SlideShare una empresa de Scribd logo
1 de 99
Descargar para leer sin conexión
文法および流暢性を考慮した
頑健なテキスト誤り訂正
坂口 慶祐
1
Natural Language Processing
Algorithm
Algorithm
Algorithm
Algorithm
Algorithm
…
POS
Parse
Sentiment
Paraphrase
Translation
…
2
Natural Language Processing
Algorithm
Algorithm
Algorithm
Algorithm
Algorithm
…
POS
Parse
Sentiment
Paraphrase
Translation
…
3
4
5
Noisy Text is Everywhere 6
Human brain vs. Computers 7
Outline
Robust Text Correction for Grammar and Fluency
1. Character-level
2. Word-level
3. Sentence (phrase)-level
8
Outline
Robust Text Correction for Grammar and Fluency
1. Character-level
2. Word-level
3. Sentence (phrase)-level
9
1. Character-level robust processing
Robsut Wrod Reocginiton
via semi-Character Recurrent Neural Network.
(AAAI 2017)
Keisuke Sakaguchi, Kevin Duh, Matt Post, Benjamin Van Durme
10
Aoccdrnig to a rscheearch at Cmabrigde Uinervtisy, it deosn’t
mttaer in waht oredr the ltteers in a wrod are, the olny
iprmoetnt tihng is taht the frist and lsat ltteer be at the rghit
pclae. The rset can be a toatl mses and you can sitll raed it
wouthit porbelm. Tihs is bcuseae the huamn mnid deos not
raed ervey lteter by istlef, but the wrod as a wlohe.
(Cambridge University Effect: Davis 2003)
11
12
Aoccdrnig to a rscheearch at Cmabrigde Uinervtisy, it deosn’t
mttaer in waht oredr the ltteers in a wrod are, the olny
iprmoetnt tihng is taht the frist and lsat ltteer be at the rghit
pclae. The rset can be a toatl mses and you can sitll raed it
wouthit porbelm. Tihs is bcuseae the huamn mnid deos not
raed ervey lteter by istlef, but the wrod as a wlohe.
(Cambridge University Effect: Davis 2003)
Human (brain) is good at dealing with noisy input robustly.
13
Aoccdrnig to a rscheearch at Cmabrigde Uinervtisy, it deosn’t
mttaer in waht oredr the ltteers in a wrod are, the olny
iprmoetnt tihng is taht the frist and lsat ltteer be at the rghit
pclae. The rset can be a toatl mses and you can sitll raed it
wouthit porbelm. Tihs is bcuseae the huamn mnid deos not
raed ervey lteter by istlef, but the wrod as a wlohe.
(Cambridge University Effect: Davis 2003)
Question: Can we build a computational model which
replicates this robust mechanism?
Human (brain) is good at dealing with noisy input robustly.
14
Masked priming study
Swap (Forster et al. 1987) gadren-GARDEN
Shuffle (Perea and Lupker. 2004) caniso-CASINO
Delete (Humphreys et al. 1990) blck-BLACK
Insert (Van Assche and Grainger. 2006) juastice-JUSTICE
15
Aoccdrnig to a rscheearch at Cmabrigde Uinervtisy, it deosn’t
mttaer in waht oredr the ltteers in a wrod are, the olny
iprmoetnt tihng is taht the frist and lsat ltteer be at the rghit
pclae. The rset can be a toatl mses and you can sitll raed it
wouthit porbelm. Tihs is bcuseae the huamn mnid deos not
raed ervey lteter by istlef, but the wrod as a wlohe.
(Cambridge University Effect: Davis 2003)
Question: Can we build a computational model which
replicates this robust mechanism?
Human (brain) is good at dealing with noisy input robustly.
16
semi-Character RNN (scRNN)
Simple RNN except …
xn =
2
4
bn
in
en
3
5
e.g., “University” is represented as
bn = {U = 1}
en = {y = 1}
in = {e = 1, i = 2, n = 1, s = 1, t = 1, v = 1}
17
Exp1: Spelling Correction
Corpus: Penn TreeBank, (10k vocabulary)
Parameters:
- hidden unit size: 650
- mini-batch size 20
Comparison:
- Enchant
- 2 commercial products
- char aware neural LM
(Kim et al., 2016, AAAI)
18
Exp1: Spelling Correction
Three conditions in test time
- Jumble (Cambridge à Cmbarigde)
- Delete (Cambridge à Camridge)
- Insert (Cambridge à Cambpridge)
Results (accuracy):
Jumble Delete Insert
CharCNN 16.2 19.8 35.5
Enchant 57.6 35.4 89.6
Commercial A 54.8 60.2 93.5
Commercial B 54.3 71.7 73.5
scRNN 99.4 85.6 97.0
19
Exp1: Spelling Correction
Three conditions in test time
- Jumble (Cambridge à Cmbarigde)
- Delete (Cambridge à Camridge)
- Insert (Cambridge à Cambpridge)
Results (accuracy):
Jumble Delete Insert
CharCNN 16.2 19.8 35.5
Enchant 57.6 35.4 89.6
Commercial A 54.8 60.2 93.5
Commercial B 54.3 71.7 73.5
scRNN 99.4 85.6 97.0
place
à pace
miss, mass, mess
à mss
20
Exp2: Comparison with eye tracking 21
Eye tracking study 22
Eye tracking studyCondition
Example
#fixation
Regression
(%)
Avg.Fixation
(ms)
N The boy could not solve the problem so he asked for help.
INT The boy cuold not slove the probelm so he aksed for help.
END The boy coudl not solev the problme so he askde for help.
BEG The boy oculd not oslve the rpoblem so he saked for help.
Rayner et al. (2006)
23
Eye tracking studyCondition
Example
#fixation
Regression
(%)
Avg.Fixation
(ms)
N The boy could not solve the problem so he asked for help. 10.4 15.0 236
INT The boy cuold not slove the probelm so he aksed for help. 11.4* 17.6* 244*
END The boy coudl not solev the problme so he askde for help. 12.6† 17.5* 246†
BEG The boy oculd not oslve the rpoblem so he saked for help. 13.0‡ 21.5† 259‡
Rayner et al. (2006)
p<0.01 respectively
24
Eye tracking studyCondition
Example
#fixation
Regression
(%)
Avg.Fixation
(ms)
N The boy could not solve the problem so he asked for help. 10.4 15.0 236
INT The boy cuold not slove the probelm so he aksed for help. 11.4* 17.6* 244*
END The boy coudl not solev the problme so he askde for help. 12.6† 17.5* 246†
BEG The boy oculd not oslve the rpoblem so he saked for help. 13.0‡ 21.5† 259‡
Rayner et al. (2006)
Reading difficulty: N < INT ≤ END < BEG
p<0.01 respectively
25
Exp2: Comparison with eye tracking
Reading difficulty (human) : N < INT ≤ END < BEG
Trained and tested with 4 conditions:
INT: same as the exp.1
BEG: last char is fixed
END: first char is fixed
ALL: bag of characters
26
Exp2: Comparison with eye tracking
Reading difficulty (human) : N < INT ≤ END < BEG
Condition
Example
accuracy
INT As a relust , the lnik beewetn the fureuts and sctok mretkas rpiped arapt . 98.96
END As a rtelus , the lkni betwene the feturus and soctk msatrek rpepid atarp . 98.68*
BEG As a lesurt , the lnik bweteen the utufers and tocsk makrtes pipred arpat . 98.12†
ALL As a strule , the lnik eewtneb the eftusur and okcst msretak ipdepr prtaa . 96.79‡
*: p = 0.07, †.‡: p<0.01 respectively
27
Exp2: Comparison with eye tracking
Reading difficulty (human) : N < INT ≤ END < BEG
Condition
Example
accuracy
INT As a relust , the lnik beewetn the fureuts and sctok mretkas rpiped arapt . 98.96
END As a rtelus , the lkni betwene the feturus and soctk msatrek rpepid atarp . 98.68*
BEG As a lesurt , the lnik bweteen the utufers and tocsk makrtes pipred arpat . 98.12†
ALL As a strule , the lnik eewtneb the eftusur and okcst msretak ipdepr prtaa . 96.79‡
Reading difficulty (scRNN) : INT ≤ END < BEG < ALL
*: p = 0.07, †.‡: p<0.01 respectively
28
Summary so far …
1. Huamn mnid deos not raed
ervey lteter by istlef, but the
wrod as a wlohe.
2. scRNN recognizes noisy
words robustly.
3. There is a similarity
between scRNN and human
word recognition mechanism.
Forward Mask
(500 milliseconds)
GARDEN
gadren
########
Prime
(60 milliseconds)
Target
29
Outline
Robust Text Correction for Grammar and Fluency
1. Character-level
2. Word-level
3. Sentence (phrase)-level
30
2. Word-level robust processing
Error-repair Dependency Parsing for Ungrammatical
Texts (ACL 2017)
Keisuke Sakaguchi, Matt Post, Benjamin Van Durme
31
Dependency Parsing
Text à Tree (with labels)
Economic news had little effect on financial markets .
32
Background & Motivation
I look in forward hear from you.
I look forward to hearing from you.
Error correction
↓
Parsing
Pipeline
Error-repair
parsing
Joint training
33
Error-repair Dependency Parsing
1. Non-directional Easy-first parsing
(Goldberg and Elhadad, 2010)
2. Three new actions to repair errors
34
Non-directional Easy-first Parsing
a brown fox jumped with joy
a brown joywith
joy
fox
a brown
35
Non-directional Easy-first Parsing
a brown fox jumped with joy
a brown joywith
joy
fox
a brown
Pending List
36
Non-directional Easy-first Parsing
a brown fox jumped with joy
a brown joywith
joy
fox
a brown
ATTACHRIGHT(𝑖)
ATTACHLEFT(𝑖)
Iteratively take actions until a complete tree is built.
37
Non-directional Easy-first Parsing
a brown fox jumped with joy
a brown joywith
joy
fox
a brown
38
Non-directional Easy-first Parsing
ATTACHRIGHT
a brown fox jumped with joy
a brown joywith
joy
fox
a brown
39
Non-directional Easy-first Parsing
a a fox jumped with joy
a brown joywith
joy
fox
a brown
40
Non-directional Easy-first Parsing
ATTACHRIGHT
a a fox jumped with joy
a brown joywith
joy
fox
a brown
41
Non-directional Easy-first Parsing
a brown fox jumped with joy
a brown joywith
joy
fox
a brown
42
Non-directional Easy-first Parsing
ATTACHLEFT
a brown fox jumped with joy
a brown joywith
joy
fox
a brown
43
Non-directional Easy-first Parsing
a brown fox jumped with joy
a brown joywith
joy
fox
a brown
44
Non-directional Easy-first Parsing
ATTACHLEFT
a brown fox jumped with joy
a brown joywith
joy
fox
a brown
45
Non-directional Easy-first Parsing
a brown fox jumped with joy
a brown joywith
joy
fox
a brown
46
Non-directional Easy-first Parsing
ATTACHRIGHT
a brown fox jumped with joy
a brown joywith
joy
fox
a brown
47
Non-directional Easy-first Parsing
a brown fox jumped with joy
a brown joywith
joy
fox
a brown
48
Non-directional Easy-first Parsing
a brown fox jumped with joy
a brown joywith
joy
fox
a brown
root
49
Three new actions to repair errors
SUBSTITUTE (𝑤%)	replaces a token to another
(grammatically more probable) token
DELETE (𝑤%)	removes an unnecessary token
INSERT (𝑤%) inserts a new token at an index i.
50
Three new actions to repair errors
I look in forward xhearx from you
I youyou
51
I look in forward xhearx from you
I youyou
Three new actions to repair errors
ATTACHRIGHT
ATTACHLEFT
52
I look in forward xhearx from you
I youyou
Three new actions to repair errors
SUBSTITUTE / DELETE / INSERT
53
ATTACHRIGHT
I look in forward xhearx from you
I youyou
Three new actions to repair errors 54
I look in forward xhearx from you
I youyou
Three new actions to repair errors 55
ATTACHLEFT
I look in forward xhearx from you
I youyou
Three new actions to repair errors 56
Three new actions to repair errors
I look in forward xhearx from you
I youyou
57
Three new actions to repair errors
SUBSTITUTE
I look in forward xhearx from you
I youyou
58
Three new actions to repair errors
I look in forward hearing from you
I youyou
59
Three new actions to repair errors
DELETE
I look in forward hearing from you
I youyou
60
Three new actions to repair errors
I look forward hearing from from you
I youyou
61
Three new actions to repair errors
INSERT
I look forward hearing from from you
I youyou
62
Three new actions to repair errors
I look forward to hearing from you
I youyou
63
Three new actions to repair errors
ATTACHLEFT
I look forward to hearing from you
I youyou
64
Three new actions to repair errors
I look look to hearing from you
I youyouI forward
65
We are ready to parse noisy texts … ?
Wait!! The new actions may cause infinite loops.
SUB à SUB à SUB à …
INS à DEL à INS à DEL à ...
66
We are ready to parse noisy texts … ?
Wait!! The new actions may cause infinite loops.
SUB à SUB à SUB à …
INS à DEL à INS à DEL à ...
Heuristic constraints to avoid infinite loops
1. Limiting the number of new action operations
2. Substituted token cannot be substituted again
67
Training the parser
Model learns which action to take at each time step.
structured perceptron + learning with exploration
(Goldberg and Nivre, 2013)
features: basic linguistic features
(Goldberg and Elhadad 2010)
68
Training the parser
How to know which action is good (i.e., oracle, valid)?
ATTACHLEFT & ATTACHRIGHT (Goldberg and Elhadad, 2010)
1. proposed edge is in the gold parse and
2. the child (to be attached) already has all its children
SUBSTITUTE, DELETE, & INSERT
3. proposed action decreases the (word) edit distance
to the gold (grammatical) sentence.
69
Experiment 1 (simulated data)
Dependency parsing on noisy Penn Treebank
Errors injected similarly to Foster and Andersen (2009)
5 most frequent grammatical errors (CoNLL13)
• Determiner (substitution, deletion, insertion)
• Preposition (substitution, deletion, insertion)
• Noun number (singular vs. plural)
• Verb form (tense and aspect)
• Subject verb agreement
Eval: UAS by SParseval (Roark et al., 2006, Favre et al., 2010)
Baseline: pipeline approach (error correction à parsing)
70
Result (Dependency: UAS) 71
Experiment 2 (real data)
Grammaticality improvement on real ESL corpus
Treebank of Learner English (Berzak et al., 2016)
Grammaticality score (Heilman et al., 2014)
Regression model with linguistic features
1 (incomprehensible) ~ 4 (perfect)
72
Result (Grammaticality on learner corpus)
*
*
73
Summary so far
Error-repair Dependency Parsing
1. Non-directional Easy-first Parsing
2. Three new actions to repair errors
Experimental results
1. more robust against grammatical errors
2. improves grammaticality
I look in forward xhearx from you
I youyou
74
Outline
Robust Text Correction for Grammar and Fluency
1. Character-level
2. Word-level
3. Sentence (phrase)-level
75
3. Sentence-level robust processing
3.3. Building a GEC model
Grammatical Error Correction with Neural
Reinforcement Learning (IJCNLP 2017)
Keisuke Sakaguchi, Matt Post, Benjamin Van Durme
76
Grammatical Error Correction (GEC)
Ungrammatical
sentence
Grammatical
& Fluent
sentence
GEC algorithms
77
Grammatical Error Correction (GEC)
Ungrammatical
sentence
Grammatical
& Fluent
sentence
o Rule based model
o Classifiers
o Phrase-based MT
o Neural MT
78
Grammatical Error Correction (GEC)
Ungrammatical
sentence
Grammatical
& Fluent
sentence
o Rule based model
o Classifiers
o Phrase-based MT
o Neural MT
79
Neural MT for GEC (Encoder-decoder with attention)
・・・
x2 xS-1 xSx1
Encoder
80
Neural MT for GEC (Encoder-decoder with attention)
・・・
x2 xS-1 xSx1
NULL
y1
Encoder
Decoder
81
Neural MT for GEC (Encoder-decoder with attention)
・・・
x2 xS-1 xSx1
+
NULL
y1 y2
Encoder
Decoder
82
Neural MT for GEC (Encoder-decoder with attention)
・・・
x2 xS-1 xSx1
+
NULL
・・・
y1 y2 yT-1 yT
Encoder
Decoder
83
Neural MT for GEC (Encoder-decoder with attention)
Training objective: Maximum Likelihood Estimation
・・・
log 𝑝(𝑦,)
log 𝑝(𝑦-./)
log 𝑝(𝑦-)
gold label
log 𝑝(𝑦/)
NULL
Decoder
84
Two Drawbacks in MLE
#1 Word level optimization (not sentence-level)
・・・
log 𝑝(𝑦,)
log 𝑝(𝑦-./)
log 𝑝(𝑦-)
gold label
log 𝑝(𝑦/)
NULL
Decoder
85
Two Drawbacks in MLE
#2 Exposure Bias (gold in training, argmax in test)
・・・
gold label
NULL
Predicted word (might be erroneous) is fed during test time.
y’1 = y1
y’2
y2
y’T-1
yT-1
yT
y’T
Decoder
86
Sentence level (direct) optimization
Decode a sentence and compute the score
Decoder
87
Sentence level (direct) optimization
.	.	.	
.	.	.	
Maximize the expected reward (metric score)
Decoder
88
REINFORCE (Williams, 1992)
Maximize the expected reward (metric score)
Learning Rate (arbitrary) Baseline
89
REINFORCE (Williams, 1992)
Maximize the expected reward (metric score)
Learning Rate
Relevance to Minimum Risk Training in NMT:
Learning rate 𝜶 in REINFORCE corresponds to
the smoothing parameter in MRT.
See the appendix.
90
Experiment
Data:
Training: Cambridge Learner Corpus (FCE)
NUCLE Corpus
Lang8 Corpus
Dev & Test: JFLEG Corpus
Model (hyper-)parameters:
Embedding: 512, Hidden: 1000, Dropout: 0.2,
(for NRL)
Sample size: 20, warm start: after 600k updates in MLE
Metric (= score, reward):
GLEU (Napoles et al., 2015)
91
Results
40
45
50
55
60
65
SRC CAMB14 NUS AMU CAMB16 MLE NRL Human
SRC
40.5
92
Results
40
45
50
55
60
65
SRC CAMB14 NUS AMU CAMB16 MLE NRL Human
SRC
40.5
PBMT
46.0~51.4
93
Results
40
45
50
55
60
65
SRC CAMB14 NUS AMU CAMB16 MLE NRL Human
SRC
40.5
PBMT
46.0~51.4
NMT (MLE)
52.0~52.7
94
Results
40
45
50
55
60
65
SRC CAMB14 NUS AMU CAMB16 MLE NRL Human
PBMT
46.0~51.4
NMT (MLE)
52.0~52.7
SRC
40.5
NMT
(NRL)
53.9
95
Results
40
45
50
55
60
65
SRC CAMB14 NUS AMU CAMB16 MLE NRL Human
PBMT
46.0~51.4
NMT (MLE)
52.0~52.7
SRC
40.5
NMT
(NRL)
53.9
Human
62.3
96
Summary so far…
Grammatical Error Correction with NRL
ü Sentence-level objective.
ü Direct optimization toward the metric.
ü NRL > Maximum Likelihood Estimation
97
Conclusions
Robust Text Correction for Grammar and Fluency
1. Character-level
2. Word-level
3. Sentence (phrase)-level
I look in forward xhearx from you
I youyou
Fluency
98
Thnaks for yuor atentoin!!
99

Más contenido relacionado

Similar a 文法および流暢性を考慮した頑健なテキスト誤り訂正 (第15回ステアラボ人工知能セミナー)

Understanding the History of EncryptionUnderstanding the
Understanding the History of EncryptionUnderstanding theUnderstanding the History of EncryptionUnderstanding the
Understanding the History of EncryptionUnderstanding the
corbing9ttj
 
Functional specialization in human cognition: a large-scale neuroimaging init...
Functional specialization in human cognition: a large-scale neuroimaging init...Functional specialization in human cognition: a large-scale neuroimaging init...
Functional specialization in human cognition: a large-scale neuroimaging init...
Ana Luísa Pinho
 
29_Tries.ppt nnnnnnnnnnnnnnnnnnnnnnnnnnn
29_Tries.ppt nnnnnnnnnnnnnnnnnnnnnnnnnnn29_Tries.ppt nnnnnnnnnnnnnnnnnnnnnnnnnnn
29_Tries.ppt nnnnnnnnnnnnnnnnnnnnnnnnnnn
ratnapatil14
 

Similar a 文法および流暢性を考慮した頑健なテキスト誤り訂正 (第15回ステアラボ人工知能セミナー) (20)

ODSC London 2018
ODSC London 2018ODSC London 2018
ODSC London 2018
 
AlgoAlignementGenomicSequences.ppt
AlgoAlignementGenomicSequences.pptAlgoAlignementGenomicSequences.ppt
AlgoAlignementGenomicSequences.ppt
 
Logic to-prolog
Logic to-prologLogic to-prolog
Logic to-prolog
 
If beam search is the answer, what was the question
If beam search is the answer, what was the question If beam search is the answer, what was the question
If beam search is the answer, what was the question
 
Understanding the History of EncryptionUnderstanding the
Understanding the History of EncryptionUnderstanding theUnderstanding the History of EncryptionUnderstanding the
Understanding the History of EncryptionUnderstanding the
 
Towards Set Learning and Prediction - Laura Leal-Taixe - UPC Barcelona 2018
Towards Set Learning and Prediction - Laura Leal-Taixe - UPC Barcelona 2018Towards Set Learning and Prediction - Laura Leal-Taixe - UPC Barcelona 2018
Towards Set Learning and Prediction - Laura Leal-Taixe - UPC Barcelona 2018
 
lect26-em.ppt
lect26-em.pptlect26-em.ppt
lect26-em.ppt
 
2015 ohsu-metagenome
2015 ohsu-metagenome2015 ohsu-metagenome
2015 ohsu-metagenome
 
Text generation and_advanced_topics
Text generation and_advanced_topicsText generation and_advanced_topics
Text generation and_advanced_topics
 
Dscrete structure
Dscrete  structureDscrete  structure
Dscrete structure
 
SPADE: Evaluation Dataset for Monolingual Phrase Alignment
SPADE: Evaluation Dataset for Monolingual Phrase AlignmentSPADE: Evaluation Dataset for Monolingual Phrase Alignment
SPADE: Evaluation Dataset for Monolingual Phrase Alignment
 
Np completeness
Np completeness Np completeness
Np completeness
 
PSB2016 Computational Microbiology Workshop
PSB2016 Computational Microbiology WorkshopPSB2016 Computational Microbiology Workshop
PSB2016 Computational Microbiology Workshop
 
Ijcnlp17 sakaguchi
Ijcnlp17 sakaguchiIjcnlp17 sakaguchi
Ijcnlp17 sakaguchi
 
Sequencing run grief counseling: counting kmers at MG-RAST
Sequencing run grief counseling: counting kmers at MG-RASTSequencing run grief counseling: counting kmers at MG-RAST
Sequencing run grief counseling: counting kmers at MG-RAST
 
Functional specialization in human cognition: a large-scale neuroimaging init...
Functional specialization in human cognition: a large-scale neuroimaging init...Functional specialization in human cognition: a large-scale neuroimaging init...
Functional specialization in human cognition: a large-scale neuroimaging init...
 
29_Tries.ppt nnnnnnnnnnnnnnnnnnnnnnnnnnn
29_Tries.ppt nnnnnnnnnnnnnnnnnnnnnnnnnnn29_Tries.ppt nnnnnnnnnnnnnnnnnnnnnnnnnnn
29_Tries.ppt nnnnnnnnnnnnnnnnnnnnnnnnnnn
 
Floating Point Compression EIT'15
Floating Point Compression EIT'15Floating Point Compression EIT'15
Floating Point Compression EIT'15
 
Spatially resolved pair correlation functions for point cloud data
Spatially resolved pair correlation functions for point cloud dataSpatially resolved pair correlation functions for point cloud data
Spatially resolved pair correlation functions for point cloud data
 
Context-Aware Neural Machine Translation Learns Anaphora Resolution
Context-Aware Neural Machine Translation Learns Anaphora ResolutionContext-Aware Neural Machine Translation Learns Anaphora Resolution
Context-Aware Neural Machine Translation Learns Anaphora Resolution
 

Más de STAIR Lab, Chiba Institute of Technology

知識グラフの埋め込みとその応用 (第10回ステアラボ人工知能セミナー)
知識グラフの埋め込みとその応用 (第10回ステアラボ人工知能セミナー)知識グラフの埋め込みとその応用 (第10回ステアラボ人工知能セミナー)
知識グラフの埋め込みとその応用 (第10回ステアラボ人工知能セミナー)
STAIR Lab, Chiba Institute of Technology
 

Más de STAIR Lab, Chiba Institute of Technology (20)

リアクティブプログラミングにおける時変値永続化の試み (第2回ステアラボソフトウェア技術セミナー)
リアクティブプログラミングにおける時変値永続化の試み (第2回ステアラボソフトウェア技術セミナー)リアクティブプログラミングにおける時変値永続化の試み (第2回ステアラボソフトウェア技術セミナー)
リアクティブプログラミングにおける時変値永続化の試み (第2回ステアラボソフトウェア技術セミナー)
 
制約解消によるプログラム検証・合成 (第1回ステアラボソフトウェア技術セミナー)
制約解消によるプログラム検証・合成 (第1回ステアラボソフトウェア技術セミナー)制約解消によるプログラム検証・合成 (第1回ステアラボソフトウェア技術セミナー)
制約解消によるプログラム検証・合成 (第1回ステアラボソフトウェア技術セミナー)
 
グラフ構造データに対する深層学習〜創薬・材料科学への応用とその問題点〜 (第26回ステアラボ人工知能セミナー)
グラフ構造データに対する深層学習〜創薬・材料科学への応用とその問題点〜 (第26回ステアラボ人工知能セミナー)グラフ構造データに対する深層学習〜創薬・材料科学への応用とその問題点〜 (第26回ステアラボ人工知能セミナー)
グラフ構造データに対する深層学習〜創薬・材料科学への応用とその問題点〜 (第26回ステアラボ人工知能セミナー)
 
企業化する大学と、公益化する企業。そして、人工知能の社会実装に向けて。(ステアラボ人工知能シンポジウム)
企業化する大学と、公益化する企業。そして、人工知能の社会実装に向けて。(ステアラボ人工知能シンポジウム)企業化する大学と、公益化する企業。そして、人工知能の社会実装に向けて。(ステアラボ人工知能シンポジウム)
企業化する大学と、公益化する企業。そして、人工知能の社会実装に向けて。(ステアラボ人工知能シンポジウム)
 
メテオサーチチャレンジ報告 (2位解法)
メテオサーチチャレンジ報告 (2位解法)メテオサーチチャレンジ報告 (2位解法)
メテオサーチチャレンジ報告 (2位解法)
 
画像キャプションと動作認識の最前線 〜データセットに注目して〜(第17回ステアラボ人工知能セミナー)
画像キャプションと動作認識の最前線 〜データセットに注目して〜(第17回ステアラボ人工知能セミナー)画像キャプションと動作認識の最前線 〜データセットに注目して〜(第17回ステアラボ人工知能セミナー)
画像キャプションと動作認識の最前線 〜データセットに注目して〜(第17回ステアラボ人工知能セミナー)
 
多腕バンディット問題: 定式化と応用 (第13回ステアラボ人工知能セミナー)
多腕バンディット問題: 定式化と応用 (第13回ステアラボ人工知能セミナー)多腕バンディット問題: 定式化と応用 (第13回ステアラボ人工知能セミナー)
多腕バンディット問題: 定式化と応用 (第13回ステアラボ人工知能セミナー)
 
Computer Vision meets Fashion (第12回ステアラボ人工知能セミナー)
Computer Vision meets Fashion (第12回ステアラボ人工知能セミナー)Computer Vision meets Fashion (第12回ステアラボ人工知能セミナー)
Computer Vision meets Fashion (第12回ステアラボ人工知能セミナー)
 
高次元空間におけるハブの出現 (第11回ステアラボ人工知能セミナー)
高次元空間におけるハブの出現 (第11回ステアラボ人工知能セミナー)高次元空間におけるハブの出現 (第11回ステアラボ人工知能セミナー)
高次元空間におけるハブの出現 (第11回ステアラボ人工知能セミナー)
 
知識グラフの埋め込みとその応用 (第10回ステアラボ人工知能セミナー)
知識グラフの埋め込みとその応用 (第10回ステアラボ人工知能セミナー)知識グラフの埋め込みとその応用 (第10回ステアラボ人工知能セミナー)
知識グラフの埋め込みとその応用 (第10回ステアラボ人工知能セミナー)
 
JSAI Cup2017報告会
JSAI Cup2017報告会JSAI Cup2017報告会
JSAI Cup2017報告会
 
時系列ビッグデータの特徴自動抽出とリアルタイム将来予測(第9回ステアラボ人工知能セミナー)
時系列ビッグデータの特徴自動抽出とリアルタイム将来予測(第9回ステアラボ人工知能セミナー)時系列ビッグデータの特徴自動抽出とリアルタイム将来予測(第9回ステアラボ人工知能セミナー)
時系列ビッグデータの特徴自動抽出とリアルタイム将来予測(第9回ステアラボ人工知能セミナー)
 
Stair Captions and Stair Actions(ステアラボ人工知能シンポジウム2017)
Stair Captions and Stair Actions(ステアラボ人工知能シンポジウム2017)Stair Captions and Stair Actions(ステアラボ人工知能シンポジウム2017)
Stair Captions and Stair Actions(ステアラボ人工知能シンポジウム2017)
 
最近の重要な論文の紹介 - テキストとの対応付けによる映像の理解に関連して(ステアラボ人工知能シンポジウム2017)
最近の重要な論文の紹介 - テキストとの対応付けによる映像の理解に関連して(ステアラボ人工知能シンポジウム2017)最近の重要な論文の紹介 - テキストとの対応付けによる映像の理解に関連して(ステアラボ人工知能シンポジウム2017)
最近の重要な論文の紹介 - テキストとの対応付けによる映像の理解に関連して(ステアラボ人工知能シンポジウム2017)
 
視覚×言語の最前線(ステアラボ人工知能シンポジウム2017)
視覚×言語の最前線(ステアラボ人工知能シンポジウム2017)視覚×言語の最前線(ステアラボ人工知能シンポジウム2017)
視覚×言語の最前線(ステアラボ人工知能シンポジウム2017)
 
自然言語処理分野の最前線(ステアラボ人工知能シンポジウム2017)
自然言語処理分野の最前線(ステアラボ人工知能シンポジウム2017)自然言語処理分野の最前線(ステアラボ人工知能シンポジウム2017)
自然言語処理分野の最前線(ステアラボ人工知能シンポジウム2017)
 
ヒューマンコンピュテーションのための専門家発見(ステアラボ人工知能シンポジウム2017)
ヒューマンコンピュテーションのための専門家発見(ステアラボ人工知能シンポジウム2017)ヒューマンコンピュテーションのための専門家発見(ステアラボ人工知能シンポジウム2017)
ヒューマンコンピュテーションのための専門家発見(ステアラボ人工知能シンポジウム2017)
 
深層学習を利用した映像要約への取り組み(第7回ステアラボ人工知能セミナー)
深層学習を利用した映像要約への取り組み(第7回ステアラボ人工知能セミナー)深層学習を利用した映像要約への取り組み(第7回ステアラボ人工知能セミナー)
深層学習を利用した映像要約への取り組み(第7回ステアラボ人工知能セミナー)
 
Higher-order Factorization Machines(第5回ステアラボ人工知能セミナー)
Higher-order Factorization Machines(第5回ステアラボ人工知能セミナー)Higher-order Factorization Machines(第5回ステアラボ人工知能セミナー)
Higher-order Factorization Machines(第5回ステアラボ人工知能セミナー)
 
群衆の知を引き出すための機械学習(第4回ステアラボ人工知能セミナー)
群衆の知を引き出すための機械学習(第4回ステアラボ人工知能セミナー)群衆の知を引き出すための機械学習(第4回ステアラボ人工知能セミナー)
群衆の知を引き出すための機械学習(第4回ステアラボ人工知能セミナー)
 

Último

Artificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and MythsArtificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and Myths
Joaquim Jorge
 
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptxEIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
Earley Information Science
 

Último (20)

Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
 
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
 
Strategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a FresherStrategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a Fresher
 
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot TakeoffStrategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
 
Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024
 
A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)
 
GenAI Risks & Security Meetup 01052024.pdf
GenAI Risks & Security Meetup 01052024.pdfGenAI Risks & Security Meetup 01052024.pdf
GenAI Risks & Security Meetup 01052024.pdf
 
Artificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and MythsArtificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and Myths
 
Data Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonData Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt Robison
 
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdfThe Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
 
GenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day PresentationGenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day Presentation
 
Boost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfBoost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdf
 
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptxEIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
 
The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024
 
Boost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityBoost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivity
 
Evaluating the top large language models.pdf
Evaluating the top large language models.pdfEvaluating the top large language models.pdf
Evaluating the top large language models.pdf
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 
🐬 The future of MySQL is Postgres 🐘
🐬  The future of MySQL is Postgres   🐘🐬  The future of MySQL is Postgres   🐘
🐬 The future of MySQL is Postgres 🐘
 
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
 
08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men
 

文法および流暢性を考慮した頑健なテキスト誤り訂正 (第15回ステアラボ人工知能セミナー)

  • 4. 4
  • 5. 5
  • 6. Noisy Text is Everywhere 6
  • 7. Human brain vs. Computers 7
  • 8. Outline Robust Text Correction for Grammar and Fluency 1. Character-level 2. Word-level 3. Sentence (phrase)-level 8
  • 9. Outline Robust Text Correction for Grammar and Fluency 1. Character-level 2. Word-level 3. Sentence (phrase)-level 9
  • 10. 1. Character-level robust processing Robsut Wrod Reocginiton via semi-Character Recurrent Neural Network. (AAAI 2017) Keisuke Sakaguchi, Kevin Duh, Matt Post, Benjamin Van Durme 10
  • 11. Aoccdrnig to a rscheearch at Cmabrigde Uinervtisy, it deosn’t mttaer in waht oredr the ltteers in a wrod are, the olny iprmoetnt tihng is taht the frist and lsat ltteer be at the rghit pclae. The rset can be a toatl mses and you can sitll raed it wouthit porbelm. Tihs is bcuseae the huamn mnid deos not raed ervey lteter by istlef, but the wrod as a wlohe. (Cambridge University Effect: Davis 2003) 11
  • 12. 12
  • 13. Aoccdrnig to a rscheearch at Cmabrigde Uinervtisy, it deosn’t mttaer in waht oredr the ltteers in a wrod are, the olny iprmoetnt tihng is taht the frist and lsat ltteer be at the rghit pclae. The rset can be a toatl mses and you can sitll raed it wouthit porbelm. Tihs is bcuseae the huamn mnid deos not raed ervey lteter by istlef, but the wrod as a wlohe. (Cambridge University Effect: Davis 2003) Human (brain) is good at dealing with noisy input robustly. 13
  • 14. Aoccdrnig to a rscheearch at Cmabrigde Uinervtisy, it deosn’t mttaer in waht oredr the ltteers in a wrod are, the olny iprmoetnt tihng is taht the frist and lsat ltteer be at the rghit pclae. The rset can be a toatl mses and you can sitll raed it wouthit porbelm. Tihs is bcuseae the huamn mnid deos not raed ervey lteter by istlef, but the wrod as a wlohe. (Cambridge University Effect: Davis 2003) Question: Can we build a computational model which replicates this robust mechanism? Human (brain) is good at dealing with noisy input robustly. 14
  • 15. Masked priming study Swap (Forster et al. 1987) gadren-GARDEN Shuffle (Perea and Lupker. 2004) caniso-CASINO Delete (Humphreys et al. 1990) blck-BLACK Insert (Van Assche and Grainger. 2006) juastice-JUSTICE 15
  • 16. Aoccdrnig to a rscheearch at Cmabrigde Uinervtisy, it deosn’t mttaer in waht oredr the ltteers in a wrod are, the olny iprmoetnt tihng is taht the frist and lsat ltteer be at the rghit pclae. The rset can be a toatl mses and you can sitll raed it wouthit porbelm. Tihs is bcuseae the huamn mnid deos not raed ervey lteter by istlef, but the wrod as a wlohe. (Cambridge University Effect: Davis 2003) Question: Can we build a computational model which replicates this robust mechanism? Human (brain) is good at dealing with noisy input robustly. 16
  • 17. semi-Character RNN (scRNN) Simple RNN except … xn = 2 4 bn in en 3 5 e.g., “University” is represented as bn = {U = 1} en = {y = 1} in = {e = 1, i = 2, n = 1, s = 1, t = 1, v = 1} 17
  • 18. Exp1: Spelling Correction Corpus: Penn TreeBank, (10k vocabulary) Parameters: - hidden unit size: 650 - mini-batch size 20 Comparison: - Enchant - 2 commercial products - char aware neural LM (Kim et al., 2016, AAAI) 18
  • 19. Exp1: Spelling Correction Three conditions in test time - Jumble (Cambridge à Cmbarigde) - Delete (Cambridge à Camridge) - Insert (Cambridge à Cambpridge) Results (accuracy): Jumble Delete Insert CharCNN 16.2 19.8 35.5 Enchant 57.6 35.4 89.6 Commercial A 54.8 60.2 93.5 Commercial B 54.3 71.7 73.5 scRNN 99.4 85.6 97.0 19
  • 20. Exp1: Spelling Correction Three conditions in test time - Jumble (Cambridge à Cmbarigde) - Delete (Cambridge à Camridge) - Insert (Cambridge à Cambpridge) Results (accuracy): Jumble Delete Insert CharCNN 16.2 19.8 35.5 Enchant 57.6 35.4 89.6 Commercial A 54.8 60.2 93.5 Commercial B 54.3 71.7 73.5 scRNN 99.4 85.6 97.0 place à pace miss, mass, mess à mss 20
  • 21. Exp2: Comparison with eye tracking 21
  • 23. Eye tracking studyCondition Example #fixation Regression (%) Avg.Fixation (ms) N The boy could not solve the problem so he asked for help. INT The boy cuold not slove the probelm so he aksed for help. END The boy coudl not solev the problme so he askde for help. BEG The boy oculd not oslve the rpoblem so he saked for help. Rayner et al. (2006) 23
  • 24. Eye tracking studyCondition Example #fixation Regression (%) Avg.Fixation (ms) N The boy could not solve the problem so he asked for help. 10.4 15.0 236 INT The boy cuold not slove the probelm so he aksed for help. 11.4* 17.6* 244* END The boy coudl not solev the problme so he askde for help. 12.6† 17.5* 246† BEG The boy oculd not oslve the rpoblem so he saked for help. 13.0‡ 21.5† 259‡ Rayner et al. (2006) p<0.01 respectively 24
  • 25. Eye tracking studyCondition Example #fixation Regression (%) Avg.Fixation (ms) N The boy could not solve the problem so he asked for help. 10.4 15.0 236 INT The boy cuold not slove the probelm so he aksed for help. 11.4* 17.6* 244* END The boy coudl not solev the problme so he askde for help. 12.6† 17.5* 246† BEG The boy oculd not oslve the rpoblem so he saked for help. 13.0‡ 21.5† 259‡ Rayner et al. (2006) Reading difficulty: N < INT ≤ END < BEG p<0.01 respectively 25
  • 26. Exp2: Comparison with eye tracking Reading difficulty (human) : N < INT ≤ END < BEG Trained and tested with 4 conditions: INT: same as the exp.1 BEG: last char is fixed END: first char is fixed ALL: bag of characters 26
  • 27. Exp2: Comparison with eye tracking Reading difficulty (human) : N < INT ≤ END < BEG Condition Example accuracy INT As a relust , the lnik beewetn the fureuts and sctok mretkas rpiped arapt . 98.96 END As a rtelus , the lkni betwene the feturus and soctk msatrek rpepid atarp . 98.68* BEG As a lesurt , the lnik bweteen the utufers and tocsk makrtes pipred arpat . 98.12† ALL As a strule , the lnik eewtneb the eftusur and okcst msretak ipdepr prtaa . 96.79‡ *: p = 0.07, †.‡: p<0.01 respectively 27
  • 28. Exp2: Comparison with eye tracking Reading difficulty (human) : N < INT ≤ END < BEG Condition Example accuracy INT As a relust , the lnik beewetn the fureuts and sctok mretkas rpiped arapt . 98.96 END As a rtelus , the lkni betwene the feturus and soctk msatrek rpepid atarp . 98.68* BEG As a lesurt , the lnik bweteen the utufers and tocsk makrtes pipred arpat . 98.12† ALL As a strule , the lnik eewtneb the eftusur and okcst msretak ipdepr prtaa . 96.79‡ Reading difficulty (scRNN) : INT ≤ END < BEG < ALL *: p = 0.07, †.‡: p<0.01 respectively 28
  • 29. Summary so far … 1. Huamn mnid deos not raed ervey lteter by istlef, but the wrod as a wlohe. 2. scRNN recognizes noisy words robustly. 3. There is a similarity between scRNN and human word recognition mechanism. Forward Mask (500 milliseconds) GARDEN gadren ######## Prime (60 milliseconds) Target 29
  • 30. Outline Robust Text Correction for Grammar and Fluency 1. Character-level 2. Word-level 3. Sentence (phrase)-level 30
  • 31. 2. Word-level robust processing Error-repair Dependency Parsing for Ungrammatical Texts (ACL 2017) Keisuke Sakaguchi, Matt Post, Benjamin Van Durme 31
  • 32. Dependency Parsing Text à Tree (with labels) Economic news had little effect on financial markets . 32
  • 33. Background & Motivation I look in forward hear from you. I look forward to hearing from you. Error correction ↓ Parsing Pipeline Error-repair parsing Joint training 33
  • 34. Error-repair Dependency Parsing 1. Non-directional Easy-first parsing (Goldberg and Elhadad, 2010) 2. Three new actions to repair errors 34
  • 35. Non-directional Easy-first Parsing a brown fox jumped with joy a brown joywith joy fox a brown 35
  • 36. Non-directional Easy-first Parsing a brown fox jumped with joy a brown joywith joy fox a brown Pending List 36
  • 37. Non-directional Easy-first Parsing a brown fox jumped with joy a brown joywith joy fox a brown ATTACHRIGHT(𝑖) ATTACHLEFT(𝑖) Iteratively take actions until a complete tree is built. 37
  • 38. Non-directional Easy-first Parsing a brown fox jumped with joy a brown joywith joy fox a brown 38
  • 39. Non-directional Easy-first Parsing ATTACHRIGHT a brown fox jumped with joy a brown joywith joy fox a brown 39
  • 40. Non-directional Easy-first Parsing a a fox jumped with joy a brown joywith joy fox a brown 40
  • 41. Non-directional Easy-first Parsing ATTACHRIGHT a a fox jumped with joy a brown joywith joy fox a brown 41
  • 42. Non-directional Easy-first Parsing a brown fox jumped with joy a brown joywith joy fox a brown 42
  • 43. Non-directional Easy-first Parsing ATTACHLEFT a brown fox jumped with joy a brown joywith joy fox a brown 43
  • 44. Non-directional Easy-first Parsing a brown fox jumped with joy a brown joywith joy fox a brown 44
  • 45. Non-directional Easy-first Parsing ATTACHLEFT a brown fox jumped with joy a brown joywith joy fox a brown 45
  • 46. Non-directional Easy-first Parsing a brown fox jumped with joy a brown joywith joy fox a brown 46
  • 47. Non-directional Easy-first Parsing ATTACHRIGHT a brown fox jumped with joy a brown joywith joy fox a brown 47
  • 48. Non-directional Easy-first Parsing a brown fox jumped with joy a brown joywith joy fox a brown 48
  • 49. Non-directional Easy-first Parsing a brown fox jumped with joy a brown joywith joy fox a brown root 49
  • 50. Three new actions to repair errors SUBSTITUTE (𝑤%) replaces a token to another (grammatically more probable) token DELETE (𝑤%) removes an unnecessary token INSERT (𝑤%) inserts a new token at an index i. 50
  • 51. Three new actions to repair errors I look in forward xhearx from you I youyou 51
  • 52. I look in forward xhearx from you I youyou Three new actions to repair errors ATTACHRIGHT ATTACHLEFT 52
  • 53. I look in forward xhearx from you I youyou Three new actions to repair errors SUBSTITUTE / DELETE / INSERT 53
  • 54. ATTACHRIGHT I look in forward xhearx from you I youyou Three new actions to repair errors 54
  • 55. I look in forward xhearx from you I youyou Three new actions to repair errors 55
  • 56. ATTACHLEFT I look in forward xhearx from you I youyou Three new actions to repair errors 56
  • 57. Three new actions to repair errors I look in forward xhearx from you I youyou 57
  • 58. Three new actions to repair errors SUBSTITUTE I look in forward xhearx from you I youyou 58
  • 59. Three new actions to repair errors I look in forward hearing from you I youyou 59
  • 60. Three new actions to repair errors DELETE I look in forward hearing from you I youyou 60
  • 61. Three new actions to repair errors I look forward hearing from from you I youyou 61
  • 62. Three new actions to repair errors INSERT I look forward hearing from from you I youyou 62
  • 63. Three new actions to repair errors I look forward to hearing from you I youyou 63
  • 64. Three new actions to repair errors ATTACHLEFT I look forward to hearing from you I youyou 64
  • 65. Three new actions to repair errors I look look to hearing from you I youyouI forward 65
  • 66. We are ready to parse noisy texts … ? Wait!! The new actions may cause infinite loops. SUB à SUB à SUB à … INS à DEL à INS à DEL à ... 66
  • 67. We are ready to parse noisy texts … ? Wait!! The new actions may cause infinite loops. SUB à SUB à SUB à … INS à DEL à INS à DEL à ... Heuristic constraints to avoid infinite loops 1. Limiting the number of new action operations 2. Substituted token cannot be substituted again 67
  • 68. Training the parser Model learns which action to take at each time step. structured perceptron + learning with exploration (Goldberg and Nivre, 2013) features: basic linguistic features (Goldberg and Elhadad 2010) 68
  • 69. Training the parser How to know which action is good (i.e., oracle, valid)? ATTACHLEFT & ATTACHRIGHT (Goldberg and Elhadad, 2010) 1. proposed edge is in the gold parse and 2. the child (to be attached) already has all its children SUBSTITUTE, DELETE, & INSERT 3. proposed action decreases the (word) edit distance to the gold (grammatical) sentence. 69
  • 70. Experiment 1 (simulated data) Dependency parsing on noisy Penn Treebank Errors injected similarly to Foster and Andersen (2009) 5 most frequent grammatical errors (CoNLL13) • Determiner (substitution, deletion, insertion) • Preposition (substitution, deletion, insertion) • Noun number (singular vs. plural) • Verb form (tense and aspect) • Subject verb agreement Eval: UAS by SParseval (Roark et al., 2006, Favre et al., 2010) Baseline: pipeline approach (error correction à parsing) 70
  • 72. Experiment 2 (real data) Grammaticality improvement on real ESL corpus Treebank of Learner English (Berzak et al., 2016) Grammaticality score (Heilman et al., 2014) Regression model with linguistic features 1 (incomprehensible) ~ 4 (perfect) 72
  • 73. Result (Grammaticality on learner corpus) * * 73
  • 74. Summary so far Error-repair Dependency Parsing 1. Non-directional Easy-first Parsing 2. Three new actions to repair errors Experimental results 1. more robust against grammatical errors 2. improves grammaticality I look in forward xhearx from you I youyou 74
  • 75. Outline Robust Text Correction for Grammar and Fluency 1. Character-level 2. Word-level 3. Sentence (phrase)-level 75
  • 76. 3. Sentence-level robust processing 3.3. Building a GEC model Grammatical Error Correction with Neural Reinforcement Learning (IJCNLP 2017) Keisuke Sakaguchi, Matt Post, Benjamin Van Durme 76
  • 77. Grammatical Error Correction (GEC) Ungrammatical sentence Grammatical & Fluent sentence GEC algorithms 77
  • 78. Grammatical Error Correction (GEC) Ungrammatical sentence Grammatical & Fluent sentence o Rule based model o Classifiers o Phrase-based MT o Neural MT 78
  • 79. Grammatical Error Correction (GEC) Ungrammatical sentence Grammatical & Fluent sentence o Rule based model o Classifiers o Phrase-based MT o Neural MT 79
  • 80. Neural MT for GEC (Encoder-decoder with attention) ・・・ x2 xS-1 xSx1 Encoder 80
  • 81. Neural MT for GEC (Encoder-decoder with attention) ・・・ x2 xS-1 xSx1 NULL y1 Encoder Decoder 81
  • 82. Neural MT for GEC (Encoder-decoder with attention) ・・・ x2 xS-1 xSx1 + NULL y1 y2 Encoder Decoder 82
  • 83. Neural MT for GEC (Encoder-decoder with attention) ・・・ x2 xS-1 xSx1 + NULL ・・・ y1 y2 yT-1 yT Encoder Decoder 83
  • 84. Neural MT for GEC (Encoder-decoder with attention) Training objective: Maximum Likelihood Estimation ・・・ log 𝑝(𝑦,) log 𝑝(𝑦-./) log 𝑝(𝑦-) gold label log 𝑝(𝑦/) NULL Decoder 84
  • 85. Two Drawbacks in MLE #1 Word level optimization (not sentence-level) ・・・ log 𝑝(𝑦,) log 𝑝(𝑦-./) log 𝑝(𝑦-) gold label log 𝑝(𝑦/) NULL Decoder 85
  • 86. Two Drawbacks in MLE #2 Exposure Bias (gold in training, argmax in test) ・・・ gold label NULL Predicted word (might be erroneous) is fed during test time. y’1 = y1 y’2 y2 y’T-1 yT-1 yT y’T Decoder 86
  • 87. Sentence level (direct) optimization Decode a sentence and compute the score Decoder 87
  • 88. Sentence level (direct) optimization . . . . . . Maximize the expected reward (metric score) Decoder 88
  • 89. REINFORCE (Williams, 1992) Maximize the expected reward (metric score) Learning Rate (arbitrary) Baseline 89
  • 90. REINFORCE (Williams, 1992) Maximize the expected reward (metric score) Learning Rate Relevance to Minimum Risk Training in NMT: Learning rate 𝜶 in REINFORCE corresponds to the smoothing parameter in MRT. See the appendix. 90
  • 91. Experiment Data: Training: Cambridge Learner Corpus (FCE) NUCLE Corpus Lang8 Corpus Dev & Test: JFLEG Corpus Model (hyper-)parameters: Embedding: 512, Hidden: 1000, Dropout: 0.2, (for NRL) Sample size: 20, warm start: after 600k updates in MLE Metric (= score, reward): GLEU (Napoles et al., 2015) 91
  • 92. Results 40 45 50 55 60 65 SRC CAMB14 NUS AMU CAMB16 MLE NRL Human SRC 40.5 92
  • 93. Results 40 45 50 55 60 65 SRC CAMB14 NUS AMU CAMB16 MLE NRL Human SRC 40.5 PBMT 46.0~51.4 93
  • 94. Results 40 45 50 55 60 65 SRC CAMB14 NUS AMU CAMB16 MLE NRL Human SRC 40.5 PBMT 46.0~51.4 NMT (MLE) 52.0~52.7 94
  • 95. Results 40 45 50 55 60 65 SRC CAMB14 NUS AMU CAMB16 MLE NRL Human PBMT 46.0~51.4 NMT (MLE) 52.0~52.7 SRC 40.5 NMT (NRL) 53.9 95
  • 96. Results 40 45 50 55 60 65 SRC CAMB14 NUS AMU CAMB16 MLE NRL Human PBMT 46.0~51.4 NMT (MLE) 52.0~52.7 SRC 40.5 NMT (NRL) 53.9 Human 62.3 96
  • 97. Summary so far… Grammatical Error Correction with NRL ü Sentence-level objective. ü Direct optimization toward the metric. ü NRL > Maximum Likelihood Estimation 97
  • 98. Conclusions Robust Text Correction for Grammar and Fluency 1. Character-level 2. Word-level 3. Sentence (phrase)-level I look in forward xhearx from you I youyou Fluency 98
  • 99. Thnaks for yuor atentoin!! 99