPC8018-H (Professional+BDP Model) in SPICE PARKSPICE MODEL of TPC8018-H (Professional+BDP Model) in SPICE PARK
SPICE MODEL of TPC8018-H (Professional+BDP Model) in SPICE PARKTsuyoshi Horigome
 
SPICE MODEL of KGH25N120NDA (Professional+FWDP Model) in SPICE PARK
SPICE MODEL of KGH25N120NDA (Professional+FWDP Model) in SPICE PARKSPICE MODEL of KGH25N120NDA (Professional+FWDP Model) in SPICE PARK
SPICE MODEL of KGH25N120NDA (Professional+FWDP Model) in SPICE PARKTsuyoshi Horigome
 
SPICE MODEL of TPC8114 (Professional+BDP Model) in SPICE PARK
SPICE MODEL of TPC8114 (Professional+BDP Model) in SPICE PARKSPICE MODEL of TPC8114 (Professional+BDP Model) in SPICE PARK
SPICE MODEL of TPC8114 (Professional+BDP Model) in SPICE PARKTsuyoshi Horigome
 
SPICE MODEL of 1MBH15D-120 (Professional+FWDS Model) in SPICE PARK
SPICE MODEL of 1MBH15D-120 (Professional+FWDS Model) in SPICE PARKSPICE MODEL of 1MBH15D-120 (Professional+FWDS Model) in SPICE PARK
SPICE MODEL of 1MBH15D-120 (Professional+FWDS Model) in SPICE PARKTsuyoshi Horigome
 
SPICE MODEL of 1MBH05D-120 (Professional+FWDS Model) in SPICE PARK
SPICE MODEL of 1MBH05D-120 (Professional+FWDS Model) in SPICE PARKSPICE MODEL of 1MBH05D-120 (Professional+FWDS Model) in SPICE PARK
SPICE MODEL of 1MBH05D-120 (Professional+FWDS Model) in SPICE PARKTsuyoshi Horigome
 
SPICE MODEL of 1MBH15D-060 (Professional+FWDP Model) in SPICE PARK
SPICE MODEL of 1MBH15D-060 (Professional+FWDP Model) in SPICE PARKSPICE MODEL of 1MBH15D-060 (Professional+FWDP Model) in SPICE PARK
SPICE MODEL of 1MBH15D-060 (Professional+FWDP Model) in SPICE PARKTsuyoshi Horigome
 
SPICE MODEL of TLP624 in SPICE PARK
SPICE MODEL of TLP624 in SPICE PARKSPICE MODEL of TLP624 in SPICE PARK
SPICE MODEL of TLP624 in SPICE PARKTsuyoshi Horigome
 
鉛蓄電池のシンプルモデル(LTspice)
鉛蓄電池のシンプルモデル(LTspice)鉛蓄電池のシンプルモデル(LTspice)
鉛蓄電池のシンプルモデル(LTspice)spicepark
 
SPICE MODEL of RN1903AFS in SPICE PARK
SPICE MODEL of RN1903AFS in SPICE PARKSPICE MODEL of RN1903AFS in SPICE PARK
SPICE MODEL of RN1903AFS in SPICE PARKTsuyoshi Horigome
 
SPICE MODEL of UP05C8G in SPICE PARK
SPICE MODEL of UP05C8G in SPICE PARKSPICE MODEL of UP05C8G in SPICE PARK
SPICE MODEL of UP05C8G in SPICE PARKTsuyoshi Horigome
 
SPICE MODEL of PC111LY in SPICE PARK
SPICE MODEL of PC111LY in SPICE PARKSPICE MODEL of PC111LY in SPICE PARK
SPICE MODEL of PC111LY in SPICE PARKTsuyoshi Horigome
 
SPICE MODEL of TPCP8402 (Standard+BDS N&P Model) in SPICE PARK
SPICE MODEL of TPCP8402 (Standard+BDS N&P Model) in SPICE PARKSPICE MODEL of TPCP8402 (Standard+BDS N&P Model) in SPICE PARK
SPICE MODEL of TPCP8402 (Standard+BDS N&P Model) in SPICE PARKTsuyoshi Horigome
 
SPICE MODEL of 2SC5980-TL-E in SPICE PARK
SPICE MODEL of 2SC5980-TL-E in SPICE PARKSPICE MODEL of 2SC5980-TL-E in SPICE PARK
SPICE MODEL of 2SC5980-TL-E in SPICE PARKTsuyoshi Horigome
 
SPICE MODEL of KGH25N120NDA (Professional+FWD+SP Model) in SPICE PARK
SPICE MODEL of KGH25N120NDA (Professional+FWD+SP Model) in SPICE PARKSPICE MODEL of KGH25N120NDA (Professional+FWD+SP Model) in SPICE PARK
SPICE MODEL of KGH25N120NDA (Professional+FWD+SP Model) in SPICE PARKTsuyoshi Horigome
 
鉛蓄電池のシンプルモデル(PSpice)
鉛蓄電池のシンプルモデル(PSpice)鉛蓄電池のシンプルモデル(PSpice)
鉛蓄電池のシンプルモデル(PSpice)spicepark
 

La actualidad más candente (20)

SPICE MODEL of 1MB05D-120 (Professional+FWDS Model) in SPICE PARK
SPICE MODEL of 1MB05D-120 (Professional+FWDS Model) in SPICE PARKSPICE MODEL of 1MB05D-120 (Professional+FWDS Model) in SPICE PARK
SPICE MODEL of 1MB05D-120 (Professional+FWDS Model) in SPICE PARK
 
SPICE MODEL of 2SC5505 in SPICE PARK
SPICE MODEL of 2SC5505 in SPICE PARKSPICE MODEL of 2SC5505 in SPICE PARK
SPICE MODEL of 2SC5505 in SPICE PARK
 
SPICE MODEL of 1MB03D120 (Professional+FWDS Model) in SPICE PARK
SPICE MODEL of 1MB03D120 (Professional+FWDS Model) in SPICE PARKSPICE MODEL of 1MB03D120 (Professional+FWDS Model) in SPICE PARK
SPICE MODEL of 1MB03D120 (Professional+FWDS Model) in SPICE PARK
 
SPICE MODEL of 1MBH03D-120 (Professional+FWDP Model) in SPICE PARK
SPICE MODEL of 1MBH03D-120 (Professional+FWDP Model) in SPICE PARKSPICE MODEL of 1MBH03D-120 (Professional+FWDP Model) in SPICE PARK
SPICE MODEL of 1MBH03D-120 (Professional+FWDP Model) in SPICE PARK
 
SPICE MODEL of 1MBH15D-060 (Professional+FWDS Model) in SPICE PARK
SPICE MODEL of 1MBH15D-060 (Professional+FWDS Model) in SPICE PARKSPICE MODEL of 1MBH15D-060 (Professional+FWDS Model) in SPICE PARK
SPICE MODEL of 1MBH15D-060 (Professional+FWDS Model) in SPICE PARK
 
SPICE MODEL of TPC8018-H (Professional+BDP Model) in SPICE PARK
SPICE MODEL of TPC8018-H (Professional+BDP Model) in SPICE PARKSPICE MODEL of TPC8018-H (Professional+BDP Model) in SPICE PARK
SPICE MODEL of TPC8018-H (Professional+BDP Model) in SPICE PARK
 
SPICE MODEL of KGH25N120NDA (Professional+FWDP Model) in SPICE PARK
SPICE MODEL of KGH25N120NDA (Professional+FWDP Model) in SPICE PARKSPICE MODEL of KGH25N120NDA (Professional+FWDP Model) in SPICE PARK
SPICE MODEL of KGH25N120NDA (Professional+FWDP Model) in SPICE PARK
 
SPICE MODEL of TPC8114 (Professional+BDP Model) in SPICE PARK
SPICE MODEL of TPC8114 (Professional+BDP Model) in SPICE PARKSPICE MODEL of TPC8114 (Professional+BDP Model) in SPICE PARK
SPICE MODEL of TPC8114 (Professional+BDP Model) in SPICE PARK
 
SPICE MODEL of 1MBH15D-120 (Professional+FWDS Model) in SPICE PARK
SPICE MODEL of 1MBH15D-120 (Professional+FWDS Model) in SPICE PARKSPICE MODEL of 1MBH15D-120 (Professional+FWDS Model) in SPICE PARK
SPICE MODEL of 1MBH15D-120 (Professional+FWDS Model) in SPICE PARK
 
SPICE MODEL of 1MBH05D-120 (Professional+FWDS Model) in SPICE PARK
SPICE MODEL of 1MBH05D-120 (Professional+FWDS Model) in SPICE PARKSPICE MODEL of 1MBH05D-120 (Professional+FWDS Model) in SPICE PARK
SPICE MODEL of 1MBH05D-120 (Professional+FWDS Model) in SPICE PARK
 
SPICE MODEL of 1MBH15D-060 (Professional+FWDP Model) in SPICE PARK
SPICE MODEL of 1MBH15D-060 (Professional+FWDP Model) in SPICE PARKSPICE MODEL of 1MBH15D-060 (Professional+FWDP Model) in SPICE PARK
SPICE MODEL of 1MBH15D-060 (Professional+FWDP Model) in SPICE PARK
 
SPICE MODEL of TLP624 in SPICE PARK
SPICE MODEL of TLP624 in SPICE PARKSPICE MODEL of TLP624 in SPICE PARK
SPICE MODEL of TLP624 in SPICE PARK
 
鉛蓄電池のシンプルモデル(LTspice)
鉛蓄電池のシンプルモデル(LTspice)鉛蓄電池のシンプルモデル(LTspice)
鉛蓄電池のシンプルモデル(LTspice)
 
SPICE MODEL of RN1903AFS in SPICE PARK
SPICE MODEL of RN1903AFS in SPICE PARKSPICE MODEL of RN1903AFS in SPICE PARK
SPICE MODEL of RN1903AFS in SPICE PARK
 
SPICE MODEL of UP05C8G in SPICE PARK
SPICE MODEL of UP05C8G in SPICE PARKSPICE MODEL of UP05C8G in SPICE PARK
SPICE MODEL of UP05C8G in SPICE PARK
 
SPICE MODEL of PC111LY in SPICE PARK
SPICE MODEL of PC111LY in SPICE PARKSPICE MODEL of PC111LY in SPICE PARK
SPICE MODEL of PC111LY in SPICE PARK
 
SPICE MODEL of TPCP8402 (Standard+BDS N&P Model) in SPICE PARK
SPICE MODEL of TPCP8402 (Standard+BDS N&P Model) in SPICE PARKSPICE MODEL of TPCP8402 (Standard+BDS N&P Model) in SPICE PARK
SPICE MODEL of TPCP8402 (Standard+BDS N&P Model) in SPICE PARK
 
SPICE MODEL of 2SC5980-TL-E in SPICE PARK
SPICE MODEL of 2SC5980-TL-E in SPICE PARKSPICE MODEL of 2SC5980-TL-E in SPICE PARK
SPICE MODEL of 2SC5980-TL-E in SPICE PARK
 
SPICE MODEL of KGH25N120NDA (Professional+FWD+SP Model) in SPICE PARK
SPICE MODEL of KGH25N120NDA (Professional+FWD+SP Model) in SPICE PARKSPICE MODEL of KGH25N120NDA (Professional+FWD+SP Model) in SPICE PARK
SPICE MODEL of KGH25N120NDA (Professional+FWD+SP Model) in SPICE PARK
 
鉛蓄電池のシンプルモデル(PSpice)
鉛蓄電池のシンプルモデル(PSpice)鉛蓄電池のシンプルモデル(PSpice)
鉛蓄電池のシンプルモデル(PSpice)
 

Similar a PV Ni-MH Battery System (Output is DC)

ニッケル水素電池のスパイスモデル
ニッケル水素電池のスパイスモデルニッケル水素電池のスパイスモデル
ニッケル水素電池のスパイスモデルTsuyoshi Horigome
 
リチウムイオン電池シミュレーションセミナー
リチウムイオン電池シミュレーションセミナーリチウムイオン電池シミュレーションセミナー
リチウムイオン電池シミュレーションセミナーspicepark
 
PSpiceによるバッテリー回路アプリケーション
PSpiceによるバッテリー回路アプリケーションPSpiceによるバッテリー回路アプリケーション
PSpiceによるバッテリー回路アプリケーションTsuyoshi Horigome
 
Nickel-Metal Hydride Battery Simplified Simulink Model using MATLAB
Nickel-Metal Hydride Battery Simplified Simulink Model using MATLAB Nickel-Metal Hydride Battery Simplified Simulink Model using MATLAB
Nickel-Metal Hydride Battery Simplified Simulink Model using MATLAB Tsuyoshi Horigome
 
SPICEを活用した二次電池アプリケーション回路シミュレーションセミナー資料
SPICEを活用した二次電池アプリケーション回路シミュレーションセミナー資料SPICEを活用した二次電池アプリケーション回路シミュレーションセミナー資料
SPICEを活用した二次電池アプリケーション回路シミュレーションセミナー資料spicepark
 
Simple Model of Lead-Acid Battery Model using PSpice
Simple Model of Lead-Acid Battery Model using PSpiceSimple Model of Lead-Acid Battery Model using PSpice
Simple Model of Lead-Acid Battery Model using PSpicespicepark
 
Device Modeling of Li-Ion battery MATLAB/Simulink Model
Device Modeling of Li-Ion battery MATLAB/Simulink ModelDevice Modeling of Li-Ion battery MATLAB/Simulink Model
Device Modeling of Li-Ion battery MATLAB/Simulink ModelTsuyoshi Horigome
 
Lithium Ion Battery Simplified Simulink Model using MATLAB
Lithium Ion Battery Simplified Simulink Model using MATLABLithium Ion Battery Simplified Simulink Model using MATLAB
Lithium Ion Battery Simplified Simulink Model using MATLABTsuyoshi Horigome
 
SPICE MODEL of PC817X in SPICE PARK
SPICE MODEL of PC817X in SPICE PARKSPICE MODEL of PC817X in SPICE PARK
SPICE MODEL of PC817X in SPICE PARKTsuyoshi Horigome
 
SPICE MODEL of 2SC6078 in SPICE PARK
SPICE MODEL of 2SC6078 in SPICE PARKSPICE MODEL of 2SC6078 in SPICE PARK
SPICE MODEL of 2SC6078 in SPICE PARKTsuyoshi Horigome
 
Original IGBT IHW20N120R5 H20MR5 40A 1200V TO-247 New Infineon
Original IGBT IHW20N120R5 H20MR5 40A 1200V TO-247 New InfineonOriginal IGBT IHW20N120R5 H20MR5 40A 1200V TO-247 New Infineon
Original IGBT IHW20N120R5 H20MR5 40A 1200V TO-247 New Infineonauthelectroniccom
 
Simple Model of Ni-MH Battery Model using LTspice
Simple Model of Ni-MH Battery Model using LTspiceSimple Model of Ni-MH Battery Model using LTspice
Simple Model of Ni-MH Battery Model using LTspicespicepark
 
Concept Kit 3-Phase AC Motor Drive Circuit Simulation (LTspice Version)
Concept Kit 3-Phase AC Motor Drive Circuit Simulation (LTspice Version)Concept Kit 3-Phase AC Motor Drive Circuit Simulation (LTspice Version)
Concept Kit 3-Phase AC Motor Drive Circuit Simulation (LTspice Version)Tsuyoshi Horigome
 
90981041 control-system-lab-manual
90981041 control-system-lab-manual90981041 control-system-lab-manual
90981041 control-system-lab-manualGopinath.B.L Naidu
 
LTspiceのDCモーターシミュレーション事例
LTspiceのDCモーターシミュレーション事例LTspiceのDCモーターシミュレーション事例
LTspiceのDCモーターシミュレーション事例Tsuyoshi Horigome
 
The Simulation of DC Motor Control Circuit
The Simulation of DC Motor Control CircuitThe Simulation of DC Motor Control Circuit
The Simulation of DC Motor Control CircuitTsuyoshi Horigome
 
SPICE MODEL of 1MBH03D-120 (Professional+FWDS Model) in SPICE PARK
SPICE MODEL of 1MBH03D-120 (Professional+FWDS Model) in SPICE PARKSPICE MODEL of 1MBH03D-120 (Professional+FWDS Model) in SPICE PARK
SPICE MODEL of 1MBH03D-120 (Professional+FWDS Model) in SPICE PARKTsuyoshi Horigome
 
SPICE MODEL of 2SD986 in SPICE PARK
SPICE MODEL of 2SD986 in SPICE PARKSPICE MODEL of 2SD986 in SPICE PARK
SPICE MODEL of 2SD986 in SPICE PARKTsuyoshi Horigome
 
Device Modeling of Li-Ion battery MATLAB/Simulink Model
Device Modeling of Li-Ion battery MATLAB/Simulink ModelDevice Modeling of Li-Ion battery MATLAB/Simulink Model
Device Modeling of Li-Ion battery MATLAB/Simulink ModelTsuyoshi Horigome
 

Similar a PV Ni-MH Battery System (Output is DC) (20)

ニッケル水素電池のスパイスモデル
ニッケル水素電池のスパイスモデルニッケル水素電池のスパイスモデル
ニッケル水素電池のスパイスモデル
 
リチウムイオン電池シミュレーションセミナー
リチウムイオン電池シミュレーションセミナーリチウムイオン電池シミュレーションセミナー
リチウムイオン電池シミュレーションセミナー
 
PSpiceによるバッテリー回路アプリケーション
PSpiceによるバッテリー回路アプリケーションPSpiceによるバッテリー回路アプリケーション
PSpiceによるバッテリー回路アプリケーション
 
Nickel-Metal Hydride Battery Simplified Simulink Model using MATLAB
Nickel-Metal Hydride Battery Simplified Simulink Model using MATLAB Nickel-Metal Hydride Battery Simplified Simulink Model using MATLAB
Nickel-Metal Hydride Battery Simplified Simulink Model using MATLAB
 
SPICEを活用した二次電池アプリケーション回路シミュレーションセミナー資料
SPICEを活用した二次電池アプリケーション回路シミュレーションセミナー資料SPICEを活用した二次電池アプリケーション回路シミュレーションセミナー資料
SPICEを活用した二次電池アプリケーション回路シミュレーションセミナー資料
 
Simple Model of Lead-Acid Battery Model using PSpice
Simple Model of Lead-Acid Battery Model using PSpiceSimple Model of Lead-Acid Battery Model using PSpice
Simple Model of Lead-Acid Battery Model using PSpice
 
Device Modeling of Li-Ion battery MATLAB/Simulink Model
Device Modeling of Li-Ion battery MATLAB/Simulink ModelDevice Modeling of Li-Ion battery MATLAB/Simulink Model
Device Modeling of Li-Ion battery MATLAB/Simulink Model
 
Lithium Ion Battery Simplified Simulink Model using MATLAB
Lithium Ion Battery Simplified Simulink Model using MATLABLithium Ion Battery Simplified Simulink Model using MATLAB
Lithium Ion Battery Simplified Simulink Model using MATLAB
 
SPICE MODEL of PC817X in SPICE PARK
SPICE MODEL of PC817X in SPICE PARKSPICE MODEL of PC817X in SPICE PARK
SPICE MODEL of PC817X in SPICE PARK
 
SPICE MODEL of 2SC6078 in SPICE PARK
SPICE MODEL of 2SC6078 in SPICE PARKSPICE MODEL of 2SC6078 in SPICE PARK
SPICE MODEL of 2SC6078 in SPICE PARK
 
Original IGBT IHW20N120R5 H20MR5 40A 1200V TO-247 New Infineon
Original IGBT IHW20N120R5 H20MR5 40A 1200V TO-247 New InfineonOriginal IGBT IHW20N120R5 H20MR5 40A 1200V TO-247 New Infineon
Original IGBT IHW20N120R5 H20MR5 40A 1200V TO-247 New Infineon
 
Simple Model of Ni-MH Battery Model using LTspice
Simple Model of Ni-MH Battery Model using LTspiceSimple Model of Ni-MH Battery Model using LTspice
Simple Model of Ni-MH Battery Model using LTspice
 
Concept Kit 3-Phase AC Motor Drive Circuit Simulation (LTspice Version)
Concept Kit 3-Phase AC Motor Drive Circuit Simulation (LTspice Version)Concept Kit 3-Phase AC Motor Drive Circuit Simulation (LTspice Version)
Concept Kit 3-Phase AC Motor Drive Circuit Simulation (LTspice Version)
 
Ds1307 datasheet
Ds1307 datasheetDs1307 datasheet
Ds1307 datasheet
 
90981041 control-system-lab-manual
90981041 control-system-lab-manual90981041 control-system-lab-manual
90981041 control-system-lab-manual
 
LTspiceのDCモーターシミュレーション事例
LTspiceのDCモーターシミュレーション事例LTspiceのDCモーターシミュレーション事例
LTspiceのDCモーターシミュレーション事例
 
The Simulation of DC Motor Control Circuit
The Simulation of DC Motor Control CircuitThe Simulation of DC Motor Control Circuit
The Simulation of DC Motor Control Circuit
 
SPICE MODEL of 1MBH03D-120 (Professional+FWDS Model) in SPICE PARK
SPICE MODEL of 1MBH03D-120 (Professional+FWDS Model) in SPICE PARKSPICE MODEL of 1MBH03D-120 (Professional+FWDS Model) in SPICE PARK
SPICE MODEL of 1MBH03D-120 (Professional+FWDS Model) in SPICE PARK
 
SPICE MODEL of 2SD986 in SPICE PARK
SPICE MODEL of 2SD986 in SPICE PARKSPICE MODEL of 2SD986 in SPICE PARK
SPICE MODEL of 2SD986 in SPICE PARK
 
Device Modeling of Li-Ion battery MATLAB/Simulink Model
Device Modeling of Li-Ion battery MATLAB/Simulink ModelDevice Modeling of Li-Ion battery MATLAB/Simulink Model
Device Modeling of Li-Ion battery MATLAB/Simulink Model
 

Más de spicepark

夏季休業のお知らせ(2013)
夏季休業のお知らせ(2013)夏季休業のお知らせ(2013)
夏季休業のお知らせ(2013)spicepark
 
株式会社ビー・テクノロジー製品のラインナップ(19版)
株式会社ビー・テクノロジー製品のラインナップ(19版)株式会社ビー・テクノロジー製品のラインナップ(19版)
株式会社ビー・テクノロジー製品のラインナップ(19版)spicepark
 
株式会社ビー・テクノロジー製品のラインナップ(19版):総代理店:マルツエレック株式会社
株式会社ビー・テクノロジー製品のラインナップ(19版):総代理店:マルツエレック株式会社株式会社ビー・テクノロジー製品のラインナップ(19版):総代理店:マルツエレック株式会社
株式会社ビー・テクノロジー製品のラインナップ(19版):総代理店:マルツエレック株式会社spicepark
 
スパイス・パークのアップデートリスト(2013年8月度)
スパイス・パークのアップデートリスト(2013年8月度)スパイス・パークのアップデートリスト(2013年8月度)
スパイス・パークのアップデートリスト(2013年8月度)spicepark
 
スパイス・パークの全リスト(2013年8月度)
スパイス・パークの全リスト(2013年8月度)スパイス・パークの全リスト(2013年8月度)
スパイス・パークの全リスト(2013年8月度)spicepark
 
スパイス・パークのアップデートリスト(2013年7月度)
スパイス・パークのアップデートリスト(2013年7月度)スパイス・パークのアップデートリスト(2013年7月度)
スパイス・パークのアップデートリスト(2013年7月度)spicepark
 
スパイス・パークの全リスト(2013年7月度)
スパイス・パークの全リスト(2013年7月度)スパイス・パークの全リスト(2013年7月度)
スパイス・パークの全リスト(2013年7月度)spicepark
 
マルツエレックのサービス
マルツエレックのサービスマルツエレックのサービス
マルツエレックのサービスspicepark
 
SPICEを活用したD級アンプ回路シミュレーション配布資料
SPICEを活用したD級アンプ回路シミュレーション配布資料SPICEを活用したD級アンプ回路シミュレーション配布資料
SPICEを活用したD級アンプ回路シミュレーション配布資料spicepark
 
SPICEを活用したD級アンプ回路シミュレーション資料
SPICEを活用したD級アンプ回路シミュレーション資料SPICEを活用したD級アンプ回路シミュレーション資料
SPICEを活用したD級アンプ回路シミュレーション資料spicepark
 
電流臨界モード方式 PFC 制御回路の基礎(パワーポイント)
電流臨界モード方式 PFC 制御回路の基礎(パワーポイント)電流臨界モード方式 PFC 制御回路の基礎(パワーポイント)
電流臨界モード方式 PFC 制御回路の基礎(パワーポイント)spicepark
 
電流臨界モード方式 PFC 制御回路の基礎
電流臨界モード方式 PFC 制御回路の基礎電流臨界モード方式 PFC 制御回路の基礎
電流臨界モード方式 PFC 制御回路の基礎spicepark
 
電気系パワートレインの構成図
電気系パワートレインの構成図電気系パワートレインの構成図
電気系パワートレインの構成図spicepark
 
スパイス・パークの全リスト(2013年6月度)
スパイス・パークの全リスト(2013年6月度)スパイス・パークの全リスト(2013年6月度)
スパイス・パークの全リスト(2013年6月度)spicepark
 
スパイス・パークのアップデートリスト(2013年6月度)
スパイス・パークのアップデートリスト(2013年6月度)スパイス・パークのアップデートリスト(2013年6月度)
スパイス・パークのアップデートリスト(2013年6月度)spicepark
 
スパイス・パークのアップデートリスト(2013年5月度)
スパイス・パークのアップデートリスト(2013年5月度)スパイス・パークのアップデートリスト(2013年5月度)
スパイス・パークのアップデートリスト(2013年5月度)spicepark
 
スパイス・パークの全リスト(2013年5月度)
スパイス・パークの全リスト(2013年5月度)スパイス・パークの全リスト(2013年5月度)
スパイス・パークの全リスト(2013年5月度)spicepark
 
電流臨界モード方式PFC制御回路の解説書
電流臨界モード方式PFC制御回路の解説書電流臨界モード方式PFC制御回路の解説書
電流臨界モード方式PFC制御回路の解説書spicepark
 
Spiceを活用したモーター駆動制御シミュレーションセミナー資料
Spiceを活用したモーター駆動制御シミュレーションセミナー資料Spiceを活用したモーター駆動制御シミュレーションセミナー資料
Spiceを活用したモーター駆動制御シミュレーションセミナー資料spicepark
 
ビー・テクノロジーのお取引先リスト(31MAR2012)
ビー・テクノロジーのお取引先リスト(31MAR2012)ビー・テクノロジーのお取引先リスト(31MAR2012)
ビー・テクノロジーのお取引先リスト(31MAR2012)spicepark
 

Más de spicepark (20)

夏季休業のお知らせ(2013)
夏季休業のお知らせ(2013)夏季休業のお知らせ(2013)
夏季休業のお知らせ(2013)
 
株式会社ビー・テクノロジー製品のラインナップ(19版)
株式会社ビー・テクノロジー製品のラインナップ(19版)株式会社ビー・テクノロジー製品のラインナップ(19版)
株式会社ビー・テクノロジー製品のラインナップ(19版)
 
株式会社ビー・テクノロジー製品のラインナップ(19版):総代理店:マルツエレック株式会社
株式会社ビー・テクノロジー製品のラインナップ(19版):総代理店:マルツエレック株式会社株式会社ビー・テクノロジー製品のラインナップ(19版):総代理店:マルツエレック株式会社
株式会社ビー・テクノロジー製品のラインナップ(19版):総代理店:マルツエレック株式会社
 
スパイス・パークのアップデートリスト(2013年8月度)
スパイス・パークのアップデートリスト(2013年8月度)スパイス・パークのアップデートリスト(2013年8月度)
スパイス・パークのアップデートリスト(2013年8月度)
 
スパイス・パークの全リスト(2013年8月度)
スパイス・パークの全リスト(2013年8月度)スパイス・パークの全リスト(2013年8月度)
スパイス・パークの全リスト(2013年8月度)
 
スパイス・パークのアップデートリスト(2013年7月度)
スパイス・パークのアップデートリスト(2013年7月度)スパイス・パークのアップデートリスト(2013年7月度)
スパイス・パークのアップデートリスト(2013年7月度)
 
スパイス・パークの全リスト(2013年7月度)
スパイス・パークの全リスト(2013年7月度)スパイス・パークの全リスト(2013年7月度)
スパイス・パークの全リスト(2013年7月度)
 
マルツエレックのサービス
マルツエレックのサービスマルツエレックのサービス
マルツエレックのサービス
 
SPICEを活用したD級アンプ回路シミュレーション配布資料
SPICEを活用したD級アンプ回路シミュレーション配布資料SPICEを活用したD級アンプ回路シミュレーション配布資料
SPICEを活用したD級アンプ回路シミュレーション配布資料
 
SPICEを活用したD級アンプ回路シミュレーション資料
SPICEを活用したD級アンプ回路シミュレーション資料SPICEを活用したD級アンプ回路シミュレーション資料
SPICEを活用したD級アンプ回路シミュレーション資料
 
電流臨界モード方式 PFC 制御回路の基礎(パワーポイント)
電流臨界モード方式 PFC 制御回路の基礎(パワーポイント)電流臨界モード方式 PFC 制御回路の基礎(パワーポイント)
電流臨界モード方式 PFC 制御回路の基礎(パワーポイント)
 
電流臨界モード方式 PFC 制御回路の基礎
電流臨界モード方式 PFC 制御回路の基礎電流臨界モード方式 PFC 制御回路の基礎
電流臨界モード方式 PFC 制御回路の基礎
 
電気系パワートレインの構成図
電気系パワートレインの構成図電気系パワートレインの構成図
電気系パワートレインの構成図
 
スパイス・パークの全リスト(2013年6月度)
スパイス・パークの全リスト(2013年6月度)スパイス・パークの全リスト(2013年6月度)
スパイス・パークの全リスト(2013年6月度)
 
スパイス・パークのアップデートリスト(2013年6月度)
スパイス・パークのアップデートリスト(2013年6月度)スパイス・パークのアップデートリスト(2013年6月度)
スパイス・パークのアップデートリスト(2013年6月度)
 
スパイス・パークのアップデートリスト(2013年5月度)
スパイス・パークのアップデートリスト(2013年5月度)スパイス・パークのアップデートリスト(2013年5月度)
スパイス・パークのアップデートリスト(2013年5月度)
 
スパイス・パークの全リスト(2013年5月度)
スパイス・パークの全リスト(2013年5月度)スパイス・パークの全リスト(2013年5月度)
スパイス・パークの全リスト(2013年5月度)
 
電流臨界モード方式PFC制御回路の解説書
電流臨界モード方式PFC制御回路の解説書電流臨界モード方式PFC制御回路の解説書
電流臨界モード方式PFC制御回路の解説書
 
Spiceを活用したモーター駆動制御シミュレーションセミナー資料
Spiceを活用したモーター駆動制御シミュレーションセミナー資料Spiceを活用したモーター駆動制御シミュレーションセミナー資料
Spiceを活用したモーター駆動制御シミュレーションセミナー資料
 
ビー・テクノロジーのお取引先リスト(31MAR2012)
ビー・テクノロジーのお取引先リスト(31MAR2012)ビー・テクノロジーのお取引先リスト(31MAR2012)
ビー・テクノロジーのお取引先リスト(31MAR2012)
 

Último

The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdfThe Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdfEnterprise Knowledge
 
Data Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonData Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonAnna Loughnan Colquhoun
 
SQL Database Design For Developers at php[tek] 2024
SQL Database Design For Developers at php[tek] 2024SQL Database Design For Developers at php[tek] 2024
SQL Database Design For Developers at php[tek] 2024Scott Keck-Warren
 
Presentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreterPresentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreternaman860154
 
CNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of ServiceCNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of Servicegiselly40
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerThousandEyes
 
Maximizing Board Effectiveness 2024 Webinar.pptx
Maximizing Board Effectiveness 2024 Webinar.pptxMaximizing Board Effectiveness 2024 Webinar.pptx
Maximizing Board Effectiveness 2024 Webinar.pptxOnBoard
 
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptxHampshireHUG
 
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Miguel Araújo
 
08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking MenDelhi Call girls
 
Scaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationScaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationRadu Cotescu
 
The Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxThe Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxMalak Abu Hammad
 
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...Neo4j
 
Google AI Hackathon: LLM based Evaluator for RAG
Google AI Hackathon: LLM based Evaluator for RAGGoogle AI Hackathon: LLM based Evaluator for RAG
Google AI Hackathon: LLM based Evaluator for RAGSujit Pal
 
🐬 The future of MySQL is Postgres 🐘
🐬  The future of MySQL is Postgres   🐘🐬  The future of MySQL is Postgres   🐘
🐬 The future of MySQL is Postgres 🐘RTylerCroy
 
How to convert PDF to text with Nanonets
How to convert PDF to text with NanonetsHow to convert PDF to text with Nanonets
How to convert PDF to text with Nanonetsnaman860154
 
[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdfhans926745
 
Histor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slideHistor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slidevu2urc
 
Unblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen FramesUnblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen FramesSinan KOZAK
 
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking MenDelhi Call girls
 

Último (20)

The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdfThe Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
 
Data Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonData Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt Robison
 
SQL Database Design For Developers at php[tek] 2024
SQL Database Design For Developers at php[tek] 2024SQL Database Design For Developers at php[tek] 2024
SQL Database Design For Developers at php[tek] 2024
 
Presentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreterPresentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreter
 
CNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of ServiceCNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of Service
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 
Maximizing Board Effectiveness 2024 Webinar.pptx
Maximizing Board Effectiveness 2024 Webinar.pptxMaximizing Board Effectiveness 2024 Webinar.pptx
Maximizing Board Effectiveness 2024 Webinar.pptx
 
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
 
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
 
08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men
 
Scaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationScaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organization
 
The Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxThe Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptx
 
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
 
Google AI Hackathon: LLM based Evaluator for RAG
Google AI Hackathon: LLM based Evaluator for RAGGoogle AI Hackathon: LLM based Evaluator for RAG
Google AI Hackathon: LLM based Evaluator for RAG
 
🐬 The future of MySQL is Postgres 🐘
🐬  The future of MySQL is Postgres   🐘🐬  The future of MySQL is Postgres   🐘
🐬 The future of MySQL is Postgres 🐘
 
How to convert PDF to text with Nanonets
How to convert PDF to text with NanonetsHow to convert PDF to text with Nanonets
How to convert PDF to text with Nanonets
 
[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf
 
Histor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slideHistor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slide
 
Unblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen FramesUnblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen Frames
 
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
 

PV Ni-MH Battery System (Output is DC)

  • 1. Design Kit PV Ni-MH Battery System (DC Out) All Rights Reserved Copyright (C) Bee Technologies Corporation 2013 1
  • 2. Contents Slide # 1. Nickel - Metal Hydride Battery 1.1 Ni-MH Battery Specification................................................................................. 3 1.2 Discharge Time Characteristics........................................................................... 4 1.3 Battery Voltage vs. SOC Discharge Characteristics............................................. 5 1.4 Charge Time Characteristics................................................................................ 6 1.5 Battery Voltage vs. SOC Charge Characteristics................................................. 7 2. Solar Cells 2.1 Solar Cells Specification...................................................................................... 8 2.2 Output Characteristics vs. Incident Solar Radiation............................................. 9 3. Solar Cell Battery Charger......................................................................................... 10 3.1 Concept of Simulation PV Ni-MH Battery Charger Circuit.................................... 11 3.2 PV Ni-MH Battery Charger Circuit........................................................................ 12 3.3 Charging Time Characteristics vs. Weather Condition......................................... 13 3.4 Concept of Simulation PV Ni-MH Battery Charger Circuit + Constant Current..... 14 3.5 Constant Current PV Ni-MH Battery Charger Circuit............................................ 15 3.6 Charging Time Characteristics vs. Weather Condition + Constant Current.......... 16 4. Simulation PV Ni-MH Battery System in 24hr. 4.1 Concept of Simulation PV Ni-MH Battery System in 24hr.................................... 17 4.2 Short-Circuit Current vs. Time (24hr.).................................................................. 18 4.3 PV-Battery System Simulation Circuit.................................................................. 19 4.3 PV-Battery System Simulation Result.................................................................. 20-25 Simulations index............................................................................................................ 26 All Rights Reserved Copyright (C) Bee Technologies Corporation 2013 2
  • 3. 1.1 Ni-MH Battery Specification KAWAZAKI’s Ni-MH Batteries : Gigacell (10-180) • Rated Voltage ..................12 [V] • Capacity............................177 [Ah] (Approximately) • Energy Capacity................2.1 [kWh] • Max Output........................48 [kW] 10 Ni-MH cells are in series. • Rated Charge................ 0.2C5 [A] ( SoC=100% ) All Rights Reserved Copyright (C) Bee Technologies Corporation 2013 3
  • 4. 1.2 Discharge Time Characteristics 17V PARAMETERS: rate = 0.2 CAh = 177 16V Hi 15V C1 U1 0 1C ( 177A ) IN+ OUT+ 1n + - GIGACELL_10-180 14V 2C ( 354A ) IN- OUT- TSCALE = 3600 G1 0 NS = 1 GVALUE SOC1 = 1 13V 0.2C ( 35.4A ) limit(V(%IN+, %IN-)/0.1m, 0, rate*CAh ) TSCALE=3600 12V 0 0.5C ( 88.5A ) means “Time Scale” 11V (Simulation time : Real time) is 1:3600 10V Batteries Pack Model Parameters 9V NS (number of batteries in series) = 1 Unit (10 Ni-MH cells) C (capacity) = 177 Ah 8V SOC1 (initial state of charge) = 1 (100%) TSCALE (time scale) , simulation : real time 7V 1 : 3600s or 0s 1.0s 2.0s 3.0s 4.0s 5.0s 6.0s 1s : 1h V(HI) Time Discharge Rate : 0.2C(35.4A), 0.5C(88.5A), 1C(177A) and 2C(354A) All Rights Reserved Copyright (C) Bee Technologies Corporation 2013 4
  • 5. 1.3 Battery Voltage vs. SOC Discharge Characteristics 10 Ni-MH cells are in series for total rated current 12V (Each cell have 1.2V rated voltage). Measurement Simulation 0.2C, Dch 2.0C, Dch 5.0C, Dch 8.0C, Dch 11C, Dch 17 16 15 Battery Voltage (V) 14 13 12 11 10 9 8 7 0 0.2 0.4 0.6 0.8 1 SOC (%) • VBAT vs. SOC Discharge Characteristics are compared between measurement data and simulation data. All Rights Reserved Copyright (C) Bee Technologies Corporation 2013 5
  • 6. 1.4 Charge Time Characteristics PARAMETERS: rate = 0.2 CAh = 177 17V G1 GVALUE Limit(V(%IN+, %IN-)/0.1m, 0, rate*CAh ) 16V Hi OUT+ OUT- 15V 1C ( 177A ) C1 U1 0 1n + - GIGACELL_10-180 IN+ IN- 14V TSCALE = 3600 0 NS = 1 SOC1 = 0 13V 0.2C ( 35.4A ) Vin 18Vdc 12V 0.5C ( 88.5A ) TSCALE=3600 0 means “Time Scale” 11V (Simulation time : 10V Real time) is 1:3600 Batteries Pack Model Parameters 9V NS (number of batteries in series) = 1 Unit (10 Ni-MH cells) 8V C (capacity) = 177 Ah SOC1 (initial state of charge) = 1 (100%) 7V TSCALE (time scale) , simulation : real time 0s 1.0s 2.0s 3.0s 4.0s 5.0s 1 : 3600s or V(HI) 1s : 1h Time Charge Rate : 0.2C(35.4A), 0.5C(88.5A), and 1C(177A) All Rights Reserved Copyright (C) Bee Technologies Corporation 2013 6
  • 7. 1.5 Battery Voltage vs. SOC Charge Characteristics Measurement Simulation 0.2C, Ch 2.0C, Ch 3.0C, Ch 5.0C, Ch 17 16 15 Battery Voltage (V) 14 13 12 11 10 9 8 7 0 0.2 0.4 0.6 0.8 1 SOC (%) • VBAT vs. SOC Charge Characteristics are compared between measurement data and simulation data. All Rights Reserved Copyright (C) Bee Technologies Corporation 2013 7
  • 8. 2.1 Solar Cells Specification Suntech’s photovoltaic module : STP140D-12/TEA • Maximum power (Pmax)............140[W] • Voltage at Pmax (Vmp).............17.6[V] • Current at Pmax (Imp)...............7.95[A] • Short-circuit current (Isc)...........8.33[A] • Open-circuit voltage(Voc)..........22.4[V] 1482mm All Rights Reserved Copyright (C) Bee Technologies Corporation 2013 8
  • 9. 2.2 Output Characteristics vs. Incident Solar Radiation STP140D-12/TEA Output Characteristics vs. Incident Solar Radiation 10A SOL=1 8A Current (A) 6A SOL=0.5 4A + U1 2A SOL=0.16 STP140D-12TEA 0A SOL = 1 I(Isense) 150W SOL=1 Power (W) 100W Parameter, SOL is added as SOL=0.5 normalized incident radiation, 50W where SOL=1 for AM1.5 SOL=0.16 conditions SEL>> 0W 0V 5V 10V 15V 20V 25V V(V1:+)*I(Isense) V_V1 Voltage (V) All Rights Reserved Copyright (C) Bee Technologies Corporation 2013 9
  • 10. 3. Solar Cell Battery Charger • Solar Cell charges the Ni-MH battery pack (STP140D-12/TEA) with direct connect technique. Choose the solar cell that is able to provide current at charging rate or more with the maximum power voltage (Vmp) nears the batteries pack charging voltage. • Gigacell 10-180 (Ni-MH Battery) – Charging time is approximately 5 hours with charging rate 0.2C or 35.4A – Voltage during charging with 0.2C is between 11.8 to 14.2 V 17V 16V 15V 14V 14.2 V 13V 0.2C or 35.4A 12V 11.8 V 11V 10V 9V 8V 7V 0s 1.0s 2.0s 3.0s 4.0s 5.0s V(HI) Time All Rights Reserved Copyright (C) Bee Technologies Corporation 2013 10
  • 11. 3.1 Concept of Simulation PV Ni-MH Battery Charger Circuit Over Voltage Protection Circuit Short circuit current ISC depends on condition: SOL 14.01V Clamp Circuit Photovoltaic Ni-MH Battery Module STP140D-12/TEA (Suntech) Gigacell 10-180 (Kawasaki) 10 panels (parallel) DC12V (10 cells) Vmp=17.6V 177Ah Pmax=1.4kW All Rights Reserved Copyright (C) Bee Technologies Corporation 2013 11
  • 12. 3.2 PV Ni-MH Battery Charger Circuit D1 PARAMETERS: DMOD sol = 1 Voch 14.01dc pv 0 Hi + + + + + + - U6 U5 U4 U3 U2 C1 0 STP140D-12TEA 1n SOL = {sol} 0 0 0 0 0 0 U1 GIGACELL_10-180 TSCALE = 3600 NS = 1 + + + + + SOC1 = 0 U11 U10 U9 U8 U7 0 0 0 0 0 • Input value between 0-1 in the “PARAMETERS: sol = ” to set the normalized incident radiation, where SOL=1 for AM1.5 conditions. All Rights Reserved Copyright (C) Bee Technologies Corporation 2013 12
  • 13. 3.3 Charging Time Characteristics vs. Weather Condition 1.00V 0.75V 0.50V 0.25V sol = 1.00 sol = 0.50 sol = 0.16 0V 0s 1s 2s 3s 4s 5s 6s 7s 8s 9s 10s V(X_U1.SOC) Time • Simulation result shows the charging time for sol = 1, 0.5, and 0.16. All Rights Reserved Copyright (C) Bee Technologies Corporation 2013 13
  • 14. 3.4 Concept of Simulation PV Ni-MH Battery Charger Circuit + Constant Current Over Voltage Protection Circuit Short circuit current ISC depends on condition: SOL 14.01V Clamp Circuit Constant Photovoltaic Current Ni-MH Battery Module Control Circuit STP140D-12/TEA Icharge=0.2C (35.4A) Gigacell 10-180 (Kawasaki) (Suntech) DC12V (10 cells) 10 panels (parallel) 177Ah Vmp=17.6V Pmax=1.4kW All Rights Reserved Copyright (C) Bee Technologies Corporation 2013 14
  • 15. 3.5 Constant Current PV Ni-MH Battery Charger Circuit D1 PARAMETERS: PARAMETERS: DMOD rate = 0.2 sol = 1 CAh = 177 Voch 14.01dc pv 0 Hi OUT+ OUT- + + + + + + - U6 U5 U4 U3 U2 C1 0 STP140D-12TEA 1n SOL = {sol} IN+ IN- 0 0 0 0 0 0 G1 U1 GVALUE GIGACELL_10-180 Limit(V(%IN+, %IN-)/0.1, 0, rate*CAh) TSCALE = 3600 NS = 1 + + + + + SOC1 = 0 U11 U10 U9 U8 U7 0 0 0 0 0 • Input the battery capacity (Ah) and charging current rate (e.g. 0.2*CAh) in the • “PARAMETERS: CAh = 177 and rate = 0.2 ” to set the charging current. All Rights Reserved Copyright (C) Bee Technologies Corporation 2013 15
  • 16. 3.6 Charging Time Characteristics vs. Weather Condition (Constant Current) 1.00V 0.75V 0.50V 0.25V sol = 1.00 sol = 0.50 sol = 0.16 0V 0s 1s 2s 3s 4s 5s 6s 7s 8s 9s 10s V(X_U1.SOC) Time • Simulation result shows the charging time for sol = 1, 0.5, and 0.16. If PV can generate current more than the constant charge rate (0.2C), battery can be fully charged in about 5 hour. All Rights Reserved Copyright (C) Bee Technologies Corporation 2013 16
  • 17. 4.1 Concept of Simulation PV Ni-MH Battery System in 24hr. Over Voltage The model contains 24hr. Protection Circuit solar power data (example). 14.01V Clamp Circuit Photovoltaic Ni-MH Battery Module Low-Voltage Gigacell 10-180 (Kawasaki) STP140D-12/TEA Shutdown DC12V (10 cells) (Suntech) Circuit Vopen=11. 6(V) 177Ah 10 panels (parallel) Vclose= 13.8(V) Vmp=17.6V Pmax=1.4kW DC/DC DC Load Converter VIN=10~18V VL = 5V VOUT=5V IL = 50A All Rights Reserved Copyright (C) Bee Technologies Corporation 2013 17
  • 18. 4.2 Short-Circuit Current vs. Time (24hr.) The model contains 24hr. solar power data (example). 15A 10A U1 + STP140D-12TEA_24H_TS3600 5A 0A 0s 1s 2s 3s 4s 5s 6s 7s 8s 9s 10s 12s 14s 16s 18s 20s 22s 24s I(Isense) Time • Short-circuit current vs. time characteristics of photovoltaic module STP140D-12/TEA for 24hours as the solar power profile (example) is included to the model. All Rights Reserved Copyright (C) Bee Technologies Corporation 2013 18
  • 19. 4.3 PV-Battery System Simulation Circuit Solar cell model with 24hr. solar power data. Set initial battery D1 voltage, IC=13.7, for DMOD convergence aid. Voch 14.01Vdc pv 0 D2 batt DMOD + U6 + U5 + U4 + U3 + U2 C1 0 Low-Voltage Shutdown Circuit 10n + - STP140D-12TEA_24H_TS3600 IC = 13.7 VON = 0.7 0 0 0 0 0 0 VOFF = 0.3 E1 RON = 0.01m Ronof f EVALUE ROFF = 10MEG 100 IF(V(batt1)>V(dchth),5,0) Ronof f 1 U1 + Lctrl batt1 GIGACELL_10-180 + OUT+ IN+ + U11 + U10 + U9 + U8 + U7 C3 TSCALE = 3600 - - OUT- IN- dchth 100 100n Conof f NS = 1 S2 1n SOC1 = 1 0 OUT+ IN+ S IC = 5 Conof f 1 OUT- IN- 100n PARAMETERS: E2 0 0 0 0 0 EVALUE Lopen = 11.6 IF( V(lctrl) > 0.25 ,Lopen ,Lclose) SOC1 value is initial Lclose = 13.8 0 State Of Charge of the battery, is set as DC/DC Converter Lopen value is load 70% of full voltage. shutdown voltage. PARAMETERS: out_dc n=1 Lclose value is load IN OUT Iomax reconnect voltage G1 E3 I1 IN+ OUT+ IN+ OUT+ IN+ OUT+ IN- OUT- IN- OUT- IN- OUT- 50Adc GVALUE ecal_Iomax EVALUE EVALUE IF( I(OUT)-V(Iomax) > 0 ,n*V(%IN+, %IN-)*I(IN)/(I(OUT)+1u), 5 ) 0 n*V(%IN+, %IN-)*I(IN)/5 Limit( V(%IN+, %IN-)/0.1, 1m, 5*I(out)/(n*limit(V(%IN+, %IN-),10,25)) ) 250W Load 0 (5Vx50A). 0  Simulation at 500W load, change I1 from 50A to 100A All Rights Reserved Copyright (C) Bee Technologies Corporation 2013 19
  • 20. 4.3.1 Simulation Result (SOC1=1, IL=50A or 250W load) 150A PV generated current 100A 50A 0A I(pv) PV module charge the battery 16V 100A 1 2 Battery voltage 14V 0A Battery current  >> 12V -100A Battery supplies current when solar 1 V(batt) 2 I(U1:PLUS) power drops. 1.0V Fully charged, Battery SOC SOC1=1 (100%) stop charging SEL>> 0V V(X_U1.SOC) 7.5V 50A DC output voltage 1 2 5.0V DC/DC input current 2.5V >> 0V 0A 0s 3s 6s 9s 12s 15s 18s 21s 24s 1 V(out_dc) 2 I(IN) Charging Time time  When battery is discharging , current I(U1:PLUS) is minus and when the battery is charging, the current is plus. • .Options • C1: IC=13.7 • RELTOL=0.01 • Run to time: 24s (24hours in real world) • ABSTOL=1.0u • Step size: 0.01s • ITL4=1000 All Rights Reserved Copyright (C) Bee Technologies Corporation 2013 20
  • 21. 4.3.2 Simulation Result (SOC1=0.7, IL=50A or 250W load) 150A PV generated current 100A 50A 0A I(pv) 15V 1 2 50A V=Lopen Battery voltage 0A (8.3138,13.797) Battery current >> -50A V=Lclose (5.7490,11.595) 10V Battery supplies current when solar 1 V(batt) 2 I(U1:PLUS) power drops. 1.0V SOC1=0.7 Battery SOC Fully charged, stop charging SEL>> 699.201m) 0V V(X_U1.SOC) 7.5V 50A Shutdown DC output voltage 1 2 5.0V 38A DC/DC input current 25A 2.5V Reconnect >> 0V 0A 0s 3s 6s 9s 12s 15s 18s 21s 24s 1 V(out_dc) 2 I(IN) Charging Time time • .Options • C1: IC=13.7 • RELTOL=0.01 • Run to time: 24s (24hours in real world) • ABSTOL=1.0u • Step size: 0.01s • ITL4=1000 All Rights Reserved Copyright (C) Bee Technologies Corporation 2013 21
  • 22. 4.3.3 Simulation Result (SOC1=0.3, IL=50A or 250W load) 150A PV generated current 100A 50A 0A I(pv) 15V 75A 1 2 Battery voltage 25A (2.0552,11.595) (8.2938,13.798) Battery current >> V=Lclose 10V -75A V=Lopen Battery supplies current when solar 1 V(batt) 2 I(U1:PLUS) power drops. 1.0V Fully charged, ,299.176m) Battery SOC stop charging SEL>> SOC1=0.3 0V V(X_U1.SOC) 7.5V 50A DC output voltage 1 2 5.0V 38A Shutdown DC/DC input current 25A 2.5V >> Reconnect 0V 0A 0s 3s 6s 9s 12s 15s 18s 21s 24s 1 V(out_dc) 2 I(IN) Charging time Time • .Options • C1: IC=13.7 • RELTOL=0.01 • Run to time: 24s (24hours in real world) • ABSTOL=1.0u • Step size: 0.01s • ITL4=1000 All Rights Reserved Copyright (C) Bee Technologies Corporation 2013 22
  • 23. 4.3.4 Simulation Result (SOC1=0.07, IL=50A or 250W load) 150A PV generated current 100A 50A 0A I(pv) 15V 100A 1 2 Battery voltage 0A Battery current SEL>> (8.2938,13.798) 10V -100A V=Lclose Battery supplies current when solar 1 V(batt) 2 I(U1:PLUS) power drops. 1.0V Battery SOC Fully charged, SOC1=0.07 stop charging 0V V(X_U1.SOC) 7.5V 50A DC output voltage 1 2 5.0V 38A Shutdown DC/DC input current 25A Reconnect >> 13A 0V 0A 0s 3s 6s 9s 12s 15s 18s 21s 24s 1 V(out_dc) 2 I(IN) Time Charging time • .Options • C1: IC=13.7 • RELTOL=0.01 • Run to time: 24s (24hours in real world) • ABSTOL=1.0u • Step size: 0.01s • ITL4=1000 All Rights Reserved Copyright (C) Bee Technologies Corporation 2013 23
  • 24. 4.3.5 Simulation Result (SOC1=1, IL=100A or 500W load) 150A PV generated current 100A 50A 0A I(pv) V=Lclose V=Lopen 15.0V 100A 1 2 (4.2247,11.627) V=Lopen (21.778,11.600) Battery voltage 12.5V 0A Battery current (8.2850,13.799) SEL>> 10.0V -100A 1 V(batt) 2 I(U1:PLUS) Battery supplies current when solar 1.0V power drops. Battery SOC Fully charged, SOC1=100 stop charging 0V V(X_U1.SOC) 7.5V 50A DC output voltage 1 2 Shutdown Shutdown 5.0V DC/DC input current 2.5V Reconnected >> 0V 0A 0s 3s 6s 9s 12s 15s 18s 21s 24s 1 V(out_dc) 2 I(IN) Charging Time time • .Options • C1: IC=13.7 • RELTOL=0.01 • Run to time: 24s (24hours in real world) • ABSTOL=1.0u • Step size: 0.01s • ITL4=1000 All Rights Reserved Copyright (C) Bee Technologies Corporation 2013 24
  • 25. 4.3.4 Simulation Result (Example of Conclusion) The simulation start from midnight(time=0). The system supplies DC load 250W. • If initial SOC is 100%, – this system will never shutdown. • If initial SOC is 70%, – this system will shutdown after 5.749 hours (about 5:45AM.). – system load will reconnect again at 8:19AM. • If initial SOC is 30%, – this system will shutdown after 2.055 hours (about 2:03AM.). – system load will reconnect again at 8:18AM. • If initial SOC is 7%, – this system will start shutdown. – this system will reconnect again at 8:18AM (Morning). • With the PV generated current profile, battery will fully charged in about 5.7 hours. The simulation start from midnight(time=0). The system supplies DC load 500W. • If initial SOC is 100%, – this system will shutdown after 4.225 hours (about 4:14AM.). – system load will reconnect again at 8:17AM. – this system will shutdown again at 9:47PM. • With the PV generated current profile, battery will fully charged in about 6.7 hours. All Rights Reserved Copyright (C) Bee Technologies Corporation 2013 25
  • 26. Simulations index Simulations Folder name 1. PV Ni-MH Battery Charger Circuit.................................................. charge-sol 2. Constant Current PV Ni-MH Battery Charger Circuit..................... charge-sol-const 3. PV-Battery System Simulation Circuit (SOC1=1, 250W)............... sol_24h_soc100 4. PV-Battery System Simulation Circuit (SOC1=0.7, 250W)............ sol_24h_soc70 5. PV-Battery System Simulation Circuit (SOC1=0.3, 250W)............ sol_24h_soc30 6. PV-Battery System Simulation Circuit (SOC1=0.07, 250W).......... sol_24h_soc7 7. PV-Battery System Simulation Circuit (SOC1=1, 500W)............... sol_24h_soc100_500W All Rights Reserved Copyright (C) Bee Technologies Corporation 2013 26