SlideShare una empresa de Scribd logo
1 de 8
A	
  chemical	
  genetics	
  approach	
  to	
  study	
  regulation	
  of	
  lipid	
  accumulation	
  
and	
  cell	
  growth	
  in	
  C.	
  reinhardtii	
  
	
  
	
  
Summary	
  
	
  
Algae	
  have	
  the	
  potential	
  to	
  be	
  a	
  green	
  and	
   renewable	
  source	
  for	
  biodiesel	
  production	
  
but	
   in	
   order	
   to	
   make	
   it	
   economically	
   sustainable	
   and	
   competitive	
   many	
   scientific	
  
challenges	
   need	
   to	
   be	
  undertaken.	
   One	
  of	
   them	
  most	
   relevant	
   issues	
   is	
   the	
   necessity	
   to	
  
manipulate	
   algal	
   metabolism	
   in	
   order	
   to	
   maximize	
   the	
   yield	
   of	
   neutral	
   lipids,	
   in	
  
particular	
  tryacilyglycerols	
  (TAG),	
  the	
  biodiesel	
  precursors.	
  
The	
   unveiling	
   of	
   regulative	
   mechanisms	
   controlling	
   cell	
   growth	
   and	
   neutral	
   lipid	
  
biosynthesis	
  at	
  molecular	
  level	
  is	
  an	
  essential	
  key	
  factor	
  in	
  algal	
  biodiesel	
  research.	
  	
  
To	
  accomplish	
  this	
  goal	
  I	
  propose	
  to	
  use	
  a	
  chemical	
  genetic	
  approach	
  screening	
  diverse	
  
compound	
   libraries	
   in	
   order	
   to	
   identify	
   “in	
   vivo”	
   chemical	
   modulators	
   of	
   lipid	
  
accumulation	
  and	
  cell	
  growth.	
  
Deconvolution	
   strategies	
   will	
   be	
   applied	
   to	
   identify	
   proteins	
   targeted	
   by	
   the	
   most	
  
efficient	
  molecules	
  and	
  hence	
  the	
  putative	
  regulative	
  genes	
  involved	
  in	
  these	
  biological	
  
processes.	
  	
  	
  
The	
   results	
   of	
   this	
   approach	
  have	
   the	
   potential	
   to	
   allow	
   researchers	
   to	
   manipulate	
   algal	
  
metabolism	
   with	
   two	
   different	
   complementary	
   strategies:	
   direct	
   “pharmacological”	
  
employment	
  of	
  these	
  chemical	
  modulators	
  in	
  algal	
  cultures	
  and	
  mutagenesis/silencing	
  
of	
  regulatory	
  genes	
  in	
  engineered	
  algal	
  strains.	
  In	
   the	
  future	
  a	
   combination	
  of	
  these	
  two	
  
strategies	
  could	
  be	
  the	
  best	
   solution	
  to	
  guarantee	
  simultaneous	
  growth	
  robustness	
  and	
  
high	
  lipid	
  content,	
  maximizing	
  biodiesel	
  productivity.	
  
Carrying	
   out	
   this	
   research	
   in	
   an	
   american	
   lab	
   will	
   give	
   me	
   the	
   possibility	
   to	
   work	
   in	
   a	
  
stimulating	
  scientific	
  environment	
  where	
  the	
  confront	
  of	
  different	
  ideas	
  and	
  the	
  access	
  
to	
   material	
   and	
   intellectual	
   resources	
   will	
   help	
   me	
   to	
   develop	
   not	
   only	
   the	
   project	
   itself,	
  
but	
   also	
   my	
   ability	
   of	
   critical	
   thinking.	
   This	
   will	
   strongly	
   contribute	
   to	
   my	
   professional	
  
and	
  personal	
  enrichment.	
  	
  
Furthermore	
  I	
  am	
  interested	
  in	
  exploring	
  the	
  dynamics	
  that	
  are	
  turning	
  the	
  San	
  Diego	
  
area	
   in	
   a	
   “hub”	
   for	
   algal	
   biodiesel	
   research,	
   where	
   academia	
   and	
   industry	
   work	
   in	
  
synergy	
   with	
   a	
   continuous	
   exchange	
   of	
  resources	
  and	
   knowledge	
   to	
   turn	
   biodiesel	
   from	
  
algae	
   in	
   a	
   reality.	
   The	
   lack	
   of	
   this	
   common	
   effort	
   and	
   synergistic	
   exchange	
   between	
  
universities	
   and	
   private	
   companies	
   is	
   one	
   of	
   major	
   factors	
   preventing	
   the	
   italian	
  
research	
  to	
  become	
  more	
  competitive	
  in	
  the	
  global	
  contest.	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
Research	
  Plan	
  
	
  
a. Specific	
  aims	
  
	
  
The	
  long-­‐term	
  goal	
  of	
  this	
  research	
  is	
  to	
  maximize	
  the	
  yield	
  of	
  neutral	
  lipids	
  in	
  algae	
  to	
  
make	
  these	
  organisms	
  a	
  competitive	
  and	
  sustainable	
  source	
  for	
  biodiesel	
  production.	
  	
  
This	
   goal	
   will	
   be	
   accomplished	
   identifying	
   and	
   characterizing	
   chemical	
   and/or	
   genetic	
  
modulators	
   of	
   neutral	
   lipid	
   accumulation	
   and	
   cell	
   growth	
   promotion,	
   using	
   a	
   forward	
  
chemical	
  genetic	
  approach	
  coupled	
  to	
  a	
  proteomic-­‐based	
  target	
  deconvolution	
  strategy.	
  	
  
A	
  chemical	
  high	
  throughput	
  screening	
  will	
  be	
  performed	
  to	
  identify	
  small	
  molecules	
  able	
  
to	
  trigger	
  either	
  lipid	
  accumulation	
  or	
  stimulate	
  cell	
  growth.	
  	
  
In	
   order	
   to	
   maximize	
   sustainable	
   oil	
   production	
   will	
   be	
   tested	
   if	
   the	
   activity	
   of	
   single	
  
molecules	
   inducing	
   different	
   phenotypes	
   (e.g.	
   lipid	
   accumulation	
   and	
   cell	
   growth)	
   can	
  
be	
   maintained	
   and	
   combined	
   in	
   vivo	
   when	
   cells	
   are	
   exposed	
   to	
   such	
   molecules	
  
simultaneously.	
  
A	
   key	
   goal	
   of	
   the	
   research	
   is	
   to	
   identify	
   the	
   putative	
   targets	
   of	
   the	
   most	
   effective	
  
molecules	
   and	
   hence	
   unveiling	
   one	
   or	
   more	
   genes	
   involved	
   in	
   the	
   regulation	
   of	
   lipid	
  
accumulation	
  and	
  cell	
  growth.	
  RNAi	
  silencing	
  of	
  the	
  candidate	
  target	
  genes	
  will	
  provide	
  
additional	
  information	
  regarding	
  the	
  regulative	
  mechanisms	
  of	
  the	
  biological	
  processes	
  
investigated.	
  
The	
   great	
   advantage	
   of	
   this	
   experimental	
   approach	
   is	
   that	
   it	
   will	
   potentially	
   enable	
  
characterization	
   of	
   genes	
   involved	
   in	
   a	
   lipid	
   accumulation	
   and	
   cell	
   growth	
   and	
   at	
   the	
  
same	
  time	
  will	
  provide	
  chemical	
  tools	
  to	
  modulate	
  their	
  functions.	
  	
  
	
  
	
  
b. Background	
  and	
  significance	
  	
  	
  
	
  
Neutral	
   lipids,	
   and	
   in	
   particular	
   triacylglycerols	
   are	
   the	
   raw	
   material	
   for	
   biodiesel	
  
production.	
  Currently	
  biodiesel	
  is	
  produced	
  mainly	
  out	
  of	
  field	
  crops	
  but	
  this	
  source	
  is	
  
not	
  sustainable	
  to	
  satisfy	
  the	
  increasing	
  demand	
  of	
  the	
  market,	
  especially	
  if	
  the	
  goal	
  is	
  
replacing	
  fossil	
  fuels.	
  Algae	
  have	
  the	
  potential	
  to	
  overcome	
  many	
  of	
  the	
  limits	
  affecting	
  
crops	
   in	
   biodiesel	
   production,	
   but	
   in	
   order	
   to	
   become	
   a	
   competitive	
   and	
   commercial	
  
reality	
  technologic	
  breakthroughs	
  are	
  needed	
  in	
  different	
  scientific	
  fields	
  [1].	
  Metabolic	
  
engineering	
   of	
   algal	
   strains	
   in	
   order	
   to	
   re-­‐direct	
   as	
   much	
   as	
   possible	
   of	
   the	
   captured	
  
solar	
   energy	
   into	
   the	
   highly	
   energetic	
   chemical	
   bounds	
   of	
   lipids	
   is	
   one	
   of	
   the	
   most	
  
critical	
   issues.	
   To	
   accomplish	
   this	
   goal	
   many	
   biological	
   questions,	
  in	
   particular	
   related	
   to	
  
biosynthesis	
   and	
   regulation	
   of	
   fatty	
   acids	
   and	
   triacylglycerols	
   (TAG),	
   need	
   to	
   be	
  
addressed	
  [2].	
  
The	
  pathways	
  and	
  the	
  enzymes	
  involved	
  in	
  fatty	
  acid	
  and	
  TAG	
  biosynthesis	
  are	
  poorly	
  
studied	
   in	
   algae	
   but	
   are	
   very	
   well	
   characterized	
  in	
   higher	
   plants.	
   Computational	
   analysis	
  
of	
  integrated	
  genomic,	
  proteomic	
  and	
  metabolomic	
  data	
  is	
  a	
  powerful	
  tool	
  that	
  can	
  help	
  
mapping	
   the	
   metabolic	
   network	
   of	
   algae,	
   revealing	
   pathways	
   in	
   common	
   with	
   higher	
  
plants	
  or	
  animals,	
  and	
  new	
  and	
  unique	
  ones	
  not	
  present	
  in	
  other	
  eukaryotic	
  organisms	
  
[3,4].	
   If	
   charting	
   the	
   metabolic	
   maps	
   in	
   an	
   essential	
   knowledge	
   to	
   identify	
   structural	
  
genes	
  involved	
  in	
  fatty	
  acids	
  and	
   TAG	
  biosynthesis,	
  this	
  knowledge	
  may	
  not	
  be	
  sufficient	
  
to	
  efficiently	
  manipulate	
  a	
  given	
  metabolic	
  pathway	
  through	
  overexpression	
   of	
   one	
  or	
  
more	
   structural	
   genes.	
   This	
   issue	
   was	
   highlighted	
   by	
   lack	
   of	
   significant	
   effect	
   on	
   lipid	
  
accumulation	
   after	
   overexpression	
   in	
   Cyclotella	
   criptica	
   of	
   Acetyl-­‐CoA	
   Carboxylase	
  
(ACCA)	
  a	
  key	
  enzyme	
  in	
  fatty	
  acid	
  biosynhesis	
  [5].	
  
Therefore	
   the	
   “Holy	
   Grail”	
   in	
   biodiesel	
   research	
   is	
   to	
   understanding	
   regulation	
   of	
   TAG	
  
biosynthesis	
  at	
  molecular	
  level,	
  and	
  in	
  particular	
  how	
  the	
  cells	
  direct	
  the	
  metabolic	
  flux	
  
of	
   photosynthetically	
   fixed	
   carbon	
   towards	
   fatty	
   acids	
   biosynthesis	
   first,	
   and	
   towards	
  
TAG	
   biosynthesis	
   afterwards.	
   Regulative	
   genes	
   involved	
   in	
   such	
   control	
   need	
   to	
   be	
  
identified	
  in	
  order	
  to	
  create	
  rational	
  engineered	
  algae	
  with	
  superior	
  lipid	
  content	
  [2].	
  	
  
It	
  is	
  well	
  known	
  that	
  many	
  algal	
  species,	
  even	
  belonging	
  to	
  different	
  taxonomic	
  groups,	
  
alter	
   their	
   lipid	
   metabolism	
   in	
   response	
   to	
   changes	
   in	
   environmental	
   factors,	
   such	
   as	
  
nutrient,	
   pH,	
   temperature,	
   salinity	
   and	
   light	
   intensity.	
   In	
   particular	
   specific	
   stress	
  
conditions,	
   such	
   as	
   nutrient	
   limitation,	
   lead	
   to	
   an	
   increase	
   in	
   de	
   novo	
   biosynthesis	
   of	
  
neutral	
  lipids	
  and	
  a	
  conversion	
  of	
  membrane	
  polar	
  lipids	
  in	
  TAG.	
  In	
  many	
  cases	
  the	
  net	
  
result	
  is	
  an	
  increase	
  in	
  total	
   lipid	
  content	
  of	
  two	
  or	
  three	
  folds.	
  The	
  most	
  critical	
  nutrient	
  
whose	
   limitation	
   triggers	
   this	
   metabolic	
   shift	
   is	
   nitrogen.	
   The	
   drawback	
   is	
   that	
   under	
  
stress	
  such	
  as	
  nitrogen	
  limitation	
  algae	
  slowly	
  decrease	
  their	
  growth	
  until	
  they	
  reach	
  a	
  
complete	
  arrest	
  in	
  cell	
  cycle	
  and	
  a	
  quiescent	
  state	
  [5].	
  
While	
  most	
  of	
  the	
  research	
  in	
  this	
  field	
  has	
  been	
  focusing	
  in	
  individuating	
  algal	
  strains	
  
and	
   culture	
   conditions	
   leading	
   to	
   the	
   highest	
   yield	
   of	
   neutral	
   lipid	
   accumulation,	
   no	
  
attempts	
  to	
  shed	
  light	
  into	
  the	
  molecular	
  biology	
  of	
  such	
  phenomena	
  have	
  been	
  made	
  
yet.	
  
Individuating	
  the	
  molecular	
  actors	
  involved	
  in	
  control	
  mechanisms	
  of	
  lipid	
  metabolism	
  is	
  
an	
   essential	
   goal	
   to	
   design	
   rational	
   engineered	
   algal	
   strains	
   that	
   constitutively	
  
synthesize	
  and	
  store	
  high	
  level	
  of	
  neutral	
   lipids.	
  Parallel	
  and	
  integrative	
  studies	
  aimed	
  to	
  
increase	
   the	
   rate	
   of	
   cell	
   growth	
   are	
   required	
   to	
   further	
   boost	
   the	
   productivity	
   of	
  
biodiesel	
  from	
  algae.	
  
Complete	
   genomic	
   sequences	
   of	
   several	
   algal	
   species	
   are	
   available	
   [4]	
   allowing	
   classic	
  
forward	
   and	
   reverse	
   genetic	
   studies,	
   where	
   mutagenesis	
   is	
   a	
   mean	
   to	
   elucidate	
   the	
  
relationship	
  between	
  genes	
  and	
  phenotypes.	
  
Chemical	
   genetics	
   is	
   an	
   emerging	
   powerful	
   technology	
   which	
   employs	
   diverse	
   small-­‐
molecule	
   compounds	
   (replacing	
   mutagenesis)	
   acting	
   as	
   “perturbers”	
   in	
   a	
   biological	
  
system,	
  in	
  order	
  to	
  elucidate	
  a	
  biological	
  process	
  of	
  interest	
  and	
  identify	
  gene	
  products	
  
involved	
   in	
   that	
   process.	
   This	
   approach	
   offers	
   several	
   advantages	
   over	
   classic	
   forward	
  
and	
  reverse	
  genetics	
  potentially	
  also	
  in	
  relation	
  to	
  the	
  algal	
  biodiesel	
  research.	
  First	
  of	
  
all	
   small	
   molecules	
   work	
   rapidly	
   and	
   often	
   reversibly,	
   commercial	
   compound	
   libraries	
  
are	
   available	
   in	
   formats	
   that	
   allow	
   a	
   relatively	
   fast	
   analysis	
   and	
   possibility	
   of	
  
automation,	
  effectively	
   reducing	
  the	
  time	
   of	
  the	
   screening	
  (especially	
  when	
  compared	
  
with	
   the	
   time	
   required	
   to	
   create	
   and	
   screen	
   mutant	
   libraries).	
   Furthermore	
   while	
  
mutagenesis	
   strategies	
   rely	
   on	
   complete	
   inactivation	
   of	
   a	
   gene,	
   chemicals	
   have	
   the	
  
potential	
   to	
   block	
   only	
   a	
   specific	
   function	
   of	
   a	
   multifunctional	
   protein,	
   potentially	
  
generating	
  phenotypes	
  not	
  reproducible	
  via	
  mutagenesis	
  or	
  silencing	
  [6].	
  Indeed	
  several	
  
cases	
   where	
   small	
   molecules	
   and	
   mutations	
   targeting	
   the	
   same	
   proteins	
   produced	
  
radically	
  different	
  phenotypes	
  have	
  been	
  reported	
  [7].	
  Another	
  important	
  advantage	
  is	
  
that	
   active	
   compounds	
   may	
   be	
   tested	
   for	
   functionality	
   across	
   different	
   species	
   where	
  
genomic	
   data	
   are	
   not	
   available	
   or	
   efficient	
   transgenic	
   technologies	
   are	
   not	
   fully	
  
developed.	
   Last	
   but	
   not	
   least	
   the	
   discovery	
   of	
   compounds	
   with	
   biological	
   desired	
  
activities	
  may	
  lead	
  to	
  industrial	
  applications	
  (so	
  far	
  applied	
  mainly	
  in	
  the	
  pharmaceutical	
  
field)	
   and	
   this	
   might	
   be	
   a	
   crucial	
   benefit	
   in	
   biodiesel	
   research	
   as	
   well.	
   Based	
   on	
   their	
  
efficacy	
   small	
   bioactive	
   molecules	
   could	
   potentially	
   find	
   a	
   practical	
   employment	
   in	
  
biomass	
  and	
  biodiesel	
  precursor	
  production,	
  or	
  at	
  least	
  to	
  be	
  the	
  base	
  to	
  design	
  drugs	
  
with	
   high	
   efficacy	
   and	
   specificity	
   in	
   modulating	
   the	
   biological	
   processes	
   of	
   interest	
   (lipid	
  
accumulation	
   and	
   cell	
   growth	
   promotion).	
   Chemical	
   modulators	
   could	
   indeed	
   be	
   an	
  
alternative	
   way	
   to	
   transgenesis,	
   in	
   order	
   to	
   increase	
   biodiesel	
   productivity	
   in	
   algae,	
  
especially	
   given	
   the	
   reluctance	
   of	
   large	
   part	
   of	
   the	
   public	
   opinion	
   and	
   the	
   scientific	
  
community	
  to	
  introduce	
  GMOs	
  in	
  the	
  environment.	
  
On	
   the	
   other	
   side	
   identification	
   of	
   regulative	
   genes	
   could	
   allow	
   the	
   design	
   of	
   rational	
  
metabolic	
   engineered	
   algal	
   strains,	
   able	
   to	
   accumulate	
   neutral	
   lipids	
   possibly	
   with	
  
improved	
  cell	
  growth	
  performances,	
  in	
  standard	
  culture	
  conditions.	
  
In	
   the	
   future	
   the	
   combination	
   of	
   transgenic	
   strains	
   and	
   chemical	
   modulators	
   could	
   be	
  
the	
  best	
  strategy	
  to	
  maximize	
  the	
  yield	
  of	
  biodiesel	
  precursors	
  in	
  algae.	
  
These	
  are	
  the	
  reasons	
  why	
  I	
  propose	
  to	
   use	
  this	
  approach	
  in	
  studying	
  lipid	
  accumulation	
  
and	
  cell	
  growth	
  in	
  a	
  model	
  algal	
  species.	
  
	
  
	
  
c. Preliminary	
  studies	
  
No	
  preliminary	
  studies	
  are	
  available.	
  	
  
	
  
	
  
d. Research	
  design	
  and	
  methods	
  
	
  
The	
   project	
   is	
   based	
   on	
   a	
   phenotype	
   driven	
   chemical	
   proteomic	
   approach,	
   which	
  
consists	
  in	
  introducing	
  small	
  molecules	
  in	
  a	
  system	
  and	
  selecting	
  the	
  ones	
  able	
  to	
  induce	
  
a	
  particular	
  phenotype.	
  The	
  only	
  algal	
  organism	
  for	
  which	
  extensive	
  biological	
  genomic	
  
and	
   proteomic	
   data	
   exist	
   is	
   Chlamydomonas	
   reinhardtii	
   [4];	
   different	
   mutants	
  
characterized	
   by	
   different	
   phenotypes	
   are	
   available,	
   among	
   these	
   the	
   mutant	
   CC-­‐503	
  
cw92	
   mt+	
   is	
   characterized	
   by	
   the	
   absence	
   of	
   a	
   cell	
   wall	
   and	
   was	
   used	
   for	
   genomic	
  
sequencing.	
   A	
   growth	
   inhibition-­‐based	
   drug	
   screening	
   performed	
  in	
   parallel	
   in	
   wild	
   type	
  
and	
   wall	
   less	
   C.reinhardtii	
   cells	
   showed	
   that	
   the	
   latter	
   were	
   less	
   sensitive	
   to	
   drugs	
  
compared	
  to	
  the	
  former.	
  The	
  authors	
  hypothesized	
  a	
  better	
  uptake	
  and	
  internalization	
  
of	
   the	
   molecules	
   in	
   the	
   wall	
   less	
   cells	
   [8].	
   Given	
   these	
   premises	
   I	
   propose	
   to	
   use	
   C.	
  
reinhardtii	
  cw92	
  mt+	
  as	
  experimental	
  model.	
  The	
  research	
  will	
  be	
  essentially	
  divided	
  in	
  
two	
  stages:	
  
        	
  
1) High	
   throughput	
   screening:	
   I	
   intend	
   to	
   use	
   the	
   fluorescent	
   dye	
   Nile	
   Red	
   to	
   screen	
  
        one	
   or	
   more	
   bioactive	
   compound	
   libraries	
   in	
   order	
   to	
   identify	
   molecules	
   that	
   are	
  
        able	
   to	
   trigger	
   neutral	
   lipid	
   accumulation	
   in	
   the	
   model	
   species.	
   Nile	
   Red	
   is	
   a	
   lipid	
  
extrinsic	
  fluorescent	
  dye	
  whose	
  maximum	
  emission	
  is	
  blue-­‐shifted	
  as	
  the	
  polarity	
  of	
  
the	
  surrounding	
  environment	
  decreases.	
  Recently	
  Chen	
  et	
  al.	
  proposed	
  an	
  optimized	
  
protocol	
   with	
   increased	
   accuracy	
   and	
   sensitivity,	
   suitable	
   for	
   high	
   throughput	
  
quantitative	
  screening	
  of	
  neutral	
  lipid	
  content	
  in	
  algae.	
  Reliability	
  of	
  the	
  method	
  was	
  
demonstrated	
   by	
   a	
   direct	
   comparison	
   with	
   the	
   conventional	
   gravimetric	
   technique	
  
[9].	
   This	
   protocol	
   can	
   be	
   easily	
   formatted	
   for	
   96	
   well	
   plates	
   and	
   used	
   with	
   a	
  
microplate	
   reader	
   to	
   screen	
   compound	
   libraries.	
   In	
   addition	
   to	
   the	
   selected	
  
fluorescence	
  emission,	
  cell	
  proliferation	
  will	
  be	
   monitored	
  either	
  checking	
  the	
  O.D.	
  
at	
   750	
   nm	
   or	
   using	
   one	
   of	
   the	
   several	
   commercially	
   available	
   cell	
  
viability/proliferation	
   assay	
   (colorimetric	
   or	
   fluorescent)	
   formatted	
   for	
   96	
   well	
  
plates.	
   The	
   screening	
   will	
   be	
   performed	
   in	
   parallel	
   using	
   cells	
   growing	
   in	
   standard	
  
condition	
  and	
  cells	
  growing	
  under	
  nitrogen	
  limitation.	
  For	
  each	
  condition	
  and	
  each	
  
molecule	
  data	
  regarding	
  lipid	
  accumulation	
  and	
  cell	
  growth	
  will	
  be	
  acquired	
  at	
  least	
  
at	
   three	
   different	
   time	
   points	
   (to	
  be	
   determined	
  empirically	
   and	
   very	
   likely	
   different	
  
for	
   the	
   two	
   conditions)	
   in	
   a	
   time	
   course	
   manner.	
   Untreated	
   cells	
   growing	
   under	
  
standard	
   condition	
   or	
   nitrogen	
   limitation	
   will	
   be	
   used	
   as	
   controls.	
   Dose-­‐response	
  
studies	
  will	
  be	
  carried	
  out	
  to	
  analyze	
  the	
  potency	
  of	
  the	
  positive	
  compounds	
  using	
  
fluorescence	
   intensity	
   and	
   standard	
   growth	
   curves,	
   respectively	
   for	
   neutral	
   lipid	
  
accumulation	
   and	
   cell	
   growth.	
   During	
   the	
   screening	
   I	
   expect	
   to	
   find	
   molecules	
  
affecting	
  lipid	
  metabolism	
  that	
  can	
  be	
  divided	
  in	
  3	
  main	
  categories	
  according	
  to	
  their	
  
activities:	
  
        a. Able	
   to	
   promote	
   lipid	
   accumulation	
  in	
   standard	
  culture	
   conditions	
   but	
   not	
   to	
  
              further	
  increase	
  lipid	
  accumulation	
  in	
  nitrogen	
  starving	
  cells	
  
        b. Able	
   to	
   promote	
   lipid	
   accumulation	
   in	
   standard	
   culture	
   conditions	
   and	
   to	
  
              further	
  increase	
  lipid	
  accumulation	
  in	
  nitrogen	
  starving	
  cells	
  
        c. Able	
  to	
  inhibit	
  lipid	
  accumulation	
  in	
  nitrogen	
  starving	
  cells	
  
In	
  the	
  same	
  way	
  I	
  am	
  interested	
  in	
  individuate	
  molecules	
  affecting	
  cell	
  growth	
  with	
  
two	
  distinct	
  activities:	
  
        d. Able	
   to	
   promote	
   cell	
   growth	
   under	
   standard	
   conditions	
   but	
   not	
   in	
   nitrogen	
  
              starved	
  cells	
  
        e. Able	
  to	
  rescue	
  the	
  growth	
  defective	
  phenotype	
  of	
  nitrogen	
  starving	
  cells	
  but	
  
              not	
  to	
  promote	
  growth	
  of	
  cells	
  cultured	
  in	
  standard	
  conditions.	
  
        f. Able	
   to	
   rescue	
   the	
   growth	
   defective	
   phenotype	
   of	
   nitrogen	
   starving	
   cells	
   and	
  
              to	
  promote	
  growth	
  of	
  cells	
  cultured	
  in	
  standard	
  conditions	
  
While	
   finding	
   single	
   molecules	
   exerting	
   both	
   desired	
   activities	
   (cell	
   growth	
  
promotion	
  and	
  lipid	
  accumulation)	
  seems	
  unlikely,	
  the	
  combination	
  of	
  two	
  or	
  more	
  
moelcules	
   characterized	
   by	
   different	
   biological	
   activities	
   will	
   be	
   tested	
   in	
   vivo	
   to	
  
study	
   if	
   the	
   two	
   different	
   activities	
   can	
   be	
   combined	
   and	
   maintained	
  in	
   a	
   additive	
   or	
  
synergistic	
   way.	
   Several	
   factors	
   may	
   affect	
   the	
   result	
   of	
   all	
   high-­‐throughput	
  
screenings.	
  First	
  of	
  all	
  failure	
  in	
   identifying	
  compound	
  with	
  the	
  desired	
  activity	
  might	
  
be	
   due	
   to	
   an	
   incorrect	
   design	
   of	
   the	
   screening	
   itself.	
   In	
   order	
   to	
   avoid	
   this	
   possibility	
  
control	
   measurement	
   will	
   be	
   acquired	
   for	
   each	
   time	
   point	
   and	
   for	
   each	
   condition	
  
and	
  replicates	
  will	
  be	
  used.	
  The	
  two	
  critical	
  factors	
  that	
  may	
  have	
  the	
  greater	
  impact	
  
in	
   the	
   identification	
   of	
   molecules	
   inducing	
   the	
   desired	
   phenotype	
   are	
   drug	
  
concentration	
  and	
  drug	
  exposure	
  time.	
  While	
  the	
  former	
  should	
  be	
  kept	
  as	
  low	
  as	
  
      possible	
   (low	
   µmolar	
   range)	
   to	
   increase	
   the	
   stringency	
   of	
   the	
   screening	
   and	
  limit	
  off	
  
      target	
   effects,	
   the	
   latter	
   should	
   be	
  long	
   enough	
   (at	
   least	
   72h)	
   to	
   allow	
   accumulation	
  
      of	
  lipids.	
  A	
  prescreening	
  setup	
  to	
  optimize	
  time	
   points	
  using	
  control	
  cells	
  grown	
  in	
  
      the	
   two	
   different	
   conditions	
   will	
   be	
   essential.	
   Another	
   critical	
   factor	
   affecting	
   the	
  
      success	
   of	
   a	
   chemical	
   screening	
   is	
   the	
   number	
   of	
   compounds	
   and	
   their	
   structural	
  
      variability.	
   A	
   starting	
   candidate	
   could	
   be	
   the	
   Diverset	
   library	
   (ChemBridge,	
   San	
  
      Diego)	
  since	
  many	
  successful	
  screenings	
  have	
  been	
  reported,	
  and	
  in	
  particular	
  two	
  
      independent	
   groups	
   were	
   recently	
   able	
   to	
   identify	
   new	
   auxin-­‐like	
   compounds	
  
      affecting	
  plant	
  growth	
  within	
  this	
  library	
  [10,11].	
  In	
  the	
  hypothesis	
  that	
  C.	
  reinhardtii	
  
      shares	
   with	
   higher	
   plants	
   the	
   auxin	
   response	
   pathway,	
   some	
   of	
   the	
   molecules	
  
      identified	
  in	
   these	
   screenings	
   could	
   stimulate	
   algal	
   growth	
   too	
   and	
   could	
  be	
   used	
   as	
  
      putative	
   positive	
   controls.	
   The	
   most	
   interesting	
   compounds	
   or	
   a	
   combination	
   of	
  
      them	
   can	
   be	
   tested	
   in	
   other	
   algal	
   species	
   of	
   particularly	
   intereste	
   for	
   biofuel	
  
      production,	
  to	
  assess	
  if	
  they	
  can	
  exert	
  the	
  same	
  effect.	
  
	
  
2) The	
  following	
  step	
  consists	
  in	
  individuating	
  the	
  target/targets	
  of	
  the	
  compound	
  and	
  
     understanding	
   their	
   role	
   in	
   the	
   biological	
   process	
   investigated.	
   This	
   process	
   called	
  
     “target	
  deconvolution”	
  remains	
  the	
  most	
  challenging	
  part	
  of	
  every	
  chemical	
  genetics	
  
     experiment.	
  In	
  particular	
  in	
  this	
  case	
  the	
  low	
  stringency	
  of	
  the	
  screening	
  conditions	
  
     could	
   lead	
   to	
   identifications	
   of	
   a	
   broad	
   spectrum	
   of	
   compound	
   acting	
   on	
   different	
  
     pathways	
  and	
  acting	
  with	
  different	
  mechanisms.	
   The	
  problem	
  of	
  the	
  low	
  stringency	
  
     is	
   mainly	
   due	
   to	
   the	
   lack	
   of	
   information	
   at	
   molecular	
   level	
   regarding	
   lipid	
  
     accumulation	
   and	
   cell	
   growth	
   in	
   algae,	
   gap	
   that	
   this	
   project	
   could	
   fill	
   at	
   least	
  
     partially.	
   A	
   first	
   step	
   in	
   target	
   deconvolution	
   is	
   database	
   mining,	
   to	
   verify	
   if	
   the	
  
     molecule	
   of	
   interest	
   has	
   already	
   been	
   characterized	
   and	
   which	
   are	
   the	
   putative	
  
     target	
  proteins	
  [12].	
  Several	
  deconvolution	
  strategies	
  have	
  been	
  proposed	
  but	
  each	
  
     of	
  them	
  can	
  be	
  either	
  time	
  consuming	
  or	
  lead	
  to	
  false	
  positives	
  [13].	
  In	
  alternative	
  I	
  
     propose	
   a	
   novel	
   chemicalproteomic	
   quantitative	
   method	
   to	
   identify	
   drug	
   targets,	
  
     based	
  on	
  the	
   principle	
  that	
  the	
   binding	
   of	
  a	
  small	
  molecule	
  to	
  a	
  protein	
  affects	
  its	
  
     sensitivity	
   to	
   protease	
   digestion	
   [14].	
   Briefly	
   cell	
   lysates	
   are	
   prepared	
   in	
   non-­‐
     denaturing	
   conditions,	
   aliquots	
   remain	
   untreated	
   while	
   others	
   are	
   incubated	
   with	
  
     different	
  concentrations	
  of	
  the	
  drug	
  and	
  finally	
  all	
  lysates	
  are	
  digested	
  with	
  one	
  or	
  
     more	
   proteases.	
   Treated	
   and	
   untreated	
   peptide	
  mixtures	
   will	
  be	
   labeled	
   with	
  iTRAQ	
  
     (isobaric	
  tags	
  for	
  relative	
  and	
  absolute	
  quantification),	
  separated	
  by	
  OFFGEL	
  [15]	
  and	
  
     analyzed	
   by	
   mass	
   spectrometry	
   to	
   identify	
   quantitative	
   differences	
   among	
   the	
  
     samples	
   [16].	
   Peptides	
   showing	
   a	
   stechiometric	
   enrichment	
   or	
   depletion	
   after	
   the	
  
     drug	
  exposure	
  should	
  be	
  indicative	
  of	
  proteins	
  interacting	
  with	
  the	
  drug	
  itself.	
  This	
  
     method	
   has	
   only	
   been	
   validate	
   as	
   proof	
   of	
   concept	
   to	
   verify	
   predicted	
   targets	
   of	
  
     know	
   drugs,	
   and	
  its	
   application	
  in	
   identifying	
   novel	
   targets	
   of	
   uncharacterized	
  drugs	
  
     has	
   not	
   been	
   tested	
   yet	
   especially	
   coupled	
   to	
   quantitative	
   proteomics.	
   Nevertheless	
  
     the	
   fact	
   that	
   doesn’t	
   require	
   expensive,	
   labor	
  intensive	
   and	
   time	
   consuming	
   studies,	
  
     and	
  it	
  can	
  potentially	
  be	
  used	
  in	
  a	
  high	
  throughput	
  is	
  critical	
  	
  then	
  the	
  potential	
  to	
  
     become	
   the	
   method	
   of	
   choice	
   in	
   target	
   deconvolution	
   analysis.	
   The	
   setup	
   and	
  
optimization	
   of	
   the	
   quantitative	
   proteomic	
   analysis,	
   possibly	
   using	
   characterized	
  
       drug	
  will	
  be	
  essential	
  and	
  can	
  be	
  carried	
  out	
  in	
  parallel	
  with	
  the	
  screening	
  process.	
  
       The	
   success	
   of	
   this	
   method	
   could	
   allow	
   individuation	
   of	
   targets	
   of	
   several	
   small	
  
       molecules	
   in	
   a	
   relatively	
   short	
   time.	
   Finally	
   additional	
   information	
   about	
  
       mechanisms	
   of	
   action	
   of	
   candidate	
   target	
   proteins	
   can	
   be	
   collected	
   studying	
   the	
  
       effect	
   of	
   gene	
   silencing	
   on	
   the	
   phenotype.	
   Recentely	
   a	
   method	
   for	
   efficient	
  
       knockdown	
  emplying	
  miRNA	
  has	
  been	
  developed	
  in	
  C.	
  reinhardtii	
  [17]	
  
	
  
	
  
	
  
	
  
	
  
	
  
References	
  
	
  
       [1] Dismukes	
   GC,	
   Carrieri	
   D,	
   Bennette	
   N,	
   Ananyev	
   GM,	
   Posewitz	
   MC.	
   Aquatic	
  
           phototrophs:	
   efficient	
   alternatives	
   to	
   land-­‐based	
   crops	
   for	
   biofuels.	
   Curr	
   Opin	
  
           Biotechnol	
  2008;19:235-­‐40.	
  
       [2] Hu	
   Q,	
   Sommerfeld	
   M,	
   Jarvis	
   E,	
   Ghirardi	
   M,	
   Posewitz	
   M,	
   Seibert	
   M,	
   Darzins	
   A.	
  
           Microalgal	
  triacylglycerols	
  as	
  feedstocks	
  for	
  biofuel	
  production:	
  perspectives	
  
           and	
  advances.	
  Plant	
  J	
  2008;54:621-­‐39.	
  
       [3] May	
   P,	
   Wienkoop	
   S,	
   Kempa	
   S,	
   Usadel	
   B,	
   Christian	
   N,	
   Rupprecht	
   J,	
   Weiss	
   J,	
  
           Recuenco-­‐Munoz	
   L,	
   Ebenhöh	
   O,	
   Weckwerth	
   W,	
  Walther	
   D.	
   Metabolomics-­‐	
   and	
  
           proteomics-­‐assisted	
   genome	
   annotation	
   and	
   analysis	
   of	
   the	
   draft	
   metabolic	
  
           network	
  of	
  Chlamydomonas	
  reinhardtii.	
  Genetics,	
  2008;179:157-­‐66.	
  
       [4] Merchant	
   SS,	
   Prochnik	
   SE,	
   Vallon	
   O,	
   Harris	
   EH,	
   Karpowicz	
   SJ,	
   Witman	
   GB,	
   Terry	
  
           A,	
  Salamov	
  A,	
  Fritz-­‐Laylin	
  LK,	
  Maréchal-­‐Drouard	
  L,	
  Marshall	
  WF,	
  Qu	
  LH,	
  Nelson	
  
           DR,	
   Sanderfoot	
   AA,	
   Spalding	
   MH,	
   Kapitonov	
   VV,	
   Ren	
   Q,	
   Ferris	
   P,	
   Lindquist	
   E,	
  
           Shapiro	
  H,	
  Lucas	
  SM,	
  Grimwood	
  J,	
  Schmutz	
  J,	
  Cardol	
  P,	
  Cerutti	
  H,	
  Chanfreau	
  G,	
  
           Chen	
   CL,	
   Cognat	
   V,	
   Croft	
   MT,	
   Dent	
   R,	
   Dutcher	
   S,	
   Fernández	
   E,	
   Fukuzawa	
   H,	
  
           González-­‐Ballester	
  D,	
  González-­‐Halphen	
  D,	
  Hallmann	
  A,	
  Hanikenne	
  M,	
   Hippler	
  
           M,	
  Inwood	
  W,	
  Jabbari	
  K,	
  Kalanon	
  M,	
  Kuras	
  R,	
  Lefebvre	
  PA,	
  Lemaire	
  SD,	
  Lobanov	
  
           AV,	
  Lohr	
  M,	
  Manuell	
  A,	
  Meier	
  I,	
  Mets	
  L,	
  Mittag	
  M,	
  Mittelmeier	
  T,	
  Moroney	
  JV,	
  
           Moseley	
   J,	
   Napoli	
   C,	
   Nedelcu	
   AM,	
   Niyogi	
   K,	
   Novoselov	
   SV,	
   Paulsen	
   IT,	
   Pazour	
   G,	
  
           Purton	
  S,	
  Ral	
  JP,	
  Riaño-­‐Pachón	
  DM,	
  Riekhof	
  W,	
  Rymarquis	
  L,	
  Schroda	
  M,	
  Stern	
  
           D,	
  Umen	
  J,	
  Willows	
  R,	
  Wilson	
  N,	
  Zimmer	
  SL,	
  Allmer	
  J,	
  Balk	
  J,	
  Bisova	
  K,	
  Chen	
  CJ,	
  
           Elias	
  M,	
  Gendler	
  K,	
  Hauser	
  C,	
  Lamb	
  MR,	
  Ledford	
  H,	
  Long	
  JC,	
  Minagawa	
  J,	
  Page	
  
           MD,	
  Pan	
  J,	
  Pootakham	
  W,	
  Roje	
  S,	
  Rose	
  A,	
  Stahlberg	
  E,	
  Terauchi	
  AM,	
  Yang	
  P,	
  Ball	
  
           S,	
   Bowler	
   C,	
   Dieckmann	
   CL,	
   Gladyshev	
   VN,	
   Green	
   P,	
   Jorgensen	
   R,	
   Mayfield	
   S,	
  
           Mueller-­‐Roeber	
  B,	
  Rajamani	
  S,	
  Sayre	
  RT,	
  Brokstein	
  P,	
  Dubchak	
  I,	
  Goodstein	
  D,	
  
           Hornick	
   L,	
   Huang	
   YW,	
   Jhaveri	
   J,	
   Luo	
   Y,	
   Martínez	
   D,	
   Ngau	
   WC,	
  Otillar	
   B,	
   Poliakov	
  
           A,	
   Porter	
   A,	
   Szajkowski	
   L,	
   Werner	
   G,	
   Zhou	
   K,	
   Grigoriev	
   IV,	
   Rokhsar	
   DS,	
  
           Grossman	
   AR.	
   The	
   Chlamydomonas	
   genome	
   reveals	
   the	
   evolution	
   of	
   key	
  
           animal	
  and	
  plant	
  functions.	
  Science,	
  2007;318:245-­‐50.	
  
[5] Sheehan	
   J,	
   Dunahay	
   T,	
   Benemann	
   J,	
   Roessler	
   PG.	
   US	
   Department	
   of	
   Energy's	
  
            Office	
   of	
   Fuels	
   Development,	
   July	
   1998.	
   A	
   Look	
   Back	
   at	
   the	
   US	
  Department	
   of	
  
            Energy's	
   Aquatic	
   Species	
   Program	
   –	
   Biodiesel	
   from	
   Algae,	
   Close	
   Out	
   Report,	
  
            1998	
  TP-­‐580-­‐24190.	
  Golden,	
  CO:	
  National	
  Renewable	
  Energy	
  Laboratory.	
  
       [6] Kawasumi	
   M,	
   Nghiem	
   P.	
   Chemical	
   genetics:	
   elucidating	
   biological	
   systems	
  
            with	
  small-­‐molecule	
  compounds.	
  J	
  Invest	
  Dermatol,	
  2007;127:1577-­‐84.	
  
       [7] Knight	
   ZA,	
   Shokat	
   KM.	
   Chemical	
   genetics:	
   where	
   genetics	
   and	
   pharmacology	
  
            meet.	
  Cell,	
  2007;128:425-­‐30.	
  
       [8] Maucourt	
   K,	
   Agarwal	
   M,	
   René	
   B,	
   Fermandjian	
   S.	
   Use	
   of	
   Chlamydomonas	
  
            reinhardtii	
   mutants	
   for	
   anticancer	
   drug	
   screening.	
   Biochem	
   Pharmacol,	
  
            2002;64:1125-­‐31.	
  
       [9] 	
  Chen	
   W,	
   Zhang	
   C,	
   Song	
   L,	
   Sommerfeld	
   M,	
   Hu	
   Q.	
   A	
   high	
   throughput	
   Nile	
   red	
  
            method	
   for	
   quantitative	
   measurement	
   of	
   neutral	
   lipids	
   in	
   microalgae.	
   J	
  
            Microbiol	
  Methods,	
  2009	
  [Epub	
  ahead	
  of	
  print]	
  
       [10] Christian	
   M,	
   Hannah	
   WB,	
   Lüthen	
   H,	
   Jones	
   AM.	
   Identification	
   of	
   auxins	
   by	
   a	
  
            chemical	
  genomics	
  approach.	
  J	
  Exp	
  Bot,	
  2008;59:2757-­‐67.	
  
       [11] Savaldi-­‐Goldstein	
  S,	
  Baiga	
  TJ,	
  Pojer	
  F,	
  Dabi	
  T,	
  Butterfield	
  C,	
  Parry	
  G,	
  Santner	
  A,	
  
            Dharmasiri	
   N,	
   Tao	
   Y,	
   Estelle	
   M,	
   Noel	
   JP,	
   Chory	
   J.	
   New	
   auxin	
   analogs	
   with	
  
            growth-­‐promoting	
   effects	
   in	
   intact	
   plants	
   reveal	
   a	
   chemical	
   strategy	
   to	
  
            improve	
  hormone	
  delivery.	
  Proc	
  Natl	
  Acad	
  Sci	
  USA,	
  2008;105:15190-­‐5.	
  
       [12] Wishart	
   DS,	
   Knox	
   C,	
   Guo	
   AC,	
   Cheng	
   D,	
   Shrivastava	
   S,	
   Tzur	
   D,	
   Gautam	
   B,	
  
            Hassanali	
   M.	
   DrugBank:	
   a	
   knowledgebase	
   for	
   drugs,	
   drug	
   actions	
   and	
   drug	
  
            targets.	
  Nucleic	
  Acids	
  Res,	
  2008;36:D901-­‐6.	
  
       [13] Terstappen	
   GC,	
   Schlüpen	
   C,	
   Raggiaschi	
   R,	
   Gaviraghi	
   G.	
   Target	
   deconvolution	
  
            strategies	
  in	
  drug	
  discovery.	
  Nat	
  Rev	
  Drug	
  Discov,	
  2007;6:891-­‐903.	
  
       [14] Nishiya	
  Y,	
  Shibata	
  K,	
  Saito	
  S,	
  Yano	
  K,	
  Oneyama	
  C,	
  Nakano	
  H,	
  Sharma	
  SV.	
  Drug-­‐
            target	
  identification	
  from	
  total	
  cellular	
  lysate	
  by	
  drug-­‐induced	
  conformational	
  
            changes.	
  Anal	
  Biochem,	
  2009;385:314-­‐20.	
  
       [15] Bantscheff	
   M,	
   Boesche	
   M,	
   Eberhard	
   D,	
   Matthieson	
   T,	
   Sweetman	
   G,	
   Kuster	
   B.	
  
            Robust	
   and	
   sensitive	
   iTRAQ	
   quantification	
   on	
   an	
   LTQ	
   Orbitrap	
   mass	
  
            spectrometer.	
  Mol	
  Cell	
  Proteomics,	
  2008;7:1702-­‐13	
  
       [16] Hubner	
  NC,	
  Ren	
  S,	
  Mann	
  M.	
  Peptide	
  separation	
  with	
  immobilized	
  pI	
  strips	
  is	
  
            an	
   attractive	
   alternative	
   to	
   in-­‐gel	
   protein	
   digestion	
   for	
   proteome	
   analysis.	
  
            Proteomics,	
  2008;8:4862-­‐72.	
  
       [17] Molnar	
  A,	
  Bassett	
  A,	
  Thuenemann	
  E,	
  Schwach	
  F,	
  Karkare	
  S,	
  Ossowski	
  S,	
  Weigel	
  
            D,	
  Baulcombe	
  D.	
  Highly	
  specific	
  gene	
  silencing	
  by	
  artificial	
  microRNAs	
  in	
  the	
  
            unicellular	
   alga	
   Chlamydomonas	
   reinhardtii.	
   Plant	
   J,	
   2009	
   [Epub	
   ahead	
   of	
  
            print]	
  
	
  
	
  
	
  
	
  
	
  
	
  

Más contenido relacionado

La actualidad más candente

Metabolic engineering approaches in medicinal plants
Metabolic engineering approaches in medicinal plantsMetabolic engineering approaches in medicinal plants
Metabolic engineering approaches in medicinal plantsN Poorin
 
Lecture 4 metabolic pathway eng
Lecture 4 metabolic pathway engLecture 4 metabolic pathway eng
Lecture 4 metabolic pathway engDr. Tan Boon Siong
 
Metabolic flux analysis
Metabolic flux analysisMetabolic flux analysis
Metabolic flux analysisandysmith007
 
Engineering of secondary metabolism
Engineering of secondary metabolismEngineering of secondary metabolism
Engineering of secondary metabolismRahul Sen
 
Metabolic engineering
Metabolic engineeringMetabolic engineering
Metabolic engineeringSoumitra Paul
 
Protein engineering saurav
Protein engineering sauravProtein engineering saurav
Protein engineering sauravSaurav Das
 
High Throughput Screening for Glycogen and Polyglucosan
High Throughput Screening for Glycogen and PolyglucosanHigh Throughput Screening for Glycogen and Polyglucosan
High Throughput Screening for Glycogen and PolyglucosanBen Decker
 
JBEI Research Highlights - November 2017
JBEI Research Highlights - November 2017 JBEI Research Highlights - November 2017
JBEI Research Highlights - November 2017 Irina Silva
 
Protein Engineering Strategies
Protein Engineering StrategiesProtein Engineering Strategies
Protein Engineering StrategiesSOURIKDEY1
 
JBEI December 2020 Research Highlights
JBEI December 2020 Research HighlightsJBEI December 2020 Research Highlights
JBEI December 2020 Research HighlightsSaraHarmon4
 
JBEI Research Highlights - April 2018
JBEI Research Highlights - April 2018JBEI Research Highlights - April 2018
JBEI Research Highlights - April 2018Irina Silva
 
Chemical Modifications of Protein and its Applications
Chemical Modifications of Protein and its Applications Chemical Modifications of Protein and its Applications
Chemical Modifications of Protein and its Applications Zohaib HUSSAIN
 
Application of protein engineering
Application of protein engineering Application of protein engineering
Application of protein engineering Akshay Parmar
 
Strain improvement Part II, Generation of mutants producing high level of pri...
Strain improvement Part II, Generation of mutants producing high level of pri...Strain improvement Part II, Generation of mutants producing high level of pri...
Strain improvement Part II, Generation of mutants producing high level of pri...Renu Jaisinghani
 
Pharmacokinetics and pharmacodynamics of protiens and peptides
Pharmacokinetics and pharmacodynamics of protiens and peptidesPharmacokinetics and pharmacodynamics of protiens and peptides
Pharmacokinetics and pharmacodynamics of protiens and peptidesSachinkumarBhairagon
 
JBEI Highlights January 2016
JBEI Highlights January 2016JBEI Highlights January 2016
JBEI Highlights January 2016Irina Silva
 

La actualidad más candente (20)

Metabolic engineering approaches in medicinal plants
Metabolic engineering approaches in medicinal plantsMetabolic engineering approaches in medicinal plants
Metabolic engineering approaches in medicinal plants
 
Lecture 4 metabolic pathway eng
Lecture 4 metabolic pathway engLecture 4 metabolic pathway eng
Lecture 4 metabolic pathway eng
 
Metabolic flux analysis
Metabolic flux analysisMetabolic flux analysis
Metabolic flux analysis
 
Engineering of secondary metabolism
Engineering of secondary metabolismEngineering of secondary metabolism
Engineering of secondary metabolism
 
Sortase enzyme family
Sortase enzyme familySortase enzyme family
Sortase enzyme family
 
Metabolic engineering
Metabolic engineeringMetabolic engineering
Metabolic engineering
 
Protein engineering saurav
Protein engineering sauravProtein engineering saurav
Protein engineering saurav
 
Protein engineering
Protein engineeringProtein engineering
Protein engineering
 
High Throughput Screening for Glycogen and Polyglucosan
High Throughput Screening for Glycogen and PolyglucosanHigh Throughput Screening for Glycogen and Polyglucosan
High Throughput Screening for Glycogen and Polyglucosan
 
Seminar sandy
Seminar sandySeminar sandy
Seminar sandy
 
Copy metabolomics
Copy metabolomicsCopy metabolomics
Copy metabolomics
 
JBEI Research Highlights - November 2017
JBEI Research Highlights - November 2017 JBEI Research Highlights - November 2017
JBEI Research Highlights - November 2017
 
Protein Engineering Strategies
Protein Engineering StrategiesProtein Engineering Strategies
Protein Engineering Strategies
 
JBEI December 2020 Research Highlights
JBEI December 2020 Research HighlightsJBEI December 2020 Research Highlights
JBEI December 2020 Research Highlights
 
JBEI Research Highlights - April 2018
JBEI Research Highlights - April 2018JBEI Research Highlights - April 2018
JBEI Research Highlights - April 2018
 
Chemical Modifications of Protein and its Applications
Chemical Modifications of Protein and its Applications Chemical Modifications of Protein and its Applications
Chemical Modifications of Protein and its Applications
 
Application of protein engineering
Application of protein engineering Application of protein engineering
Application of protein engineering
 
Strain improvement Part II, Generation of mutants producing high level of pri...
Strain improvement Part II, Generation of mutants producing high level of pri...Strain improvement Part II, Generation of mutants producing high level of pri...
Strain improvement Part II, Generation of mutants producing high level of pri...
 
Pharmacokinetics and pharmacodynamics of protiens and peptides
Pharmacokinetics and pharmacodynamics of protiens and peptidesPharmacokinetics and pharmacodynamics of protiens and peptides
Pharmacokinetics and pharmacodynamics of protiens and peptides
 
JBEI Highlights January 2016
JBEI Highlights January 2016JBEI Highlights January 2016
JBEI Highlights January 2016
 

Destacado

スクリプト・プログラマー宣言
スクリプト・プログラマー宣言スクリプト・プログラマー宣言
スクリプト・プログラマー宣言kanemu
 
My Favourite Philosophy1
My Favourite Philosophy1My Favourite Philosophy1
My Favourite Philosophy1Guru sankar
 
Animacion :3
Animacion :3Animacion :3
Animacion :3vanessa
 
The pillarsoft Selfmastery
The pillarsoft SelfmasteryThe pillarsoft Selfmastery
The pillarsoft SelfmasteryGuru sankar
 
7 habaits summary
7 habaits summary7 habaits summary
7 habaits summaryGuru sankar
 
5分でわかるarg 改
5分でわかるarg 改5分でわかるarg 改
5分でわかるarg 改Naoki Matsuo
 

Destacado (10)

スクリプト・プログラマー宣言
スクリプト・プログラマー宣言スクリプト・プログラマー宣言
スクリプト・プログラマー宣言
 
CVaddinfo
CVaddinfoCVaddinfo
CVaddinfo
 
My Favourite Philosophy1
My Favourite Philosophy1My Favourite Philosophy1
My Favourite Philosophy1
 
Animacion :3
Animacion :3Animacion :3
Animacion :3
 
The pillarsoft Selfmastery
The pillarsoft SelfmasteryThe pillarsoft Selfmastery
The pillarsoft Selfmastery
 
Wonderful pics
Wonderful picsWonderful pics
Wonderful pics
 
7 habaits summary
7 habaits summary7 habaits summary
7 habaits summary
 
Flight Plan
Flight PlanFlight Plan
Flight Plan
 
5分でわかるarg 改
5分でわかるarg 改5分でわかるarg 改
5分でわかるarg 改
 
How to succeed
How to succeedHow to succeed
How to succeed
 

Similar a Biodieselproject

Lipase catalyzed process for biodiesel production protein engineering and lip...
Lipase catalyzed process for biodiesel production protein engineering and lip...Lipase catalyzed process for biodiesel production protein engineering and lip...
Lipase catalyzed process for biodiesel production protein engineering and lip...Melike Şeyma Kadayıfçı
 
JBEI Research Highlights - January 2017
JBEI Research Highlights - January 2017JBEI Research Highlights - January 2017
JBEI Research Highlights - January 2017Irina Silva
 
JBEI Research Highlights - October 2018
JBEI Research Highlights - October 2018 JBEI Research Highlights - October 2018
JBEI Research Highlights - October 2018 Irina Silva
 
05 j microb_methods2019 glycogen
05 j microb_methods2019 glycogen05 j microb_methods2019 glycogen
05 j microb_methods2019 glycogenHoney Phuong
 
JBEI Research Highlights September 2016
JBEI Research Highlights September 2016JBEI Research Highlights September 2016
JBEI Research Highlights September 2016Irina Silva
 
Ganoderma lucidum Triterpene and Polysaccharide Extraction for Medicinal Appl...
Ganoderma lucidum Triterpene and Polysaccharide Extraction for Medicinal Appl...Ganoderma lucidum Triterpene and Polysaccharide Extraction for Medicinal Appl...
Ganoderma lucidum Triterpene and Polysaccharide Extraction for Medicinal Appl...Jacobsimmons007
 
JBEI Research Highlights - May 2019
JBEI Research Highlights - May 2019JBEI Research Highlights - May 2019
JBEI Research Highlights - May 2019Irina Silva
 
JBEI October 2020 Research Highlights
JBEI October 2020 Research HighlightsJBEI October 2020 Research Highlights
JBEI October 2020 Research HighlightsSaraHarmon4
 
Research Highlights
Research HighlightsResearch Highlights
Research HighlightsEmily Scott
 
Bicatalysis presentation1
Bicatalysis presentation1Bicatalysis presentation1
Bicatalysis presentation1Rina Patil
 
Plant lectins in cancer prevention and treatment
Plant lectins in cancer prevention and treatmentPlant lectins in cancer prevention and treatment
Plant lectins in cancer prevention and treatmentIvan Ivanov
 
JBEI Research Highlights - February 2018
JBEI Research Highlights - February 2018JBEI Research Highlights - February 2018
JBEI Research Highlights - February 2018Irina Silva
 
FAME Project Description
FAME Project DescriptionFAME Project Description
FAME Project DescriptionKonyin Oluwole
 
JBEI Research Highlights November 2016
JBEI Research Highlights November 2016JBEI Research Highlights November 2016
JBEI Research Highlights November 2016Irina Silva
 
Lipid metabolism in plants.pptx
Lipid metabolism in plants.pptxLipid metabolism in plants.pptx
Lipid metabolism in plants.pptxMohammedAshfaq69
 
Presentation (2).pptx 2024 new pdf off s
Presentation (2).pptx 2024 new pdf off sPresentation (2).pptx 2024 new pdf off s
Presentation (2).pptx 2024 new pdf off sDilkhushMeena45
 

Similar a Biodieselproject (20)

Glycoscience-Report-Brief-Final
Glycoscience-Report-Brief-FinalGlycoscience-Report-Brief-Final
Glycoscience-Report-Brief-Final
 
Lipase catalyzed process for biodiesel production protein engineering and lip...
Lipase catalyzed process for biodiesel production protein engineering and lip...Lipase catalyzed process for biodiesel production protein engineering and lip...
Lipase catalyzed process for biodiesel production protein engineering and lip...
 
JBEI Research Highlights - January 2017
JBEI Research Highlights - January 2017JBEI Research Highlights - January 2017
JBEI Research Highlights - January 2017
 
Algae Biofuel
Algae BiofuelAlgae Biofuel
Algae Biofuel
 
JBEI Research Highlights - October 2018
JBEI Research Highlights - October 2018 JBEI Research Highlights - October 2018
JBEI Research Highlights - October 2018
 
05 j microb_methods2019 glycogen
05 j microb_methods2019 glycogen05 j microb_methods2019 glycogen
05 j microb_methods2019 glycogen
 
JBEI Research Highlights September 2016
JBEI Research Highlights September 2016JBEI Research Highlights September 2016
JBEI Research Highlights September 2016
 
Ganoderma lucidum Triterpene and Polysaccharide Extraction for Medicinal Appl...
Ganoderma lucidum Triterpene and Polysaccharide Extraction for Medicinal Appl...Ganoderma lucidum Triterpene and Polysaccharide Extraction for Medicinal Appl...
Ganoderma lucidum Triterpene and Polysaccharide Extraction for Medicinal Appl...
 
JBEI Research Highlights - May 2019
JBEI Research Highlights - May 2019JBEI Research Highlights - May 2019
JBEI Research Highlights - May 2019
 
JBEI October 2020 Research Highlights
JBEI October 2020 Research HighlightsJBEI October 2020 Research Highlights
JBEI October 2020 Research Highlights
 
Metabolomics
MetabolomicsMetabolomics
Metabolomics
 
Research Highlights
Research HighlightsResearch Highlights
Research Highlights
 
Bicatalysis presentation1
Bicatalysis presentation1Bicatalysis presentation1
Bicatalysis presentation1
 
Plant lectins in cancer prevention and treatment
Plant lectins in cancer prevention and treatmentPlant lectins in cancer prevention and treatment
Plant lectins in cancer prevention and treatment
 
JBEI Research Highlights - February 2018
JBEI Research Highlights - February 2018JBEI Research Highlights - February 2018
JBEI Research Highlights - February 2018
 
FAME Project Description
FAME Project DescriptionFAME Project Description
FAME Project Description
 
JBEI Research Highlights November 2016
JBEI Research Highlights November 2016JBEI Research Highlights November 2016
JBEI Research Highlights November 2016
 
Lipid metabolism in plants.pptx
Lipid metabolism in plants.pptxLipid metabolism in plants.pptx
Lipid metabolism in plants.pptx
 
Presentation (2).pptx 2024 new pdf off s
Presentation (2).pptx 2024 new pdf off sPresentation (2).pptx 2024 new pdf off s
Presentation (2).pptx 2024 new pdf off s
 
JBEI May 2020 Highlights
JBEI May 2020 HighlightsJBEI May 2020 Highlights
JBEI May 2020 Highlights
 

Último

Dubai Call Girls Demons O525547819 Call Girls IN DUbai Natural Big Boody
Dubai Call Girls Demons O525547819 Call Girls IN DUbai Natural Big BoodyDubai Call Girls Demons O525547819 Call Girls IN DUbai Natural Big Boody
Dubai Call Girls Demons O525547819 Call Girls IN DUbai Natural Big Boodykojalkojal131
 
reStartEvents 5:9 DC metro & Beyond V-Career Fair Employer Directory.pdf
reStartEvents 5:9 DC metro & Beyond V-Career Fair Employer Directory.pdfreStartEvents 5:9 DC metro & Beyond V-Career Fair Employer Directory.pdf
reStartEvents 5:9 DC metro & Beyond V-Career Fair Employer Directory.pdfKen Fuller
 
Vip Mumbai Call Girls Ghatkopar Call On 9920725232 With Body to body massage ...
Vip Mumbai Call Girls Ghatkopar Call On 9920725232 With Body to body massage ...Vip Mumbai Call Girls Ghatkopar Call On 9920725232 With Body to body massage ...
Vip Mumbai Call Girls Ghatkopar Call On 9920725232 With Body to body massage ...amitlee9823
 
Gabriel_Carter_EXPOLRATIONpp.pptx........
Gabriel_Carter_EXPOLRATIONpp.pptx........Gabriel_Carter_EXPOLRATIONpp.pptx........
Gabriel_Carter_EXPOLRATIONpp.pptx........deejay178
 
Call Girls Btm Layout Just Call 👗 7737669865 👗 Top Class Call Girl Service Ba...
Call Girls Btm Layout Just Call 👗 7737669865 👗 Top Class Call Girl Service Ba...Call Girls Btm Layout Just Call 👗 7737669865 👗 Top Class Call Girl Service Ba...
Call Girls Btm Layout Just Call 👗 7737669865 👗 Top Class Call Girl Service Ba...amitlee9823
 
Rearing technique of lac insect and their management
Rearing technique of lac insect and their managementRearing technique of lac insect and their management
Rearing technique of lac insect and their managementSaurabhTiwari264113
 
Call Girls Hosur Road Just Call 👗 7737669865 👗 Top Class Call Girl Service Ba...
Call Girls Hosur Road Just Call 👗 7737669865 👗 Top Class Call Girl Service Ba...Call Girls Hosur Road Just Call 👗 7737669865 👗 Top Class Call Girl Service Ba...
Call Girls Hosur Road Just Call 👗 7737669865 👗 Top Class Call Girl Service Ba...amitlee9823
 
一比一原版(毕业证书)意大利米兰理工大学毕业证学位证可查学历认证
一比一原版(毕业证书)意大利米兰理工大学毕业证学位证可查学历认证一比一原版(毕业证书)意大利米兰理工大学毕业证学位证可查学历认证
一比一原版(毕业证书)意大利米兰理工大学毕业证学位证可查学历认证epodumf6
 
Nandini Layout Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangal...
Nandini Layout Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangal...Nandini Layout Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangal...
Nandini Layout Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangal...amitlee9823
 
Nagavara Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalore Es...
Nagavara Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalore Es...Nagavara Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalore Es...
Nagavara Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalore Es...amitlee9823
 
Hot Call Girls |Delhi |Janakpuri ☎ 9711199171 Book Your One night Stand
Hot Call Girls |Delhi |Janakpuri ☎ 9711199171 Book Your One night StandHot Call Girls |Delhi |Janakpuri ☎ 9711199171 Book Your One night Stand
Hot Call Girls |Delhi |Janakpuri ☎ 9711199171 Book Your One night Standkumarajju5765
 
Miletti Gabriela_Vision Plan for artist Jahzel.pdf
Miletti Gabriela_Vision Plan for artist Jahzel.pdfMiletti Gabriela_Vision Plan for artist Jahzel.pdf
Miletti Gabriela_Vision Plan for artist Jahzel.pdfGabrielaMiletti
 
Dombivli Call Girls, 9892124323, Kharghar Call Girls, chembur Call Girls, Vas...
Dombivli Call Girls, 9892124323, Kharghar Call Girls, chembur Call Girls, Vas...Dombivli Call Girls, 9892124323, Kharghar Call Girls, chembur Call Girls, Vas...
Dombivli Call Girls, 9892124323, Kharghar Call Girls, chembur Call Girls, Vas...Pooja Nehwal
 
Call Girls Bommanahalli Just Call 👗 7737669865 👗 Top Class Call Girl Service ...
Call Girls Bommanahalli Just Call 👗 7737669865 👗 Top Class Call Girl Service ...Call Girls Bommanahalli Just Call 👗 7737669865 👗 Top Class Call Girl Service ...
Call Girls Bommanahalli Just Call 👗 7737669865 👗 Top Class Call Girl Service ...amitlee9823
 
Dark Dubai Call Girls O525547819 Skin Call Girls Dubai
Dark Dubai Call Girls O525547819 Skin Call Girls DubaiDark Dubai Call Girls O525547819 Skin Call Girls Dubai
Dark Dubai Call Girls O525547819 Skin Call Girls Dubaikojalkojal131
 
Resumes, Cover Letters, and Applying Online
Resumes, Cover Letters, and Applying OnlineResumes, Cover Letters, and Applying Online
Resumes, Cover Letters, and Applying OnlineBruce Bennett
 
Presentation for the country presentation
Presentation for the country presentationPresentation for the country presentation
Presentation for the country presentationjalal879
 
Call Girls Brigade Road Just Call 👗 7737669865 👗 Top Class Call Girl Service ...
Call Girls Brigade Road Just Call 👗 7737669865 👗 Top Class Call Girl Service ...Call Girls Brigade Road Just Call 👗 7737669865 👗 Top Class Call Girl Service ...
Call Girls Brigade Road Just Call 👗 7737669865 👗 Top Class Call Girl Service ...amitlee9823
 
Top Rated Pune Call Girls Warje ⟟ 6297143586 ⟟ Call Me For Genuine Sex Servi...
Top Rated  Pune Call Girls Warje ⟟ 6297143586 ⟟ Call Me For Genuine Sex Servi...Top Rated  Pune Call Girls Warje ⟟ 6297143586 ⟟ Call Me For Genuine Sex Servi...
Top Rated Pune Call Girls Warje ⟟ 6297143586 ⟟ Call Me For Genuine Sex Servi...Call Girls in Nagpur High Profile
 
Call Girls Bidadi ☎ 7737669865☎ Book Your One night Stand (Bangalore)
Call Girls Bidadi ☎ 7737669865☎ Book Your One night Stand (Bangalore)Call Girls Bidadi ☎ 7737669865☎ Book Your One night Stand (Bangalore)
Call Girls Bidadi ☎ 7737669865☎ Book Your One night Stand (Bangalore)amitlee9823
 

Último (20)

Dubai Call Girls Demons O525547819 Call Girls IN DUbai Natural Big Boody
Dubai Call Girls Demons O525547819 Call Girls IN DUbai Natural Big BoodyDubai Call Girls Demons O525547819 Call Girls IN DUbai Natural Big Boody
Dubai Call Girls Demons O525547819 Call Girls IN DUbai Natural Big Boody
 
reStartEvents 5:9 DC metro & Beyond V-Career Fair Employer Directory.pdf
reStartEvents 5:9 DC metro & Beyond V-Career Fair Employer Directory.pdfreStartEvents 5:9 DC metro & Beyond V-Career Fair Employer Directory.pdf
reStartEvents 5:9 DC metro & Beyond V-Career Fair Employer Directory.pdf
 
Vip Mumbai Call Girls Ghatkopar Call On 9920725232 With Body to body massage ...
Vip Mumbai Call Girls Ghatkopar Call On 9920725232 With Body to body massage ...Vip Mumbai Call Girls Ghatkopar Call On 9920725232 With Body to body massage ...
Vip Mumbai Call Girls Ghatkopar Call On 9920725232 With Body to body massage ...
 
Gabriel_Carter_EXPOLRATIONpp.pptx........
Gabriel_Carter_EXPOLRATIONpp.pptx........Gabriel_Carter_EXPOLRATIONpp.pptx........
Gabriel_Carter_EXPOLRATIONpp.pptx........
 
Call Girls Btm Layout Just Call 👗 7737669865 👗 Top Class Call Girl Service Ba...
Call Girls Btm Layout Just Call 👗 7737669865 👗 Top Class Call Girl Service Ba...Call Girls Btm Layout Just Call 👗 7737669865 👗 Top Class Call Girl Service Ba...
Call Girls Btm Layout Just Call 👗 7737669865 👗 Top Class Call Girl Service Ba...
 
Rearing technique of lac insect and their management
Rearing technique of lac insect and their managementRearing technique of lac insect and their management
Rearing technique of lac insect and their management
 
Call Girls Hosur Road Just Call 👗 7737669865 👗 Top Class Call Girl Service Ba...
Call Girls Hosur Road Just Call 👗 7737669865 👗 Top Class Call Girl Service Ba...Call Girls Hosur Road Just Call 👗 7737669865 👗 Top Class Call Girl Service Ba...
Call Girls Hosur Road Just Call 👗 7737669865 👗 Top Class Call Girl Service Ba...
 
一比一原版(毕业证书)意大利米兰理工大学毕业证学位证可查学历认证
一比一原版(毕业证书)意大利米兰理工大学毕业证学位证可查学历认证一比一原版(毕业证书)意大利米兰理工大学毕业证学位证可查学历认证
一比一原版(毕业证书)意大利米兰理工大学毕业证学位证可查学历认证
 
Nandini Layout Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangal...
Nandini Layout Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangal...Nandini Layout Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangal...
Nandini Layout Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangal...
 
Nagavara Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalore Es...
Nagavara Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalore Es...Nagavara Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalore Es...
Nagavara Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalore Es...
 
Hot Call Girls |Delhi |Janakpuri ☎ 9711199171 Book Your One night Stand
Hot Call Girls |Delhi |Janakpuri ☎ 9711199171 Book Your One night StandHot Call Girls |Delhi |Janakpuri ☎ 9711199171 Book Your One night Stand
Hot Call Girls |Delhi |Janakpuri ☎ 9711199171 Book Your One night Stand
 
Miletti Gabriela_Vision Plan for artist Jahzel.pdf
Miletti Gabriela_Vision Plan for artist Jahzel.pdfMiletti Gabriela_Vision Plan for artist Jahzel.pdf
Miletti Gabriela_Vision Plan for artist Jahzel.pdf
 
Dombivli Call Girls, 9892124323, Kharghar Call Girls, chembur Call Girls, Vas...
Dombivli Call Girls, 9892124323, Kharghar Call Girls, chembur Call Girls, Vas...Dombivli Call Girls, 9892124323, Kharghar Call Girls, chembur Call Girls, Vas...
Dombivli Call Girls, 9892124323, Kharghar Call Girls, chembur Call Girls, Vas...
 
Call Girls Bommanahalli Just Call 👗 7737669865 👗 Top Class Call Girl Service ...
Call Girls Bommanahalli Just Call 👗 7737669865 👗 Top Class Call Girl Service ...Call Girls Bommanahalli Just Call 👗 7737669865 👗 Top Class Call Girl Service ...
Call Girls Bommanahalli Just Call 👗 7737669865 👗 Top Class Call Girl Service ...
 
Dark Dubai Call Girls O525547819 Skin Call Girls Dubai
Dark Dubai Call Girls O525547819 Skin Call Girls DubaiDark Dubai Call Girls O525547819 Skin Call Girls Dubai
Dark Dubai Call Girls O525547819 Skin Call Girls Dubai
 
Resumes, Cover Letters, and Applying Online
Resumes, Cover Letters, and Applying OnlineResumes, Cover Letters, and Applying Online
Resumes, Cover Letters, and Applying Online
 
Presentation for the country presentation
Presentation for the country presentationPresentation for the country presentation
Presentation for the country presentation
 
Call Girls Brigade Road Just Call 👗 7737669865 👗 Top Class Call Girl Service ...
Call Girls Brigade Road Just Call 👗 7737669865 👗 Top Class Call Girl Service ...Call Girls Brigade Road Just Call 👗 7737669865 👗 Top Class Call Girl Service ...
Call Girls Brigade Road Just Call 👗 7737669865 👗 Top Class Call Girl Service ...
 
Top Rated Pune Call Girls Warje ⟟ 6297143586 ⟟ Call Me For Genuine Sex Servi...
Top Rated  Pune Call Girls Warje ⟟ 6297143586 ⟟ Call Me For Genuine Sex Servi...Top Rated  Pune Call Girls Warje ⟟ 6297143586 ⟟ Call Me For Genuine Sex Servi...
Top Rated Pune Call Girls Warje ⟟ 6297143586 ⟟ Call Me For Genuine Sex Servi...
 
Call Girls Bidadi ☎ 7737669865☎ Book Your One night Stand (Bangalore)
Call Girls Bidadi ☎ 7737669865☎ Book Your One night Stand (Bangalore)Call Girls Bidadi ☎ 7737669865☎ Book Your One night Stand (Bangalore)
Call Girls Bidadi ☎ 7737669865☎ Book Your One night Stand (Bangalore)
 

Biodieselproject

  • 1. A  chemical  genetics  approach  to  study  regulation  of  lipid  accumulation   and  cell  growth  in  C.  reinhardtii       Summary     Algae  have  the  potential  to  be  a  green  and   renewable  source  for  biodiesel  production   but   in   order   to   make   it   economically   sustainable   and   competitive   many   scientific   challenges   need   to   be  undertaken.   One  of   them  most   relevant   issues   is   the   necessity   to   manipulate   algal   metabolism   in   order   to   maximize   the   yield   of   neutral   lipids,   in   particular  tryacilyglycerols  (TAG),  the  biodiesel  precursors.   The   unveiling   of   regulative   mechanisms   controlling   cell   growth   and   neutral   lipid   biosynthesis  at  molecular  level  is  an  essential  key  factor  in  algal  biodiesel  research.     To  accomplish  this  goal  I  propose  to  use  a  chemical  genetic  approach  screening  diverse   compound   libraries   in   order   to   identify   “in   vivo”   chemical   modulators   of   lipid   accumulation  and  cell  growth.   Deconvolution   strategies   will   be   applied   to   identify   proteins   targeted   by   the   most   efficient  molecules  and  hence  the  putative  regulative  genes  involved  in  these  biological   processes.       The   results   of   this   approach  have   the   potential   to   allow   researchers   to   manipulate   algal   metabolism   with   two   different   complementary   strategies:   direct   “pharmacological”   employment  of  these  chemical  modulators  in  algal  cultures  and  mutagenesis/silencing   of  regulatory  genes  in  engineered  algal  strains.  In   the  future  a   combination  of  these  two   strategies  could  be  the  best   solution  to  guarantee  simultaneous  growth  robustness  and   high  lipid  content,  maximizing  biodiesel  productivity.   Carrying   out   this   research   in   an   american   lab   will   give   me   the   possibility   to   work   in   a   stimulating  scientific  environment  where  the  confront  of  different  ideas  and  the  access   to   material   and   intellectual   resources   will   help   me   to   develop   not   only   the   project   itself,   but   also   my   ability   of   critical   thinking.   This   will   strongly   contribute   to   my   professional   and  personal  enrichment.     Furthermore  I  am  interested  in  exploring  the  dynamics  that  are  turning  the  San  Diego   area   in   a   “hub”   for   algal   biodiesel   research,   where   academia   and   industry   work   in   synergy   with   a   continuous   exchange   of  resources  and   knowledge   to   turn   biodiesel   from   algae   in   a   reality.   The   lack   of   this   common   effort   and   synergistic   exchange   between   universities   and   private   companies   is   one   of   major   factors   preventing   the   italian   research  to  become  more  competitive  in  the  global  contest.                
  • 2. Research  Plan     a. Specific  aims     The  long-­‐term  goal  of  this  research  is  to  maximize  the  yield  of  neutral  lipids  in  algae  to   make  these  organisms  a  competitive  and  sustainable  source  for  biodiesel  production.     This   goal   will   be   accomplished   identifying   and   characterizing   chemical   and/or   genetic   modulators   of   neutral   lipid   accumulation   and   cell   growth   promotion,   using   a   forward   chemical  genetic  approach  coupled  to  a  proteomic-­‐based  target  deconvolution  strategy.     A  chemical  high  throughput  screening  will  be  performed  to  identify  small  molecules  able   to  trigger  either  lipid  accumulation  or  stimulate  cell  growth.     In   order   to   maximize   sustainable   oil   production   will   be   tested   if   the   activity   of   single   molecules   inducing   different   phenotypes   (e.g.   lipid   accumulation   and   cell   growth)   can   be   maintained   and   combined   in   vivo   when   cells   are   exposed   to   such   molecules   simultaneously.   A   key   goal   of   the   research   is   to   identify   the   putative   targets   of   the   most   effective   molecules   and   hence   unveiling   one   or   more   genes   involved   in   the   regulation   of   lipid   accumulation  and  cell  growth.  RNAi  silencing  of  the  candidate  target  genes  will  provide   additional  information  regarding  the  regulative  mechanisms  of  the  biological  processes   investigated.   The   great   advantage   of   this   experimental   approach   is   that   it   will   potentially   enable   characterization   of   genes   involved   in   a   lipid   accumulation   and   cell   growth   and   at   the   same  time  will  provide  chemical  tools  to  modulate  their  functions.         b. Background  and  significance         Neutral   lipids,   and   in   particular   triacylglycerols   are   the   raw   material   for   biodiesel   production.  Currently  biodiesel  is  produced  mainly  out  of  field  crops  but  this  source  is   not  sustainable  to  satisfy  the  increasing  demand  of  the  market,  especially  if  the  goal  is   replacing  fossil  fuels.  Algae  have  the  potential  to  overcome  many  of  the  limits  affecting   crops   in   biodiesel   production,   but   in   order   to   become   a   competitive   and   commercial   reality  technologic  breakthroughs  are  needed  in  different  scientific  fields  [1].  Metabolic   engineering   of   algal   strains   in   order   to   re-­‐direct   as   much   as   possible   of   the   captured   solar   energy   into   the   highly   energetic   chemical   bounds   of   lipids   is   one   of   the   most   critical   issues.   To   accomplish   this   goal   many   biological   questions,  in   particular   related   to   biosynthesis   and   regulation   of   fatty   acids   and   triacylglycerols   (TAG),   need   to   be   addressed  [2].   The  pathways  and  the  enzymes  involved  in  fatty  acid  and  TAG  biosynthesis  are  poorly   studied   in   algae   but   are   very   well   characterized  in   higher   plants.   Computational   analysis   of  integrated  genomic,  proteomic  and  metabolomic  data  is  a  powerful  tool  that  can  help   mapping   the   metabolic   network   of   algae,   revealing   pathways   in   common   with   higher   plants  or  animals,  and  new  and  unique  ones  not  present  in  other  eukaryotic  organisms   [3,4].   If   charting   the   metabolic   maps   in   an   essential   knowledge   to   identify   structural  
  • 3. genes  involved  in  fatty  acids  and   TAG  biosynthesis,  this  knowledge  may  not  be  sufficient   to  efficiently  manipulate  a  given  metabolic  pathway  through  overexpression   of   one  or   more   structural   genes.   This   issue   was   highlighted   by   lack   of   significant   effect   on   lipid   accumulation   after   overexpression   in   Cyclotella   criptica   of   Acetyl-­‐CoA   Carboxylase   (ACCA)  a  key  enzyme  in  fatty  acid  biosynhesis  [5].   Therefore   the   “Holy   Grail”   in   biodiesel   research   is   to   understanding   regulation   of   TAG   biosynthesis  at  molecular  level,  and  in  particular  how  the  cells  direct  the  metabolic  flux   of   photosynthetically   fixed   carbon   towards   fatty   acids   biosynthesis   first,   and   towards   TAG   biosynthesis   afterwards.   Regulative   genes   involved   in   such   control   need   to   be   identified  in  order  to  create  rational  engineered  algae  with  superior  lipid  content  [2].     It  is  well  known  that  many  algal  species,  even  belonging  to  different  taxonomic  groups,   alter   their   lipid   metabolism   in   response   to   changes   in   environmental   factors,   such   as   nutrient,   pH,   temperature,   salinity   and   light   intensity.   In   particular   specific   stress   conditions,   such   as   nutrient   limitation,   lead   to   an   increase   in   de   novo   biosynthesis   of   neutral  lipids  and  a  conversion  of  membrane  polar  lipids  in  TAG.  In  many  cases  the  net   result  is  an  increase  in  total   lipid  content  of  two  or  three  folds.  The  most  critical  nutrient   whose   limitation   triggers   this   metabolic   shift   is   nitrogen.   The   drawback   is   that   under   stress  such  as  nitrogen  limitation  algae  slowly  decrease  their  growth  until  they  reach  a   complete  arrest  in  cell  cycle  and  a  quiescent  state  [5].   While  most  of  the  research  in  this  field  has  been  focusing  in  individuating  algal  strains   and   culture   conditions   leading   to   the   highest   yield   of   neutral   lipid   accumulation,   no   attempts  to  shed  light  into  the  molecular  biology  of  such  phenomena  have  been  made   yet.   Individuating  the  molecular  actors  involved  in  control  mechanisms  of  lipid  metabolism  is   an   essential   goal   to   design   rational   engineered   algal   strains   that   constitutively   synthesize  and  store  high  level  of  neutral   lipids.  Parallel  and  integrative  studies  aimed  to   increase   the   rate   of   cell   growth   are   required   to   further   boost   the   productivity   of   biodiesel  from  algae.   Complete   genomic   sequences   of   several   algal   species   are   available   [4]   allowing   classic   forward   and   reverse   genetic   studies,   where   mutagenesis   is   a   mean   to   elucidate   the   relationship  between  genes  and  phenotypes.   Chemical   genetics   is   an   emerging   powerful   technology   which   employs   diverse   small-­‐ molecule   compounds   (replacing   mutagenesis)   acting   as   “perturbers”   in   a   biological   system,  in  order  to  elucidate  a  biological  process  of  interest  and  identify  gene  products   involved   in   that   process.   This   approach   offers   several   advantages   over   classic   forward   and  reverse  genetics  potentially  also  in  relation  to  the  algal  biodiesel  research.  First  of   all   small   molecules   work   rapidly   and   often   reversibly,   commercial   compound   libraries   are   available   in   formats   that   allow   a   relatively   fast   analysis   and   possibility   of   automation,  effectively   reducing  the  time   of  the   screening  (especially  when  compared   with   the   time   required   to   create   and   screen   mutant   libraries).   Furthermore   while   mutagenesis   strategies   rely   on   complete   inactivation   of   a   gene,   chemicals   have   the   potential   to   block   only   a   specific   function   of   a   multifunctional   protein,   potentially   generating  phenotypes  not  reproducible  via  mutagenesis  or  silencing  [6].  Indeed  several   cases   where   small   molecules   and   mutations   targeting   the   same   proteins   produced  
  • 4. radically  different  phenotypes  have  been  reported  [7].  Another  important  advantage  is   that   active   compounds   may   be   tested   for   functionality   across   different   species   where   genomic   data   are   not   available   or   efficient   transgenic   technologies   are   not   fully   developed.   Last   but   not   least   the   discovery   of   compounds   with   biological   desired   activities  may  lead  to  industrial  applications  (so  far  applied  mainly  in  the  pharmaceutical   field)   and   this   might   be   a   crucial   benefit   in   biodiesel   research   as   well.   Based   on   their   efficacy   small   bioactive   molecules   could   potentially   find   a   practical   employment   in   biomass  and  biodiesel  precursor  production,  or  at  least  to  be  the  base  to  design  drugs   with   high   efficacy   and   specificity   in   modulating   the   biological   processes   of   interest   (lipid   accumulation   and   cell   growth   promotion).   Chemical   modulators   could   indeed   be   an   alternative   way   to   transgenesis,   in   order   to   increase   biodiesel   productivity   in   algae,   especially   given   the   reluctance   of   large   part   of   the   public   opinion   and   the   scientific   community  to  introduce  GMOs  in  the  environment.   On   the   other   side   identification   of   regulative   genes   could   allow   the   design   of   rational   metabolic   engineered   algal   strains,   able   to   accumulate   neutral   lipids   possibly   with   improved  cell  growth  performances,  in  standard  culture  conditions.   In   the   future   the   combination   of   transgenic   strains   and   chemical   modulators   could   be   the  best  strategy  to  maximize  the  yield  of  biodiesel  precursors  in  algae.   These  are  the  reasons  why  I  propose  to   use  this  approach  in  studying  lipid  accumulation   and  cell  growth  in  a  model  algal  species.       c. Preliminary  studies   No  preliminary  studies  are  available.         d. Research  design  and  methods     The   project   is   based   on   a   phenotype   driven   chemical   proteomic   approach,   which   consists  in  introducing  small  molecules  in  a  system  and  selecting  the  ones  able  to  induce   a  particular  phenotype.  The  only  algal  organism  for  which  extensive  biological  genomic   and   proteomic   data   exist   is   Chlamydomonas   reinhardtii   [4];   different   mutants   characterized   by   different   phenotypes   are   available,   among   these   the   mutant   CC-­‐503   cw92   mt+   is   characterized   by   the   absence   of   a   cell   wall   and   was   used   for   genomic   sequencing.   A   growth   inhibition-­‐based   drug   screening   performed  in   parallel   in   wild   type   and   wall   less   C.reinhardtii   cells   showed   that   the   latter   were   less   sensitive   to   drugs   compared  to  the  former.  The  authors  hypothesized  a  better  uptake  and  internalization   of   the   molecules   in   the   wall   less   cells   [8].   Given   these   premises   I   propose   to   use   C.   reinhardtii  cw92  mt+  as  experimental  model.  The  research  will  be  essentially  divided  in   two  stages:     1) High   throughput   screening:   I   intend   to   use   the   fluorescent   dye   Nile   Red   to   screen   one   or   more   bioactive   compound   libraries   in   order   to   identify   molecules   that   are   able   to   trigger   neutral   lipid   accumulation   in   the   model   species.   Nile   Red   is   a   lipid  
  • 5. extrinsic  fluorescent  dye  whose  maximum  emission  is  blue-­‐shifted  as  the  polarity  of   the  surrounding  environment  decreases.  Recently  Chen  et  al.  proposed  an  optimized   protocol   with   increased   accuracy   and   sensitivity,   suitable   for   high   throughput   quantitative  screening  of  neutral  lipid  content  in  algae.  Reliability  of  the  method  was   demonstrated   by   a   direct   comparison   with   the   conventional   gravimetric   technique   [9].   This   protocol   can   be   easily   formatted   for   96   well   plates   and   used   with   a   microplate   reader   to   screen   compound   libraries.   In   addition   to   the   selected   fluorescence  emission,  cell  proliferation  will  be   monitored  either  checking  the  O.D.   at   750   nm   or   using   one   of   the   several   commercially   available   cell   viability/proliferation   assay   (colorimetric   or   fluorescent)   formatted   for   96   well   plates.   The   screening   will   be   performed   in   parallel   using   cells   growing   in   standard   condition  and  cells  growing  under  nitrogen  limitation.  For  each  condition  and  each   molecule  data  regarding  lipid  accumulation  and  cell  growth  will  be  acquired  at  least   at   three   different   time   points   (to  be   determined  empirically   and   very   likely   different   for   the   two   conditions)   in   a   time   course   manner.   Untreated   cells   growing   under   standard   condition   or   nitrogen   limitation   will   be   used   as   controls.   Dose-­‐response   studies  will  be  carried  out  to  analyze  the  potency  of  the  positive  compounds  using   fluorescence   intensity   and   standard   growth   curves,   respectively   for   neutral   lipid   accumulation   and   cell   growth.   During   the   screening   I   expect   to   find   molecules   affecting  lipid  metabolism  that  can  be  divided  in  3  main  categories  according  to  their   activities:   a. Able   to   promote   lipid   accumulation  in   standard  culture   conditions   but   not   to   further  increase  lipid  accumulation  in  nitrogen  starving  cells   b. Able   to   promote   lipid   accumulation   in   standard   culture   conditions   and   to   further  increase  lipid  accumulation  in  nitrogen  starving  cells   c. Able  to  inhibit  lipid  accumulation  in  nitrogen  starving  cells   In  the  same  way  I  am  interested  in  individuate  molecules  affecting  cell  growth  with   two  distinct  activities:   d. Able   to   promote   cell   growth   under   standard   conditions   but   not   in   nitrogen   starved  cells   e. Able  to  rescue  the  growth  defective  phenotype  of  nitrogen  starving  cells  but   not  to  promote  growth  of  cells  cultured  in  standard  conditions.   f. Able   to   rescue   the   growth   defective   phenotype   of   nitrogen   starving   cells   and   to  promote  growth  of  cells  cultured  in  standard  conditions   While   finding   single   molecules   exerting   both   desired   activities   (cell   growth   promotion  and  lipid  accumulation)  seems  unlikely,  the  combination  of  two  or  more   moelcules   characterized   by   different   biological   activities   will   be   tested   in   vivo   to   study   if   the   two   different   activities   can   be   combined   and   maintained  in   a   additive   or   synergistic   way.   Several   factors   may   affect   the   result   of   all   high-­‐throughput   screenings.  First  of  all  failure  in   identifying  compound  with  the  desired  activity  might   be   due   to   an   incorrect   design   of   the   screening   itself.   In   order   to   avoid   this   possibility   control   measurement   will   be   acquired   for   each   time   point   and   for   each   condition   and  replicates  will  be  used.  The  two  critical  factors  that  may  have  the  greater  impact   in   the   identification   of   molecules   inducing   the   desired   phenotype   are   drug  
  • 6. concentration  and  drug  exposure  time.  While  the  former  should  be  kept  as  low  as   possible   (low   µmolar   range)   to   increase   the   stringency   of   the   screening   and  limit  off   target   effects,   the   latter   should   be  long   enough   (at   least   72h)   to   allow   accumulation   of  lipids.  A  prescreening  setup  to  optimize  time   points  using  control  cells  grown  in   the   two   different   conditions   will   be   essential.   Another   critical   factor   affecting   the   success   of   a   chemical   screening   is   the   number   of   compounds   and   their   structural   variability.   A   starting   candidate   could   be   the   Diverset   library   (ChemBridge,   San   Diego)  since  many  successful  screenings  have  been  reported,  and  in  particular  two   independent   groups   were   recently   able   to   identify   new   auxin-­‐like   compounds   affecting  plant  growth  within  this  library  [10,11].  In  the  hypothesis  that  C.  reinhardtii   shares   with   higher   plants   the   auxin   response   pathway,   some   of   the   molecules   identified  in   these   screenings   could   stimulate   algal   growth   too   and   could  be   used   as   putative   positive   controls.   The   most   interesting   compounds   or   a   combination   of   them   can   be   tested   in   other   algal   species   of   particularly   intereste   for   biofuel   production,  to  assess  if  they  can  exert  the  same  effect.     2) The  following  step  consists  in  individuating  the  target/targets  of  the  compound  and   understanding   their   role   in   the   biological   process   investigated.   This   process   called   “target  deconvolution”  remains  the  most  challenging  part  of  every  chemical  genetics   experiment.  In  particular  in  this  case  the  low  stringency  of  the  screening  conditions   could   lead   to   identifications   of   a   broad   spectrum   of   compound   acting   on   different   pathways  and  acting  with  different  mechanisms.   The  problem  of  the  low  stringency   is   mainly   due   to   the   lack   of   information   at   molecular   level   regarding   lipid   accumulation   and   cell   growth   in   algae,   gap   that   this   project   could   fill   at   least   partially.   A   first   step   in   target   deconvolution   is   database   mining,   to   verify   if   the   molecule   of   interest   has   already   been   characterized   and   which   are   the   putative   target  proteins  [12].  Several  deconvolution  strategies  have  been  proposed  but  each   of  them  can  be  either  time  consuming  or  lead  to  false  positives  [13].  In  alternative  I   propose   a   novel   chemicalproteomic   quantitative   method   to   identify   drug   targets,   based  on  the   principle  that  the   binding   of  a  small  molecule  to  a  protein  affects  its   sensitivity   to   protease   digestion   [14].   Briefly   cell   lysates   are   prepared   in   non-­‐ denaturing   conditions,   aliquots   remain   untreated   while   others   are   incubated   with   different  concentrations  of  the  drug  and  finally  all  lysates  are  digested  with  one  or   more   proteases.   Treated   and   untreated   peptide  mixtures   will  be   labeled   with  iTRAQ   (isobaric  tags  for  relative  and  absolute  quantification),  separated  by  OFFGEL  [15]  and   analyzed   by   mass   spectrometry   to   identify   quantitative   differences   among   the   samples   [16].   Peptides   showing   a   stechiometric   enrichment   or   depletion   after   the   drug  exposure  should  be  indicative  of  proteins  interacting  with  the  drug  itself.  This   method   has   only   been   validate   as   proof   of   concept   to   verify   predicted   targets   of   know   drugs,   and  its   application  in   identifying   novel   targets   of   uncharacterized  drugs   has   not   been   tested   yet   especially   coupled   to   quantitative   proteomics.   Nevertheless   the   fact   that   doesn’t   require   expensive,   labor  intensive   and   time   consuming   studies,   and  it  can  potentially  be  used  in  a  high  throughput  is  critical    then  the  potential  to   become   the   method   of   choice   in   target   deconvolution   analysis.   The   setup   and  
  • 7. optimization   of   the   quantitative   proteomic   analysis,   possibly   using   characterized   drug  will  be  essential  and  can  be  carried  out  in  parallel  with  the  screening  process.   The   success   of   this   method   could   allow   individuation   of   targets   of   several   small   molecules   in   a   relatively   short   time.   Finally   additional   information   about   mechanisms   of   action   of   candidate   target   proteins   can   be   collected   studying   the   effect   of   gene   silencing   on   the   phenotype.   Recentely   a   method   for   efficient   knockdown  emplying  miRNA  has  been  developed  in  C.  reinhardtii  [17]               References     [1] Dismukes   GC,   Carrieri   D,   Bennette   N,   Ananyev   GM,   Posewitz   MC.   Aquatic   phototrophs:   efficient   alternatives   to   land-­‐based   crops   for   biofuels.   Curr   Opin   Biotechnol  2008;19:235-­‐40.   [2] Hu   Q,   Sommerfeld   M,   Jarvis   E,   Ghirardi   M,   Posewitz   M,   Seibert   M,   Darzins   A.   Microalgal  triacylglycerols  as  feedstocks  for  biofuel  production:  perspectives   and  advances.  Plant  J  2008;54:621-­‐39.   [3] May   P,   Wienkoop   S,   Kempa   S,   Usadel   B,   Christian   N,   Rupprecht   J,   Weiss   J,   Recuenco-­‐Munoz   L,   Ebenhöh   O,   Weckwerth   W,  Walther   D.   Metabolomics-­‐   and   proteomics-­‐assisted   genome   annotation   and   analysis   of   the   draft   metabolic   network  of  Chlamydomonas  reinhardtii.  Genetics,  2008;179:157-­‐66.   [4] Merchant   SS,   Prochnik   SE,   Vallon   O,   Harris   EH,   Karpowicz   SJ,   Witman   GB,   Terry   A,  Salamov  A,  Fritz-­‐Laylin  LK,  Maréchal-­‐Drouard  L,  Marshall  WF,  Qu  LH,  Nelson   DR,   Sanderfoot   AA,   Spalding   MH,   Kapitonov   VV,   Ren   Q,   Ferris   P,   Lindquist   E,   Shapiro  H,  Lucas  SM,  Grimwood  J,  Schmutz  J,  Cardol  P,  Cerutti  H,  Chanfreau  G,   Chen   CL,   Cognat   V,   Croft   MT,   Dent   R,   Dutcher   S,   Fernández   E,   Fukuzawa   H,   González-­‐Ballester  D,  González-­‐Halphen  D,  Hallmann  A,  Hanikenne  M,   Hippler   M,  Inwood  W,  Jabbari  K,  Kalanon  M,  Kuras  R,  Lefebvre  PA,  Lemaire  SD,  Lobanov   AV,  Lohr  M,  Manuell  A,  Meier  I,  Mets  L,  Mittag  M,  Mittelmeier  T,  Moroney  JV,   Moseley   J,   Napoli   C,   Nedelcu   AM,   Niyogi   K,   Novoselov   SV,   Paulsen   IT,   Pazour   G,   Purton  S,  Ral  JP,  Riaño-­‐Pachón  DM,  Riekhof  W,  Rymarquis  L,  Schroda  M,  Stern   D,  Umen  J,  Willows  R,  Wilson  N,  Zimmer  SL,  Allmer  J,  Balk  J,  Bisova  K,  Chen  CJ,   Elias  M,  Gendler  K,  Hauser  C,  Lamb  MR,  Ledford  H,  Long  JC,  Minagawa  J,  Page   MD,  Pan  J,  Pootakham  W,  Roje  S,  Rose  A,  Stahlberg  E,  Terauchi  AM,  Yang  P,  Ball   S,   Bowler   C,   Dieckmann   CL,   Gladyshev   VN,   Green   P,   Jorgensen   R,   Mayfield   S,   Mueller-­‐Roeber  B,  Rajamani  S,  Sayre  RT,  Brokstein  P,  Dubchak  I,  Goodstein  D,   Hornick   L,   Huang   YW,   Jhaveri   J,   Luo   Y,   Martínez   D,   Ngau   WC,  Otillar   B,   Poliakov   A,   Porter   A,   Szajkowski   L,   Werner   G,   Zhou   K,   Grigoriev   IV,   Rokhsar   DS,   Grossman   AR.   The   Chlamydomonas   genome   reveals   the   evolution   of   key   animal  and  plant  functions.  Science,  2007;318:245-­‐50.  
  • 8. [5] Sheehan   J,   Dunahay   T,   Benemann   J,   Roessler   PG.   US   Department   of   Energy's   Office   of   Fuels   Development,   July   1998.   A   Look   Back   at   the   US  Department   of   Energy's   Aquatic   Species   Program   –   Biodiesel   from   Algae,   Close   Out   Report,   1998  TP-­‐580-­‐24190.  Golden,  CO:  National  Renewable  Energy  Laboratory.   [6] Kawasumi   M,   Nghiem   P.   Chemical   genetics:   elucidating   biological   systems   with  small-­‐molecule  compounds.  J  Invest  Dermatol,  2007;127:1577-­‐84.   [7] Knight   ZA,   Shokat   KM.   Chemical   genetics:   where   genetics   and   pharmacology   meet.  Cell,  2007;128:425-­‐30.   [8] Maucourt   K,   Agarwal   M,   René   B,   Fermandjian   S.   Use   of   Chlamydomonas   reinhardtii   mutants   for   anticancer   drug   screening.   Biochem   Pharmacol,   2002;64:1125-­‐31.   [9]  Chen   W,   Zhang   C,   Song   L,   Sommerfeld   M,   Hu   Q.   A   high   throughput   Nile   red   method   for   quantitative   measurement   of   neutral   lipids   in   microalgae.   J   Microbiol  Methods,  2009  [Epub  ahead  of  print]   [10] Christian   M,   Hannah   WB,   Lüthen   H,   Jones   AM.   Identification   of   auxins   by   a   chemical  genomics  approach.  J  Exp  Bot,  2008;59:2757-­‐67.   [11] Savaldi-­‐Goldstein  S,  Baiga  TJ,  Pojer  F,  Dabi  T,  Butterfield  C,  Parry  G,  Santner  A,   Dharmasiri   N,   Tao   Y,   Estelle   M,   Noel   JP,   Chory   J.   New   auxin   analogs   with   growth-­‐promoting   effects   in   intact   plants   reveal   a   chemical   strategy   to   improve  hormone  delivery.  Proc  Natl  Acad  Sci  USA,  2008;105:15190-­‐5.   [12] Wishart   DS,   Knox   C,   Guo   AC,   Cheng   D,   Shrivastava   S,   Tzur   D,   Gautam   B,   Hassanali   M.   DrugBank:   a   knowledgebase   for   drugs,   drug   actions   and   drug   targets.  Nucleic  Acids  Res,  2008;36:D901-­‐6.   [13] Terstappen   GC,   Schlüpen   C,   Raggiaschi   R,   Gaviraghi   G.   Target   deconvolution   strategies  in  drug  discovery.  Nat  Rev  Drug  Discov,  2007;6:891-­‐903.   [14] Nishiya  Y,  Shibata  K,  Saito  S,  Yano  K,  Oneyama  C,  Nakano  H,  Sharma  SV.  Drug-­‐ target  identification  from  total  cellular  lysate  by  drug-­‐induced  conformational   changes.  Anal  Biochem,  2009;385:314-­‐20.   [15] Bantscheff   M,   Boesche   M,   Eberhard   D,   Matthieson   T,   Sweetman   G,   Kuster   B.   Robust   and   sensitive   iTRAQ   quantification   on   an   LTQ   Orbitrap   mass   spectrometer.  Mol  Cell  Proteomics,  2008;7:1702-­‐13   [16] Hubner  NC,  Ren  S,  Mann  M.  Peptide  separation  with  immobilized  pI  strips  is   an   attractive   alternative   to   in-­‐gel   protein   digestion   for   proteome   analysis.   Proteomics,  2008;8:4862-­‐72.   [17] Molnar  A,  Bassett  A,  Thuenemann  E,  Schwach  F,  Karkare  S,  Ossowski  S,  Weigel   D,  Baulcombe  D.  Highly  specific  gene  silencing  by  artificial  microRNAs  in  the   unicellular   alga   Chlamydomonas   reinhardtii.   Plant   J,   2009   [Epub   ahead   of   print]