SlideShare una empresa de Scribd logo
1 de 43
Descargar para leer sin conexión
Introduction to Nuclear
Physics
CHAPTER 2
Contents
 1- Introduction
 4- a) Alpha , b) Beta and c) Gamma Decay
 2- Some Nucleus Properties
 3- Radioactive Decay
 5- Natural radioactive decay series
 6- Induced Nuclear reactions
(nuclear fission and nuclear fusion)
 7- Radioactive Dating
 8- Measuring Radiation Dosage
1/ INTRODUCTION:
 By accident, becquerel discovered that uranium salts
spontaneously emit a penetrating radiation that can be
registered on a photographic plate.
 Rutherford showed that the radiation had three types:
Alpha, Beta and Gamma
1896
1/ INTRODUCTION:
 Rutherford fired a beam of alpha particles at foil of
gold leaf
 The results of the experiment are :
1) Most of alpha particles
Passed without deflection.
2) some of alpha particles are
deflected at small angles.
3) few of alpha particles are
deflected at large angles.
1911 Rutherford scattering experiment
1/ INTRODUCTION:
 The conclusions of the experiment are :
1) Most of the space inside the atom is empty
2) The positive charge of the atom occupies very little
space
3) That all the positive charge and mass of the atom
were concentrated in a very small volume within
the atom
1911 Rutherford scattering experiment
1/ INTRODUCTION:
 Rutherford's Nuclear Model Of Atom :
1) There is a positively charged Centre in an atom
called the nucleus. Nearly all the mass of an atom
resides in the nucleus.
2) The electrons revolve around the nucleus in well-
defined orbits.
3) The size of the nucleus is very small as compared
to the size of the atom.
 Nucleus of an atom is positively charged ,very dense
, hard and very small
1911 Rutherford scattering experiment
2/ Some Nuclear Properties
The materials are made of atoms
The atom is composed of a nucleus and electrons orbiting
around the nucleus.
The nucleus is a very small dense object made up of two
kinds of nucleons [Protons (p), Neutrons (n)].
Atom
Nucleus
Protons
Neutrons
Electrons
2/ Some Nuclear Properties
𝑚𝑝 ≅ 𝑚𝑛
𝑚𝑝 ≅ 1840 𝑚𝑒
Number of protons is equal to the number of the electrons
in the neutral atom.
2/ Some Nuclear Properties
Numbers that characterize the nucleus Z, N and A
Z = Atomic number
N = Neutron number
Number of nucleons in the
nucleus.
Number of protons in the nucleus.
The number of neutrons in the
nucleus.
A = Mass number
𝐴 = 𝑁 + 𝑍
a) Nuclear Terminology
2/ Some Nuclear Properties
Example
Find the number of protons, neutrons and electrons
a) Nuclear Terminology
Representation of a nucleus
2/ Some Nuclear Properties
Examples
a) Nuclear Terminology
1) Isotopes
The atoms of an element which have the same number of
protons (𝑍1 = 𝑍2) and different number of neutrons are
called Isotopes.
2/ Some Nuclear Properties
Example
a) Nuclear Terminology
2) Isobars
The atoms which have the same mass number (𝐴1 = 𝐴2)
but different atomic numbers are called isobars.
2/ Some Nuclear Properties
Example
a) Nuclear Terminology
3) Isotones
Atoms which have different atomic number (𝑍1 ≠ 𝑍2) and
different atomic masses (𝐴1 ≠ 𝐴2) but the same number of
neutrons 𝑁1 = 𝑁2 are called Isotones.
Isotopes
Isotones
Isobars
𝑍1 = 𝑍2
𝑁1 = 𝑁2
𝐴1 = 𝐴2
2/ Some Nuclear Properties
2) The Volume (V) of the nucleus is given by the
formula :
Most nuclei are spherical
b) Nucleus Radius and Volume
1) The Average radius is given by the formula :
𝑟 = 𝑟0 𝐴1/3
; 𝑟0 = 1.2 𝑋 10−15
m
The unit used for measuring distance on the scale of
nuclei is femtometer : 1 𝑓𝑚 = 10−15
𝑚
V =
4
3
𝜋(𝑟0 𝐴
1
3)3
V = 7.24 𝑋 10−45
(A) 𝑚3
Radius depends on 𝐴1/3
Volume depends on 𝐴
2/ Some Nuclear Properties
The Mass can also be expressed in 𝑀𝑒𝑉/𝑐2
The SI-unit of mass is Kg but in subatomic particles It is
convenient to use atomic mass units ( 𝑢 ) to express
masses.
c) Atomic Mass
Based on definition that the mass of one atom of C is
exactly 12 𝑢
1 𝑢 = 1.660 539 x 10−27
kg
𝑚𝑝 = 1.0073 𝑢 , 𝑚𝑁 = 1.0087 𝑢 , 𝑚𝑒 = 5.486 ∗ 10−4
𝑢
𝑚𝑝 = 938.25 𝑀𝑒𝑉/𝑐2 , 𝑚𝑁 = 939.57𝑀𝑒𝑉/𝑐2
, 𝑚𝑒= 0.511𝑀𝑒𝑉/𝑐2
1 𝑢 = 931.494 𝑀𝑒𝑉/𝑐2
2/ Some Nuclear Properties
ρ =
𝑚
𝑉
=
𝑍∗𝑚𝑝+𝑁∗𝑚𝑁
4
3
𝜋(𝑟0 𝐴
1
3)3
(𝑚𝑝≅ 𝑚𝑛)
≅
𝐴∗𝑚𝑝
4
3
𝜋(𝑟0 𝐴
1
3)3
=
𝐴∗𝑚𝑝
4
3
𝜋 𝑟0
3 𝐴
=
1.673∗10−27
7.238∗10−45 ≅ 2.3 ∗ 1017 Τ
𝐾𝑔 𝑚3
d) Nucleus Density
That’s mean all nuclei have the same Density
2/ Some Nuclear Properties
2) Electrical force: smaller in magnitude, but they
become progressively more important as the number of
protons in the nucleus increases.
1) Nuclear force: the force responsible of nuclei stability,
which overcome the electrical force (repulsion between
protons).
e) Forces in the nucleus
Properties of Nuclear force: strong, short range and
attraction between nucleons.
2/ Some Nuclear Properties
p-p: electric repulsion and nuclear attraction.
e) Forces in the nucleus
p-n: nuclear attraction.
n-n: nuclear attraction
3/ Radioactive Decay
Radioactivity : is the spontaneous emission of radiation.
Radioactivity : is the result of the decay, or disintegration,
of unstable nuclei.
Radioactive nuclei can emit 3 types of radiation in the
process:
a) Definitions
3/ Radioactive Decay
 Alpha particles (𝛼): consists of 2 protons and 2 neutrons,
and they are positively charged (+2e), have low speed and
short range in matter. [2
4
𝐻𝑒]
 Beta particles (𝛽): they could be 𝛽−
(electrons) or 𝛽+
(positrons) , have high speed (near speed of light) and
longer range in matter. [positrons are positively charged electrons]
 Gamma ray (𝛾): It is electromagnetic wave (photon)
carrying a high energy away from the nucleus, has speed
of light and it is the most penetrating radiation . [have no
mass or charge]
3/ Radioactive Decay
The number of particles that decay in a given time is
proportional to the total number of particles in a
radioactive sample.
b) The Decay Constant
λ is called the decay constant and determines the
probability of decay per nucleus per second.
𝑑𝑁
𝑑𝑡
= −𝜆𝑁 𝑔𝑖𝑣𝑒𝑠 𝑁 = 𝑁0𝑒−𝜆𝑡
N is the number of undecayed radioactive nuclei present.
No is the number of undecayed nuclei at time t = 0
(original number of nuclei).
3/ Radioactive Decay
The decay rate R of a sample is defined as the number of
decays per second.
c) The Decay Rate
𝑅0 = 𝜆𝑁0 is the decay rate at t = 0.
R =
𝑑𝑁
𝑑𝑡
= 𝜆𝑁 = 𝜆𝑁0𝑒−𝜆𝑡
= 𝑅0𝑒−𝜆𝑡
The decay rate is often referred to as the activity of the
sample.
3/ Radioactive Decay
The decay curve follows the equation:
d) Decay Curve and Half-Life
𝑁 = 𝑁0𝑒−𝜆𝑡
Half life 𝑇1/2 is defined as the time required for half the
nuclei present to decay.
𝑇1/2 =
𝐿𝑛2
𝜆
=
0.693
𝜆
3/ Radioactive Decay
c) Decay Curve and Half-Life
t N
0 𝑁0
T 𝑁0/2
2T 𝑁0/4
3T 𝑁0/8
nT 𝑁0/(2𝑛)
3/ Radioactive Decay
Activity (R) in term of decay constant (λ)
e) Activity (R) of a given mass
𝑁𝐴 = 6.023 𝑋1023
𝑚𝑜𝑙−1
is Avogadro’s Number
𝑛 =
𝑚𝑎𝑠𝑠
𝐴
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑜𝑙𝑒𝑠 ; 𝐴 is Mass number
𝑅 = 𝜆𝑛𝑁𝐴
𝑅 = 𝜆
𝑚𝑎𝑠𝑠
𝐴
𝑁𝐴
3/ Radioactive Decay
Activity (R) in term of Half life T
e) Activity (R) of a given mass
𝑅 =
0.693
𝑇
𝑛𝑁𝐴
Remark
Activity R must have a unit Bq ( Becquerel)
Half life T must have a unit s ( Second)
Constant decay λ must have a unit 𝑠−1
3/ Radioactive Decay
The SI unit of activity is the becquerel (Bq)
f) Activity Units
1 Bq = 1 disintegration/s
Remark
The curie (Ci) is another unit of activity,
1 Ci = 3.7 X 1010
disintegration/s
1 Ci = 3.7 X 1010
Bq
4/a Alpha Decay
𝑍
𝐴
𝑋 → 𝑍−2
𝐴−4
𝑌 + 2
4
𝐻𝑒
or
𝑍
𝐴
𝑋 → 𝑍−2
𝐴−4
𝑌 + 2
4
𝛼
X is called the parent nucleus
Y is called the daughter nucleus
Example : 92
238
𝑈 → 90
234
𝑇ℎ + 2
4
𝐻𝑒
84
234
𝑃𝑜 → 82
230
𝑃𝑏 + 2
4
𝛼
Alpha particle ( 2
4
𝐻𝑒 , 2
4
𝛼 ) is emitted leaving behind a
residual nucleus that has lost 2 protons and 2 neutrons; 𝛼-
decay is usually observed in heavier unstable nuclei (𝑍
> 82).
4/a Alpha Decay
Alpha particle (2
4
𝐻𝑒) is emitted leaving behind a residual
nucleus that has lost 2 protons and 2 neutrons; 𝛼-decay is
usually observed in heavier unstable nuclei (𝑍 > 82).
4/b Beta Decay
In Beta decay, an electron (𝑒−
) or a positron (𝑒+
) is emitted
by nucleus
 When a nucleus emits an electron, the nucleus
loses a neutron and gains a proton.
 When a nucleus emits an positron, the nucleus
loses a proton and gains a neutron.
4/b Beta Decay
9
18
𝐹 → 8
18
𝑂 + 1
0
𝑒 + 𝜈
6
14
𝐶 → 7
14
𝑁 + 𝛽−
+ ҧ
𝜈
6
14
𝐶 → 7
14
𝑁 + −1
0
𝑒 + ҧ
𝜈
9
18
𝐹 → 8
18
𝑂 + 𝛽+
+ 𝜈
4/c Gamma Decay
 Gamma rays are given off when an excited nucleus
decays to a lower energy state.
 The decay occurs by emitting a high energy photon
called gamma-ray photons
Example:
18
40
𝐴𝑟∗ → 18
40
𝐴𝑟 + 𝛾
The 𝑿∗
indicates a nucleus in an excited state.
5/ Natural radioactive decay series
 Decay series : The sequence of radioactive daughter nuclides that are formed
by the radioactive decay of a parent nuclide to a final stable daughter nuclide.
 There are three natural decay series that include the heavy elements
1) Thorium series : begins with 90
232
𝑇ℎ and end with 82
208
𝑃𝑏 ( its emits 6 𝛼 and 4
𝛽− in decay prosses)
90
232
𝑇ℎ → 82
208
𝑃𝑏 + 6 2
4
𝐻𝑒 + 4 −1
0
𝑒 + 4ഥ
𝜈
2) Uranium series : begins with 92
238
𝑈 and end with 82
206
𝑃𝑏 ( its emits 8 𝛼 and 6
𝛽− in decay prosses)
92
238
𝑈 → 82
206
𝑃𝑏 + 8 2
4
𝐻𝑒 + 6 −1
0
𝑒 + 6 ҧ
𝜈
3) Actinium series : begins with 92
235
𝑈 and end with 82
207
𝑃𝑏 ( its emits 7 𝛼 and 4
𝛽− in decay prosses)
92
235
𝑈 → 82
207
𝑃𝑏 + 7 2
4
𝐻𝑒 + 4 −1
0
𝑒 + 4 ҧ
𝜈
Each of the three series ends with an isotope of lead
5/ Natural radioactive decay series
Thorium series Uranium series Actinium series
6/ Induced Nuclear reactions
1) Nuclear fusion : is a reaction in which two or more light
nuclei are combined to form one or more heavy nuclei
and subatomic particles (neutrons or protons).
The fusion process releases a large amount of energy
(Nuclear fusion occur inside the center of stars)
6/ Induced Nuclear reactions
2) Nuclear Fission : is a reaction in which the heavy nucleus
splits into two or more smaller nuclei.
The fission process often produces gamma photons, and
releases a very large amount of energy
7/ Radioactive dating
Carbon-14 has half-life of 5730 years ; the production of
C-14 is explained by the next nuclear equation:
7
14
𝑁 + 0
1
𝑛 → 6
14
𝐶 + 1
1
𝑝
Neutrons are produced in upper atmosphere by interaction
of cosmic-ray with atomic nuclei
Once an organism dies, the input of radiocarbon stops and
the ratio of radiocarbon to ordinary carbon 6
12
𝐶 decreases
steadily as the 6
14
𝐶 decays. Thus the quantity of 6
14
𝐶
remaining indicates the date of death
6
14
𝐶 → 7
14
𝑁 + −1
0
𝛽 + ҧ
𝜈
The decay of C-14 is explained by the next nuclear equation:
8/ Measuring Radiation Dosage
a) major categories of radiation
1. Positive ions (protons and alpha particles)
2. Electrons and Positrons (beta particles)
3. Photons (gamma rays and X-rays)
4. Neutrons
8/ Measuring Radiation Dosage
b) Absorbed dose
This is a measure of radiation dose (as energy per unit
mass) actually absorbed by a specific object, such as
patient’s hand or chest.
SI unit: gray (Gy).
Other unit: rad,
1Gy =100 rad.
1Gy = 1 J/Kg
8/ Measuring Radiation Dosage
c) Dose Equivalent
Although different types of radiation (gamma ray and
neutrons…) may deliver the same amount of energy to
the body, they do not have the same biological effect.
The dose equivalent allows us to express the biological
effect
SI unit: Sievert (Sv)
 Other unit: rem
1 Sv = 100 rem

Más contenido relacionado

La actualidad más candente

Thermal diffusivity
Thermal diffusivityThermal diffusivity
Thermal diffusivityKushaji
 
Chapter 1 blackbody radiation
Chapter 1  blackbody radiationChapter 1  blackbody radiation
Chapter 1 blackbody radiationMiza Kamaruzzaman
 
Fission and fusion
Fission and fusionFission and fusion
Fission and fusionInga Teper
 
Radioactivity + isotopes lect.1,2,
Radioactivity + isotopes lect.1,2,Radioactivity + isotopes lect.1,2,
Radioactivity + isotopes lect.1,2,kamal2200
 
Thermal Radiation-I - Basic properties and Laws
Thermal Radiation-I - Basic properties and LawsThermal Radiation-I - Basic properties and Laws
Thermal Radiation-I - Basic properties and Lawstmuliya
 
convection-1.ppt
convection-1.pptconvection-1.ppt
convection-1.pptOISTMEHOD
 
Diploma sem 2 applied science physics-unit 2-chap-2 surface-tension
Diploma sem 2 applied science physics-unit 2-chap-2 surface-tensionDiploma sem 2 applied science physics-unit 2-chap-2 surface-tension
Diploma sem 2 applied science physics-unit 2-chap-2 surface-tensionRai University
 
Term Paper - Field Assisted Thermionic Emission, Field Emission, and Applicat...
Term Paper - Field Assisted Thermionic Emission, Field Emission, and Applicat...Term Paper - Field Assisted Thermionic Emission, Field Emission, and Applicat...
Term Paper - Field Assisted Thermionic Emission, Field Emission, and Applicat...Adeagbo Bamise
 
02 part7 second law thermodynamics
02 part7 second law thermodynamics02 part7 second law thermodynamics
02 part7 second law thermodynamicsgunabalan sellan
 
Mass transfer, Topic : Ficks law of diffusion
Mass transfer, Topic : Ficks law of diffusionMass transfer, Topic : Ficks law of diffusion
Mass transfer, Topic : Ficks law of diffusionlalankumar65
 
Temperature,Heat, and Energy Transfer
Temperature,Heat, and Energy TransferTemperature,Heat, and Energy Transfer
Temperature,Heat, and Energy Transfermuguu_908
 
Xrf & it's types
Xrf & it's typesXrf & it's types
Xrf & it's typesArvKaushik
 
Heat Capacity Specific heat-capacity (1)
Heat Capacity Specific heat-capacity (1)Heat Capacity Specific heat-capacity (1)
Heat Capacity Specific heat-capacity (1)Muhammad Gulfam
 

La actualidad más candente (20)

Thermal diffusivity
Thermal diffusivityThermal diffusivity
Thermal diffusivity
 
Chapter 1 blackbody radiation
Chapter 1  blackbody radiationChapter 1  blackbody radiation
Chapter 1 blackbody radiation
 
Doppler broadening
Doppler broadeningDoppler broadening
Doppler broadening
 
Fission and fusion
Fission and fusionFission and fusion
Fission and fusion
 
Radioactivity + isotopes lect.1,2,
Radioactivity + isotopes lect.1,2,Radioactivity + isotopes lect.1,2,
Radioactivity + isotopes lect.1,2,
 
Sound - Physics
Sound - PhysicsSound - Physics
Sound - Physics
 
Thermal Radiation-I - Basic properties and Laws
Thermal Radiation-I - Basic properties and LawsThermal Radiation-I - Basic properties and Laws
Thermal Radiation-I - Basic properties and Laws
 
Physics Chapter 13- Heat
Physics Chapter 13- HeatPhysics Chapter 13- Heat
Physics Chapter 13- Heat
 
convection-1.ppt
convection-1.pptconvection-1.ppt
convection-1.ppt
 
Diploma sem 2 applied science physics-unit 2-chap-2 surface-tension
Diploma sem 2 applied science physics-unit 2-chap-2 surface-tensionDiploma sem 2 applied science physics-unit 2-chap-2 surface-tension
Diploma sem 2 applied science physics-unit 2-chap-2 surface-tension
 
Term Paper - Field Assisted Thermionic Emission, Field Emission, and Applicat...
Term Paper - Field Assisted Thermionic Emission, Field Emission, and Applicat...Term Paper - Field Assisted Thermionic Emission, Field Emission, and Applicat...
Term Paper - Field Assisted Thermionic Emission, Field Emission, and Applicat...
 
02 part7 second law thermodynamics
02 part7 second law thermodynamics02 part7 second law thermodynamics
02 part7 second law thermodynamics
 
Radioactivity
RadioactivityRadioactivity
Radioactivity
 
Mass transfer, Topic : Ficks law of diffusion
Mass transfer, Topic : Ficks law of diffusionMass transfer, Topic : Ficks law of diffusion
Mass transfer, Topic : Ficks law of diffusion
 
Wave mechanics
Wave mechanicsWave mechanics
Wave mechanics
 
Temperature,Heat, and Energy Transfer
Temperature,Heat, and Energy TransferTemperature,Heat, and Energy Transfer
Temperature,Heat, and Energy Transfer
 
Xrf & it's types
Xrf & it's typesXrf & it's types
Xrf & it's types
 
Heat Capacity Specific heat-capacity (1)
Heat Capacity Specific heat-capacity (1)Heat Capacity Specific heat-capacity (1)
Heat Capacity Specific heat-capacity (1)
 
Solid state laser
Solid state laserSolid state laser
Solid state laser
 
Thermal analysis-TG-DTA
Thermal analysis-TG-DTAThermal analysis-TG-DTA
Thermal analysis-TG-DTA
 

Similar a Introduction to

Radiobiology2
Radiobiology2Radiobiology2
Radiobiology2zedan
 
Lesson Nuclear Reactions Radioactivity
Lesson Nuclear Reactions RadioactivityLesson Nuclear Reactions Radioactivity
Lesson Nuclear Reactions Radioactivitynazarin
 
revision xi - chapters1-5.pdf
revision xi - chapters1-5.pdfrevision xi - chapters1-5.pdf
revision xi - chapters1-5.pdfssuserfa137e1
 
Radioactivity: physics form 5.
Radioactivity: physics form 5.Radioactivity: physics form 5.
Radioactivity: physics form 5.Ramli Rem
 
Radioactive decay half-life calculation
Radioactive decay  half-life calculationRadioactive decay  half-life calculation
Radioactive decay half-life calculationDamion Lawrence
 
Lect27 handout
Lect27 handoutLect27 handout
Lect27 handoutnomio0703
 
Lect27 handout
Lect27 handoutLect27 handout
Lect27 handoutnomio0703
 
Introduction to Basic Electronics for Electronics and telecommunication students
Introduction to Basic Electronics for Electronics and telecommunication studentsIntroduction to Basic Electronics for Electronics and telecommunication students
Introduction to Basic Electronics for Electronics and telecommunication studentsZulqarnainHaider91
 
Radioactivity
RadioactivityRadioactivity
RadioactivityE H Annex
 
Chapter 21 Nuclear Chemistry Section 2 1Updated (1).pptx
Chapter 21 Nuclear Chemistry Section 2 1Updated (1).pptxChapter 21 Nuclear Chemistry Section 2 1Updated (1).pptx
Chapter 21 Nuclear Chemistry Section 2 1Updated (1).pptxSharmilaJayanthi1
 
Nuclear Chemistry Notes Power Point.ppt
Nuclear Chemistry Notes Power Point.pptNuclear Chemistry Notes Power Point.ppt
Nuclear Chemistry Notes Power Point.pptAshwiniBarache
 
Unit2 Presentation
Unit2 PresentationUnit2 Presentation
Unit2 Presentationpoags25
 
Notes nuclear chemistry
Notes nuclear chemistryNotes nuclear chemistry
Notes nuclear chemistrydmurphychccs
 
Concept of radioactivity, radioactivity counting methods with principles of d...
Concept of radioactivity, radioactivity counting methods with principles of d...Concept of radioactivity, radioactivity counting methods with principles of d...
Concept of radioactivity, radioactivity counting methods with principles of d...AMIT RANA Ph. D Scholar
 

Similar a Introduction to (20)

Radioactivity
RadioactivityRadioactivity
Radioactivity
 
Radiobiology2
Radiobiology2Radiobiology2
Radiobiology2
 
Lesson Nuclear Reactions Radioactivity
Lesson Nuclear Reactions RadioactivityLesson Nuclear Reactions Radioactivity
Lesson Nuclear Reactions Radioactivity
 
revision xi - chapters1-5.pdf
revision xi - chapters1-5.pdfrevision xi - chapters1-5.pdf
revision xi - chapters1-5.pdf
 
11 Nuclear
11 Nuclear11 Nuclear
11 Nuclear
 
Radioactivity: physics form 5.
Radioactivity: physics form 5.Radioactivity: physics form 5.
Radioactivity: physics form 5.
 
Radioactive decay half-life calculation
Radioactive decay  half-life calculationRadioactive decay  half-life calculation
Radioactive decay half-life calculation
 
Lect27 handout
Lect27 handoutLect27 handout
Lect27 handout
 
Lect27 handout
Lect27 handoutLect27 handout
Lect27 handout
 
Lect27 handout
Lect27 handoutLect27 handout
Lect27 handout
 
Class 12 physics chapter 13 NCERT solutions pdf
Class 12 physics chapter 13 NCERT solutions pdfClass 12 physics chapter 13 NCERT solutions pdf
Class 12 physics chapter 13 NCERT solutions pdf
 
Introduction to Basic Electronics for Electronics and telecommunication students
Introduction to Basic Electronics for Electronics and telecommunication studentsIntroduction to Basic Electronics for Electronics and telecommunication students
Introduction to Basic Electronics for Electronics and telecommunication students
 
ch21-nuclear-chem.pptx
ch21-nuclear-chem.pptxch21-nuclear-chem.pptx
ch21-nuclear-chem.pptx
 
Radioactive_Decay.pptx
Radioactive_Decay.pptxRadioactive_Decay.pptx
Radioactive_Decay.pptx
 
Radioactivity
RadioactivityRadioactivity
Radioactivity
 
Chapter 21 Nuclear Chemistry Section 2 1Updated (1).pptx
Chapter 21 Nuclear Chemistry Section 2 1Updated (1).pptxChapter 21 Nuclear Chemistry Section 2 1Updated (1).pptx
Chapter 21 Nuclear Chemistry Section 2 1Updated (1).pptx
 
Nuclear Chemistry Notes Power Point.ppt
Nuclear Chemistry Notes Power Point.pptNuclear Chemistry Notes Power Point.ppt
Nuclear Chemistry Notes Power Point.ppt
 
Unit2 Presentation
Unit2 PresentationUnit2 Presentation
Unit2 Presentation
 
Notes nuclear chemistry
Notes nuclear chemistryNotes nuclear chemistry
Notes nuclear chemistry
 
Concept of radioactivity, radioactivity counting methods with principles of d...
Concept of radioactivity, radioactivity counting methods with principles of d...Concept of radioactivity, radioactivity counting methods with principles of d...
Concept of radioactivity, radioactivity counting methods with principles of d...
 

Último

social pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajansocial pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajanpragatimahajan3
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Celine George
 
9548086042 for call girls in Indira Nagar with room service
9548086042  for call girls in Indira Nagar  with room service9548086042  for call girls in Indira Nagar  with room service
9548086042 for call girls in Indira Nagar with room servicediscovermytutordmt
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introductionMaksud Ahmed
 
Disha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdfDisha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdfchloefrazer622
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Sapana Sha
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationnomboosow
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformChameera Dedduwage
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingTechSoup
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionSafetyChain Software
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)eniolaolutunde
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdfSoniaTolstoy
 
Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDThiyagu K
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphThiyagu K
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityGeoBlogs
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfciinovamais
 
APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAssociation for Project Management
 

Último (20)

social pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajansocial pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajan
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17
 
9548086042 for call girls in Indira Nagar with room service
9548086042  for call girls in Indira Nagar  with room service9548086042  for call girls in Indira Nagar  with room service
9548086042 for call girls in Indira Nagar with room service
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
Disha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdfDisha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdf
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communication
 
Advance Mobile Application Development class 07
Advance Mobile Application Development class 07Advance Mobile Application Development class 07
Advance Mobile Application Development class 07
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy Reform
 
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptxINDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy Consulting
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory Inspection
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
 
Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SD
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot Graph
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activity
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
 
Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1
 
APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across Sectors
 

Introduction to

  • 2. Contents  1- Introduction  4- a) Alpha , b) Beta and c) Gamma Decay  2- Some Nucleus Properties  3- Radioactive Decay  5- Natural radioactive decay series  6- Induced Nuclear reactions (nuclear fission and nuclear fusion)  7- Radioactive Dating  8- Measuring Radiation Dosage
  • 3. 1/ INTRODUCTION:  By accident, becquerel discovered that uranium salts spontaneously emit a penetrating radiation that can be registered on a photographic plate.  Rutherford showed that the radiation had three types: Alpha, Beta and Gamma 1896
  • 4. 1/ INTRODUCTION:  Rutherford fired a beam of alpha particles at foil of gold leaf  The results of the experiment are : 1) Most of alpha particles Passed without deflection. 2) some of alpha particles are deflected at small angles. 3) few of alpha particles are deflected at large angles. 1911 Rutherford scattering experiment
  • 5. 1/ INTRODUCTION:  The conclusions of the experiment are : 1) Most of the space inside the atom is empty 2) The positive charge of the atom occupies very little space 3) That all the positive charge and mass of the atom were concentrated in a very small volume within the atom 1911 Rutherford scattering experiment
  • 6. 1/ INTRODUCTION:  Rutherford's Nuclear Model Of Atom : 1) There is a positively charged Centre in an atom called the nucleus. Nearly all the mass of an atom resides in the nucleus. 2) The electrons revolve around the nucleus in well- defined orbits. 3) The size of the nucleus is very small as compared to the size of the atom.  Nucleus of an atom is positively charged ,very dense , hard and very small 1911 Rutherford scattering experiment
  • 7. 2/ Some Nuclear Properties The materials are made of atoms The atom is composed of a nucleus and electrons orbiting around the nucleus. The nucleus is a very small dense object made up of two kinds of nucleons [Protons (p), Neutrons (n)]. Atom Nucleus Protons Neutrons Electrons
  • 8. 2/ Some Nuclear Properties 𝑚𝑝 ≅ 𝑚𝑛 𝑚𝑝 ≅ 1840 𝑚𝑒 Number of protons is equal to the number of the electrons in the neutral atom.
  • 9. 2/ Some Nuclear Properties Numbers that characterize the nucleus Z, N and A Z = Atomic number N = Neutron number Number of nucleons in the nucleus. Number of protons in the nucleus. The number of neutrons in the nucleus. A = Mass number 𝐴 = 𝑁 + 𝑍 a) Nuclear Terminology
  • 10. 2/ Some Nuclear Properties Example Find the number of protons, neutrons and electrons a) Nuclear Terminology Representation of a nucleus
  • 11. 2/ Some Nuclear Properties Examples a) Nuclear Terminology 1) Isotopes The atoms of an element which have the same number of protons (𝑍1 = 𝑍2) and different number of neutrons are called Isotopes.
  • 12. 2/ Some Nuclear Properties Example a) Nuclear Terminology 2) Isobars The atoms which have the same mass number (𝐴1 = 𝐴2) but different atomic numbers are called isobars.
  • 13. 2/ Some Nuclear Properties Example a) Nuclear Terminology 3) Isotones Atoms which have different atomic number (𝑍1 ≠ 𝑍2) and different atomic masses (𝐴1 ≠ 𝐴2) but the same number of neutrons 𝑁1 = 𝑁2 are called Isotones.
  • 15. 2/ Some Nuclear Properties 2) The Volume (V) of the nucleus is given by the formula : Most nuclei are spherical b) Nucleus Radius and Volume 1) The Average radius is given by the formula : 𝑟 = 𝑟0 𝐴1/3 ; 𝑟0 = 1.2 𝑋 10−15 m The unit used for measuring distance on the scale of nuclei is femtometer : 1 𝑓𝑚 = 10−15 𝑚 V = 4 3 𝜋(𝑟0 𝐴 1 3)3 V = 7.24 𝑋 10−45 (A) 𝑚3
  • 16. Radius depends on 𝐴1/3 Volume depends on 𝐴
  • 17. 2/ Some Nuclear Properties The Mass can also be expressed in 𝑀𝑒𝑉/𝑐2 The SI-unit of mass is Kg but in subatomic particles It is convenient to use atomic mass units ( 𝑢 ) to express masses. c) Atomic Mass Based on definition that the mass of one atom of C is exactly 12 𝑢 1 𝑢 = 1.660 539 x 10−27 kg 𝑚𝑝 = 1.0073 𝑢 , 𝑚𝑁 = 1.0087 𝑢 , 𝑚𝑒 = 5.486 ∗ 10−4 𝑢 𝑚𝑝 = 938.25 𝑀𝑒𝑉/𝑐2 , 𝑚𝑁 = 939.57𝑀𝑒𝑉/𝑐2 , 𝑚𝑒= 0.511𝑀𝑒𝑉/𝑐2 1 𝑢 = 931.494 𝑀𝑒𝑉/𝑐2
  • 18. 2/ Some Nuclear Properties ρ = 𝑚 𝑉 = 𝑍∗𝑚𝑝+𝑁∗𝑚𝑁 4 3 𝜋(𝑟0 𝐴 1 3)3 (𝑚𝑝≅ 𝑚𝑛) ≅ 𝐴∗𝑚𝑝 4 3 𝜋(𝑟0 𝐴 1 3)3 = 𝐴∗𝑚𝑝 4 3 𝜋 𝑟0 3 𝐴 = 1.673∗10−27 7.238∗10−45 ≅ 2.3 ∗ 1017 Τ 𝐾𝑔 𝑚3 d) Nucleus Density That’s mean all nuclei have the same Density
  • 19. 2/ Some Nuclear Properties 2) Electrical force: smaller in magnitude, but they become progressively more important as the number of protons in the nucleus increases. 1) Nuclear force: the force responsible of nuclei stability, which overcome the electrical force (repulsion between protons). e) Forces in the nucleus Properties of Nuclear force: strong, short range and attraction between nucleons.
  • 20. 2/ Some Nuclear Properties p-p: electric repulsion and nuclear attraction. e) Forces in the nucleus p-n: nuclear attraction. n-n: nuclear attraction
  • 21. 3/ Radioactive Decay Radioactivity : is the spontaneous emission of radiation. Radioactivity : is the result of the decay, or disintegration, of unstable nuclei. Radioactive nuclei can emit 3 types of radiation in the process: a) Definitions
  • 22. 3/ Radioactive Decay  Alpha particles (𝛼): consists of 2 protons and 2 neutrons, and they are positively charged (+2e), have low speed and short range in matter. [2 4 𝐻𝑒]  Beta particles (𝛽): they could be 𝛽− (electrons) or 𝛽+ (positrons) , have high speed (near speed of light) and longer range in matter. [positrons are positively charged electrons]  Gamma ray (𝛾): It is electromagnetic wave (photon) carrying a high energy away from the nucleus, has speed of light and it is the most penetrating radiation . [have no mass or charge]
  • 23. 3/ Radioactive Decay The number of particles that decay in a given time is proportional to the total number of particles in a radioactive sample. b) The Decay Constant λ is called the decay constant and determines the probability of decay per nucleus per second. 𝑑𝑁 𝑑𝑡 = −𝜆𝑁 𝑔𝑖𝑣𝑒𝑠 𝑁 = 𝑁0𝑒−𝜆𝑡 N is the number of undecayed radioactive nuclei present. No is the number of undecayed nuclei at time t = 0 (original number of nuclei).
  • 24. 3/ Radioactive Decay The decay rate R of a sample is defined as the number of decays per second. c) The Decay Rate 𝑅0 = 𝜆𝑁0 is the decay rate at t = 0. R = 𝑑𝑁 𝑑𝑡 = 𝜆𝑁 = 𝜆𝑁0𝑒−𝜆𝑡 = 𝑅0𝑒−𝜆𝑡 The decay rate is often referred to as the activity of the sample.
  • 25. 3/ Radioactive Decay The decay curve follows the equation: d) Decay Curve and Half-Life 𝑁 = 𝑁0𝑒−𝜆𝑡 Half life 𝑇1/2 is defined as the time required for half the nuclei present to decay. 𝑇1/2 = 𝐿𝑛2 𝜆 = 0.693 𝜆
  • 26.
  • 27. 3/ Radioactive Decay c) Decay Curve and Half-Life t N 0 𝑁0 T 𝑁0/2 2T 𝑁0/4 3T 𝑁0/8 nT 𝑁0/(2𝑛)
  • 28. 3/ Radioactive Decay Activity (R) in term of decay constant (λ) e) Activity (R) of a given mass 𝑁𝐴 = 6.023 𝑋1023 𝑚𝑜𝑙−1 is Avogadro’s Number 𝑛 = 𝑚𝑎𝑠𝑠 𝐴 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑜𝑙𝑒𝑠 ; 𝐴 is Mass number 𝑅 = 𝜆𝑛𝑁𝐴 𝑅 = 𝜆 𝑚𝑎𝑠𝑠 𝐴 𝑁𝐴
  • 29. 3/ Radioactive Decay Activity (R) in term of Half life T e) Activity (R) of a given mass 𝑅 = 0.693 𝑇 𝑛𝑁𝐴 Remark Activity R must have a unit Bq ( Becquerel) Half life T must have a unit s ( Second) Constant decay λ must have a unit 𝑠−1
  • 30. 3/ Radioactive Decay The SI unit of activity is the becquerel (Bq) f) Activity Units 1 Bq = 1 disintegration/s Remark The curie (Ci) is another unit of activity, 1 Ci = 3.7 X 1010 disintegration/s 1 Ci = 3.7 X 1010 Bq
  • 31. 4/a Alpha Decay 𝑍 𝐴 𝑋 → 𝑍−2 𝐴−4 𝑌 + 2 4 𝐻𝑒 or 𝑍 𝐴 𝑋 → 𝑍−2 𝐴−4 𝑌 + 2 4 𝛼 X is called the parent nucleus Y is called the daughter nucleus Example : 92 238 𝑈 → 90 234 𝑇ℎ + 2 4 𝐻𝑒 84 234 𝑃𝑜 → 82 230 𝑃𝑏 + 2 4 𝛼 Alpha particle ( 2 4 𝐻𝑒 , 2 4 𝛼 ) is emitted leaving behind a residual nucleus that has lost 2 protons and 2 neutrons; 𝛼- decay is usually observed in heavier unstable nuclei (𝑍 > 82).
  • 32. 4/a Alpha Decay Alpha particle (2 4 𝐻𝑒) is emitted leaving behind a residual nucleus that has lost 2 protons and 2 neutrons; 𝛼-decay is usually observed in heavier unstable nuclei (𝑍 > 82).
  • 33. 4/b Beta Decay In Beta decay, an electron (𝑒− ) or a positron (𝑒+ ) is emitted by nucleus  When a nucleus emits an electron, the nucleus loses a neutron and gains a proton.  When a nucleus emits an positron, the nucleus loses a proton and gains a neutron.
  • 34. 4/b Beta Decay 9 18 𝐹 → 8 18 𝑂 + 1 0 𝑒 + 𝜈 6 14 𝐶 → 7 14 𝑁 + 𝛽− + ҧ 𝜈 6 14 𝐶 → 7 14 𝑁 + −1 0 𝑒 + ҧ 𝜈 9 18 𝐹 → 8 18 𝑂 + 𝛽+ + 𝜈
  • 35. 4/c Gamma Decay  Gamma rays are given off when an excited nucleus decays to a lower energy state.  The decay occurs by emitting a high energy photon called gamma-ray photons Example: 18 40 𝐴𝑟∗ → 18 40 𝐴𝑟 + 𝛾 The 𝑿∗ indicates a nucleus in an excited state.
  • 36. 5/ Natural radioactive decay series  Decay series : The sequence of radioactive daughter nuclides that are formed by the radioactive decay of a parent nuclide to a final stable daughter nuclide.  There are three natural decay series that include the heavy elements 1) Thorium series : begins with 90 232 𝑇ℎ and end with 82 208 𝑃𝑏 ( its emits 6 𝛼 and 4 𝛽− in decay prosses) 90 232 𝑇ℎ → 82 208 𝑃𝑏 + 6 2 4 𝐻𝑒 + 4 −1 0 𝑒 + 4ഥ 𝜈 2) Uranium series : begins with 92 238 𝑈 and end with 82 206 𝑃𝑏 ( its emits 8 𝛼 and 6 𝛽− in decay prosses) 92 238 𝑈 → 82 206 𝑃𝑏 + 8 2 4 𝐻𝑒 + 6 −1 0 𝑒 + 6 ҧ 𝜈 3) Actinium series : begins with 92 235 𝑈 and end with 82 207 𝑃𝑏 ( its emits 7 𝛼 and 4 𝛽− in decay prosses) 92 235 𝑈 → 82 207 𝑃𝑏 + 7 2 4 𝐻𝑒 + 4 −1 0 𝑒 + 4 ҧ 𝜈 Each of the three series ends with an isotope of lead
  • 37. 5/ Natural radioactive decay series Thorium series Uranium series Actinium series
  • 38. 6/ Induced Nuclear reactions 1) Nuclear fusion : is a reaction in which two or more light nuclei are combined to form one or more heavy nuclei and subatomic particles (neutrons or protons). The fusion process releases a large amount of energy (Nuclear fusion occur inside the center of stars)
  • 39. 6/ Induced Nuclear reactions 2) Nuclear Fission : is a reaction in which the heavy nucleus splits into two or more smaller nuclei. The fission process often produces gamma photons, and releases a very large amount of energy
  • 40. 7/ Radioactive dating Carbon-14 has half-life of 5730 years ; the production of C-14 is explained by the next nuclear equation: 7 14 𝑁 + 0 1 𝑛 → 6 14 𝐶 + 1 1 𝑝 Neutrons are produced in upper atmosphere by interaction of cosmic-ray with atomic nuclei Once an organism dies, the input of radiocarbon stops and the ratio of radiocarbon to ordinary carbon 6 12 𝐶 decreases steadily as the 6 14 𝐶 decays. Thus the quantity of 6 14 𝐶 remaining indicates the date of death 6 14 𝐶 → 7 14 𝑁 + −1 0 𝛽 + ҧ 𝜈 The decay of C-14 is explained by the next nuclear equation:
  • 41. 8/ Measuring Radiation Dosage a) major categories of radiation 1. Positive ions (protons and alpha particles) 2. Electrons and Positrons (beta particles) 3. Photons (gamma rays and X-rays) 4. Neutrons
  • 42. 8/ Measuring Radiation Dosage b) Absorbed dose This is a measure of radiation dose (as energy per unit mass) actually absorbed by a specific object, such as patient’s hand or chest. SI unit: gray (Gy). Other unit: rad, 1Gy =100 rad. 1Gy = 1 J/Kg
  • 43. 8/ Measuring Radiation Dosage c) Dose Equivalent Although different types of radiation (gamma ray and neutrons…) may deliver the same amount of energy to the body, they do not have the same biological effect. The dose equivalent allows us to express the biological effect SI unit: Sievert (Sv)  Other unit: rem 1 Sv = 100 rem