SlideShare una empresa de Scribd logo
1 de 26
Math Tutor  1
CHAPTER- 04
j.mv.¸ I M.mv.¸
j.mv.¸ (LCM)
 04.01 ¸wYZK, mvaviY ¸wYZK I jwNô mvaviY ¸wYZK Kx?
(K) MywYZK (Multiple)t ¸wYZK wK? ¸wYZK n‡”Q †Kvb msL¨v‡K bvgZv AvKv‡i G‡Mv‡j †h msL¨v¸‡jv cvIqv hvq
†m¸‡jv‡K H msL¨vi ¸wYZK e‡j| †hgb- 3 I 6 Gi ¸wYZK wK wK †`Lv hvK|
3 = 3, 6, 9, 12, 15, 18, 21, 24, 27, 30 ...
6 = 6, 12, 18, 24, 30...
Dc‡i 3 I 6 Gi bvgZv w`‡q †h msL¨v¸‡jv †cjvg G¸‡jvB n‡”Q 3 I 6 Gi ¸wYZK| GLv‡b ... (WU) w`‡q eySv‡bv
n‡q‡Q 3 I 6 ¸wYZK Amxg Ni ch©šÍ Pj‡Z _vK‡e A_©vr †Kvb msL¨vi ¸wYZK Amxg msL¨K nq|
 g‡b ivLyb, †Kvb msL¨vi me‡P‡q †QvU ¸wYZK H msL¨vi mgvb| †hgb- 3 Gi me‡P‡q †QvU ¸wYZK 3 ev Zvi
mgvb, GKBfv‡e 6 Gi me‡P‡q †QvU ¸wYZK 6 ev Zvi mgvb|
(L) mvaviY ¸wYZK (Common Multiple)t Common ev mvaviY kãwUi gv‡b n‡”Q GKvwaK wRwb‡mi gv‡S
hZUzKz mv`„k¨ ev wgj _v‡K †mUzKz| mvaviY ¸wYZK Gi gv‡b n‡”Q GKvwaK msL¨vi ¸wYZK¸‡jvi gv‡S †h †h
¸wYZK mv`„k¨ ev wgj Av‡Q †mme ¸wYZK‡K eySvq| 3 I 6 Gi ¸wYZK¸‡jv gv‡S †Kvb ¸wYZK ¸‡jv common
ev mvaviY ev mv`„k¨ ev wgj Av‡Q †`Lv hvK|
3 = 3, 6, 9, 12, 15, 18, 21, 24, 27, 30 ...
6 = 6, 12, 18, 24, 30...
Avgiv †`L‡Z cvw”Q 3 I 6 Gi ¸wYZK ¸‡jvi gv‡S 6, 12, 18, 24, 30 ¸wYZK¸‡jv `yB RvqMv‡ZB Av‡Q, GB
¸wYZK¸‡jv‡KB ejv nq mvaviY ¸wYZK|
(M) jwNô mvaviY ¸wYZK (Lowest Common Multiple/ Least Common Multiple)t Avgiv †h‡Kvb
msL¨vi me‡P‡q eo ¸wYZK wbY©q Ki‡Z cvwi bv, KviY †h‡Kvb msL¨vi ¸wYZK Amxg Ni ch©šÍ n‡q _v‡K| †h‡nZz
†Kvb msL¨vi me‡P‡q eo ¸wYZK wbY©q Kiv hvq bv, †m‡nZz GKvwaK msL¨vi gv‡S me‡P‡q eo mv`„k¨ ev mvaviY
¸wYZKI wbY©q Kiv m¤¢e bq, Z‡e me‡P‡q †QvU mvaviY ¸wYZK wbY©q Kiv m¤¢e| Dc‡ii 3 I 6 Gi ¸wYZK¸‡jvi
gv‡S me‡P‡q †QvU ev jwNô mvaviY ¸wYZK n‡”Q 6| A_v©r, 3 I 6 Gi jwNô mvaviY ¸wbZK ev jmv¸ n‡”Q 6|
A_©vr, j.mv.¸ gv‡b n‡”Q jwNô mvaviY ¸wYZK (Least Common Multiple ev LCM)!
 jÿYxq-
(1) Avgiv 3 I 6 Gi hZ¸‡jv mvaviY ¸wYZK †c‡qwQ, †m¸‡jvi gv‡S j.mv.¸ ev jwNô mvaviY ¸wYZK n‡”Q 6|
gRvi welq n‡”Q evKx mvaviY ¸wYZK¸‡jv jmv¸ 6-Gi ¸wYZK! †`Lyb, 6  2 = 12, 6  3 = 18, 6 
4 = 24, 6  5 = 30 A_v©r, 6 Gi ¸wYZK- 12, 18, 24, 30 ... |
(2) †Kvb msL¨vi ¸wYZK‡K Zv‡K w`‡q fvM Ki‡j wbt‡k‡l wefvR¨ n‡e| †hgb- 3 Gi ¸wYZK 3, 6, 9, 12, 15,
18, 21, 24, 27, 30 †K 3 Øviv fvM Ki‡j wbt‡k‡l wefvR¨ n‡e| GKBfv‡e 6 Gi ¸wYZK¸‡jv‡K 6 Øviv
fvM Ki‡j wbt‡k‡l wefvR¨ n‡e|
(3) GKvwaK msL¨vi mKj mvaviY ¸wYZK‡K H GKvwaK msL¨v Øviv fvM Ki‡j wbt‡k‡l wefvR¨ n‡e| †hgb- 3 I
6 Gi mvaviY ¸wYZK 6, 12, 18, 24, 30 †K 3 I 6 Øviv fvM Ki‡j wbt‡k‡l wefvR¨ n‡e| GB K_vi A_©
`uvovj, jwNô mvaviY ¸wYZK (j.mv.¸) 6 †K 3 I 6 Øviv fvM Ki‡j wbt‡k‡l wefvR¨ n‡e Ges 6 Gi mKj
¸wYZK 12,18, 24, 30 ‡K 3 I 6 Øviv fvM Ki‡jI wbt‡k‡l wefvR¨ n‡e|
2  Math Tutor
 04.02 j.mv.¸ wbY©q Kivi wbqgvewj
(K) ¸wYZK wbY©‡qi mvnv‡h¨ j.mv.¸ wbY©q: GwU j.mv.¸
wbY©‡qi GKwU †ewmK c×wZ| j.mv.¸ Gi msÁv
eyS‡Z GB c×wZwU mvnvh¨ K‡i| G c×wZi gva¨‡g
Avgiv Ô¸wYZK, mvaviY ¸wYZK I jwNô mvaviY
¸wYZKÕ msµvšÍ †gŠwjK aviYv¸‡jv eyS‡Z cvwi
(Dc‡i Av‡jvPbv co–b)| wKš‘ mivmwi j.mv.¸ wbY©q
Kivi Rb¨ GB c×wZwU Kvh©Kix bq, KviY G
c×wZ‡Z mgq †ewk jv‡M Ges A‡bK¸‡jv msL¨vi
†ÿ‡Î j.mv.¸ wbY©q Kiv RwUj jv‡M|
01. 6 I 12 Gi j.mv.¸ wbY©q Kiæb|
6 Gi ¸wYZKmg~n: 6, 12, 18, 24, 30, 36 ...
12 Gi ¸wYZKmg~n : 12, 24, 36, 48...
6 I 12 Gi ¸wYZK¸‡jvi gv‡S me‡P‡q †QvU/jwNô
mvaviY ¸wYZK n‡”Q 12| myZivs, 6 I 12 Gi
j.mv.¸ n‡jv 12|
(L) †gŠwjK ¸YbxqK ev Drcv`‡Ki mvnv‡h¨ j.mv.¸ wbY©q:
G c×wZwU cvwUMwY‡Zi Kvh©Kix bq, Z‡e exRMwY‡Zi
Rb¨ GKwU Kvh©Kix c×wZ|
02. 12, 24 I 30 Gi j.mv.¸ wbY©q Kiæb|
cÖ_‡g msL¨v¸‡jvi j.mv.¸ †gŠwjK Drcv`K ev
¸YbxqKmg~n †ei K‡i wb‡Z n‡e|
12 Gi †gŠwjK Drcv`K ev ¸YbxqKmg~n : 223
24 Gi †gŠwjK Drcv`K ev ¸YbxqKmg~n : 2223
30 Gi †gŠwjK Drcv`K ev ¸YbxqKmg~n : 235
 wPšÍb cÖwµqv: Kgb ev AvbKgb me Drcv`K wb‡Z
n‡e| †Kvb Drcv`‡Ki me©vwaK msL¨vwU wb‡Z n‡e|
†hgb- msL¨v¸‡jvi †gŠwjK Drcv`Kmg~‡ni gv‡S 2
Av‡Q mev©waK 3 evi, 3 Av‡Q 1 evi, 5 Av‡Q 1 evi|
Kv‡RB 2 wZbevi (2  2  2), 3 GKevi (3), 5
GKevi (5) wb‡q avivevwnK ¸Y Ki‡j cÖvß ¸YdjB
n‡e j.mv.¸|
∴ wb‡Y©q j. mv. ¸ = 22235 = 120|
(M) mswÿß c×wZ‡Z j.mv.¸ wbY©q: GB c×wZ KwVb I
mnR mKj msL¨vi †ÿ‡ÎB †ek Kvh©Kix GKwU
c×wZ| `ye©j‡`i GB c×wZwU e¨envi Kiv DwPZ|
03. 12, 24 I 30 Gi j.mv.¸ wbY©q Kiæb|
2 12, 24, 30
2 6, 12, 15
3 3, 6, 15
1, 2, 5
∴ wb‡Y©q j.mv.¸ = 22325 = 120
(N) †KŠkjwfwËK j.mv.¸ wbY©qt G c×wZwU Zv‡`i Rb¨
hviv bvgZvi †ÿ‡Î †ek `ÿ, Zv‡`i Rb¨ A‡bK †ewk
Kvh©Kix| j.mv.¸ QvovI KvR I mgq, bj-‡PŠev”Pv
Aa¨vq¸‡jv‡Z GB †KŠkj g¨vwR‡Ki gZ KvR K‡i|
04. 2, 4, 6 I 12 Gi j.mv.¸ wbY©q Kiæb|
GLv‡b me‡P‡q eo Drcv`KwU n‡jv 12| Gevi
†`Lyb 12 †K evKx †QvU Drcv`K 2, 4, 6 Øviv fvM
Kiv hvq wKbv? n¨vu, fvM Kiv hvq| Zvn‡j 2, 4, 6 I
12 Gi j.mv.¸ n‡jv 12| g‡b ivLyb, eo Drcv`KwU‡K
evKx meKqwU Øviv fvM Kiv †M‡j †mwUB n‡e j.mv.¸|
05. 4, 6, 12 I 30 Gi j.mv.¸ wbY©q Kiæb|
me‡P‡q eo Drcv`K 30 †K ïay 6 Øviv fvM Kiv
hvq, wKš‘ j.mv.¸ n‡Z n‡j meKqwU ØvivB fvM †h‡Z
nq| Gevi 30 †K 2 Øviv ¸Y Kiæb, 302 = 60,
GLb 60†K 4, 6, 12 Øviv fvM Kiv hvq|
∴ wb‡Y©q j.mv.¸ n‡e 60|
06. 3, 6, 12, 24 I 30 Gi j.mv.¸ wbY©q Kiæb|
me‡P‡q eo Drcv`K 30†K ïay 3 I 6 Øviv fvM
Kiv hvq, wKš‘ j.mv.¸ n‡Z n‡j me KqwU ØvivB fvM
†h‡Z nq|
 Gevi 30 †K 2 Øviv ¸Y Kiæb, 302 = 60, 60
†K 3, 6, 12 Øviv fvM †M‡jI 24 Øviv fvM hvq bv,
ZvB 60 msL¨v¸‡jvi j.mv.¸ n‡e bv|
 Gevi 30 †K 3 Øviv ¸Y Kiæb, 303 = 90,
G‡ÿ‡ÎI GKB K_v, 90 †K 24 Øviv fvM hvq bv,
ZvB 90 msL¨v¸‡jvi j.mv.¸ n‡e bv|
 Gevi 30 †K 4 Øviv ¸Y Kiæb, 304 = 120, GB
120 †K GLb me KqwU msL¨v Øviv fvM Kiv hvq|
∴ 3, 6, 12, 24, 30 Gi j.mv.¸ n‡jv 120|
Tips: eo Drcv`KwU‡K ZZÿY ch©šÍ ¸Y K‡i
G‡Mv‡Z _vKzb, hZÿY ch©šÍ evKx meKqwU msL¨v
Øviv fvM bv hvq| gy‡L gy‡L K‡qKw`b P”©v Ki‡j
welqwU cvwbi gZ mnR jvM‡e|
07. †Kvb ÿz`ªZg msL¨v‡K 4, 5 I 6 Øviv fvM Ki‡j
cÖwZ‡ÿ‡Î wbt‡k‡l wefvR¨ nq?
2 4, 5, 6
2, 5, 3
∴ wb‡Y©q j.mv.¸ = 2 × 2 × 5 × 3 = 60
 gy‡L gy‡L: 6 †K 2 Øviv fvM Kiv †M‡jI 4 I 5 Øviv
fvM Kiv hvq bv, ZvB 6 †K ZZÿY ch©šÍ ¸Y Ki‡Z
_vKzb hZÿY bv ch©šÍ 6 Gi ¸Ydj‡K 4 I 5 Dfq
mgvavb
mgvavb
mgvavb
mgvavb
mgvavb
mgvavb
mgvavb
2  Math Tutor
Øviv fvM Kiv hvq: 6 × 2 = 12, 6 × 3 = 18 ...
6 × 10 = 60 (j.mv.¸)
 cÖ‡kœ Ôÿz`ªZg msL¨vÕ ej‡Z wK eySv‡bv n‡q‡Q?
DËit 4, 5, 6 Gi me‡P‡q †QvU ev jwNô mvaviY
¸wYZK n‡”Q 60, hv‡K 4, 5, 6 Øviv fvM Ki‡j
wbt‡k‡l wefvR¨ nq| GB 60 e¨ZxZ Av‡iv mvaviY/
mv`„k¨ ¸wYZK Av‡Q †h¸‡jv 4, 5, 6 Øviv wbt‡k‡l
wefvR¨ nq| †hgb- 120, 180, 240 BZ¨vw`| G‡`i
gv‡S 60 n‡”Q me‡P‡q ÿz`ªZg mvaviY ¸wYZK| Avi
ÿz`ªZg msL¨v ej‡Z g~jZ GB 60 †KB eywS‡q‡Q,
hv‡K Avgiv ewj j.mv.¸| wet`ªt we¯ÍvwiZ Rvb‡Z Ô¸wYZK,
mvaviY ¸wYZK I jwNô mvaviY ¸wYZK wK?Õ co–b
08. 5, 7 I 9 Gi j.mv.¸ KZ?
5, 7, 9 Gi j.mv.¸ = 579 = 315|
 g‡b ivLyb: hw` GKvwaK msL¨vi meKqwUi g‡a¨
AšÍZ `ywU‡ZI †Kvb mvaviY Drcv`K bv _v‡K,
Zvn‡j H msL¨v¸‡jv‡K mivmwi ¸Y Ki‡jB j.mv.¸
cvIqv hvq|
09. †Kvb ÿy`ªZg msL¨v‡K 3, 4 I 5 Øviv fvM Ki‡j
wbt‡kl wefvR¨ ? K‡›Uªvjvi †Rbv‡ij wW‡dÝ dvBbvÝ-Gi Aaxb
AwWUi : 14
160 90
120 60 DËi: N
3, 4 I 5 Gi j.mv.¸ = 345 = 60 |
myZivs, wb‡Y©q ÿz`ªZg msL¨v = 60|
10. K GKwU †gŠwjK msL¨v Ges K, L Øviv wefvR¨ bq|
K Ges L Gi j.mv.¸ KZ? mgevq Awa`߇ii wØZxq †kÖwYi
†M‡R‡UW Awdmvi : 97
1 1K
KL 1L DËi: M
†h‡nZz K, L Øviv wefvR¨ bq, †m‡nZz K I L
mivmwi ¸Y Ki‡jB j.mv.¸ cvIqv hv‡e|
 K I L Gi j.mv.¸ = KL = KL|
11. 5, 6, 10 I 15 Gi j.mv.¸ KZ? cÖv_wgK we`¨vjq
mnKvix wkÿK : 90; cÖv_wgK we`¨vjq mnKvix wkÿK : 89
60 30
50 90 DËi: L
2 5, 6, 10, 15
3 5, 3, 5, 15
5 5, 1, 5, 5
1, 1, 1, 1
∴ wb‡Y©q j.mv.¸ = 235 = 30
 wefvR¨Zvi bxwZ cÖ‡qv‡M: 5, 6, 10 I 15 msL¨v-
¸‡jvi gv‡S 6 I 15 msL¨v `ywU‡Z Drcv`K 3 Av‡Q|
, I Ackb¸‡jv 3 Øviv wefvR¨, G‡`i gv‡S
ÿz`ªZg msL¨v n‡”Q 30|
12. †Kvb ÿz`ªZg c~Y©eM© msL¨v 9, 15 Ges 25 Øviv
wefvR¨? Z_¨gš¿Yvj‡qi mnKvix Awdmvi-2013
75 225
1125 900 DËi: L
3 9, 15, 25
5 3, 5, 25
3, 1, 5
∴ j.mv.¸ = 3355 = 225, hv GKwU ÿz`ªZg
c~Y©eM© msL¨v|
13. 2002 msL¨vwU †Kvb msL¨v¸‡”Qi j.mv.¸ bq? 24Zg
wewmGm (evwZjK…Z)
13, 77, 91, 143 7, 22, 26, 91
26, 77, 143, 154 2, 7, 11, 13 DËi: K
†h msL¨v¸‡”Qi j.mv.¸ 2002 n‡e bv, †mwUB DËi
n‡e|
13, 77, 91, 143 Gi j.mv.¸ = 1001
7, 22, 26, 91 Gi j.mv.¸ = 2002
26, 77, 143, 154 Gi j.mv.¸ = 2002
2, 7, 11, 13 Gi j.mv.¸ = 2002
14. b~¨bZg KZwU Kgjv‡K 4, 6, 10 ev 18 Rb wkïi
g‡a¨ fvM K‡i †`qv hvq? c~evjx e¨vsK wmwbqi Awdmvi
(K¨vk)-2012
16 60
180 240 DËi: M
Ôb~¨bZg KZwU Kgjv 4, 6, 10 ev 18 Rb wkïi
g‡a¨ fvM K‡i †`qvÕ Avi Ô†Kvb ÿz`ªZg msL¨v‡K 4,
6, 10, 18 w`‡q wbt‡kl wefvR¨ nIqvÕ GKB K_v|
ZvB j.mv.¸ Ki‡Z n‡e|
15. GKwU ¯‹z‡j c¨v‡iW Kivi mgq Qv·`i 10, 12 ev 16
mvwi‡Z mvRv‡bv nq| H b~¨bZg KZRb QvÎ Av‡Q?
mve-‡iwR÷vi wb‡qvM cixÿv-2016
120 180
220 240 DËi: N
b~¨bZg KZRb QvÎ hv‡`i‡K 10, 12 ev 16
mvwi‡Z mvRv‡bv hvq Avi †Kvb ÿz`ªZg msL¨v‡K 10,
12, 16 w`‡q wbt‡kl wefvR¨ nIqvÕ GKB K_v, ZvB
j.mv.¸ Ki‡Z n‡e|
16. me©‡gvU KZ msL¨K MvQ n‡j GKwU evMvb 7, 14,
mgvavb
N
M
L
K
mgvavb
N
M
L
K
N
M
L
K
mgvavb
N
M
L
K
mgvavb
N
M
L
K
N
L
K
mgvavb
N
M
L
K
mgvavb
N
M
L
K
mgvavb
N
M
L
K
mgvavb
Math Tutor  3
21, 35 I 42 mvwi‡Z MvQ jvMv‡j GKwUI Kg ev
†ewk n‡e bv? Avbmvi I wfwWwc Awa`߇ii mv‡K©j
A¨vWRyU¨v›U : 2010
210 220
230 260 DËi: K
me©‡gvU MvQ‡K 7, 14, 21, 35 I 42 mvwi‡Z
jvMv‡j GKwUI Kg ev †ewk bv nIqv gv‡b n‡”Q
wbt‡kl wefvR¨ nIqv, Avi msL¨v¸‡jv †_‡K cÖvß
j.mv.¸ n‡e me©‡gvU Mv‡Qi msL¨v|
†R‡b wbb - 24
cÖ_‡g cÖkœwU fv‡jvfv‡e co–b|
17. 3wU N›Uv GK‡Î †e‡R h_vµ‡g 5, 6 I 10 wgwbU AšÍi evR‡Z jvMj| KZÿY ci N›Uv¸‡jv cybivq GK‡Î evR‡e?
20 25 30 60 DËi: M
5, 6 I 10 Gi j.mv.¸-B n‡e DËi|
2 5, 6, 10
5 5, 3, 5
1, 3, 1
∴ 5, 6 I 10 Gi j.mv.¸ = 253 = 30|
myZivs, N›Uv 3wU c~bivq 30 wgwbU ci GK‡Î evR‡e|
 ÔGKvwaK N›Uv GK‡Î evRvi ci GKwU wbw`©ó mgq AšÍi N›Uv¸‡jv evR‡Z _vK‡j KZÿY ci N›Uv¸‡jv cybivq
GK‡Î evR‡e?Õ Giƒc cÖ‡kœi †ÿ‡Î Avgiv †Kb j.mv.¸ Kwi?
DËi: Dc‡ii cÖ‡kœ Avgiv 5, 6 I 10 Gi j.mv.¸ †c‡qwQ 30| MvwYwZK wbqgvbymv‡i, N›Uv¸‡jv 30wgwbU ci cybivq
GK‡Î evR‡e| welqwU wPÎwfwËK wPšÍv Kiv hvK| wP‡Î †`Lyb, cÖ_‡g ÔïiæÕi RvqMvq 3wU N›Uv GK‡Î †e‡RwQj,
Zvici 1g N›UvwU 5 wgwbU AšÍi, 2qwU 6 wgwbU AšÍi Ges 3qwU 10 wgwbU AšÍi evR‡Z _v‡K Ges 30 wgwbU ci
Zviv Avevi GKwU RvqMvq wM‡q wgwjZ nq| gRvi welq n‡”Q 30 wgwb‡Ui Av‡M Avi †Kv_vI Zviv wgwjZ nqwb!
Avgiv welqwU Ab¨fv‡eI †`L‡Z cvwi| Pjyb 5, 6 I 10 Gi ¸wYZK¸‡jv †ei Kiv hvK|
5 Gi ¸wYZKmg~n : 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95...
6 Gi ¸wYZKmg~n : 6, 12, 18, 24, 30, 36, 42, 48, 54, 60, 66, 72, 78, 84, 90, 96...
10 Gi ¸wYZKmg~n : 10, 20, 30, 40, 50, 60, 70, 80, 90, 100...
Dc‡ii 5, 6 I 10 Gi ¸wYZKmg~‡ni gv‡S mvaviY ¸wYZKmg~n n‡”Q 30, 60, 90...| G‡`i gv‡S me‡P‡q †QvU
mvaviY ¸wYZK ev j.mv.¸ n‡”Q 30| MwY‡Zi ïiæ‡Z N›Uv¸‡jv 1gevi GK‡Î †e‡RwQj (Nwoi wPÎ †`Lyb), 30
wgwb‡Ui gv_vq N›Uv 3wU cybivq 2qev‡ii gZ GK‡Î evR‡e, 60 wgwb‡Ui gv_vq N›Uv¸‡jv 3qev‡ii gZ GK‡Î
evR‡e Ges 90 wgwb‡Ui gv_vq N›Uv¸‡jv 4_©ev‡ii gZ GK‡Î evR‡e|
 cÖ‡kœ ejv n‡q‡Q, Ô3wU N›Uv GK‡Î †e‡R h_vµ‡g 5, 6 I 10 wgwbU AšÍi evR‡Z jvMj| KZÿY ci N›Uv¸‡jv
cyYivq GK‡Î evR‡e?Õ Gi Øviv eySv‡bv n‡q‡Q 2qev‡ii gZ N›Uv 3wU KZÿY ci cybivq GK‡Î evR‡e| DËi n‡e,
mgvavb
N
M
L
K
mgvavb
N
M
L
K
2  Math Tutor
5, 6 I 10 Gi j.mv.¸|
 cÖ‡kœ hw` ejv nZ Ô3wU N›Uv GK‡Î †e‡R h_vµ‡g 5, 6 I 10 wgwbU AšÍi evR‡Z jvMj| 30 wgwb‡U, Zviv
KZevi GKmv‡_ evR‡e?Õ Zvn‡j DËi n‡e 2 evi| ïiæ‡Z GK‡Î ev‡R 1 evi Ges 30 wgwb‡Ui gv_vq GK‡Î
evR‡e AviI 1 evi A_©vr, †gvU 2 evi|
 cÖ‡kœ hw` ejv nZ Ô3wU N›Uv GK‡Î †e‡R h_vµ‡g 5, 6 I 10 wgwbU AšÍi evR‡Z jvMj| 60 wgwb‡U, Zviv
KZevi GKmv‡_ evR‡e?Õ Zvn‡j DËi n‡e 3 evi| MvwYwZKfv‡e mgvavb Ki‡eb †hfv‡e-
5, 6 I 10 Gi j.mv.¸ 30 w`‡q 60 †K fvM w`b- 60 ÷ 30 = 2| cÖvß fvMdj 2 Gi mv‡_ cÖ_gevi GKÎ _vKvi
1 †hvM Kiæb- 2 + 1 = 3 evi| A_©vr, (60 ÷ 30) + 1 = 2 + 1 = 3 evi|
Gfv‡e 90 wgwb‡U KZevi GK‡Î evR‡e Rvb‡Z PvB‡j DËi n‡e, (90 ÷ 30) + 1 = 3 + 1 = 4 evi|
 cÖ‡kœ hw` ejv nZ Ô3wU N›Uv GK‡Î †e‡R h_vµ‡g 5, 6 I 10 wgwbU AšÍi evR‡Z jvMj| hw` Zviv GK‡Î `ycyi
12 Uvq †e‡R _v‡K, Zvn‡j cybivq Avevi KLb GK‡Î evR‡e?
DËi: `ycyi 12 Uvq GK‡Î †e‡R 30 wgwbU ci Avevi GK‡Î evR‡e| A_©vr, 12pm + 30minutes = 12.30 pm
G N›Uv 3wU cybivq Avevi GK‡Î evR‡e|
 GLv‡b 3wU wbqg Av‡jvPbv Kiv n‡q‡Q, Gi evwni †_‡K cÖkœ Avm‡e bv|
18. cuvPwU N›Uv GK‡Î †e‡R h_vµ‡g 3, 5, 7, 8 I 10
†m‡KÛ AšÍi AšÍi evR‡Z jvMj| KZÿY c‡i N›Uv
¸‡jv cybivq GK‡Î evR‡e? _vbv mn. wkÿv wdmvi : 95
10 wgwbU 90 †m‡KÛ
14 wgwbU 240 †m‡KÛ DËi: M
2 3, 5, 7, 8, 10
5 3, 5, 7, 4, 5
3. 1, 7, 4, 1
∴ 3, 5, 7, 8 I 10 Gi j.mv.¸ = 25374
= 840
myZivs, N›Uv¸‡jv cybivq GK‡Î evR‡e = 840 †m‡KÛ ci
=
60
840
wgwbU ci
= 14 wgwbU ci|
 †m‡KÛ‡K 60 w`‡q fvM K‡i wgwb‡U iƒcvšÍi Kiv nj
19. KZ¸‡jv N›Uv GKmv‡_ evRvi 10 †mt, 15 †mt, 20
†mt Ges 25 †mt ci ci evR‡Z jvMj| Dnviv Avevi
KZÿY ci GK‡Î evR‡e? _vbvwkÿvAwdmvit96,evsjv‡`kcjøx
we`y¨Zvqb†ev‡W©imnKvixcwiPvjK(cÖkvmb)-16
1wgwbU 20 †m‡KÛ 1 wgwbU 30 †m‡KÛ
3 wgwbU 5 wgwbU DËi: N
10, 15, 20 I 25 Gi j.mv.¸ = 300
 N›Uv¸‡jv Avevi GK‡Î evR‡e = 300 †m‡KÛ ci
=
60
300
= 5 wgwbU ci|
20. 5wU N›Uv GK‡Î †e‡R h_vµ‡g 5, 10, 15, 20 I 25
†m‡KÛ AšÍi Avevi evR‡Z jvMj, KZÿY ci N›Uv
¸‡jv Avevi GK‡Î evR‡e? 12Zg†emiKvwiwkÿKwbeÜb
(¯‹zj/mgch©vq)2015
5 wgwbU 6 wgwbU
10 wgwbU 5 N›Uv DËi: K
21. 2wU Nwo h_vµ‡g 10 I 25 wgwbU AšÍi ev‡R| GKevi
GK‡Î evRvi ci Avevi KLb Nwo `yÕwU GK‡Î evR‡e?
K‡›Uªvjvi†Rbv‡ijwW‡dÝdvBbvÝ-GiKvh©vj‡qAaxbAwWUi-2014
20 wgwbU ci 30 wgwbU ci
50 wgwbU ci 100 wgwbU ci DËi: M
22. eykiv, Glv I wcÖZzB 5 wgwbU, 10 wgwbU, 15 wgwbU AšÍi
AšÍi GKwU K‡i PK‡jU Lvq| KZÿY ci Zviv GK‡Î
PK‡jU Lvq? 7gcÖfvlKwbeÜbIcÖZ¨qbcixÿv-2011
25 wgwbU 50 wgwbU
40 wgwbU 30 wgwbU DËi: N
5, 10 I 15 Gi j.mv.¸ = 30| myZivs, eykiv,
Glv I wcÖZzB 30 wgwbU ci GK‡Î PK‡jU Lv‡e|
23. wZb Rb †g‡q GKwU e„ËvKvi gv‡Vi Pvwiw`K eivei
GKwU wbw`©ó ¯’vb †_‡K †`Šov‡bv ïiæ Kij Ges
cÖ‡Z¨‡K GKwU cvK h_vµ‡g 24 †m‡KÛ, 36 †m‡KÛ
Ges 48 †m‡K‡Û c~Y© K‡i| KZ mgq ci Zviv GKB
¯’v‡b wgwjZ n‡e? †Kvqvw›U‡UwUf A¨vcwUwUDU, Wt Avi,
Gm AvMviIqvj; (evsjv) wiwcÖ›U-2020
2 wgwbU 20 †m‡KÛ 2 wgwbU 24 †m‡KÛ
3 wgwbU 36 †m‡KÛ 4 wgwbU 12 †m‡KÛ D: L
24, 36 I 48 Gi j.mv.¸ = 144
wZbRb †g‡q GKB ¯’v‡b wgwjZ n‡e = 144 †m‡KÛ ci
mgvavb
N
M
L
K
mgvavb
N
M
L
K
N
M
L
K
N
M
L
K
mgvavb
N
M
L
K
mgvavb
N
M
L
K
2  Math Tutor
=
60
144
= 2
60
24
= 2
5
2
wgwbU ci
= 2wgwbU
5
2
60 †m‡KÛ = 2wgwbU 24†m‡KÛ ci|
24. A, B Ges C GKB mg‡q, GKB w`‡K GKwU e„ËvKvi
†÷wWqv‡gi Pvicv‡k †`Šov‡Z ïiæ K‡i| A GKwU
cvK 252 †m‡K‡Û, B GKwU cvK 308 †m‡K‡Û Ges
C GKwU cvK 198 †m‡K‡Û c~Y© K‡i| cÖ‡Z¨‡K GKB
RvqMv †_‡K †`Šo ïiæ K‡i| cÖ‡Z¨‡K cybivq KLb
ïiæi ¯’v‡b GKmv‡_ n‡e? †Kvqvw›U‡UwUf A¨vcwUwUDU, Wt
Avi, Gm AvMviIqvj; (evsjv) wiwcÖ›U-2020
26 wgwbU 18 †m‡KÛ 42 wgwbU 36 †m‡KÛ
45 wgwbU 46 wgwbU 12 †m‡KÛ D: N
25. mxgv, wgbv Ges wigv GKwU e„ËvKvi †÷wWqv‡gi Pvicv‡k
†`Šov‡Z ïiæ Kij| Zviv Zv‡`i GKcvK h_vµ‡g 54
†m‡KÐ, 42 †m‡KÐ Ges 63 †m‡KÐ mg‡q c~Y© Kij| KZ
mgq ci Zviv ïiæi ¯’v‡b Avevi GKmv‡_ n‡e? †Kvqvw›U‡UwUf
A¨vcwUwUDU,WtAvi,GmAvMviIqvj;(evsjv)wiwcÖ›U-2020
54, 42 I 63 Gi j.mv.¸ = 378|
 mxgv, wgbv Ges wigv ïiæi mv‡_ GKmv‡_ n‡e =
378 †m‡KÛ ci | DËi: 378 †m‡KÛ ci
26. 5wU NÈv cÖ_‡g GK‡Î †e‡R c‡i h_vµ‡g 6, 12,
24, 30 I 40 †m‡KÐ AšÍi AšÍi evR‡Z jvMj|
KZÿY c‡i N›Uv¸‡jv cybivq GK‡Î evR‡e? wb¤œ gva¨wgK
MwYZ,lô†kÖwY(1996wkÿvel©),cÖkœgvjv1.4Gi9bscÖkœ
6, 12, 24, 30 I 40 Gi j.mv.¸ = 120
 5wU N›Uv cybivq GK‡Î evR‡e 120 wgwbU ci
=
60
120
= 2 wgwbU ci| DËi: 2 wgwbU
27. †Kv‡bv evm÷¨vÛ †_‡K 4wU evm GKwU wbw`©ó mgq ci
h_vµ‡g 10 wK.wg., 20 wK.wg., 24 wK.wg. I 32 wK.wg.
c_ AwZµg K‡i| Kgc‡ÿ KZ`~i c_ AwZµg Kivi
ci evm PviwU GK‡Î wgwjZ n‡e? wb¤œ gva¨wgKMwYZ,lô†kÖwY
(2013wkÿvel©),Abykxjbx1.3Gi13bscÖkœ
10, 20, 24 I 32 Gi j.mv.¸ = 480
 4wU evm 480 wK.wg. c_ AwZµg Kivi ci
Avevi GK‡Î wgwjZ n‡e| DËi: 480 wK.wg.
28. 4 Rb †jvK mv‡q`vev` †_‡K PµKvi iv¯Ívq mKvj 6Uvq
GKB w`‡K hvÎv ïiæ K‡ib| Zvuiv cÖwZ N›Uvq h_vµ‡g
10, 20, 24 I 32 wK‡jvwgUvi c_ AwZµg K‡ib|
Kgc‡ÿ KZ `~i c_ AwZµg Kivi c‡i Zvuiv Avevi
GK‡Î wgwjZ n‡eb? wb¤œ gva¨wgKMwYZ,lô†kÖwY(1996wkÿvel©),
cÖkœgvjv1.4Gi10bscÖkœ
10, 20, 24 I 32 Gi j.mv.¸ = 480
 4 Rb †jvK Avevi GK‡Î wgwjZ n‡eb 480
wK.wg. ci| DËi: 480 wK.wg.
29. GKwU •e`y¨wZK hš¿ cÖwZ 60 †m‡KÛ AšÍi AvIqvR
K‡i| Aci GKwU hš¿ 62 †m‡KÐ AšÍi AvIqvR
K‡i| hw` Zviv GKmv‡_ mKvj 10Uvq AvIqvR K‡i
_v‡K, Zvn‡j Zviv cybivq Avevi KLb GKmv‡_
AvIqvR Ki‡e? †Kvqvw›U‡UwUfA¨vcwUwUDU,WtAvi,GmAvMviIqvj;
(evsjv)wiwcÖ›U-2020
10.30 a.m. 10.31 a.m.
10.59 a.m. 11 a.m. DËi: L
2 60, 62
30, 31
60 I 62 Gi j.mv.¸ = 23031 = 1860
∴ •e`y¨wZK hš¿ `ywU cybivq Avevi GKmv‡_ AvIqvR
Ki‡e 1860 †m‡KÐ ci =
60
1860
= 31 wgwbU ci|
myZivs, •e`y¨wZK hš¿ `ywU mKvj 10 Uvq GK‡Î
AvIqvR Kivi ci 31 wgwbU ci Avevi AvIqvR
Ki‡e 10.31 a.m. G|
30. QqwU N›Uv GKmv‡_ evRv ïiæ K‡i Ges h_vµ‡g 2,
4, 6, 8, 10 Ges 12 †m‡KÛ AšÍi ev‡R| 30 wgwb‡U,
Zviv KZevi GKmv‡_ evR‡e? †Kvqvw›U‡UwUfA¨vcwUwUDU,WtAvi,
GmAvMviIqvj;(evsjv)wiwcÖ›U-2020
4 10
15 16 DËi: N
2, 4, 6, 8, 10 I 12 Gi j.mv.¸ = 120
∴ QqwU N›Uv GKmv‡_ evR‡e 120 †m‡KÛ ci
=
60
120
= 2 wgwbU ci|
cÖ_gevi 1 mv‡_ evRvi ci,
2 wgwb‡U GK‡Î ev‡R AviI 1 evi
∴ 1 Ó Ó Ó Ó
2
1
Ó
mgvavb
N
M
L
K
mgvavb
N
M
L
K
mgvavb
mgvavb
mgvavb
mgvavb
N
M
L
K
Math Tutor  3
∴ 30Ó Ó Ó Ó
2
1
30 = 15 evi|
myZivs, cÖ_‡g 1 I c‡i 15 evi †gvU 16 evi evR‡e|
 kU©KvU: 1
j.mv.¸
mgq
gvU
†

= 1
2
30
 = 15 + 1 = 16 evi|
31. wZbwU N›Uv GK‡Î evRvi ci Zviv 2 N›Uv, 3 NÈv I
4 N›Uv cici evR‡Z _vKj| 1 w`‡b Zviv KZevi
GK‡Î evR‡e? cÖv_wgKwe`¨vjqmnKvixwkÿK(PZz_© avc)2019;11Zg
†emKvwiwkÿKwbeÜb(¯‹zj/mgch©vq)-2014
12 evi 6 evi
4 evi 3 evi DËi: N
2, 3 I 4 Gi j.mv.¸ = 12|
∴ wZbwU N›Uv GK‡Î evR‡e 12 N›Uv ci|
myZivs, 1 w`‡b ev 24 NÈvq †gvU evR‡e = 1
12
24

3
1
2 

 evi|
32. GKwU †Nvovi Mvwoi mvg‡bi PvKvi cwiwa 3 wgUvi,
wcQ‡bi PvKvi cwiwa 4 wgUvi| MvwowU KZ c_ †M‡j
mvg‡bi PvKv wcQ‡bi PvKvi †P‡q 100 evi †ewk
Nyi‡e? WvKAwa`߇iDc‡Rjv†cv÷gv÷vi:10;gnvwnmvewbixÿKI
wbqš¿‡Ki Kvh©vj‡qmnKvixcwimsL¨vbKg©KZ©v(2q†kÖwY):98,beg-`kg†kÖwY
MwYZ,(1983ms¯‹iY)Abykxjbx1.1Gi44bscÖkœ
1 wK.wg. 1.2 wK.wg.
1.6 wK.wg. 1.8 wK.wg. DËi: L
3 I 4 Gi j.mv.¸ = 34 = 12
(PvKv `ywUi cwiwai j.mv.¸ n‡”Q PvKv `ywU‡K GKwU mgvb
`~i‡Z¡i c_ Pj‡Z 12 wgUvi AwZµg Ki‡Z n‡e)
12 wgUvi c_ Pj‡Z m¤§yL PvKv‡K Nyi‡Z n‡e
3
12
= 4 evi
12 Ó Ó Ó wcQ‡bi Ó Ó Ó
4
12
= 3 evi
(mvg‡bi PvKv A‡cÿv wcQ‡bi PvKv 1evi †ewk Ny‡i 12
wgUvi c_ Pj‡Z, Zvn‡j 100 evi †ewk Nyi‡j KZUzKz c_
Pj‡e?)
mvg‡bi PvKv wcQ‡bi PvKv A‡cÿv 1evi †ewk Ny‡i 12 wgUv‡i
Ó Ó Ó Ó Ó 100 Ó Ó Ó 12100Ó
= 1200 wgUvi
=
1000
1200
wK.wg.
= 1.2 wK.wg.|
 kU©KvUt mvg‡bi PvKv I wcQ‡bi PvKvi j.mv.¸
Gi mv‡_ Ô100 evi †ewk Nyi‡QÕ †mwU ¸Y Ki‡Z
n‡e| Zvici wgUvi‡K wK‡jvwgUvi Ki‡Z 1000
Øviv fvM Ki‡Z n‡e| A_©vr, 34100 = 1200
 1000 = 1.2 wKwg|
33. GKwU †Nvovi Mvwoi mvg‡bi PvKvi cwiwa 4 wgUvi,
†cQ‡bi PvKvi cwiwa 5 wgUvi| MvwowU KZ c_ †M‡j
mvg‡bi PvKv †cQ‡bi PvKvi †P‡q 200 evi †ewk
Nyi‡e? cjøx Dbœqb I mgevq gš¿Yvj‡qi mnKvix cÖ‡KŠkjx
(wmwfj) : 17; ciivóª gš¿Yvj‡qi Aax‡b cÖkvmwbK Kg©KZ©v : 01
1.2 wK.wg. 2.5 wK.wg.
4 wK.wg. 6 wK.wg. DËi: M
4 I 5 Gi j.mv.¸ = 45 = 20
20 wgUvi c_ Pj‡Z m¤§yL PvKv‡K †Nvi‡Z n‡e
4
20
= 5 evi
20 Ó Ó Ó wcQ‡bi Ó Ó Ó
5
20
= 4 evi
mvg‡biPvKvwcQ‡biPvKvA‡cÿv1evi†ewk†Nv‡i20wgUv‡i
Ó Ó Ó Ó Ó 200 Ó Ó Ó 20200Ó
= 4000 wgUvi
=
1000
4000
wK.wg.
= 4 wK.wg.|
 kU©KvUt 45200 = 4000  1000 = 4 wK.wg.
34. GKwU †Nvovi Mvwoi mvg‡bi PvKvi cwiwa 2 wgUvi
Ges †cQ‡bi PvKvi cwiwa 3 wgUvi| Kgc‡ÿ KZ
`~iZ¡ AwZµg Ki‡j mvg‡bi PvKv †cQ‡bi PvKv
A‡cÿv 10 evi †ewk Nyi‡e? evsjv‡`kcjøxDbœqb†ev‡W©iDc‡Rjv
cjøxDbœqbKg©KZ©v:13; cÖv_wgKwe`¨vjqmnKvixwkÿK(XvKvwefvM):02
60 wgUvi 20 wgUvi
25 wgUvi 40 wgUvi DËi: K
2310 = 60 wgUvi|
mgvavb
N
M
L
K
mgvavb
N
M
L
K
mgvavb
N
M
L
K
mgvavb
N
M
L
K
c‡i 15 evi
ïiæ‡Z 1evi +
2  Math Tutor
 04.03 fvM‡kl _vK‡e
†R‡b wbb- 25
 j.mv.¸ mgm¨v mgvav‡b Avcbv‡K †h KvRwU mevi Av‡M Ki‡Z n‡e
j.mv.¸ mgm¨v mgvav‡b ïiæ‡Z cÖ‡kœi kZ© wb‡q wPšÍv Kivi `iKvi †bB| cÖ_‡g cÖ‡kœ cÖ`Ë Drcv`K/fvRK ¸‡jvi
j.mv.¸ wbY©q Kiæb| Zvici cÖ‡kœi kZ©vbymv‡i KvR Kiæb| GLv‡b Drcv`K/fvRK ej‡Z Zv‡`i‡K eySv‡bv n‡”Q-
hv‡`i Øviv fvM Kivi K_v ejv nq| †hgb- (1) me‡P‡q †QvU †Kvb msL¨v‡K 7, 8 I 9 Øviv fvM Ki‡j 5 Aewkó _v‡K?
(2) GKwU c~Y© msL¨v wbY©q Kiæb hv‡K 3, 4, 5 Ges 6 fvM Ki‡j h_vµ‡g 2, 3, 4 Ges 5 Aewkó _v‡K? cÖkœ
`ywUi AvÛvijvBbK…Z msL¨v¸‡jvB n‡”Q cÖ‡kœ cÖ`Ë Drcv`K/fvRKmg~n|
 †Kvb ÿz`ªZg msL¨v‡K 3, 5 I 6 Øviv fvM Ki‡j fvM‡kl n‡e 1? [17Zg wewmGm]
71 41 31 39 DËi: M
ïiæ‡Z 3, 5, 6 Gi j.mv.¸ †ei Kiv hvK|
3 3, 5, 6
1, 5, 2
∴ 3, 5 I 6 Gi jmv¸ = 3 × 5 × 2 = 30|
AZGe, ÿz`ªZg msL¨vwU n‡”Q = 30 + 1 = 31|
 fvM‡kl hZ _vK‡e j.mv.¸Õi mv‡_ ZZ †hvM Ki‡Z n‡e †Kb?
Avgiv c~‡e© †R‡bwQ- GKvwaK fvRK †_‡K cÖvß j.mv.¸ H fvRK¸‡jv Øviv wbt‡k‡l wefvR¨| A_©vr, Avgiv
wbwðZfv‡e ej‡Z cvwi, 3, 5 I 6 fvRK¸‡jv †_‡K cÖvß j.mv.¸ 30, hv fvRK 3/5/6 Øviv wbt‡k‡l wefvR¨|
Zvi gv‡b j.mv.¸ 30 †K Avgiv ÿz`ªZg msL¨v ej‡Z cvwi| wKš‘ 30 †K ÿz`ªZg msL¨v ejv hv‡e bv| KviY cÖ‡kœ ejv
n‡q‡Q- ÿz`ªZg msL¨vwU‡K 3/5/6 Øviv fvM Ki‡j wbt‡k‡l wefvR¨ n‡Z cvi‡e bv, fvM‡kl 1 _vK‡Z n‡e| GRb¨
wK Ki‡Z n‡e? ejwQ- wbt‡k‡l wefvR¨ msL¨vwUi mv‡_ AwZwi³ hv †hvM Ki‡eb ZvB fvM‡kl wn‡m‡e _vK‡e|
A_©vr, AwZwi³ 1 †hvM Ki‡j, fvM‡kl 1 _vK‡e; AwZwi³ 2 †hvM Ki‡j fvM‡kl 2 _vK‡e| Pjyb †`Lv hvK-
hLb 1 †hvM Ki‡eb- 30 + 1 = 31 3 ) 31 ( 10 5) 31 ( 6 6) 31 ( 5
30 30 30
1 1 1
hLb 2 †hvM Ki‡eb- 30 + 2 = 32
3 ) 32 ( 10 5) 32 ( 6 6) 32 ( 5
30 30 30
2 2 2
GLb Avgiv wbwØ©avq ej‡Z cvwi, G ai‡Yi mgm¨vq hZ fvM‡kl Rvb‡Z PvB‡e, ZZ j.mv.¸i mv‡_ †hvM K‡i
w`‡jB n‡e| cÖ`Ë cÖ‡kœ fvM‡kl 1 Av‡Q ejvq, cÖvß j.mv.¸i mv‡_ 1 †hvM Kiv n‡q‡Q|
 kU©KvU : hZ fvM‡kl _vK‡e, ZZ j.mv.¸i mv‡_ †hvM Ki‡Z n‡e|
35. †Kvb ÿy`ªZg msL¨v‡K 4, 5 I 6 Øviv fvM Ki‡j
cÖwZ‡ÿ‡Î 1 Aewkó _v‡K? gva¨wgK mnKvix wkÿK-06
121 169
61 111 DËi: M
cÖ_‡g jmv¸ †ei Kiæb, Zvici D³ jmv¸i mv‡_
1 †hvM Kiæb| 4, 5 I 6 Gi jmv¸ = 60|
∴ wb‡Y©q ÿz`ªZg msL¨v = 60 + 1 = 61|
36. †Kvb& msL¨v‡K 4 I 6 Øviv fvM Ki‡j cÖwZ‡ÿ‡Î
fvM‡kl 2 _v‡K? Dc‡Rjv cwimsL¨vb Kg©KZv©: 2010
8 10
12 14 DËi: N
4 I 6 Gi jmv¸ = 12|
∴ wb‡Y©q ÿz`ªZg msL¨v = 12 + 2 = 14|
37. me‡P‡q †QvU †Kvb msL¨v‡K 7, 8 I 9 Øviv fvM
Ki‡j 5 Aewkó _v‡K? ivóªvqË e¨vsK wmwbqi Awdmvi: 00
499 599
549 509 DËi: N
7, 8 I 9 Gi jmv¸ = 504|
∴ wb‡Y©q ÿz`ªZg msL¨v = 504 + 5 = 509|
mgvavb
N
M
L
K
mgvavb
N
M
L
K
mgvavb
N
M
L
K
mgvavb
N
M
L
K
2  Math Tutor
 04.04 h_vµ‡g fvM‡kl _vK‡e
†R‡b wbb -26
 avc -G Drcv`K/fvRK¸‡jvi j.mv.¸ †ei Kiæb| (GB KvRwU jmv¸i me A‡¼B Ki‡Z nq)
avc -G cÖwZwU fvRK I fvM‡k‡li cv_©K¨ †ei Kiæb| Gevi ÔcÖvß j.mv.¸Õ †_‡K ÔfvRK I fvM‡k‡li cv_©K¨
we‡qvM Kiæb|
 kU©KvUt wb‡Y©q ÿz`ªZg msL¨v = fvRK¸‡jvi jmv¸ - fvRK I fvM‡k‡li cv_©K¨
†Kb we‡qvM Ki‡Z n‡e, GB KviYwU GLv‡b e¨vL¨v m¤¢e nj bv, KviY †m‡ÿ‡Î j¤^v e¨vL¨v wjL‡Z n‡e| hw` KLbI my‡hvM nq
jvBf K¬v‡m e¨vL¨v Kivi †Póv Kie Bbkvjøvn|
38. †Kvb ÿy`ªZg msL¨v‡K 20, 25, 30, 36 I 48 Øviv
fvM Ki‡j h_vµ‡g 15, 20, 25, 31 I 43 fvM‡kl
_v‡K? KvwiMix wkÿv Awa`߇ii Aax‡b Pxd BÝUªv±i: 03
3425 3478
3595 3565 DËi: M
avc : 20, 25, 30, 36 I 48 GB fvRK¸‡jvi
j.mv.¸ wbY©q Kiæb|
2 20, 25, 30, 36, 48
2 10, 25, 15, 18, 24
3 5, 25, 15, 9, 12
5 5, 25, 5, 3, 4
1, 5, 1, 3, 4
∴ 20, 25, 30, 36 I 48 Gi j.mv.¸ = 2 × 2 ×
3 × 5 × 5 × 3 × 4 = 3600
avc : fvRK I fvM‡k‡li cv_©K¨ †ei Kiæb-
20 25 30 36 48
15 20 25 31 43
5 5 5 5 5
∴ wb‡Y©q ÿz`ªZg msL¨v = 3600 - 5 = 3595|
39. GKwU c~Y© msL¨v wbY©q Kiæb hv‡K 3, 4, 5 Ges 6
fvM Ki‡j h_vµ‡g 2, 3, 4 Ges 5 Aewkó _v‡K?
_vbv mnKvix wkÿv Awdmvi: 05
47 49
57 59 DËi: N
3, 4, 5 Ges 6 Gi jmv¸ = 60 Ges cÖwZ‡ÿ‡Î
Aewkó _v‡K 1|
∴ wb‡Y©q c~Y© msL¨v = 60 - 1 = 59|
40. †Kvb jwNó msL¨v‡K 24 I 36 Øviv fvM Ki‡j
h_vµ‡g 14 I 26 Aewkó _vK‡e? hye Dbœqb Awa`߇ii
mnKvix cwiPvjK: 94
48 62
72 84 DËi: L
24 I 36 Gi jmv¸ = 72 Ges cÖwZ‡ÿ‡Î Aewkó
_v‡K 10 |
∴ wb‡Y©q jwNó msL¨v = 72 - 10 = 62|
 04.05 ÿy`ªZg msL¨vi mv‡_ †hvM ev we‡qvM K‡i
†R‡b wbb - 27
 Ô†Kvb ÿz`ªZg msL¨v + = †hvMdjÕ Gi †ÿ‡Î fvRK¸‡jvi j.mv.¸ n‡”Q Ô†hvMdjÕ, †hvMd‡ji mv‡_ e‡·i
†h msL¨vwU †hvM (+) Kiv n‡e †mB msL¨vwU we‡qvM (  ) Ki‡j Ôÿy`ªZg msL¨vÕ wU cvIqv hv‡e| 41, 42,
43 I 44 bs cÖkœ †`Lyb|
 Ô†Kvb ÿz`ªZg msL¨v  = we‡qvMdjÕ Gi †ÿ‡Î fvRK¸‡jvi j.mv.¸ n‡”Q Ôwe‡qvMdjÕ, we‡qvMdj †_‡K
e‡·i †h msL¨vwU we‡qvM (  ) Kiv n‡e †mB msL¨vwU †hvM (+) Ki‡j Ôÿy`ªZg msL¨vÕ wU cvIqv hv‡e| 45
I 46 bs cÖkœ †`Lyb|
 kU©KvU: †hvM _vK‡j we‡qvM Ges we‡qvM _vK‡j †hvM Ki‡Z n‡e|
41. †Kvb ÿy`ªZg msL¨vi mv‡_ 2 †hvM Ki‡j †hvMdj 3,
6, 9, 12 Ges 15 Øviv wbt‡k‡l wefvR¨ n‡e? `ybx©wZ
`gb ey¨‡iv cwi`k©K: 04
178 358
368 718 DËi: K
3 3, 6, 9, 12, 15
2 1, 2, 3, 4, 5
1, 1, 3, 2, 5
j.mv.¸ = 32325 = 180
 ÿz`ªZg msL¨v = †hvMdj 2 = 180  2 = 178|
mgvavb
N
M
L
K
mgvavb
N
M
L
K
mgvavb
N
M
L
K
mgvavb
N
M
L
K
2  Math Tutor
42. †Kvb ÿz`ªZg msL¨vi mv‡_ 1 †hvM Ki‡j †hvMdj 3,
6, 9, 12, 15 Øviv wbt‡k‡l wefvR¨ n‡e? cvewjK r
mvwf©m Kwgkb KZ…©K wbav©wiZ c`: 01
179 361
359 721 DËi: K
3, 6, 9, 12, 15 Gi jmv¸ = 180|
∴ ÿz`ªZg msL¨v = 180 - 1 = 179|
43. †Kvb ÿz`ªZg msL¨vi m‡½ 5 †hvM Ki‡j †hvMdj 16,
24 I 32 w`‡q wbt‡k‡l wefvR¨ n‡e? wb¤œ gva¨wgK
MwYZ: lô †kÖwY (wkÿvel©-13) : D`vniY 9
96 101
91 19 DËi: M
j.mv.¸ = 96| ∴ ÿz`ªZg msL¨v = 96 - 5=91|
44. †Kvb ÿz`ªZg msL¨vi mv‡_ 3 †hvM Ki‡j †hvMdj 21,
25, 27 I 35 Øviv wefvR¨ nq? beg-`kg †kÖwY MwYZ,
(1983 ms¯‹iY) Abykxjbx 1.1 Gi 26 bs cÖkœ
4725 4728
4722 †Kv‡bvwUB bq DËi: M
j.mv.¸ = 4725| ∴ ÿz`ªZg msL¨v = 4725 -
3 = 4722|
45. †Kvb ÿz`ªZg msL¨v n‡Z 1 we‡qvM Ki‡j we‡qvMdj
9, 12 I 15 Øviv wbt‡k‡l wefvR¨ n‡e? cvewjK mvwf©m
Kwgk‡b mnKvix cwiPvjK: 04
121 181
241 361 DËi: L
3 9, 12, 15
3, 4, 5
j.mv.¸ = 3345 = 180
 ÿz`ªZg msL¨v = 180 + 1 = 181|
46. †Kvb ÿz`ªZg msL¨v n‡Z 5 we‡qvM Ki‡j we‡qvMdj
5, 7, 21 I 35 Øviv wbt‡k‡l wefvR¨ n‡e?
105 110
115 120 DËi: L
5, 7, 21 I 35 Gi j.mv.¸ = 105|
∴ ÿz`ªZg msL¨v = 105 + 5 = 110 |
 04.06 A‡¼i ÿz`ªZg ev e„nËg msL¨v †_‡K †Kvb jwNô msL¨v †hvM ev we‡qvM K‡i
†R‡b ivLyb- 28
 avc  : GKvwaK fvRK¸‡jvi j.mv.¸ †ei K‡i cÖ‡kœ cÖ`Ë wZb/Pvi/cuvP As‡Ki ÿz`ªZg msL¨v/e„nËg msL¨v‡K D³
j.mv.¸ Øviv fvM Ki‡Z n‡e Ges fvM †k‡l GKwU ÔfvM‡klÕ cvIqv hv‡e| g‡b ivLyb: j.mv.¸ Øviv fvM Kiv gv‡b
j.mv.¸ n‡”Q D³ ÿz`ªZg/e„nËg msL¨vi fvRK|
 avc  : cÖ‡kœ we‡qvMdj ejv _vK‡j ÔfvM‡klÕ-B DËi| 47 I 48 bs cÖkœ †`Lyb|
Avi †hvMdj ejv _vK‡j ÔfvRK I fvM‡k‡li cv_©K¨Õ DËi| 49 I 50 bs cÖkœ †`Lyb|
(K) we‡qvM _vK‡j
47. wZb A‡¼i ÿz`ªZg msL¨v n‡Z †Kvb jwNô msL¨v
we‡qvM Ki‡j we‡qvMdj 5, 10, 15 Øviv wefvR¨
n‡e? cÖv_wgK we`¨vjq mnKvix wkÿK: 98
5 15
10 20 DËi: M
5 5, 10, 15
1, 2, 3
5, 10, 15 Gi j.mv.¸ = 523 = 30
wZb A‡¼i ÿz`ªZg msL¨v = 100
30) 100 ( 3
90
10
 wb‡Y©q jwNó msL¨v 10|
 g‡b ivLyb: wZb A‡¼i ÿz`ªZg msL¨v‡K 5, 10, 15 Øviv
fvM Kiv †h K_v, G‡`i j.mv.¸ 30 Øviv fvM KivI
GKB K_v| GRb¨ wZb A‡¼i ÿz`ªZg msL¨v‡K 5, 10,
15 Øviv fvM bv K‡i 30 Øviv fvM Kiv n‡q‡Q|
 Avgiv †Kb fvRKmg~‡ni j.mv.¸ Øviv cÖ`Ë msL¨v‡K
fvM Kwi? †KD PvB‡j e¨vL¨vwU c‡o wb‡Z cv‡ib-
Reve: 5, 10, 15 Gi j.mv.¸ 30 †K GB fvRK¸‡jv Øviv
fvM Ki‡j wbt‡k‡l wefvR¨ n‡e| GKBfv‡e 30 Gi MywYZK
30, 60, 90, 120 BZ¨vw`‡K fvM Ki‡jI 5, 10, 15 Øviv
wbt‡k‡l wefvR¨ n‡e| cÖ‡kœ ejv n‡q‡Q wZb A‡¼i ÿz`ªZg
msL¨v (100) †_‡K GKwU jwNô (ÿz`ªZg) msL¨v we‡qvM
Kivi ci cÖvß we‡qvMdj †h‡nZz wbt‡k‡l wefvR¨ n‡e, †m‡nZz
ÿz`ªZg msL¨vwU 100 Gi †P‡q †QvU n‡e Ges wbwðZfv‡e
msL¨vwU 30 A_ev 30 Gi ¸wYZK 60 wKsev 90 n‡e|
100 - 10 = 90
100 - 40 = 60
100 - 70 = 30
Dc‡ii ZvwjKv †_‡K eySv hv‡”Q 100 †_‡K 10/40/70
mgvavb
N
M
L
K
mgvavb
N
M
L
K
mgvavb
N
M
L
K
mgvavb
N
M
L
K
mgvavb
N
M
L
K
mgvavb
N
M
L
K
2  Math Tutor
†h‡Kvb GKwU msL¨v we‡qvM Ki‡jB Avgiv 30 Gi ¸wYZK
30, 60 I 90 cvw”Q| wKš‘ Avcwb 10, 40, 70 Gi gv‡S
†h‡Kvb msL¨v we‡qvM Ki‡Z cvi‡eb bv, Avcbv‡K we‡qvM
Ki‡Z n‡e G‡`i gv‡S me‡P‡q jwNô msL¨vwU‡K| G‡`i
gv‡S jwNô ( †QvU) msL¨v †KvbwU? wbwðZfv‡e 10| Gfv‡e
cixÿvq mgvavb Ki‡Z †M‡j A‡bK †ewk mgq jvM‡e|
MvwYwZK fvlvq GB mgm¨vwU AviI Kg mg‡q I mn‡R
mgvavb Kiv hvq| Pjyb †`Lv hvK 5, 10 I 15 Gi ¸wYZK
30 †K w`‡q 100 †K fvM Ki‡j wK N‡U!
30) 100( 1 30) 100 ( 2 30) 100 ( 3
30 60 90
70 40 10
GKwU we¯§qKi welq jÿ¨ K‡i‡Qb?
30 w`‡q hLb 1 evi fvM w`jvg ZLb we‡qvM Kivi Rb¨ 10,
40, 70 Gi gv‡S eo msL¨v 70 †cjvg! GKBfv‡e hLb 2
evi fvM w`jvg ZLb 40 Ges hLb 3 evi w`jvg me‡P‡q
†QvU msL¨v 10 †cjvg! A_©vr, m‡ev©”P msL¨K evi fvM w`‡j
me‡P‡q †QvU fvM‡kl P‡j Av‡m| cÖ‡kœ PvIqv jwNô
msL¨vwUB n‡”Q GB †QvU fvM‡klwU| GRb¨B Avgiv
fvRKmg~‡ni ¸wYZK w`‡q cÖ`Ë msL¨v‡K fvM K‡i _vwK|
48. 5 A‡¼i ÿz`ªZg msL¨v n‡Z ‡Kvb jwNô msL¨v we‡qvM
Ki‡j we‡qvMdj 5, 10, 15 Øviv wefvR¨ n‡e?
cÖv_wgK we`¨vjq mnKvix wkÿK, PÆMÖvg wefvM:02
5 10
15 20 DËi: L
(L) †hvM _vK‡j
49. Qq A‡¼i ÿz`ªZg msL¨vi mv‡_ †Kvb ÿz`ªZg msL¨v
†hvM Ki‡j mgwó 2, 4, 6, 8, 10 I 12 Øviv wefvR¨
n‡e? beg-`kg †kÖwY MwYZ, (1983 ms¯‹iY) Abykxjbx 1.1 Gi
42 bs cÖkœ
2 2, 4, 6, 8, 10, 12
2 1, 2, 3, 4, 5, 6
3 1, 1, 3, 2, 5, 3
1, 1, 1, 2, 5, 1
j.mv.¸ = 22325 = 120
Qq A‡¼i ÿz`ªZg msL¨v = 100000
120) 100000 ( 833
960
400
360
40
AZGe, wb‡Y©q ÿz`ªZg msL¨v = 120 - 40 = 80|
50. 999999 -Gi m‡½ †Kvb ÿz`ªZg msL¨v †hvM Ki‡j
†hvMdj 2,3,4,5 Ges 6 Øviv wbt‡k‡l wefvR¨ n‡e?
21Zg wewmGm
21 39
33 29 DËi: K
2, 3, 4, 5 I 6 Gi j.mv.¸ = 60
60) 999999 ( 16666
60
399
360
399
360
399
360
399
360
39
AZGe, wb‡Y©q j.mv.¸ = 60 - 39
= 21|
(M) †hvM ev we‡qvM ejv bv _vK‡j
 e„nËg msL¨vi †ÿ‡Î fvM‡kl we‡qvM K‡i wbt‡k‡l
wefvR¨ Ki‡Z nq|
 ÿz`ªZg msL¨vi †ÿ‡Î ÔfvRK I fvM‡klÕ Gi cv_©K¨
†hvM K‡i wbt‡k‡l wefvR¨ Ki‡Z nq|
51. Qq A‡¼i †Kvb ÿz`ªZg msL¨v 25, 50, 75 I 125
w`‡q wbt‡k‡l wefvR¨?
5 25, 50, 75, 125
5 5, 10, 15, 25
1, 2, 3, 5
j.mv.¸ = 55235 = 750
Qq A‡¼i ÿz`ªZg msL¨v = 100000
750) 100000 ( 133
750
2500
2250
2500
2250
250
(GLv‡b, wbt‡k‡l wefvR¨ msL¨vwU n‡e 100000 n‡Z
250 Kg A_ev 100000 n‡Z (750 - 250) ev
500 †ewk| wKš‘ 100000 n‡Z 250 Kg n‡j
msL¨vwU (100000 - 250) ev 99750, hv cuvP A‡¼i
weavq MÖnY‡hvM¨ bq|)
 wb‡Y©q ÿy`ªZg msL¨v = 100000+ (750 - 250)
= 100500| (DËi)
mgvavb
mgvavb
N
M
L
K
mgvavb
N
M
L
K
Math Tutor  3
52. Qq A‡¼i †Kvb e„nËg msL¨v 27, 45, 60, 72 I 96
Øviv wefvR¨? beg-`kg †kÖwY MwYZ, (1983 ms¯‹iY)
Abykxjbx 1.1 Gi 38 bs cÖkœ
2 27, 45, 60, 72, 96
2 27, 45, 30, 36, 48
2 27, 45, 15, 18, 24
3 27, 45, 15, 9, 12
3 9, 15, 5, 3, 4
5 3, 5, 5, 1, 4
3, 1, 1, 1, 4
j.mv.¸ = 22233534
= 4320
Qq A‡¼i e„nËg msL¨v = 999999
4320 ) 999999 ( 231
8640
13599
12960
6399
4320
2079
(GLv‡b, wbt‡k‡l wefvR¨ msLvwU n‡e 999999 n‡Z
2079 Kg A_ev 999999 n‡Z ( 4320 - 2079) ev
2,241 †ewk| wKš‘ 999999 †_‡K 2,241 †ewk n‡j
msL¨vwU (999999 + 2241) ev 1,002,240, hv mvZ
A‡¼i weavq MÖnY †hvM¨ bq|)
 wb‡Y©q e„nËg msL¨v = 999999 - 2079
= 997920
53. cuvP A‡¼i †Kvb e„nËg msL¨v‡K 16, 24, 30 I 36
w`‡q fvM Ki‡j cÖ‡Z¨Kevi fvM‡kl 10 _v‡K?
(06 bs Gi gZ cvuP A‡¼I e„nËg msL¨vwU wbY©q
K‡i, Zvici 10 †hvM Ki‡jB DËi P‡j Avm‡e|)
4 16, 24, 30, 36
2 4, 6, 30, 9
3 2, 3, 15, 9
2, 1, 5, 3
j.mv.¸ = 4232353 = 720
Qq A‡¼i e„nËg msL¨v = 99999
720 ) 99999 ( 138
720
2799
2160
6399
5760
639
 wb‡Y©q e„nËg msL¨v = 99999 - 639
= 99360
wKš‘ cÖkœg‡Z, cÖ‡Z¨Kevi fvM‡kl 10 we`¨gvb _v‡K|
 e„nËg msL¨v = 99360 + 10 = 99370 (DËi)
M.mv.¸ (H.C.M)
(K) ¸YbxqK (Factor)t ¸YbxqK Kx? ¸YbxqK n‡”Q
†Kvb msL¨vi fvRKmg~n ev Drcv`K mg~n| †hgb-
20 ¸YbxqKmg~n Kx Kx?
20 Gi ¸YbxqKmg~n = 1, 2, 4, 5, 10, 20
20 Gi me‡P‡q †QvU ¸YbxqK 1 Ges me‡P‡q eo
Drcv`K 20|
 g‡b ivLyb: 1 †h‡Kvb msL¨vi Drcv`K ev ¸YbxqK
Ges †Kvb msL¨vi me‡P‡q eo Drcv`K msL¨vwUi
mgvb| mnR Ki‡j ej‡j, †Kvb msL¨vi Drcv`K
KLbB Zvi †P‡q eo n‡Z cv‡i bv|
(L) mvaviY ¸YbxqK (Common Factor)t Common
kãwUi gv‡b †h‡nZz GKvwaK wRwb‡mi gv‡S mv`„k¨ ev
wgj Ask, †m‡nZz mvaviY ¸YbxqK (Common
Factor) ej‡Z GKvwaK msL¨vi gv‡S †h ¸YbxqK ev
Drcv`Kmg~n wgj ev mv`„k¨ Av‡Q †m¸‡jv‡K eySvq|
†hgb- 24 I 36 Gi mvaviY ¸YbxqK mg~n Kx Kx?
24 = 1, 2, 3, 4, 6, 8, 12, 24
36 = 1, 2, 3, 4, 6, 9, 12, 18, 36
28 I 36 Gi ¸YbxqK¸‡jvi gv‡S mvaviY
¸YbxqKmg~n n‡”Q 1, 2, 3, 4, 6, 12|
(M) Mwiô mvaviY ¸YbxqK (Highest Common
Factor) t Mwiô mvaviY ¸YbxqK ev M.mv.¸ n‡”Q
mvaviY ¸YYxqK¸‡jvi gv‡S me‡P‡q eo ¸YYxqK|
†hgb- Dc‡ii 24 I 36 Gi mvaviY ¸YbxqK 1, 2,
mgvavb
mgvavb
2  Math Tutor
3, 4, 6, 12 Gi gv‡S me‡P‡q eo ev Mwiô mvaviY
¸YbxqK ev M.mv.¸ n‡”Q 12|
 g‡b ivLyb- M.mv.¸ wbY©‡qi gvÎ ewY©Z †KŠkjwU
msÁv eyS‡Z mvnvh¨ Ki‡jI GB c×wZwU mgq
mv‡cÿ, ZvB M.mv.¸ wbY©‡qi wKQz †KŠkj Avgiv wb‡P
Zz‡j aijvg|
 04.07 M.mv.¸ wbY©‡qi †KŠkjmg~n
(K) fvM c×wZt †h `ywU msL¨vi M.mv.¸ wbY©q Ki‡eb,
†mB msL¨v`ywUi gv‡S †QvU msL¨vwU w`‡q eo
msL¨vwU‡K fvM ïiæ Ki‡eb| me‡k‡l †h fvRKwU
w`‡q wbt‡k‡l wefvR¨ n‡e, †mwU n‡e M.mv.¸|
48. 12 I 30 Gi M.mv.¸ wbY©q Kiæb|
(12 †QvU msL¨v, ZvB 12 w`‡q 30 †K fvM Ki‡Z n‡e|)
12) 30 ( 2
24
6 ) 12 ( 2
12
0
 12 w`‡q 30 †K fvM Kivi ci 6 fvM‡kl _vKj|
Zvici 6 w`‡q cÖ_g fvRK 12 †K fvM Kiv nj|
GeviI hw` fvM‡kl _vKZ, †mB fvM‡kl w`‡q Zvi
c~‡e©i fvRK 6 †K fvM KiZvg|
49. 28, 48 Ges 72 Gi M.mv.¸ wbY©q Kiæb|
(Gevi `ywU msL¨vi cwie‡Z© 3wU msL¨v †`qv Av‡Q|
cÖ_‡g 28 I 48 w`‡q ïiæ Kiv hvK|)
28) 48 ( 1
28
20) 28 ( 1
20
8) 20 ( 2
16
4) 8 ( 2
8
0
(Gevi 28 I 48 †_‡K cÖvß M.mv.¸ 4 w`‡q 72 †K
fvM Ki‡Z n‡e|)
4) 72 ( 18 (†kl fvRK 4-B msL¨v 3wU M.mv.¸)
72
0
 28, 48 Ges 72 Gi M.mv.¸ 4|
(L) mswÿß c×wZ‡Z M.mv.¸ wbY©qt GLb †h c×wZ wb‡q
Av‡jvPbv Kie, GwU LyeB ¸iæZ¡c~Y© c×wZ| G
c×wZwU A‡bKUv j.mv.¸ wbY©‡qi c×wZi KvQvKvwQ|
50. 144, 240, 612 Gi M.mv.¸ wbY©q Kiæb|
2 144, 240, 612
2 72, 120, 306
3 36, 60, 153
12, 20, 51
(jÿ¨ Kiæb- fvRK 2, 2 I 3 Øviv cÖ‡Z¨K‡K fvM Kiv
†M‡jI GLb Avi Ggb †Kvb fvRK cvIqv hv‡”Q bv, hv‡K
w`‡q 12, 20 I 51 msL¨v wZbwU‡K GKmv‡_ fvM Kiv
hvq| GLv‡b meKqwU‡K fvM Ki‡Z cviv fvRK 2, 2, 3
Gi ¸YdjB n‡”Q M.mv.¸ |
 M.mv.¸ = 223 = 12|
 G c×wZi myweav n‡”Q, j.mv.¸ I M.mv.¸ GKmv‡_
†ei Kiv hvq| Pjyb j.mv.¸ †ei Kiv hvK-
2 144, 240, 612
2 72, 120, 306
3 36, 60, 153
4 12, 20, 51
3 3, 5, 51
1, 5, 17
 j.mv.¸ = 22343517
= 12,240
51. †Kvb e„nËg msL¨v Øviv 57, 93, 183 †K fvM Ki‡j
†Kvb fvM‡kl _vK‡e bv? wb¤œ gva¨.MwYZ(6ô†kÖwY)Abykxjbx1.3
(cyivZb)
3 57, 93, 183
19, 31, 61
M.mv.¸ = 3|
 wb‡Y©q e„nËg msL¨v = 3|
(M) M.mv.¸ KLb 1 nq?: †h me msL¨vi M.mv.¸ wbY©q
Kie, Zv‡`i gv‡S hw` 1 e¨ZxZ Avi †Kvb fvRK/
Drcv`K Kgb ev mv`„k¨ bv _v‡K| †hgb- 5 I 7 Gi
M.mv.¸ 1| KviY 5 I 7 Gi gv‡S 1 Qvov Avi †Kvb
Kgb Drcv`K †bB|
52. 2x I 3x Gi M.mv.¸ KZ?
2x I 3x Gi M.mv.¸ = x |
53. `ywU msLvi AbycvZ 11 : 17 n‡j msL¨v `ywUi M.mv.¸
KZ?
awi, msL¨v `ywU n‡”Q 11x I 17x
 M.mv.¸ = x
54. `ywU msL¨vi M.mv.¸ 3 n‡j msL¨v `ywU Kx Kx?
msL¨v `ywU n‡e 3x I 3y | KviY 3x, 3y aivi
Kvi‡Y GLv‡b 3 mv`„k¨ ev wgj Av‡Q, ZvB 3 M.mv.¸
mgvavb
mgvavb
mgvavb
mgvavb
mgvavb
mgvavb
mgvavb
2  Math Tutor
n‡e|
 g‡b ivLyb, Dc‡ii 05, 06 I 07 bs cÖ‡kœi
mgvavb¸‡jv fv‡jv K‡i eySzb, Avgiv cieZx©‡Z GB
AvBwWqv¸‡jv Kv‡R jvMve Bbkvjøvn&|
 04.08 M.mv.¸Õi †ewmK mgm¨vewj
g‡b ivLyb 29
 mgvbfv‡e fvM K‡i †`qvi A_© n‡”Q M.mv.¸‡K wfwË a‡i fvM K‡i †`qv| ZvB †Kvb mgm¨vq mgvbfv‡e fvM K‡i
†`qv eySv‡j g‡b Ki‡eb M.mv.¸ Ki‡Z ejv n‡q‡Q| 01 I 02 bs cÖkœ †`Lyb|
 ÔcÖ_g I wØZxq msL¨vi ¸Ydj Ges wØZxq I Z…Zxq msL¨vi ¸YdjÕ Gi gv‡S wØZxq msL¨vwU `ywU ¸Yd‡jB Av‡Q e‡j
wØZxq msL¨vwU n‡”Q M.mv.¸| 03 bs cÖkœ †`Lyb|
55. 125 wU Kjg I 145 wU †cwÝj KZR‡bi g‡a¨
mgvbfv‡M fvM Kiv hv‡e? wbev©Pb Kwgkb mwPevj‡qi
†Rjv wbev©Pb Awdmvi I mnKvix mwPe-04
10 15
5 20 DËi: M
5 125, 145
25 , 29
 5 evj‡Ki gv‡S Kjg I †cwÝj¸‡jv mgvbfv‡e
fvM Kiv hv‡e|
 125) 145 ( 1
125
20) 125 ( 6
120
5) 20 ( 4
20
0
 5 evj‡Ki gv‡S Kjg I †cwÝj¸‡jv mgvbfv‡e
fvM Kiv hv‡e|
56. KZRb evjK‡K 125 wU Kgjv‡jey Ges 145 wU Kjv
mgvbfv‡e fvM K‡i †`qv hvq? A_© gš¿Yvj‡qi Awdm
mnKvix -11
10 Rb‡K 05 Rb‡K
15 Rb‡K 25 Rb‡K DËi: L
57. cª_g I wØZxq msL¨vi ¸Ydj 35 Ges wØZxq I
Z…Zxq msL¨vi ¸Ydj 63| wØZxq msL¨vwU KZ?
cwiKíbv gš¿Yvj‡qi WvUv cÖ‡mwms Acv‡iUi: 02
5 6
7 8 DËi: M
7 35, 63
5, 9
 wØZxq msL¨vwU 7|
 1g 2q = 5  7
2q 3q = 7  9
 wØZxq msL¨vwU 7|
58. GKwU †jvnvi cvZ I GKwU Zvgvi cv‡Zi •`N©¨
h_vµ‡g 672 †m. wg. I 960 †m. wg.| cvZ `yBwU
†_‡K †K‡U †bIqv GKB gv‡ci me‡P‡q eo UzKivi
•`N©¨ KZ n‡e? cÖ‡Z¨K cv‡Zi UzKivi msL¨v wbY©q
Ki| wb¤œ gva¨wgKMwYZ(6ô†kÖwY)Abykxjbx1.3
cvZ `yBwU †_‡K †K‡U †bIqv GKB gv‡ci me‡P‡q
eo UzKivi •`N©¨ nj 672 I 960 Gi gv‡S me‡P‡q
eo Kgb ¸YbxqK ev M.mv.¸|
3 672, 960
8 224, 320 (Avcbviv †QvU †QvU msL¨v
4 28, 40 w`‡qI fvM Ki‡Z cv‡ib)
7, 10
 me‡P‡q eo UzKivi •`N©¨ (M.mv.¸) = 384
= 96
†jvnvi cv‡Zi UzKivi msL¨v = 672  96 = 7wU
Zvgvi cv‡Zi UzKivi msL¨v = 960  96 = 10wU|
59. `yBwU Wªv‡g h_vµ‡g 868 wjUvi I 980 wjUvi `ya
Av‡Q| me‡P‡q eo gv‡ci cvÎ Øviv `yBwU Wªv‡gi
`ya c~Y©msL¨K ev‡i gvcv hv‡e? wb¤œ gva¨wgKMwYZ(6ô†kÖwY)
Abykxjbx1.3(cyivZb)
868 I 980 Gi M.mv.¸ 28 n‡”Q DËi|
60. `ywU AvqZvKvi ¸`vg N‡ii •`N©¨ h_vµ‡g 28 I 20
wgUvi Ges cÖ¯’ h_vµ‡g 12, 14 wgUvi| me‡P‡q eo
†Kvb AvqZ‡bi cv_i w`‡q †Nii †g‡S cyivcywi †X‡K
†djv hv‡e (Ges †Kvb cv_i AcPq n‡e bv) ? beg-
`kg †kÖwY MwYZ, (1983 ms¯‹iY) Abykxjbx 1.1 Gi 46 bs cÖkœ
cÖ_‡g ¸`vg Ni `ywUi †ÿÎdj †ei K‡i wb‡Z n‡e
Ges Zv‡`i M.mv.¸ †ei Ki‡Z n‡e|
1g N‡ii †ÿÎdj = 2812 = 336 eM©wgUvi
2q N‡ii †ÿÎdj = 20  14 = 280 eM©wgUvi
mgvavb
mgvavb
mgvavb
mgvavb
N
M
L
K
N
M
L
K
mgvavb
N
M
L
K
2  Math Tutor
336 I 280 Gi M.mv.¸ wbY©q Ki‡Z n‡e|
4 336, 280
2 84, 70
7 42, 35
6, 5
M.mv.¸ = 427 = 56|
myZivs, wb‡Y©q cv_‡ii AvqZb = 56 eM©wgUvi|
61. GKwU AvqZvKvi N‡ii •`N©¨ 30 wgUvi, cÖ¯’ 12 wgUvi
Av‡iKwU AvqZvKvi nj N‡ii •`N©¨ 20 wgUvi I cÖ¯’
15 wgUvi| me‡P‡q eo †Kvb AvqZ‡bi Kv‡Vi UyKiv
w`‡q Dfq N‡ii †g‡S cyivcywi †X‡K †djv hv‡e? beg-
`kg †kÖwY MwYZ, (1983 ms¯‹iY) Abykxjbx 1.1 Gi 46 bs cÖkœ
1g N‡ii †ÿÎdj = 3012 = 360 eM©wgUvi
2q N‡ii †ÿÎdj = 2015 = 300 eM©wgUvi
15 360, 300
4 24, 20
6, 5
(eo eo msL¨v w`‡q fvM Ki‡j mgq Kg jvM‡e, Z‡e
Avcwb `ye©j n‡j †QvU †QvU msL¨v w`‡q †Póv Kiæb)
M.mv.¸ = 154 = 60|
myZivs, wb‡Y©q eo Kv‡Vi UzKivi AvqZb = 60
eM©wgUvi|
 04.09 cÖ‡Z¨Kevi 1 wU msL¨v Aewkó _vK‡j I †mwU D‡jøL _vK‡j
†R‡b wbb-30
 cÖ‡Z¨Kevi 1wU msL¨v Aewkó _vK‡j †mwU cÖ‡kœ cÖ`Ë cÖwZwU ¸wYZK †_‡K fvM‡kl/Aewkó we‡qvM Ki‡Z n‡e|
 Zvici we‡qvMK…Z ¸wYZK¸‡jvi M.mv.¸ Ki‡Z n‡e|
62. †Kvb e„nËg msL¨v w`‡q 102 I 186 †K fvM Ki‡j
cÖ‡Z¨Kevi 6 Aewkó _vK‡e| WvKI†Uwj‡hvMv‡hvMwnmveiÿK
Kg©KZv© :03
12 15
16 22 DËi: K
†h e„nËg msL¨v Øviv 102 I 186 †K fvM
Ki‡j cÖ‡Z¨Kevi fvM‡kl _vK‡e †mwU nj (102
- 6) = 96 I (186 - 6) = 180|
96 ) 180 ( 1
96
84) 96 ( 1
84
12) 84 ( 7
84
0
 96 I 180 Gi M.mv.¸ = 12|
 wb‡Y©q e„nËg msL¨v = 12|
 Drcv`‡K we‡kølY cÖ‡qvM K‡i M.mv.¸ wbY©q:
2 96, 180
2 48, 90
3 24, 45
8, 15
 M.mv.¸ = 223 = 12|
63. †Kvb e„nËg msL¨v Øviv 100 I 184 †K fvM Ki‡j
cÖ‡Z¨Kevi fvM‡kl 4 _vK‡e? wb¤œ gva¨wgKMwYZ(6ô†kÖwY)
Abykxjbx1.3Gi 5bscÖkœ DËi: 12
 04. 10 cÖwZwU ¸wYZ‡Ki Rb¨ c„_K c„_K Aewkó/fvM‡kl _vK‡j
†R‡b wbb-31
 cÖwZwU ¸wYZ‡Ki Rb¨ c„_K c„_K fvM‡kl _vK‡j cÖ`Ë ¸YwZKmg~n †_‡K c„_K c„_Kfv‡e fvM‡kl we‡qvM Ki‡Z
n‡e|
 Zvici we‡qvMK…Z ¸wYZK ¸‡jvi M.mv.¸ wbY©q Ki‡Z n‡e|
64. †Kvb e„nËg msL¨v Øviv 27, 40 I 65 †K fvM Ki‡j
h_vµ‡g 3, 4, 5 fvM‡kl _vK‡e? ewnivMgb I cvm‡cvU©
Awa`߇ii mnKvix cwiPvjK-11; ¯^ivóª gš¿Yvj‡qi Kviv
Z¡Ë¡veavqK -10; wb¤œ gva¨wgK MwYZ (6ô †kÖwY), 1.3 Gi 6 bs
16 14
12 10 DËi: M
27 - 3 = 24
40 - 4 = 36
65 - 5 = 60
mgvavb
N
M
L
K
mgvavb
N
M
L
K
mgvavb
2  Math Tutor
24, 36 I 60 Gi M.mv.¸ wbY©q Ki‡Z n‡e|
12 24, 36, 60 (fvM c×wZ‡ZI Ki‡Z cv‡ib)
2, 3, 5
 24, 36 I 60 Gi M.mv.¸ = 12|
 wb‡Y©q e„nËg msL¨v 12|
65. 728 Ges 900 †K mev©‡cÿv eo †Kvb msL¨v Øviv
fvM Ki‡j h_vµ‡g 8 Ges 4 Aewkó _vK‡e?
cÖwZiÿv gš¿Yvj‡qi Aaxb GWwgwb‡÷ªwUf Awdmvi I cv‡mv©bvj
Awdmvi-06
12 13
14 16 DËi:
728 - 8 = 720
900 - 4 = 896
720) 896 ( 1
720
176) 720 ( 4
704
16) 176 ( 11
176
0
 720 I 896 Gi M.mv.¸ = 16|
 4 720, 896
4 180, 224 (wefvR¨Zvi bxwZ e¨envi Ki‡j
45, 56 Lye `ªæZ mgvavb Kiv hvq)
 720 I 895 Gi M.mv.¸ = 44 = 16|
66. 159 wU Avg, 227 wU Rvg I 401 wU wjPz me‡P‡q
†ewk KZRb evj‡Ki g‡a¨ mgvbfv‡e fvM K‡i w`‡j
3 wU Avg, 6wU Rvg I 11wU wjPz Szwo‡Z _vK‡e?
159 - 3 = 156 wU Avg
227 - 6 = 221 wU Rvg
401 - 11 = 390 wU wjPz
156, 221 I 390 Gi M.mv.¸ wbY©q Ki‡Z n‡e|
13 156, 221, 390
12, 17, 30
 156, 221 I 390 Gi M.mv.¸ = 13|
myZivs, wb‡Y©q me‡P‡q †ewk evj‡Ki msL¨v 13 Rb|
 g‡b ivLyb: `ªæZ wn‡me Kivi Rb¨ Avcbv‡K Aek¨B
bvgZv I wefvR¨Zvi bxwZi Dci `Lj _vK‡Z n‡e|
 04.11 cÖ‡Z¨Kevi 1 wU msL¨v Aewkó _vK‡j I †mwU D‡jøL bv _vK‡j
†R‡b ivLyb-32
 cÖwZ †ÿ‡Î GKB Aewkó n‡j I †mwU D‡jøL bv _vK‡j cÖ`Ë msL¨v a, b, c Gi Rb¨ (b - a) (c - b) (c - a) m~Î
cÖ‡qvM K‡i M.mv.¸ Kivi msL¨v¸‡jv Lyu‡R †ei Ki‡Z n‡e|
67. †Kvb& e„nËg msL¨v Øviv 1305, 4665 I 6905-†K
fvM Ki‡j cÖwZ‡ÿ‡Î GKB Aewkó _v‡K? beg-
`kg †kÖwY MwYZ, (1983 ms¯‹iY) Abykxjbx 1.1 Gi 46 bs cÖk
4665 - 1305 = 3360 (b - a)
6905 - 4665 = 2240 (c - b)
6905 - 1305 = 5600 (c - a)
3360, 2240 I 5600 Gi M.mv.¸ wbY©q Ki‡Z
n‡e|
2240) 3360 ( 1
2240
1120) 2240 ( 2
2240
0
1120 ) 5600 ( 5
5600
0
3360, 2240 I 5600 Gi M.mv.¸ = 1120
wb‡Y©q e„nËg msL¨v 1120|
68. e„nËg msL¨v N Øviv 1305, 4665 I 6905 †K fvM
fvM Ki‡j cÖwZ‡ÿ‡Î GKB Aewkó _v‡K| N Gi
A¼¸‡jvi mgwó KZ? WvPevsjve¨vsKwj.(cÖ‡ekbvwiAwdmvi)
2012
4 5
6 8 DËi: K
67 bs Gi gZ mgvavb Kivi ci e„nËg msL¨vwU
(N) wbY©q Kiæb| Gici cÖkœvbyhvqx, D³ e„nËg
msL¨vwUi A¼¸‡jvi †hvM Kiæb, Zvn‡jB DËi cvIqv
hv‡e, †mwUi †hvMdjB n‡e DËi|
e„nËg msL¨vwU = 1120
AZGe, e„nËg msL¨vwUi A¼¸‡jvi mgwó
= 1 + 1 + 2 + 0 = 4|
69. †Kvb& e„nËg msL¨v Øviv 4003, 4126 I 4249-‡K
fvM Ki‡j cÖwZ‡ÿ‡Î GKB Aewkó _v‡K? cjøxmÂq
e¨vsK(K¨vk)2018
43 41
L
K
mgvavb
N
M
L
K
mgvavb
mgvavb
mgvavb
N
M
L
K
2  Math Tutor
45 50 DËi: L
4126 - 4003 = 123
4249 - 4126 = 123
4249 - 4003 = 246
123, 123 I 246 Gi M.mv.¸ wbY©q Ki‡Z n‡e|
123) 123 ( 1
123
0
123 ) 246 ( 2
246
0
cÖ‡kœ †QvU GKUv RwUjZv Av‡Q| mivmwi DËi †bB|
Ack‡b 123 Gi ¸wYZK _vK‡jI DËi nZ, wKš‘
†mwUI †bB| ZvB 123 †K Drcv`‡K we‡kølY K‡i
†`L‡Z n‡e, 123 Gi †Kvb msL¨vi ¸wYZK|
3 123
41
41 Gi ¸wYZK n‡”Q 123, ZvB 123 Øviv fvM Ki‡j
†hgb cÖwZ‡ÿ‡Î GKB Aewkó _vK‡e GKBfv‡e 41
Øviv fvM Ki‡jI GKB Aewkó _vK‡e|
 wb‡Y©q e„nËg msL¨v = 41|
 04.12 fMœvs‡ki j.mv.¸ I M.mv.¸
†R‡b wbb-33
 fMœvskmg~‡ni j.mv.¸ : fMœvs‡ki j.mv.¸ wbY©q Kivi wbqg n‡”Q fMœvskmg~‡ni je¸‡jvi j.mv.¸ †ei Ki‡Z n‡e
Ges ni¸‡jvi M.mv.¸ †ei Ki‡Z n‡e|
fMœvs‡ki j.mv.¸ =
M.mv.¸
jvi
ni¸‡
j.mv.¸
jvi
je¸‡
 fMœvskmg~‡ni M.mv.¸ : fMœvs‡ki M.mv.¸ wbY©q Kivi wbqg n‡”Q fMœvskmg~‡ni je¸‡jvi M.mv¸ †ei Ki‡Z n‡e Ges
ni¸‡jvi j.mv.¸ †ei Ki‡Z n‡e|
fMœvs‡ki M.mv.¸ =
j.mv.¸
jvi
ni¸‡
M.mv.¸
jvi
je¸‡
 g‡b ivLyb: fMœvs‡ki j.mv.¸ PvB‡j j‡e j.mv¸ Ges fMœvs‡ki M.mv.¸ PvB‡j  j‡e M.mv.¸ |
70.
3
1
,
6
5
,
9
2
Ges
27
4
Gi j.mv.¸ KZ?
54
1
27
10
3
20
†Kv‡bvwUB bq DËi: M
1, 5, 2 Ges 4 Gi j.mv.¸ = 20
3, 6, 9 Ges 27 Gi M.mv.¸ = 3
 wb‡Y©q j.mv.¸ =
3
20
|
71.
3
2
,
9
8
,
81
64
Ges
27
10
Gi M.mv.¸ KZ?
3
2
81
2
3
160
81
160
DËi: L
2, 8, 64 Ges 10 Gi M.mv.¸ = 2
3, 9, 81 Ges 27 Gi j.mv.¸ = 81
 wb‡Y©q M.mv.¸ =
81
2
|
72.
3
2
,
5
3
,
7
4
Ges
13
9
Gi j.mv.¸ KZ?
36
36
1
1365
1
455
12
DËi: K
73.
10
9
,
25
12
,
35
18
Ges
40
21
Gi M.mv.¸ KZ?
5
3
5
252
1400
3
700
63
DËi: M
N
M
L
K
N
M
L
K
mgvavb
N
M
L
K
mgvavb
N
M
L
K
mgvavb
N
M
2  Math Tutor
74. wZbwU N›Uv GK‡Î †e‡R 1
2
1
wgwbU, 2
2
1
wgwbU,
3
2
1
wgwbU AšÍi evR‡Z jvMj| b~¨bZg KZÿY ci
NÈv¸‡jv cybivq GK‡Î evR‡e? cwiKíbvgš¿YvjqGescÖevmx
Kj¨vYI•e‡`wkKKg©ms¯’vbgš¿Yvj‡qimnKvixcwiPvjK2006
12
2
1
wgwbU 32
2
1
wgwbU
52
2
1
wgwbU 72
2
1
wgwbU DËi: M
(wgkÖ fMœvsk¸‡jv‡K AcÖK…Z fMœvs‡k iƒcvšÍi K‡i wbb)
1
2
1
wgwbU ev
2
3
wgwbU, 2
2
1
wgwbU ev
2
5
wgwbU,
3
2
1
wgwbU ev
2
7
wgwbU Gi j.mv.¸-B n‡e DËi|
3, 5 Ges 7 Gi j.mv.¸ = 105 Ges 2, 2 Ges 2
Gi M.mv.¸ = 2
 wb‡Y©q j.mv.¸ =
2
105
= 52
2
1
|
 04.13 j.mv.¸ I M.mv.¸I m¤úK©
(K) msL¨v `ywUi ¸Ydj = j. mv. ¸  M. mv. ¸
75. `yBwU msL¨vi M. mv.¸ I j. mv.¸ -Gi ¸Ydj msL¨v
`ywUi - mve-†iwR÷vit92
†hvMd‡ji mgvb ¸Yd‡ji mgvb
we‡qvMd‡ji mgvb fvMd‡ji mgvb DËi: L
76. `ywU msL¨vi ¸Ydj 1376| msL¨v `ywUi j. mv. ¸ 86
n‡j M. mv. ¸ KZ? Z_¨gš¿Yvj‡qiAax‡bmnKvixcwiPvjK,
†MÖW-2t03
16 18
24 22 DËi: K
msL¨v `ywUi ¸Ydj = j. mv. ¸  M. mv. ¸
ev, 1376 = 86  M. mv. ¸
 M.mv.¸ =
86
1376
= 16|
77. `yBwU msL¨vi ¸Ydj 4235 Ges Zv‡`i j. mv. ¸
385| msL¨v `yBwUi M. mv. ¸ KZ? KvwiMwiwkÿv
Awa`߇iiAax‡bPxdBÝUªv±i:03
17 15
11 13 DËi: M
78. `ywU msL¨vi M. mv.¸ 16 Ges j. mv. ¸ 192| GKwU
msL¨v 48 n‡j, Aci msL¨vwU KZ? cÖv_wgKwe`¨vjq
mnKvixwkÿK:01
60 62
64 68 DËi: M
GKwU msL¨v  Aci msL¨v = j. mv. ¸  M. mv. ¸
ev, 48  Aci msL¨v = 192  16
 Aci msL¨v =
48
16
192 
= 64|
79. `ywU msL¨vi j.mv.¸ 48 Ges M. mv. ¸ 4 | GKwU
msL¨v 16 n‡j Aci msL¨vwU KZ? ¯’vbxqmiKvigš¿Yvj‡qi
Aax‡bGjwRBwW‡ZmnKvixcÖ‡KŠkjx:05
12 22
24 32 DËi: K
Aci msL¨v =
16
4
48 
= 12|
†R‡b wbb -34
 GKwU m~Î w`‡q wZbwU m~Î AvqË¡ Kiv hvK-
 msL¨v¸‡jvi j.mv.¸ = msL¨v¸‡jvi Abycv‡Zi ¸Ydj  msL¨v¸‡jvi M. mv. ¸
 msL¨v¸‡jvi M.mv.¸ =
¸Ydj
Zi
Abycv‡
jvi
msL¨v¸‡
j.mv.¸
jvi
msL¨v¸‡
 AbycvZ¸wji ¸Ydj =
M.mv.¸
jvi
msL¨v¸‡
j.mv.¸
jvi
msL¨v¸‡
  bs m~Î †_‡K evKx m~θ‡jv G‡m‡Q| LvZvq wj‡L evievi cÖ¨vKwUm Kiæb, mn‡RB Avq‡Ë¡ P‡j Avm‡e|
mgvavb
N
M
L
K
mgvavb
N
M
L
K
N
M
L
K
mgvavb
N
M
L
K
N
M
L
K
mgvavb
N
M
L
K
2  Math Tutor
(L) `ywU msL¨vi AbycvZ I M.mv.¸ †_‡K j.mv.¸ wbY©q
80. `ywU msL¨vi AbycvZ 3 : 4 Ges Zv‡`i M.mv.¸ 4
n‡j, Zv‡`i j.mv.¸ KZ?
12 16
24 48 DËi: N
g‡bKwi, msL¨v `ywU = 3x I 4x
Ges Zv‡`i Mmv¸ = x
cÖkœg‡Z, x = 4
∴ msL¨v `ywU : 3 x = 3  4 = 12
I 4x = 4  4 = 16|
myZivs, 2 12, 16
2 6, 8
3, 4
12 I 16 Gi j.mv.¸- 2  2  3  4 = 48|
 kU©KvUt msL¨v¸‡jvi j.mv.¸ = msL¨v¸‡jvi
Abycv‡Zi ¸Ydj  M. mv. ¸ = 3  4  4= 48|
 kU©KvU †UKwb‡Ki e¨vL¨vt- msL¨v `ywUi AbycvZ‡K
¸.mv.¸ Øviv ¸Y Ki‡j msL¨v `ywU cvIqv hvq| †hgb-
3 : 4 AbycvZ‡K M.mv.¸ 4 Øviv ¸Y K‡i cÖvß msL¨v
`ywU n‡”Q- 34 = 12 Ges 44 = 16|
∴ 12 I 16 Gi j.mv.¸ n‡”Q = 4 12, 16
3, 4
= 4 34 = 48|
(M.mv.¸ 4 I AbycvZ 3 : 4)
81. `ywU msL¨vi AbycvZ 5 : 6 Ges Zv‡`i M. mv. ¸ 4
n‡j, msL¨v `ywUi j. mv. ¸ KZ? _vbvmn wkÿvAwdmvi:99
100 120
150 180
msL¨v¸‡jvi j.mv.¸ = 564 = 120
82. `yBwU msL¨vi AbycvZ 5 : 6 Ges Zv‡`i M.mv.¸ 6
n‡j, msL¨v `yBwUi j.mv.¸ KZ? `ybx©wZ`gbey¨‡ivcwi`k©K:04
210 180
150 120 DËi: L
83. `yBwU msL¨vi AbycvZ 5 : 6 Ges Zv‡`i M.mv.¸ 8
n‡j Zv‡`i j.mv.¸ KZ? RbcÖkvmbgš¿Yvj‡qicÖkvmwbK
Kg©KZ©v:16
200 224
240 248 DËi: M
84. `yBwU msL¨vi 5 : 7 Ges Zv‡`i M.mv.¸ 6 n‡j, msL¨v
`yBwUi j.mv.¸ KZ? cÖvK-cÖv_wgKmnKvixwkÿK(†WjUv):14
210 180
150 120 DËi: K
 (M) `ywU msL¨vi AbycvZ I j.mv.¸ †_‡K M.mv.¸ wbY©q
85. `ywU msL¨vi AbycvZ 4 : 5 Ges msL¨v `ywUi j.mv.¸
60 n‡j, M.mv.¸ KZ?
5 1
2 3 DËi: N
g‡bKwi, M.mv.¸ = x Ges `ywU msL¨v = 4x I 5x
(AbycvZ‡K ¸.mv.¸ Øviv ¸Y Ki‡j msL¨v `ywU cvIqv hvq)
∴ `ywU msL¨vi j.mv.¸ = x 4x, 5x
4, 5
= x 45 = 20x
cÖkœg‡Z, 20x = 60
ev, x =
20
60
= 3
myZivs, wb‡Y©q M.mv.¸ = 3|
 kU©KvUt msL¨v؇qi M.mv.¸ =
¸Ydj
Zi
Abycv‡
j.mv.¸
= 3
2
60
5
4
60


 o
86. `yBwU msL¨vi AbycvZ 7 : 5 Ges Zv‡`i j.mv.¸ 140
n‡j msL¨v `yBwUi M.mv.¸ KZ? 39Zg wewmGm (we‡kl)
wcÖwjwgbvwi
12 6
9 4 DËi: N
msL¨v؇qi M.mv.¸ =
¸Ydj
Zi
Abycv‡
j.mv.¸
=
5
7
140

= 4|
87. `ywU msL¨vi AbycvZ 7 : 8 Ges Zv‡`i j.mv.¸ 280
n‡j msL¨v `yBwUi M.mv.¸ KZ? 15Zg †emiKvwi cÖfvlK
wbeÜb (K‡jR/ch©vq) : 18
4 5
6 7 DËi: L
N
M
L
K
mgvavb
N
M
L
K
mgvavb
N
M
L
K
N
M
L
K
N
M
L
K
N
M
L
K
mgvavb
N
M
L
K
mgvavb
N
M
L
K
2  Math Tutor
msL¨v؇qi M.mv.¸ =
8
7
280

= 5|
88. `ywU msL¨vi AbycvZ 5 : 7 Ges Zv‡`i j.mv.¸ 350|
msL¨v `ywUi M.mv.¸- ¯^v¯’¨ cÖ‡KŠkj Awa`߇ii mn. cÖ‡KŠkjx
(wmwfj) : 17
50 70
35 10 DËi: N
89. `ywU msL¨vi AbycvZ 5 : 6 Ges Zv‡`i j.mv.¸ 120;
msL¨v `ywUi M.mv.¸ KZ? evsjv‡`k †ijI‡qi Dcmn.
cÖ‡KŠkjx (wmwfj) : 16
3 4
5 6 DËi: L
90. wZbwU msL¨vi AbycvZ 3 : 4 : 5 Ges Zv‡`i j.mv.¸
660 n‡j, msL¨v wZbwUi M.mv.¸ KZ?
5 4
3 11 DËi: N
g‡bKwi, msL¨v wZbwUi M.mv.¸ = x
Ges msL¨v wZbwU = 3x, 4x I 5x
∴ msL¨v·qi j.mv.¸ = x 3x, 4x, 5x
3, 4, 5
= x345 = 60x
kZ©g‡Z, 60x = 660
ev, x =
60
660
= 11
myZivs, msL¨v wZbwUi M.mv.¸ = 11|
91. wZbwU msL¨vi AbycvZ 3 : 4 : 5 Ges Zv‡`i j.mv.¸
240| G‡`i M.mv.¸ KZ?
8 7
6 4 DËi: N
kU©KvUt msL¨v¸‡jvi M.mv.¸ =
5
4
3
240


4
6
240


o
|
 (N) `ywU msL¨vi AbycvZ I M.mv.¸/j.mv.¸ †_‡K msL¨v `ywU wbY©q, ÿz`ªZg ev e„nËg msL¨v wbY©q
†R‡b wbb - 35
 msL¨v `ywUi AbycvZ‡K ¸.mv.¸ Øviv ¸Y Ki‡j msL¨v `ywU cvIqv hvq|
92. `ywU msL¨vi AbycvZ 7 : 9 Ges msL¨v `ywUi M.mv.¸ 5
n‡j, ÿz`ªZg msL¨vwU KZ?
21 14
7 35 DËi: N
g‡b Kwi, ÿz`ªZg msL¨vwU = 7x I e„nËg msL¨vwU
= 9x Ges msL¨v `ywUi M.mv.¸ = x
cÖkœg‡Z, x = 5
(M.mv.¸ x Gi mv‡_ `v‡Mi M.mv.¸ 5 Gi Zzjbv Kiv n‡q‡Q)
myZivs, ÿz`ªZg msL¨vwU = 7x = 7  5 = 35|
 kU©KvU t `ywU msL¨vi AbycvZ‡K M.mv.¸ Øviv ¸Y
Ki‡j msL¨v `ywU cvIqv hvq| myZivs, msL¨v `ywU-
7 : 9
75 95
= 35 = 45
(ÿz`ªZg) (e„nËg)
mivmwi Abycv‡Zi ÿz`ªZg ivwkwU‡K M.mv.¸ 5 Øviv
¸Y Kiæb, 75 = 35 (ÿz`ªZg msL¨v)
93. wZbwU msL¨vi M.mv.¸ 12 Ges Zv‡`i AbycvZ 1 : 2 :
3 n‡j, msL¨v wZbwU nj-
6, 12, 18 10, 20, 30
12, 24, 36 24, 48, 72 DËi: M
g‡bKwi, msL¨v 3wU = x : 2x : 3x
Ges Zv‡`i M.mv.¸ = x |
cÖkœg‡Z, x = 12
myZivs, msL¨v 3 wU n‡”Q- x = 12, 2x = 212 =
24 I 3x = 312 = 36 |
 kU©KvUt 1 : 2 : 3
M.mv.¸ 12 Øviv ¸Y K‡i- 12 24 36
94. `ywU msL¨vi AbycvZ 5 : 6 Ges Zv‡`i j.mv.¸ 360
n‡j msL¨v `yÕwU wK wK ? AvbmviI wfwWwcAwa`߇iimv‡K©j
A¨vWRy‡U›U:05
45, 54 50, 60
60, 72 75, 90 DËi: M
g‡bKwi, †QvU msL¨vwU = 5x I eo msL¨vwU = 6x
(GLv‡b x n‡”Q msL¨v `ywUi M.mv.¸)
msL¨v `ywUi j.mv.¸ = x 5x, 6x
5, 6
= x56 = 30x
cÖkœg‡Z, 30x = 360
mgvavb
N
M
L
K
mgvavb
N
M
L
K
mgvavb
N
M
L
K
mgvavb
N
M
L
K
mgvavb
N
M
L
K
N
M
L
K
N
M
L
K
mgvavb
2  Math Tutor
ev, x = 12
30
360

myZivs, msL¨v `ywU = 5x = 512 = 60
Ges 6x = 6 12 = 72|
 kU©KvUt j.mv.¸ †K AbycvZ `ywUi ¸Ydj Øviv fvM
Ki‡j M.mv.¸ cvIqv hvq|
A_©vr, M.mv.¸ =
30
360
6
5
360


12
 Ges M.mv.¸
Øviv Abycv‡Zi ivwk `ywU‡K ¸Y Ki‡j msL¨v `ywU
cvIqv hvq| msL¨v `ywU n‡”Q-
5 : 6
512 612
= 60 = 72
 msL¨v `ywU = 60 I 72|
95. `ywU msL¨vi AbycvZ 3 : 4 Ges msL¨v `ywUi j.mv.¸
84 n‡j, eo msL¨vwU KZ?
21 24
28 84 DËi: M
msL¨v `ywUi M.mv.¸ = 7
4
3
84


Ges msL¨v
`ywU n‡”Q- 3 : 4
37 47
= 21 = 28
(†QvU) (eo)
 eo msL¨vwU = 28|
 Abycv‡Zi eo ivwkwU‡K M.mv.¸ 7 Øviv ¸Y Ki‡jB
mivmwi eo msL¨vwU cvIqv hv‡e|
 eo msL¨v = 47 = 28|
96. wZbwU msL¨vi AbycvZ 3 : 4 : 5 Ges Zv‡`i j.mv.¸
1200 n‡j, msL¨v wZbwU Kx Kx?
60 80
100 me KqwU DËi: N
msL¨v wZbwUi M.mv.¸ = 20
5
4
3
1200



Ges
msL¨v wZbwU n‡”Q- 3 : 4 : 5
M.mv.¸ 20 w`‡q ¸Y K‡i- 60 80 100
97. `yÕwU msL¨vi AbycvZ 5 : 8 Ges Zv‡`i j.mv.¸ 120
n‡j, msL¨v `ywU KZ? Rb¯^v¯’¨ cÖ‡KŠkj Awa`߇ii Dc-
mnKvix cÖ‡KŠkjx (wmwfj) : 15
25, 40 20, 32
15, 24 10, 16 DËi: M
 (O) cvuPwgkvwj
98. `ywU msL¨vi AbycvZ 2 : 3 Ges Zv‡`i M.mv.¸ I
j.mv.¸-Gi ¸Ydj 33750 n‡j, msL¨v `ywUi
†hvMdj KZ?
250 425
325 375 DËi: N
g‡bKwi, msL¨v `ywU = 2x I 3x
∴ msL¨v `ywUi ¸Ydj = 2x3x = 6x2
(msL¨v`ywUi ¸Ydj = j. mv. ¸  M. mv. ¸ m~Îvbymv‡i
kZ©g‡Z wjL‡Z cvwi|)
kZ©g‡Z, 6x2
= 33750
ev, x2
=
6
33750
ev, x2
= 5625
∴ x = 5625 = 75
 msL¨v `ywUi †hvMdj = 2x + 3x
= 5x = 5  75 = 375
99. `ywU msL¨vi M.mv.¸ 2 Ges Zv‡`i j.mv.¸ 70 n‡j,
msL¨v `ywU wK wK?
14, 10 2, 35
6, 70 4, 70 DËi: K
g‡bKwi, msL¨v `ywU = 2x I 2y
(msL¨v؇qi gv‡S 2 n‡”Q M.mv.¸ 2)
 j. mv. ¸ = 2 2x, 2y = 2xy = 2xy
x , y
cÖkœg‡Z, 2xy = 70
ev, xy = 35
2
70

xy = 35 †_‡K x I y Gi gvb n‡Z cv‡i-
1  35 = 35  1 I 35 A_ev
5  7 = 35  5 I 7
GLb, x I y Gi gvb 1 I 35 n‡j, msL¨v `ywU n‡e,
2 1 = 2 I 2 35 = 70
A_ev, x I y Gi gvb 5 I 7 n‡j, msL¨v `ywU n‡e,
2 5 = 10 I 27 = 14
†h‡nZz Ack‡b 14 I 10 Av‡Q †m‡nZz msL¨v `ywU
mgvavb
N
M
L
K
mgvavb
N
M
L
K
N
M
L
K
mgvavb
N
M
L
K
mgvavb
N
M
L
K
2  Math Tutor
n‡e 14, 10| (DËi)
 Option Test:
msL¨v`ywUi j.mv.¸  M.mv.¸ = msL¨v؇qi ¸Ydj
ev, 70  2 = 140
(cÖgvY Ki‡Z n‡e Ack‡bi msL¨v؇qi ¸Ydj = 140)
14, 10  14  10 = 140 (mwVK DËi)
2, 35  235 = 70 (mwVK bq) ...
100. `ywU msL¨vi mgwó 1000 Ges Zv‡`i j.mv.¸ 8919
n‡j msL¨v `ywU wK wK?
993, 7 989, 11
987, 13 991, 9 DËi: N
g‡bKwi, msL¨v `ywU = x I y, mgwó = x + y Ges
j.mv.¸ = xy (msL¨vØq mn‡gŠwjK n‡j Zv‡`i
¸YdjB j.mv.¸)
GLv‡b, x + y = 1000 Ges xy = 8919
me KqwU Ack‡bi msL¨v؇qi †hvMdj 1000, ZvB
†h Ack‡bi msL¨v؇qi ¸Ydj 8919 †mwUB DËi
n‡e| ïay Ackb Gi msL¨v؇qi ¸Ydj wg‡j
hv‡”Q- 9919 = 8919|
101. `ywU msL¨vi M.mv.¸ , mgwó I j.mv.¸ h_vµ‡g 36,
252 I 432| msL¨v `ywU wbY©q Ki| ? beg-
`kg †kÖwY MwYZ, (1983 ms¯‹iY) Abykxjbx 1.1 Gi 21 bs cÖk
g‡b Kwi, msL¨v `ywU 36x I 36y (x I y mn‡gŠwjK)
kZ©vbymv‡i, 36x + 36y = 252
ev, 36 (x + y) = 252
 x + y =
36
252
= 7
Avevi, 36x I 36y Gi j.mv.¸ = 36xy
kZv©bymv‡i, 36xy = 432
 xy =
36
432
= 12
GLv‡b, xy =12 †_‡K x I y Gi †h †h gvb n‡Z cv‡i-
xy = 1  12, 2 6 , 34 |
†h‡nZz, x + y = 7, †m‡nZz x = 3 I y = 4 n‡e|
 msL¨vØq = 36x = 363 = 108 I
36y = 364 = 144
 g‡b ivLyb: Dˇii w`‡K jÿ¨ K‡i †`Lyb, msL¨v`ywU
M.mv.¸ 36 Gi ¸wYZK| me mgq g‡b ivL‡eb, cÖ‡kœ
M.mv.¸ _vK‡j msL¨vØq memgq M.mv.¸Õi ¸wYZK
n‡e|
102. `ywU msL¨vi M.mv.¸ 15 Ges j.mv.¸ 180| msL¨v
`ywUi mgwó 105 n‡j, msL¨v `ywU wK wK?
30, 75 35, 70
45, 60 40, 65 DËi: M
msL¨v`ywU Aek¨B M.mv.¸ 15 Gi ¸wYZK n‡e, GB
`„wó‡KvY †_‡K Ackb I ev` hv‡e| evKx I
Ack‡bi gv‡S Gi msL¨v`ywUi j.mv.¸ 180, hv
cÖ‡kœ D‡jøwLZ msL¨v؇qi j.mv.¸ 180 Gi mv‡_ wg‡j
hvq|
103. `ywU msL¨vi M.mv.¸ I j.mv.¸ h_vµ‡g 12 I 72|
msL¨v `ywUi mgwó 60 n‡j, Zv‡`i g‡a¨ GKwU nj-
12 60
24 72 DËi: M
meKqwU Ackb M.mv.¸ 12 Gi ¸wYZK| ZvB
evKx kZ©¸‡jv hvPvB K‡i †`L‡Z n‡e| msL¨v `ywUi
mgwó 60 Abymv‡i, `ywU msL¨vi GKwUB hw` 60 ev 72
nq, Znv‡j Ackb I ev` c‡i hv‡”Q|
 Ackb K Abymv‡i, GKwU msL¨v 12 n‡j, AciwU
60 -12 = 48, hv‡`i j.mv.¸ 48 nIqvq ev`|
 Ackb M Abymv‡i, GKwU msL¨v 24 n‡j, AciwU
60 - 24 = 36, hv‡`i j.mv.¸ 72 nIqvq GwUB
mwVK DËi|
104. `ywU msL¨vi j.mv.¸ I M.mv.¸ Gi ¸Ydj 32| msL¨v
`ywUi AšÍi 14 n‡j, eo msL¨vwU KZ?
4 2
18 16 DËi: N
g‡bKwi, `ywU msL¨v x I y, G‡`i ¸Ydj = xy
Ges AšÍi = x - y (†hLv‡b x > y)
Avgiv Rvwb, `ywU msL¨vi ¸Ydj = M.mv.¸ I
j.mv.¸Õi ¸Ydj, Zvn‡j xy = 32 ej‡Z cvwi|
xy = 32 †_‡K 321, 162 I 84 msL¨v
hyMj cvIqv hvq| cÖkœvbymv‡i, †h‡nZz msL¨v `ywUi
AšÍi 14 n‡e, †m‡nZz 162 msL¨vhyMjwU mwVK|
 eo msL¨vwU = 16|
105. `ywU msL¨vi M.mv.¸, AšÍi I j.mv.¸ h_vµ‡g 12, 60
I 2448| msL¨v `ywU wbY©q Ki| beg-`kg †kÖwY MwYZ,
(1983 ms¯‹iY) Abykxjbx 1.1 Gi 22 bs cÖk , 17Zg wewmGm;
15Zg wkÿK wbeÜb (¯‹zj ch©vq-2)
104, 204 104, 144
104, 244 144, 204 DËi: N
g‡b Kwi, msL¨v `ywU 12x I 12y (†hLv‡b x > y
mgvavb
N
M
L
K
mgvavb
N
M
L
K
N
L
mgvavb
N
M
L
K
M
M
K
N
L
mgvavb
N
M
L
K
mgvavb
N
mgvavb
N
M
L
K
L
K
Math Tutor  3
Ges x, y mn‡gŠwjK )
kZ©vbymv‡i, 12x - 12y = 60
ev, 12 (x - y) = 60
 x - y =
12
60
= 5 |
Avevi, 12x I 12y Gi j.mv.¸ = 12xy
kZv©bymv‡i, 12xy = 2448
 xy =
12
2448
= 204
GLv‡b, xy = 204 I x - y = 5 Abymv‡i x I y Gi
gvb wbY©q Kiv hvK-
2 204
2 102
3 51
17
x y = 1712 A_©vr, x = 17 Ges y = 12 msL¨v
`ywU wbY©xZ nj|
 msL¨vØq = 12x = 1217 = 204 I
12y = 1212 = 144
 kU©KvUt msL¨v`ywU cÖ`Ë M.mv.¸ 12 Gi ¸wYZK n‡Z
n‡e| wKš‘ Ackb , I Gi 104, 12 Gi
¸wYZK bq, ZvB GB Ackb wZbwU ev` hv‡e| Ackb
Gi 144 I 204, 12 Gi ¸wYZK, ZvB GwUB
mwVK DËi|
 msL¨v؇qi AšÍidj 60 wKbv GB kZ©wU Ackb †_‡K
hvPvB K‡i DËi †ei Kiv hvq| Ackb¸‡jvi gv‡S
ïay Gi msL¨v؇qi AšÍi 60 n‡e|
106. `ywU msL¨vi M.mv.¸, AšÍi I j.mv.¸ h_vµ‡g 12,
60 I 2448| msL¨v `ywU wbY©q Kiæb| 33 Zg wewmGm
wjwLZ
105 bs cÖ‡kœi mgvavb †`Lyb|
107. `ywU msL¨vi M.mv.¸ 21 Ges j.mv.¸ 4641| GKwU
msL¨v 200 I 300 Gi ga¨eZx©; AciwU KZ? beg-
`kg †kÖwY MwYZ, (1983 ms¯‹iY) Abykxjbx 1.1 Gi 39 bs cÖkœ ;
34 Zg wewmGm wjwLZ; 20Zg wewmGm wjwLZ
g‡b Kwi, msL¨v `ywU 21x I 21y
(GLv‡b x I y ci¯úi mn‡gŠwjK)
21x I 21y Gi j.mv.¸ = 21xy
cÖkœg‡Z, 21xy = 4641
 xy =
21
4641
= 221
xy = 221 †_‡K x I y Gi msL¨vhyMj¸‡jv †ei Kiv
hvK-
13 221
17
xy = 1  221
xy = 13  17
x I y mn‡gŠwjK nIqvq x = 1, y = 221 I x =
13, y = 17 Dfq gvb wVK Av‡Q| wKš‘ ÔmsL¨vwU
200 I 300 Gi ga¨eZx© n‡Z n‡eÕ GB k‡Z© x =
13, y = 17 gvb mwVK|
AZGe, wb‡Y©q msL¨v؇qi GKwU = 21x = 2113
= 273 I AciwU = 21y = 2117 = 357|
DËi: Aci msL¨vwU 357|
108. Qq A‡¼i ÿz`ªZg msL¨vi mv‡_ †Kvb ÿz`ªZg msL¨v
†hvM Ki‡j mgwó 2, 4, 6, 8, 10 I 12 Øviv wefvR¨
n‡e? cywjk mv‡R©›U wb‡qvM cixÿv 1997
43 bs cÖ‡kœi mgvavb †`Lyb|
109. cuvP A‡¼i e„nËg msL¨vi mv‡_ †Kvb ÿz`ªZg msL¨v
†hvM Ki‡j †hvMdj 5, 8, 12 I 14 Øviv wefvR¨?
ewnivMgb I cvm‡cvU© Awa`߇ii Awdm mnKvix Kvg
Kw¤úDUvi gy`ªvÿwiK 2013
5, 8, 12 I 14-Gi j. mv. ¸ wbY©q Kwi|
2 5, 8, 12, 14
2 5, 4, 6, 7
5, 2, 3, 7
 j.mv.¸ = 225237 = 840
cvuP A‡¼i e„nËg msL¨v = 99999
840) 99999 ( 119
840
1599
840
7599
7560
39
mgvavb
mgvavb
mgvavb
mgvavb
N
N
M
L
K
ïay wjwLZ Av‡jvPbv
 
2  Math Tutor
AZGe, wb‡Y©q ÿz`ªZg msL¨v = 840 - 39 = 801|
(DËi)
110. cvuP A‡¼i e„nËg msL¨vi m‡½ †Kvb ÿz`ªZg msL¨v
†hvM Ki‡j †hvMdj 6, 8, 10 I 14 Øviv wefvR¨
n‡e? 10g wewmGm wjwLZ
109 bs mgvav‡bi Abyiƒc | wWwR‡Ui cv_©K¨ †`Lv
†M‡jI j.mv.¸ I DËi GKB n‡e A_©vr DËi 801|
111. GKwU ¯‹z‡j wWªj Kivi mgq 8, 10 ev 12 wU jvBb Kiv
hvq| H ¯‹z‡j AšÍZ c‡ÿ KZ Rb QvÎQvÎx wQj? RvZxq
wbivcËv †Mv‡q›`v (NSI) 2019
8, 10 Ges 12 Gi j.mv.¸-B n‡e b~¨bZg QvÎQvÎx
msL¨v|
2 8, 10, 12
2 4, 5, 6
2, 5, 3
 8, 10 Ges 12 Gi j.mv.¸ = 22253
= 120
AZGe, H ¯‹z‡j QvÎ-QvÎx msL¨v 120 Rb|
112. †Kvb •mb¨`‡ji •mb¨‡K 8, 10 ev 12 mvwi‡Z Ges
eM©vKv‡iI mvRv‡bv hvq| †mB •mb¨`‡ji ÿz`ªZg msL¨vwU
wbY©q Kiæb hv Pvi A¼wewkó| 15 Zg wewmGm wjwLZ
2 8, 10, 12
2 4, 5, 6
2, 5, 3
∴ j.mv.¸ = 222 5 3 = 120
Drcv`K Abymv‡i 120 Rb •mb¨‡K eM©vKv‡i mvRv‡bv
hv‡e bv, ZvQvov msL¨vwU Pvi A¼wewkóI bv| GRb¨
120 †K c~Y©eM© Kivi Rb¨ (253) Øviv ¸Y
Ki‡Z n‡e|
c~Y©eM© msL¨vwU = 1202 5 3 = 3600|
Gevi cÖvß c~Y©eM© msL¨vwU‡K eM©vKv‡i mvRv‡bv hv‡e
Ges GwU GKwU Pvi A¼wewkó msL¨v|
myZivs, wb‡Y©q •mb¨ msL¨v 3600| (DËi)
113. 400 I 500-Gi ga¨eZx© †Kvb †Kvb msL¨v‡K 12, 15 I
20 Øviv fvM w`‡j cÖwZ †ÿ‡Î 10 Aewkó _v‡K? beg-`kg
†kÖwY MwYZ, (1983 ms¯‹iY) Abykxjbx 1.1 Gi 28 bs cÖkœ
12, 15 I 20 Gi j.mv.¸ wbY©q Ki‡Z n‡e|
2 12, 15, 20
2 6, 15, 10
3 3, 15, 5
5 1, 5, 5
1, 1, 1
j.mv.¸ = 2235 = 60|
myZivs wb‡Y©q msL¨v 60 Gi ¸wYZK + 10 n‡e Ges
Dnv 400 I 500 Gi ga¨eZx© n‡e|
601 + 10 = 70, 400 I 500 Gi ga¨eZx© bq
602 + 10 = 130, 400 I 500 Gi ga¨eZx© bq
603 + 10 = 190, 400 I 500 Gi ga¨eZx© bq
604 + 10 = 250, 400 I 500 Gi ga¨eZx© bq
605 + 10 = 310, 400 I 500 Gi ga¨eZx© bq
606 + 10 = 370, 400 I 500 Gi ga¨eZx© bq
607 + 10 = 430, 400 I 500 Gi ga¨eZx©
608 + 10 = 490, 400 I 500 Gi ga¨eZx©
AZGe, msL¨v `ywU 430 I 490|
114. †Kvb ÿz`ªZg msL¨v‡K 3, 4, 5, 6 I 7 Øviv fvM
Ki‡j cÖwZ‡ÿ‡Î 1 Aewkó _v‡K wKš‘ 11 Øviv fvM
w`‡j †Kvb Aewkó _v‡K bv? beg-`kg †kÖwY MwYZ, (1983
ms¯‹iY) Abykxjbx 1.1 Gi 35 bs cÖkœ
2 3, 4, 5, 6, 7
3 3, 2, 5, 3, 7
1, 2, 5, 1, 7
 j.mv.¸ = 23257 = 420|
myZivs wb‡Y©q ÿz`ªZg msL¨v 420 Gi ¸wYZK + 1
n‡e Ges Dnv 11 Øviv wefvR¨ n‡e|
420  1 + 1 = 421, 11 Øviv wefvR¨ bq
420  2 + 1 = 841, 11 Øviv wefvR¨ bq
420  3 + 1 = 1261, 11 Øviv wefvR¨ bq
420  4 + 1 = 1681, 11 Øviv wefvR¨ bq
420  5 + 1 = 2101, 11 Øviv wefvR¨|
AZGe, wb‡Y©q msL¨v 2101 |
115. KZK¸‡jv PvivMvQ cÖwZ mvwi‡Z 3, 5, 6, 8, 10 I
12 wU K‡i jvMv‡Z wM‡q †`Lv †Mj †h cÖwZev‡i 2 wU
Pviv evwK _v‡K wKš‘ cÖwZ mvwi‡Z 19wU K‡i jvMv‡j
GKwU PvivI Aewkó _v‡K bv| b~¨bZg KZK¸‡jv
PvivMvQ wQj? beg-`kg †kÖwY MwYZ, (1983 ms¯‹iY)
Abykxjbx 1.1 Gi 28 bs cÖkœ
114 bs Gi Abyiƒc |
j.mv.¸ = 120
----------------
----------------
1206 + 2 = 722, 19 Øviv wefvR¨ n‡e|
 wb‡Y©q PvivMv‡Qi msL¨v 722 wU| (DËi)
116. †gvUvgywU GK nvRvi wjPz _vKvi K_v, Ggb GK Szwo
wjPz 80 Rb evj‡Ki g‡a¨ fvM Ki‡Z wM‡q †`Lv †Mj
†h 30wU wjPz DØ„Ë _v‡K; wKš‘ evj‡Ki msL¨v 90 n‡j
mgvavb
mgvavb
mgvavb
mgvavb
mgvavb
mgvavb
Math Tutor  3
wjPz¸‡jv mgvb fv‡M fvM Kiv †hZ| SzwowU‡Z
cÖK…Zc‡ÿ KZwU wjPz wQj? 11Zg wewmGm wjwLZ
wjPzi msL¨v n‡e 80 Gi ¸wYZK + 30 Ges Dnv
90 Øviv wefvR¨ n‡e|
80  1 + 30 = 110 , 90 Øviv wefvR¨ bq
80  2 + 30 = 190, 90 Øviv wefvR¨ bq
80  3 + 30 = 270, 90 Øviv wefvR¨ bq
80  4 + 30 = 350, 90 Øviv wefvR¨ bq
80  5 + 30 = 430, 90 Øviv wefvR¨ bq
80  6 + 30 = 510, 90 Øviv wefvR¨ bq
80  7 + 30 = 590, 90 Øviv wefvR¨ bq
80  8 + 30 = 670, 90 Øviv wefvR¨ bq
80  9 + 30 = 750, 90 Øviv wefvR¨ bq
80  10 + 30 = 830, 90 Øviv wefvR¨ bq
80  11 + 30 = 910, 90 Øviv wefvR¨ bq
80  12 + 30 = 990, 90 Øviv wefvR¨|
 wb‡Y©q wjPzi msL¨v = 990 wU|
117. ÿz`ªZg msL¨vwU wbY©q Kiæb hvnv 13 Øviv wefvR¨ wKš‘
4, 5, 6 I 9 Øviv fvM Ki‡j cÖwZ‡ÿ‡Î 1 Aewkó
_v‡K| 29 Zg wewmGm wjwLZ
114 bs Gi Abyiƒc| DËi: 1261
118. 13 Øviv wefvR¨ ÿz`ªZg †Kvb msL¨v‡K 3, 4, 5, 6 I
7 Øviv fvM Ki‡j h_vµ‡g 1, 2, 3, 4 I 5 Aewkó
_v‡K? beg-`kg †kÖwY MwYZ, (1983 ms¯‹iY) Abykxjbx 1.1
Gi 36 bs cÖkœ
cÖ`Ë fvRK I fvM‡k‡li ga¨Kvi e¨eavb-
3 - 1 = 2
4 - 2 = 2
5 - 3 = 2
6 - 4 = 2
7 - 5 = 2
3, 4, 5, 6 I 7 Gi j.mv.¸ wbY©q Kiv hvK-
2 3, 4, 5, 6, 7
3 3, 2, 5, 3, 7
1, 2, 5, 1, 7
 j.mv.¸ = 23257 = 420|
myZivs, wb‡Y©q ÿz`ªZg msL¨vwU n‡e 420 Gi ¸wYZK
 2 Ges Dnv 13 Øviv wefvR¨|
4201  2 = 418, 13 Øviv wefvR¨ bq
4202  2 = 838, 13 Øviv wefvR¨ bq
4203  2 = 1258, 13 Øviv wefvR¨ bq
420 4  2 = 1678, 13 Øviv wefvR¨ bq
420 5  2 = 2098, 13 Øviv wefvR¨ bq
420 6  2 = 2518, 13 Øviv wefvR¨ bq
4207  2 = 2938, 13 Øviv wefvR¨ |
AZGe, wb‡Y©q msL¨v 2938|
119. Qq A‡¼i ÿz`ªZg msL¨v wbY©q Kiæb hv‡K 5, 7, 12,
15 Øviv fvM Ki‡j Aewkó h_vµ‡g 2, 4, 9, 12
_vK‡e| 25Zg wewmGm wjwLZ
cÖ`Ë fvRK I fvM‡k‡li ga¨Kvi e¨eavb-
5 - 2 = 3
7 - 4 = 3
12 - 9 = 3
15 - 12 = 3
5, 7, 12 I 15 Gi j.mv.¸ wbY©q Kiv hvK-
5 5, 7, 12, 15
3 1, 7, 12, 3
1, 7, 4, 1
 j.mv.¸ = 5374 = 420|
Qq A‡¼i ÿz`ªZg msL¨v = 100000
420) 100000 ( 238
840
1600
1260
3400
3360
40
fvRK I fvM‡k‡li cv_©K¨ = 420 - 40 = 380
 wb‡Y©q msL¨v = 100000 + 380 - 3
= 100377 (DËi)
 wba©vwiZ A‡¼i ÿz`ªZg msL¨v‡K wbt‡k‡l wefvR¨
Ki‡Z ÔfvRK I fvM‡kl Gi cv_©K¨Õ †hvM Ki‡Z
nq|
 fvRKmg~n I Zv‡`i cÖ‡Z¨‡Ki fvM‡kl _vK‡j
wbt‡k‡l wefvR¨ msL¨v †_‡K †mwU we‡qvM Ki‡Z nq|
 cÖ`Ë A‡¼ cÖ_‡g Qq A‡¼i ÿz`ªZg msL¨v‡K wbt‡k‡l
wefvR¨ Kiv n‡q‡Q Ges c‡i 3 we‡qvM K‡i cÖwZwU
fvR‡Ki h_vµ‡g Aewkó ivLvi kZ© c~iY Kiv n‡q‡Q|
120. GKwU AvqZvKvi N‡ii •`N©¨ 30 wgUvi, cÖ¯’ 12
wgUvi| Av‡iKwU AvqZvKvi nj N‡ii •`N©¨ 20 wgUvi
I cÖ¯’ 15 wgUvi| me‡P‡q eo †Kvb AvqZ‡bi UzKiv
w`‡q Dfq N‡ii †g‡S cy‡ivcywi †X‡K †djv hv‡e?
beg-`kg †kÖwY MwYZ, (1983 ms¯‹iY) Abykxjbx 1.1 Gi 36 bs
cÖkœ ; 11Zg wewmGm
1g N‡ii †ÿÎdj = 30 wgUvi  12 wgUvi
mgvavb
mgvavb
mgvavb
mgvavb
mgvavb
4  Math Tutor
= 360 eM©wgUvi
2q N‡ii †ÿÎdj = 20 wgUvi  15 wgUvi
= 300 eM©wgUvi
360 I 300 Gi M.mv.¸ wbY©q Ki‡Z n‡e| wb‡Y©q
M.mv.¸ n‡e me‡P‡q eo AvqZ‡bi Kv‡Vi UzKiv|
300) 360 ( 1
300
60) 300 ( 5
300
0
M.mv.¸ = 60 |
AZGe, wb‡Y©q Kv‡Vi UzKivi AvqZb = 60 eM©wgUvi
1g N‡i Kv‡Vi msL¨v = 360  60 = 6 wU
2q N‡i Kv‡Vi msL¨v = 300  60 = 5 wU
†gvU Kv‡Vi msL¨v = 5 + 6 = 11 wU|
121. `ywU msL¨vi AbycvZ 3 : 4 Ges Zv‡`i j.mv.¸ 180
n‡j msL¨v `ywU wbY©q Kiæb| ewnivMgb I cvm‡cvU©
Awa`߇ii Awdm mnKvix Kvg Kw¤úDUvi gy`ªvÿwiK 2013
g‡b Kwi, msL¨v `ywU = 3x I 4x
Ges G‡`i j.mv.¸ = 3x  4x = 12x
kZ©g‡Z, 12x = 180
 x =
12
180
= 15|
myZivs, msL¨v `ywU h_vµ‡g 3x = 3  15 = 45
Ges 4x = 4 15 = 60| (DËi)
122. `ywU msL¨vi AbycvZ 5 : 7 Ges Zv‡`i M.mv.¸ 4 n‡j
msL¨v `ywUi j.mv.¸ KZ? weÁvb I cÖhyw³ gš¿Yvj‡qi
mvuU gy`ªvÿwiK Kvg-Kw¤úDUvi Acv‡iUi/Awdm mnKvix
Kvg-Kw¤úDUvi gy`ªvÿwiK 2017
g‡b Kwi, msL¨v `ywU = 5x I 7x Ges G‡`i
M.mv.¸ = x
kZ©g‡Z, x = 4
 msL¨v `ywU h_vµ‡g 5x = 54 = 20
Ges 7x = 74 = 28|
GLb, 20 I 28 Gi j.mv.¸ wbY©q Ki‡Z n‡e|
2 20, 28
2 10, 14
5, 7
wb‡Y©q j.mv.¸ = 2257 = 140| (DËi)
123. `ywU msL¨vi ¸Ydj 3380, Gi M.mv.¸ 13, msL¨v
`ywUi j.mv.¸ KZ? evsjv‡`k †ijI‡qi mnKvix
†÷kb gv÷vi 2016
Avgiv Rvwb,
msL¨v `ywUi ¸Ydj = msL¨v `ywUi j.mv.¸  M.mv.¸
ev, 3380 = msL¨v `ywUi j.mv.¸  13
 msL¨v `ywUi j.mv.¸ =
13
3380
= 260| (DËi)
 wet `ªt avivevwnK †cv÷¸‡jv‡Z †cR bv¤^vi wVK †bB
Ges cÖwZwU Aa¨v‡qi web¨vm g~j eB‡q wKQzUv cwieZ©b
I cwiea©b n‡q hy³ n‡e|
mgvavb
mgvavb
mgvavb

Más contenido relacionado

La actualidad más candente

Iba mcq math solution( 2017 2019) by khairul alam [www.itmona.com]
Iba mcq math solution( 2017 2019) by khairul alam  [www.itmona.com]Iba mcq math solution( 2017 2019) by khairul alam  [www.itmona.com]
Iba mcq math solution( 2017 2019) by khairul alam [www.itmona.com]Itmona
 
Chakuri bidhi / Service Rule
Chakuri bidhi / Service RuleChakuri bidhi / Service Rule
Chakuri bidhi / Service Rulesayeedss
 
06. mathematics arts pm t 9-10 genarel scince [onlinebcs.com]
06. mathematics arts pm t 9-10 genarel scince [onlinebcs.com]06. mathematics arts pm t 9-10 genarel scince [onlinebcs.com]
06. mathematics arts pm t 9-10 genarel scince [onlinebcs.com]Itmona
 
Math2 [www.onlinebcs.com]
Math2 [www.onlinebcs.com]Math2 [www.onlinebcs.com]
Math2 [www.onlinebcs.com]Itmona
 
Govt bank exam [www.chakritips.com]
Govt bank exam [www.chakritips.com]Govt bank exam [www.chakritips.com]
Govt bank exam [www.chakritips.com]Itmona
 
Booklet word: Murubbider Jibon Theke
Booklet word: Murubbider Jibon ThekeBooklet word: Murubbider Jibon Theke
Booklet word: Murubbider Jibon ThekeImran Nur Manik
 
Patigonit (inception plus) [www.chakritips.com]
Patigonit (inception plus)    [www.chakritips.com]Patigonit (inception plus)    [www.chakritips.com]
Patigonit (inception plus) [www.chakritips.com]Itmona
 
দৈনন্দিন জীবনে ইসলাম – পবিত্রতা অধ্যায়
দৈনন্দিন জীবনে ইসলাম – পবিত্রতা অধ্যায়দৈনন্দিন জীবনে ইসলাম – পবিত্রতা অধ্যায়
দৈনন্দিন জীবনে ইসলাম – পবিত্রতা অধ্যায়Sonali Jannat
 
05 average (math tutor by kabial noor) [www.itmona.com]
05 average (math tutor by kabial noor) [www.itmona.com]05 average (math tutor by kabial noor) [www.itmona.com]
05 average (math tutor by kabial noor) [www.itmona.com]Itmona
 
Faculty based math job solution all bcs (10 42th) solution [www.chakritips.com]
Faculty based math job solution all bcs (10 42th) solution [www.chakritips.com]Faculty based math job solution all bcs (10 42th) solution [www.chakritips.com]
Faculty based math job solution all bcs (10 42th) solution [www.chakritips.com]Itmona
 
9 10-27 history-of-bd-bangla
9 10-27 history-of-bd-bangla9 10-27 history-of-bd-bangla
9 10-27 history-of-bd-banglaGolam Bitonsir
 
Bengali grammar-preparation for competative examinations
Bengali grammar-preparation for competative examinationsBengali grammar-preparation for competative examinations
Bengali grammar-preparation for competative examinationsMD. Monzurul Karim Shanchay
 
Jihad o qitalbyprof.dr.muhammadasadullahal-ghalib
Jihad o qitalbyprof.dr.muhammadasadullahal-ghalibJihad o qitalbyprof.dr.muhammadasadullahal-ghalib
Jihad o qitalbyprof.dr.muhammadasadullahal-ghalibrasikulindia
 

La actualidad más candente (16)

Iba mcq math solution( 2017 2019) by khairul alam [www.itmona.com]
Iba mcq math solution( 2017 2019) by khairul alam  [www.itmona.com]Iba mcq math solution( 2017 2019) by khairul alam  [www.itmona.com]
Iba mcq math solution( 2017 2019) by khairul alam [www.itmona.com]
 
Chakuri bidhi / Service Rule
Chakuri bidhi / Service RuleChakuri bidhi / Service Rule
Chakuri bidhi / Service Rule
 
06. mathematics arts pm t 9-10 genarel scince [onlinebcs.com]
06. mathematics arts pm t 9-10 genarel scince [onlinebcs.com]06. mathematics arts pm t 9-10 genarel scince [onlinebcs.com]
06. mathematics arts pm t 9-10 genarel scince [onlinebcs.com]
 
Math2 [www.onlinebcs.com]
Math2 [www.onlinebcs.com]Math2 [www.onlinebcs.com]
Math2 [www.onlinebcs.com]
 
Govt bank exam [www.chakritips.com]
Govt bank exam [www.chakritips.com]Govt bank exam [www.chakritips.com]
Govt bank exam [www.chakritips.com]
 
Booklet word: Murubbider Jibon Theke
Booklet word: Murubbider Jibon ThekeBooklet word: Murubbider Jibon Theke
Booklet word: Murubbider Jibon Theke
 
Patigonit (inception plus) [www.chakritips.com]
Patigonit (inception plus)    [www.chakritips.com]Patigonit (inception plus)    [www.chakritips.com]
Patigonit (inception plus) [www.chakritips.com]
 
8 math
8 math8 math
8 math
 
দৈনন্দিন জীবনে ইসলাম – পবিত্রতা অধ্যায়
দৈনন্দিন জীবনে ইসলাম – পবিত্রতা অধ্যায়দৈনন্দিন জীবনে ইসলাম – পবিত্রতা অধ্যায়
দৈনন্দিন জীবনে ইসলাম – পবিত্রতা অধ্যায়
 
05 average (math tutor by kabial noor) [www.itmona.com]
05 average (math tutor by kabial noor) [www.itmona.com]05 average (math tutor by kabial noor) [www.itmona.com]
05 average (math tutor by kabial noor) [www.itmona.com]
 
Faculty based math job solution all bcs (10 42th) solution [www.chakritips.com]
Faculty based math job solution all bcs (10 42th) solution [www.chakritips.com]Faculty based math job solution all bcs (10 42th) solution [www.chakritips.com]
Faculty based math job solution all bcs (10 42th) solution [www.chakritips.com]
 
Computer related bangla mcq questions with answers for any competitive job
Computer related bangla mcq questions with answers for any competitive jobComputer related bangla mcq questions with answers for any competitive job
Computer related bangla mcq questions with answers for any competitive job
 
9 10-27 history-of-bd-bangla
9 10-27 history-of-bd-bangla9 10-27 history-of-bd-bangla
9 10-27 history-of-bd-bangla
 
Sadaqah
SadaqahSadaqah
Sadaqah
 
Bengali grammar-preparation for competative examinations
Bengali grammar-preparation for competative examinationsBengali grammar-preparation for competative examinations
Bengali grammar-preparation for competative examinations
 
Jihad o qitalbyprof.dr.muhammadasadullahal-ghalib
Jihad o qitalbyprof.dr.muhammadasadullahal-ghalibJihad o qitalbyprof.dr.muhammadasadullahal-ghalib
Jihad o qitalbyprof.dr.muhammadasadullahal-ghalib
 

Similar a 04. lcm (math tutor by kabial noor [www.onlinebcs.com]

math-2
math-2math-2
math-2Mainu4
 
Keranigonj text part 9
Keranigonj text part 9Keranigonj text part 9
Keranigonj text part 9Nasrul Hamid
 
03. root & square (math tutor by kabial noor) [www.itmona.com]
03. root & square (math tutor by kabial noor) [www.itmona.com]03. root & square (math tutor by kabial noor) [www.itmona.com]
03. root & square (math tutor by kabial noor) [www.itmona.com]Itmona
 
The Monthly Lekhapara. Vol-Sep 2015
The Monthly Lekhapara. Vol-Sep 2015The Monthly Lekhapara. Vol-Sep 2015
The Monthly Lekhapara. Vol-Sep 2015Shahida Akhter
 
One house one farm
One house one farmOne house one farm
One house one farmSORBOHARA
 
Basic Electricity. (1-20) Chpter OK.pptx
Basic Electricity. (1-20) Chpter OK.pptxBasic Electricity. (1-20) Chpter OK.pptx
Basic Electricity. (1-20) Chpter OK.pptxsubratasarker21
 
Sucok o logaridom [www.onlinebcs.com]
Sucok o logaridom [www.onlinebcs.com]Sucok o logaridom [www.onlinebcs.com]
Sucok o logaridom [www.onlinebcs.com]Itmona
 
Keranigonj text part 1
Keranigonj text part 1Keranigonj text part 1
Keranigonj text part 1Nasrul Hamid
 
Accounting Chapter 3 Lecture 02
Accounting Chapter 3 Lecture 02Accounting Chapter 3 Lecture 02
Accounting Chapter 3 Lecture 02Cambriannews
 
Office Organogram for present and future workmanship.pptx
Office Organogram for present and future workmanship.pptxOffice Organogram for present and future workmanship.pptx
Office Organogram for present and future workmanship.pptxMahfuzurRahman939513
 
Residency-Guideline.pdf
Residency-Guideline.pdfResidency-Guideline.pdf
Residency-Guideline.pdfMoinul Islam
 
Accounting Chapter 1 Lecture 6
Accounting Chapter 1 Lecture 6Accounting Chapter 1 Lecture 6
Accounting Chapter 1 Lecture 6Cambriannews
 

Similar a 04. lcm (math tutor by kabial noor [www.onlinebcs.com] (20)

math-2
math-2math-2
math-2
 
Keranigonj text part 9
Keranigonj text part 9Keranigonj text part 9
Keranigonj text part 9
 
03. root & square (math tutor by kabial noor) [www.itmona.com]
03. root & square (math tutor by kabial noor) [www.itmona.com]03. root & square (math tutor by kabial noor) [www.itmona.com]
03. root & square (math tutor by kabial noor) [www.itmona.com]
 
The Monthly Lekhapara. Vol-Sep 2015
The Monthly Lekhapara. Vol-Sep 2015The Monthly Lekhapara. Vol-Sep 2015
The Monthly Lekhapara. Vol-Sep 2015
 
Work Study A to z
Work Study A to zWork Study A to z
Work Study A to z
 
Professionalism practice in the workplace
Professionalism practice in the workplaceProfessionalism practice in the workplace
Professionalism practice in the workplace
 
One house one farm
One house one farmOne house one farm
One house one farm
 
Ethics of Jourlnalist
Ethics of JourlnalistEthics of Jourlnalist
Ethics of Jourlnalist
 
Basic Electricity. (1-20) Chpter OK.pptx
Basic Electricity. (1-20) Chpter OK.pptxBasic Electricity. (1-20) Chpter OK.pptx
Basic Electricity. (1-20) Chpter OK.pptx
 
Ict chapter 1
Ict chapter 1Ict chapter 1
Ict chapter 1
 
Sucok o logaridom [www.onlinebcs.com]
Sucok o logaridom [www.onlinebcs.com]Sucok o logaridom [www.onlinebcs.com]
Sucok o logaridom [www.onlinebcs.com]
 
Keranigonj text part 1
Keranigonj text part 1Keranigonj text part 1
Keranigonj text part 1
 
Accounting Chapter 3 Lecture 02
Accounting Chapter 3 Lecture 02Accounting Chapter 3 Lecture 02
Accounting Chapter 3 Lecture 02
 
Sr 89 13054-61640
Sr 89 13054-61640Sr 89 13054-61640
Sr 89 13054-61640
 
Final presentation
Final presentationFinal presentation
Final presentation
 
Bangladesh SME LOAN policy
Bangladesh SME LOAN policyBangladesh SME LOAN policy
Bangladesh SME LOAN policy
 
Office Organogram for present and future workmanship.pptx
Office Organogram for present and future workmanship.pptxOffice Organogram for present and future workmanship.pptx
Office Organogram for present and future workmanship.pptx
 
Residency-Guideline.pdf
Residency-Guideline.pdfResidency-Guideline.pdf
Residency-Guideline.pdf
 
Accounting Chapter 1 Lecture 6
Accounting Chapter 1 Lecture 6Accounting Chapter 1 Lecture 6
Accounting Chapter 1 Lecture 6
 
Training Manual
Training ManualTraining Manual
Training Manual
 

Más de Itmona

Road transport (brta) motor vehicle inspector examination question paper 2017...
Road transport (brta) motor vehicle inspector examination question paper 2017...Road transport (brta) motor vehicle inspector examination question paper 2017...
Road transport (brta) motor vehicle inspector examination question paper 2017...Itmona
 
Post office job question 2016 [www.onlinebcs.com]
Post office job question 2016 [www.onlinebcs.com]Post office job question 2016 [www.onlinebcs.com]
Post office job question 2016 [www.onlinebcs.com]Itmona
 
41st bcs written question mathematical reasoning
41st bcs written question mathematical reasoning41st bcs written question mathematical reasoning
41st bcs written question mathematical reasoningItmona
 
41st bcs written exam subject mental skills
41st bcs written exam subject mental skills41st bcs written exam subject mental skills
41st bcs written exam subject mental skillsItmona
 
41st bcs written math question 2021
41st bcs written math question 202141st bcs written math question 2021
41st bcs written math question 2021Itmona
 
41st bcs written exam question solution mental skills
41st bcs written exam question solution mental skills41st bcs written exam question solution mental skills
41st bcs written exam question solution mental skillsItmona
 
41st bcs written test mathematical reasoning solution 2021
41st bcs written test mathematical reasoning solution 202141st bcs written test mathematical reasoning solution 2021
41st bcs written test mathematical reasoning solution 2021Itmona
 
41st bcs written bengali question
41st bcs written bengali question41st bcs written bengali question
41st bcs written bengali questionItmona
 
4 december kgdcl question solution 2021
4 december kgdcl question solution  20214 december kgdcl question solution  2021
4 december kgdcl question solution 2021Itmona
 
Bangladesh gas field job question solution 2021
Bangladesh gas field job question solution 2021Bangladesh gas field job question solution 2021
Bangladesh gas field job question solution 2021Itmona
 
Ministry of defense junior teacher of dhaka cantonment 2021
Ministry of defense junior teacher of dhaka cantonment 2021Ministry of defense junior teacher of dhaka cantonment 2021
Ministry of defense junior teacher of dhaka cantonment 2021Itmona
 
Dshe accounting assistant exam questions solution 2013
Dshe accounting assistant exam questions solution 2013Dshe accounting assistant exam questions solution 2013
Dshe accounting assistant exam questions solution 2013Itmona
 
Dshe office assistant exam questions solution 2021
Dshe office assistant exam questions solution 2021Dshe office assistant exam questions solution 2021
Dshe office assistant exam questions solution 2021Itmona
 
Road transport (brta) motor vehicle inspector examination question paper 2017
Road transport (brta) motor vehicle inspector examination question paper 2017Road transport (brta) motor vehicle inspector examination question paper 2017
Road transport (brta) motor vehicle inspector examination question paper 2017Itmona
 
National security intelligence agency (nsi) field officer 2018[www.onlinebcs....
National security intelligence agency (nsi) field officer 2018[www.onlinebcs....National security intelligence agency (nsi) field officer 2018[www.onlinebcs....
National security intelligence agency (nsi) field officer 2018[www.onlinebcs....Itmona
 
Food department's assistant sub food inspector question ‍solution 2021
Food department's assistant sub food inspector  question ‍solution 2021Food department's assistant sub food inspector  question ‍solution 2021
Food department's assistant sub food inspector question ‍solution 2021Itmona
 
Titas gas transmission and distribution company limited assistant manager 2018
Titas gas transmission and distribution company limited assistant manager 2018Titas gas transmission and distribution company limited assistant manager 2018
Titas gas transmission and distribution company limited assistant manager 2018Itmona
 
Assistant manager, gas transmission company limited
Assistant manager, gas transmission company limitedAssistant manager, gas transmission company limited
Assistant manager, gas transmission company limitedItmona
 
Dbbl probationary-officer-software-job-exam-question
Dbbl probationary-officer-software-job-exam-questionDbbl probationary-officer-software-job-exam-question
Dbbl probationary-officer-software-job-exam-questionItmona
 
Education and research institute upazila [www.onlinebcs.com]
Education and research institute upazila [www.onlinebcs.com]Education and research institute upazila [www.onlinebcs.com]
Education and research institute upazila [www.onlinebcs.com]Itmona
 

Más de Itmona (20)

Road transport (brta) motor vehicle inspector examination question paper 2017...
Road transport (brta) motor vehicle inspector examination question paper 2017...Road transport (brta) motor vehicle inspector examination question paper 2017...
Road transport (brta) motor vehicle inspector examination question paper 2017...
 
Post office job question 2016 [www.onlinebcs.com]
Post office job question 2016 [www.onlinebcs.com]Post office job question 2016 [www.onlinebcs.com]
Post office job question 2016 [www.onlinebcs.com]
 
41st bcs written question mathematical reasoning
41st bcs written question mathematical reasoning41st bcs written question mathematical reasoning
41st bcs written question mathematical reasoning
 
41st bcs written exam subject mental skills
41st bcs written exam subject mental skills41st bcs written exam subject mental skills
41st bcs written exam subject mental skills
 
41st bcs written math question 2021
41st bcs written math question 202141st bcs written math question 2021
41st bcs written math question 2021
 
41st bcs written exam question solution mental skills
41st bcs written exam question solution mental skills41st bcs written exam question solution mental skills
41st bcs written exam question solution mental skills
 
41st bcs written test mathematical reasoning solution 2021
41st bcs written test mathematical reasoning solution 202141st bcs written test mathematical reasoning solution 2021
41st bcs written test mathematical reasoning solution 2021
 
41st bcs written bengali question
41st bcs written bengali question41st bcs written bengali question
41st bcs written bengali question
 
4 december kgdcl question solution 2021
4 december kgdcl question solution  20214 december kgdcl question solution  2021
4 december kgdcl question solution 2021
 
Bangladesh gas field job question solution 2021
Bangladesh gas field job question solution 2021Bangladesh gas field job question solution 2021
Bangladesh gas field job question solution 2021
 
Ministry of defense junior teacher of dhaka cantonment 2021
Ministry of defense junior teacher of dhaka cantonment 2021Ministry of defense junior teacher of dhaka cantonment 2021
Ministry of defense junior teacher of dhaka cantonment 2021
 
Dshe accounting assistant exam questions solution 2013
Dshe accounting assistant exam questions solution 2013Dshe accounting assistant exam questions solution 2013
Dshe accounting assistant exam questions solution 2013
 
Dshe office assistant exam questions solution 2021
Dshe office assistant exam questions solution 2021Dshe office assistant exam questions solution 2021
Dshe office assistant exam questions solution 2021
 
Road transport (brta) motor vehicle inspector examination question paper 2017
Road transport (brta) motor vehicle inspector examination question paper 2017Road transport (brta) motor vehicle inspector examination question paper 2017
Road transport (brta) motor vehicle inspector examination question paper 2017
 
National security intelligence agency (nsi) field officer 2018[www.onlinebcs....
National security intelligence agency (nsi) field officer 2018[www.onlinebcs....National security intelligence agency (nsi) field officer 2018[www.onlinebcs....
National security intelligence agency (nsi) field officer 2018[www.onlinebcs....
 
Food department's assistant sub food inspector question ‍solution 2021
Food department's assistant sub food inspector  question ‍solution 2021Food department's assistant sub food inspector  question ‍solution 2021
Food department's assistant sub food inspector question ‍solution 2021
 
Titas gas transmission and distribution company limited assistant manager 2018
Titas gas transmission and distribution company limited assistant manager 2018Titas gas transmission and distribution company limited assistant manager 2018
Titas gas transmission and distribution company limited assistant manager 2018
 
Assistant manager, gas transmission company limited
Assistant manager, gas transmission company limitedAssistant manager, gas transmission company limited
Assistant manager, gas transmission company limited
 
Dbbl probationary-officer-software-job-exam-question
Dbbl probationary-officer-software-job-exam-questionDbbl probationary-officer-software-job-exam-question
Dbbl probationary-officer-software-job-exam-question
 
Education and research institute upazila [www.onlinebcs.com]
Education and research institute upazila [www.onlinebcs.com]Education and research institute upazila [www.onlinebcs.com]
Education and research institute upazila [www.onlinebcs.com]
 

Último

Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxRamakrishna Reddy Bijjam
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfciinovamais
 
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...Nguyen Thanh Tu Collection
 
Making and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdfMaking and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdfChris Hunter
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfJayanti Pande
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsMebane Rash
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphThiyagu K
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfagholdier
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...EduSkills OECD
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17Celine George
 
Sociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning ExhibitSociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning Exhibitjbellavia9
 
Food Chain and Food Web (Ecosystem) EVS, B. Pharmacy 1st Year, Sem-II
Food Chain and Food Web (Ecosystem) EVS, B. Pharmacy 1st Year, Sem-IIFood Chain and Food Web (Ecosystem) EVS, B. Pharmacy 1st Year, Sem-II
Food Chain and Food Web (Ecosystem) EVS, B. Pharmacy 1st Year, Sem-IIShubhangi Sonawane
 
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...Shubhangi Sonawane
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfAdmir Softic
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsTechSoup
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxheathfieldcps1
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxAreebaZafar22
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Celine George
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.christianmathematics
 

Último (20)

Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docx
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
 
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
 
Making and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdfMaking and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdf
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdf
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan Fellows
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot Graph
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
 
Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17
 
Sociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning ExhibitSociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning Exhibit
 
Food Chain and Food Web (Ecosystem) EVS, B. Pharmacy 1st Year, Sem-II
Food Chain and Food Web (Ecosystem) EVS, B. Pharmacy 1st Year, Sem-IIFood Chain and Food Web (Ecosystem) EVS, B. Pharmacy 1st Year, Sem-II
Food Chain and Food Web (Ecosystem) EVS, B. Pharmacy 1st Year, Sem-II
 
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdf
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The Basics
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptx
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.
 

04. lcm (math tutor by kabial noor [www.onlinebcs.com]

  • 1. Math Tutor  1 CHAPTER- 04 j.mv.¸ I M.mv.¸ j.mv.¸ (LCM)  04.01 ¸wYZK, mvaviY ¸wYZK I jwNô mvaviY ¸wYZK Kx? (K) MywYZK (Multiple)t ¸wYZK wK? ¸wYZK n‡”Q †Kvb msL¨v‡K bvgZv AvKv‡i G‡Mv‡j †h msL¨v¸‡jv cvIqv hvq †m¸‡jv‡K H msL¨vi ¸wYZK e‡j| †hgb- 3 I 6 Gi ¸wYZK wK wK †`Lv hvK| 3 = 3, 6, 9, 12, 15, 18, 21, 24, 27, 30 ... 6 = 6, 12, 18, 24, 30... Dc‡i 3 I 6 Gi bvgZv w`‡q †h msL¨v¸‡jv †cjvg G¸‡jvB n‡”Q 3 I 6 Gi ¸wYZK| GLv‡b ... (WU) w`‡q eySv‡bv n‡q‡Q 3 I 6 ¸wYZK Amxg Ni ch©šÍ Pj‡Z _vK‡e A_©vr †Kvb msL¨vi ¸wYZK Amxg msL¨K nq|  g‡b ivLyb, †Kvb msL¨vi me‡P‡q †QvU ¸wYZK H msL¨vi mgvb| †hgb- 3 Gi me‡P‡q †QvU ¸wYZK 3 ev Zvi mgvb, GKBfv‡e 6 Gi me‡P‡q †QvU ¸wYZK 6 ev Zvi mgvb| (L) mvaviY ¸wYZK (Common Multiple)t Common ev mvaviY kãwUi gv‡b n‡”Q GKvwaK wRwb‡mi gv‡S hZUzKz mv`„k¨ ev wgj _v‡K †mUzKz| mvaviY ¸wYZK Gi gv‡b n‡”Q GKvwaK msL¨vi ¸wYZK¸‡jvi gv‡S †h †h ¸wYZK mv`„k¨ ev wgj Av‡Q †mme ¸wYZK‡K eySvq| 3 I 6 Gi ¸wYZK¸‡jv gv‡S †Kvb ¸wYZK ¸‡jv common ev mvaviY ev mv`„k¨ ev wgj Av‡Q †`Lv hvK| 3 = 3, 6, 9, 12, 15, 18, 21, 24, 27, 30 ... 6 = 6, 12, 18, 24, 30... Avgiv †`L‡Z cvw”Q 3 I 6 Gi ¸wYZK ¸‡jvi gv‡S 6, 12, 18, 24, 30 ¸wYZK¸‡jv `yB RvqMv‡ZB Av‡Q, GB ¸wYZK¸‡jv‡KB ejv nq mvaviY ¸wYZK| (M) jwNô mvaviY ¸wYZK (Lowest Common Multiple/ Least Common Multiple)t Avgiv †h‡Kvb msL¨vi me‡P‡q eo ¸wYZK wbY©q Ki‡Z cvwi bv, KviY †h‡Kvb msL¨vi ¸wYZK Amxg Ni ch©šÍ n‡q _v‡K| †h‡nZz †Kvb msL¨vi me‡P‡q eo ¸wYZK wbY©q Kiv hvq bv, †m‡nZz GKvwaK msL¨vi gv‡S me‡P‡q eo mv`„k¨ ev mvaviY ¸wYZKI wbY©q Kiv m¤¢e bq, Z‡e me‡P‡q †QvU mvaviY ¸wYZK wbY©q Kiv m¤¢e| Dc‡ii 3 I 6 Gi ¸wYZK¸‡jvi gv‡S me‡P‡q †QvU ev jwNô mvaviY ¸wYZK n‡”Q 6| A_v©r, 3 I 6 Gi jwNô mvaviY ¸wbZK ev jmv¸ n‡”Q 6| A_©vr, j.mv.¸ gv‡b n‡”Q jwNô mvaviY ¸wYZK (Least Common Multiple ev LCM)!  jÿYxq- (1) Avgiv 3 I 6 Gi hZ¸‡jv mvaviY ¸wYZK †c‡qwQ, †m¸‡jvi gv‡S j.mv.¸ ev jwNô mvaviY ¸wYZK n‡”Q 6| gRvi welq n‡”Q evKx mvaviY ¸wYZK¸‡jv jmv¸ 6-Gi ¸wYZK! †`Lyb, 6  2 = 12, 6  3 = 18, 6  4 = 24, 6  5 = 30 A_v©r, 6 Gi ¸wYZK- 12, 18, 24, 30 ... | (2) †Kvb msL¨vi ¸wYZK‡K Zv‡K w`‡q fvM Ki‡j wbt‡k‡l wefvR¨ n‡e| †hgb- 3 Gi ¸wYZK 3, 6, 9, 12, 15, 18, 21, 24, 27, 30 †K 3 Øviv fvM Ki‡j wbt‡k‡l wefvR¨ n‡e| GKBfv‡e 6 Gi ¸wYZK¸‡jv‡K 6 Øviv fvM Ki‡j wbt‡k‡l wefvR¨ n‡e| (3) GKvwaK msL¨vi mKj mvaviY ¸wYZK‡K H GKvwaK msL¨v Øviv fvM Ki‡j wbt‡k‡l wefvR¨ n‡e| †hgb- 3 I 6 Gi mvaviY ¸wYZK 6, 12, 18, 24, 30 †K 3 I 6 Øviv fvM Ki‡j wbt‡k‡l wefvR¨ n‡e| GB K_vi A_© `uvovj, jwNô mvaviY ¸wYZK (j.mv.¸) 6 †K 3 I 6 Øviv fvM Ki‡j wbt‡k‡l wefvR¨ n‡e Ges 6 Gi mKj ¸wYZK 12,18, 24, 30 ‡K 3 I 6 Øviv fvM Ki‡jI wbt‡k‡l wefvR¨ n‡e|
  • 2. 2  Math Tutor  04.02 j.mv.¸ wbY©q Kivi wbqgvewj (K) ¸wYZK wbY©‡qi mvnv‡h¨ j.mv.¸ wbY©q: GwU j.mv.¸ wbY©‡qi GKwU †ewmK c×wZ| j.mv.¸ Gi msÁv eyS‡Z GB c×wZwU mvnvh¨ K‡i| G c×wZi gva¨‡g Avgiv Ô¸wYZK, mvaviY ¸wYZK I jwNô mvaviY ¸wYZKÕ msµvšÍ †gŠwjK aviYv¸‡jv eyS‡Z cvwi (Dc‡i Av‡jvPbv co–b)| wKš‘ mivmwi j.mv.¸ wbY©q Kivi Rb¨ GB c×wZwU Kvh©Kix bq, KviY G c×wZ‡Z mgq †ewk jv‡M Ges A‡bK¸‡jv msL¨vi †ÿ‡Î j.mv.¸ wbY©q Kiv RwUj jv‡M| 01. 6 I 12 Gi j.mv.¸ wbY©q Kiæb| 6 Gi ¸wYZKmg~n: 6, 12, 18, 24, 30, 36 ... 12 Gi ¸wYZKmg~n : 12, 24, 36, 48... 6 I 12 Gi ¸wYZK¸‡jvi gv‡S me‡P‡q †QvU/jwNô mvaviY ¸wYZK n‡”Q 12| myZivs, 6 I 12 Gi j.mv.¸ n‡jv 12| (L) †gŠwjK ¸YbxqK ev Drcv`‡Ki mvnv‡h¨ j.mv.¸ wbY©q: G c×wZwU cvwUMwY‡Zi Kvh©Kix bq, Z‡e exRMwY‡Zi Rb¨ GKwU Kvh©Kix c×wZ| 02. 12, 24 I 30 Gi j.mv.¸ wbY©q Kiæb| cÖ_‡g msL¨v¸‡jvi j.mv.¸ †gŠwjK Drcv`K ev ¸YbxqKmg~n †ei K‡i wb‡Z n‡e| 12 Gi †gŠwjK Drcv`K ev ¸YbxqKmg~n : 223 24 Gi †gŠwjK Drcv`K ev ¸YbxqKmg~n : 2223 30 Gi †gŠwjK Drcv`K ev ¸YbxqKmg~n : 235  wPšÍb cÖwµqv: Kgb ev AvbKgb me Drcv`K wb‡Z n‡e| †Kvb Drcv`‡Ki me©vwaK msL¨vwU wb‡Z n‡e| †hgb- msL¨v¸‡jvi †gŠwjK Drcv`Kmg~‡ni gv‡S 2 Av‡Q mev©waK 3 evi, 3 Av‡Q 1 evi, 5 Av‡Q 1 evi| Kv‡RB 2 wZbevi (2  2  2), 3 GKevi (3), 5 GKevi (5) wb‡q avivevwnK ¸Y Ki‡j cÖvß ¸YdjB n‡e j.mv.¸| ∴ wb‡Y©q j. mv. ¸ = 22235 = 120| (M) mswÿß c×wZ‡Z j.mv.¸ wbY©q: GB c×wZ KwVb I mnR mKj msL¨vi †ÿ‡ÎB †ek Kvh©Kix GKwU c×wZ| `ye©j‡`i GB c×wZwU e¨envi Kiv DwPZ| 03. 12, 24 I 30 Gi j.mv.¸ wbY©q Kiæb| 2 12, 24, 30 2 6, 12, 15 3 3, 6, 15 1, 2, 5 ∴ wb‡Y©q j.mv.¸ = 22325 = 120 (N) †KŠkjwfwËK j.mv.¸ wbY©qt G c×wZwU Zv‡`i Rb¨ hviv bvgZvi †ÿ‡Î †ek `ÿ, Zv‡`i Rb¨ A‡bK †ewk Kvh©Kix| j.mv.¸ QvovI KvR I mgq, bj-‡PŠev”Pv Aa¨vq¸‡jv‡Z GB †KŠkj g¨vwR‡Ki gZ KvR K‡i| 04. 2, 4, 6 I 12 Gi j.mv.¸ wbY©q Kiæb| GLv‡b me‡P‡q eo Drcv`KwU n‡jv 12| Gevi †`Lyb 12 †K evKx †QvU Drcv`K 2, 4, 6 Øviv fvM Kiv hvq wKbv? n¨vu, fvM Kiv hvq| Zvn‡j 2, 4, 6 I 12 Gi j.mv.¸ n‡jv 12| g‡b ivLyb, eo Drcv`KwU‡K evKx meKqwU Øviv fvM Kiv †M‡j †mwUB n‡e j.mv.¸| 05. 4, 6, 12 I 30 Gi j.mv.¸ wbY©q Kiæb| me‡P‡q eo Drcv`K 30 †K ïay 6 Øviv fvM Kiv hvq, wKš‘ j.mv.¸ n‡Z n‡j meKqwU ØvivB fvM †h‡Z nq| Gevi 30 †K 2 Øviv ¸Y Kiæb, 302 = 60, GLb 60†K 4, 6, 12 Øviv fvM Kiv hvq| ∴ wb‡Y©q j.mv.¸ n‡e 60| 06. 3, 6, 12, 24 I 30 Gi j.mv.¸ wbY©q Kiæb| me‡P‡q eo Drcv`K 30†K ïay 3 I 6 Øviv fvM Kiv hvq, wKš‘ j.mv.¸ n‡Z n‡j me KqwU ØvivB fvM †h‡Z nq|  Gevi 30 †K 2 Øviv ¸Y Kiæb, 302 = 60, 60 †K 3, 6, 12 Øviv fvM †M‡jI 24 Øviv fvM hvq bv, ZvB 60 msL¨v¸‡jvi j.mv.¸ n‡e bv|  Gevi 30 †K 3 Øviv ¸Y Kiæb, 303 = 90, G‡ÿ‡ÎI GKB K_v, 90 †K 24 Øviv fvM hvq bv, ZvB 90 msL¨v¸‡jvi j.mv.¸ n‡e bv|  Gevi 30 †K 4 Øviv ¸Y Kiæb, 304 = 120, GB 120 †K GLb me KqwU msL¨v Øviv fvM Kiv hvq| ∴ 3, 6, 12, 24, 30 Gi j.mv.¸ n‡jv 120| Tips: eo Drcv`KwU‡K ZZÿY ch©šÍ ¸Y K‡i G‡Mv‡Z _vKzb, hZÿY ch©šÍ evKx meKqwU msL¨v Øviv fvM bv hvq| gy‡L gy‡L K‡qKw`b P”©v Ki‡j welqwU cvwbi gZ mnR jvM‡e| 07. †Kvb ÿz`ªZg msL¨v‡K 4, 5 I 6 Øviv fvM Ki‡j cÖwZ‡ÿ‡Î wbt‡k‡l wefvR¨ nq? 2 4, 5, 6 2, 5, 3 ∴ wb‡Y©q j.mv.¸ = 2 × 2 × 5 × 3 = 60  gy‡L gy‡L: 6 †K 2 Øviv fvM Kiv †M‡jI 4 I 5 Øviv fvM Kiv hvq bv, ZvB 6 †K ZZÿY ch©šÍ ¸Y Ki‡Z _vKzb hZÿY bv ch©šÍ 6 Gi ¸Ydj‡K 4 I 5 Dfq mgvavb mgvavb mgvavb mgvavb mgvavb mgvavb mgvavb
  • 3. 2  Math Tutor Øviv fvM Kiv hvq: 6 × 2 = 12, 6 × 3 = 18 ... 6 × 10 = 60 (j.mv.¸)  cÖ‡kœ Ôÿz`ªZg msL¨vÕ ej‡Z wK eySv‡bv n‡q‡Q? DËit 4, 5, 6 Gi me‡P‡q †QvU ev jwNô mvaviY ¸wYZK n‡”Q 60, hv‡K 4, 5, 6 Øviv fvM Ki‡j wbt‡k‡l wefvR¨ nq| GB 60 e¨ZxZ Av‡iv mvaviY/ mv`„k¨ ¸wYZK Av‡Q †h¸‡jv 4, 5, 6 Øviv wbt‡k‡l wefvR¨ nq| †hgb- 120, 180, 240 BZ¨vw`| G‡`i gv‡S 60 n‡”Q me‡P‡q ÿz`ªZg mvaviY ¸wYZK| Avi ÿz`ªZg msL¨v ej‡Z g~jZ GB 60 †KB eywS‡q‡Q, hv‡K Avgiv ewj j.mv.¸| wet`ªt we¯ÍvwiZ Rvb‡Z Ô¸wYZK, mvaviY ¸wYZK I jwNô mvaviY ¸wYZK wK?Õ co–b 08. 5, 7 I 9 Gi j.mv.¸ KZ? 5, 7, 9 Gi j.mv.¸ = 579 = 315|  g‡b ivLyb: hw` GKvwaK msL¨vi meKqwUi g‡a¨ AšÍZ `ywU‡ZI †Kvb mvaviY Drcv`K bv _v‡K, Zvn‡j H msL¨v¸‡jv‡K mivmwi ¸Y Ki‡jB j.mv.¸ cvIqv hvq| 09. †Kvb ÿy`ªZg msL¨v‡K 3, 4 I 5 Øviv fvM Ki‡j wbt‡kl wefvR¨ ? K‡›Uªvjvi †Rbv‡ij wW‡dÝ dvBbvÝ-Gi Aaxb AwWUi : 14 160 90 120 60 DËi: N 3, 4 I 5 Gi j.mv.¸ = 345 = 60 | myZivs, wb‡Y©q ÿz`ªZg msL¨v = 60| 10. K GKwU †gŠwjK msL¨v Ges K, L Øviv wefvR¨ bq| K Ges L Gi j.mv.¸ KZ? mgevq Awa`߇ii wØZxq †kÖwYi †M‡R‡UW Awdmvi : 97 1 1K KL 1L DËi: M †h‡nZz K, L Øviv wefvR¨ bq, †m‡nZz K I L mivmwi ¸Y Ki‡jB j.mv.¸ cvIqv hv‡e|  K I L Gi j.mv.¸ = KL = KL| 11. 5, 6, 10 I 15 Gi j.mv.¸ KZ? cÖv_wgK we`¨vjq mnKvix wkÿK : 90; cÖv_wgK we`¨vjq mnKvix wkÿK : 89 60 30 50 90 DËi: L 2 5, 6, 10, 15 3 5, 3, 5, 15 5 5, 1, 5, 5 1, 1, 1, 1 ∴ wb‡Y©q j.mv.¸ = 235 = 30  wefvR¨Zvi bxwZ cÖ‡qv‡M: 5, 6, 10 I 15 msL¨v- ¸‡jvi gv‡S 6 I 15 msL¨v `ywU‡Z Drcv`K 3 Av‡Q| , I Ackb¸‡jv 3 Øviv wefvR¨, G‡`i gv‡S ÿz`ªZg msL¨v n‡”Q 30| 12. †Kvb ÿz`ªZg c~Y©eM© msL¨v 9, 15 Ges 25 Øviv wefvR¨? Z_¨gš¿Yvj‡qi mnKvix Awdmvi-2013 75 225 1125 900 DËi: L 3 9, 15, 25 5 3, 5, 25 3, 1, 5 ∴ j.mv.¸ = 3355 = 225, hv GKwU ÿz`ªZg c~Y©eM© msL¨v| 13. 2002 msL¨vwU †Kvb msL¨v¸‡”Qi j.mv.¸ bq? 24Zg wewmGm (evwZjK…Z) 13, 77, 91, 143 7, 22, 26, 91 26, 77, 143, 154 2, 7, 11, 13 DËi: K †h msL¨v¸‡”Qi j.mv.¸ 2002 n‡e bv, †mwUB DËi n‡e| 13, 77, 91, 143 Gi j.mv.¸ = 1001 7, 22, 26, 91 Gi j.mv.¸ = 2002 26, 77, 143, 154 Gi j.mv.¸ = 2002 2, 7, 11, 13 Gi j.mv.¸ = 2002 14. b~¨bZg KZwU Kgjv‡K 4, 6, 10 ev 18 Rb wkïi g‡a¨ fvM K‡i †`qv hvq? c~evjx e¨vsK wmwbqi Awdmvi (K¨vk)-2012 16 60 180 240 DËi: M Ôb~¨bZg KZwU Kgjv 4, 6, 10 ev 18 Rb wkïi g‡a¨ fvM K‡i †`qvÕ Avi Ô†Kvb ÿz`ªZg msL¨v‡K 4, 6, 10, 18 w`‡q wbt‡kl wefvR¨ nIqvÕ GKB K_v| ZvB j.mv.¸ Ki‡Z n‡e| 15. GKwU ¯‹z‡j c¨v‡iW Kivi mgq Qv·`i 10, 12 ev 16 mvwi‡Z mvRv‡bv nq| H b~¨bZg KZRb QvÎ Av‡Q? mve-‡iwR÷vi wb‡qvM cixÿv-2016 120 180 220 240 DËi: N b~¨bZg KZRb QvÎ hv‡`i‡K 10, 12 ev 16 mvwi‡Z mvRv‡bv hvq Avi †Kvb ÿz`ªZg msL¨v‡K 10, 12, 16 w`‡q wbt‡kl wefvR¨ nIqvÕ GKB K_v, ZvB j.mv.¸ Ki‡Z n‡e| 16. me©‡gvU KZ msL¨K MvQ n‡j GKwU evMvb 7, 14, mgvavb N M L K mgvavb N M L K N M L K mgvavb N M L K mgvavb N M L K N L K mgvavb N M L K mgvavb N M L K mgvavb N M L K mgvavb
  • 4. Math Tutor  3 21, 35 I 42 mvwi‡Z MvQ jvMv‡j GKwUI Kg ev †ewk n‡e bv? Avbmvi I wfwWwc Awa`߇ii mv‡K©j A¨vWRyU¨v›U : 2010 210 220 230 260 DËi: K me©‡gvU MvQ‡K 7, 14, 21, 35 I 42 mvwi‡Z jvMv‡j GKwUI Kg ev †ewk bv nIqv gv‡b n‡”Q wbt‡kl wefvR¨ nIqv, Avi msL¨v¸‡jv †_‡K cÖvß j.mv.¸ n‡e me©‡gvU Mv‡Qi msL¨v| †R‡b wbb - 24 cÖ_‡g cÖkœwU fv‡jvfv‡e co–b| 17. 3wU N›Uv GK‡Î †e‡R h_vµ‡g 5, 6 I 10 wgwbU AšÍi evR‡Z jvMj| KZÿY ci N›Uv¸‡jv cybivq GK‡Î evR‡e? 20 25 30 60 DËi: M 5, 6 I 10 Gi j.mv.¸-B n‡e DËi| 2 5, 6, 10 5 5, 3, 5 1, 3, 1 ∴ 5, 6 I 10 Gi j.mv.¸ = 253 = 30| myZivs, N›Uv 3wU c~bivq 30 wgwbU ci GK‡Î evR‡e|  ÔGKvwaK N›Uv GK‡Î evRvi ci GKwU wbw`©ó mgq AšÍi N›Uv¸‡jv evR‡Z _vK‡j KZÿY ci N›Uv¸‡jv cybivq GK‡Î evR‡e?Õ Giƒc cÖ‡kœi †ÿ‡Î Avgiv †Kb j.mv.¸ Kwi? DËi: Dc‡ii cÖ‡kœ Avgiv 5, 6 I 10 Gi j.mv.¸ †c‡qwQ 30| MvwYwZK wbqgvbymv‡i, N›Uv¸‡jv 30wgwbU ci cybivq GK‡Î evR‡e| welqwU wPÎwfwËK wPšÍv Kiv hvK| wP‡Î †`Lyb, cÖ_‡g ÔïiæÕi RvqMvq 3wU N›Uv GK‡Î †e‡RwQj, Zvici 1g N›UvwU 5 wgwbU AšÍi, 2qwU 6 wgwbU AšÍi Ges 3qwU 10 wgwbU AšÍi evR‡Z _v‡K Ges 30 wgwbU ci Zviv Avevi GKwU RvqMvq wM‡q wgwjZ nq| gRvi welq n‡”Q 30 wgwb‡Ui Av‡M Avi †Kv_vI Zviv wgwjZ nqwb! Avgiv welqwU Ab¨fv‡eI †`L‡Z cvwi| Pjyb 5, 6 I 10 Gi ¸wYZK¸‡jv †ei Kiv hvK| 5 Gi ¸wYZKmg~n : 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95... 6 Gi ¸wYZKmg~n : 6, 12, 18, 24, 30, 36, 42, 48, 54, 60, 66, 72, 78, 84, 90, 96... 10 Gi ¸wYZKmg~n : 10, 20, 30, 40, 50, 60, 70, 80, 90, 100... Dc‡ii 5, 6 I 10 Gi ¸wYZKmg~‡ni gv‡S mvaviY ¸wYZKmg~n n‡”Q 30, 60, 90...| G‡`i gv‡S me‡P‡q †QvU mvaviY ¸wYZK ev j.mv.¸ n‡”Q 30| MwY‡Zi ïiæ‡Z N›Uv¸‡jv 1gevi GK‡Î †e‡RwQj (Nwoi wPÎ †`Lyb), 30 wgwb‡Ui gv_vq N›Uv 3wU cybivq 2qev‡ii gZ GK‡Î evR‡e, 60 wgwb‡Ui gv_vq N›Uv¸‡jv 3qev‡ii gZ GK‡Î evR‡e Ges 90 wgwb‡Ui gv_vq N›Uv¸‡jv 4_©ev‡ii gZ GK‡Î evR‡e|  cÖ‡kœ ejv n‡q‡Q, Ô3wU N›Uv GK‡Î †e‡R h_vµ‡g 5, 6 I 10 wgwbU AšÍi evR‡Z jvMj| KZÿY ci N›Uv¸‡jv cyYivq GK‡Î evR‡e?Õ Gi Øviv eySv‡bv n‡q‡Q 2qev‡ii gZ N›Uv 3wU KZÿY ci cybivq GK‡Î evR‡e| DËi n‡e, mgvavb N M L K mgvavb N M L K
  • 5. 2  Math Tutor 5, 6 I 10 Gi j.mv.¸|  cÖ‡kœ hw` ejv nZ Ô3wU N›Uv GK‡Î †e‡R h_vµ‡g 5, 6 I 10 wgwbU AšÍi evR‡Z jvMj| 30 wgwb‡U, Zviv KZevi GKmv‡_ evR‡e?Õ Zvn‡j DËi n‡e 2 evi| ïiæ‡Z GK‡Î ev‡R 1 evi Ges 30 wgwb‡Ui gv_vq GK‡Î evR‡e AviI 1 evi A_©vr, †gvU 2 evi|  cÖ‡kœ hw` ejv nZ Ô3wU N›Uv GK‡Î †e‡R h_vµ‡g 5, 6 I 10 wgwbU AšÍi evR‡Z jvMj| 60 wgwb‡U, Zviv KZevi GKmv‡_ evR‡e?Õ Zvn‡j DËi n‡e 3 evi| MvwYwZKfv‡e mgvavb Ki‡eb †hfv‡e- 5, 6 I 10 Gi j.mv.¸ 30 w`‡q 60 †K fvM w`b- 60 ÷ 30 = 2| cÖvß fvMdj 2 Gi mv‡_ cÖ_gevi GKÎ _vKvi 1 †hvM Kiæb- 2 + 1 = 3 evi| A_©vr, (60 ÷ 30) + 1 = 2 + 1 = 3 evi| Gfv‡e 90 wgwb‡U KZevi GK‡Î evR‡e Rvb‡Z PvB‡j DËi n‡e, (90 ÷ 30) + 1 = 3 + 1 = 4 evi|  cÖ‡kœ hw` ejv nZ Ô3wU N›Uv GK‡Î †e‡R h_vµ‡g 5, 6 I 10 wgwbU AšÍi evR‡Z jvMj| hw` Zviv GK‡Î `ycyi 12 Uvq †e‡R _v‡K, Zvn‡j cybivq Avevi KLb GK‡Î evR‡e? DËi: `ycyi 12 Uvq GK‡Î †e‡R 30 wgwbU ci Avevi GK‡Î evR‡e| A_©vr, 12pm + 30minutes = 12.30 pm G N›Uv 3wU cybivq Avevi GK‡Î evR‡e|  GLv‡b 3wU wbqg Av‡jvPbv Kiv n‡q‡Q, Gi evwni †_‡K cÖkœ Avm‡e bv| 18. cuvPwU N›Uv GK‡Î †e‡R h_vµ‡g 3, 5, 7, 8 I 10 †m‡KÛ AšÍi AšÍi evR‡Z jvMj| KZÿY c‡i N›Uv ¸‡jv cybivq GK‡Î evR‡e? _vbv mn. wkÿv wdmvi : 95 10 wgwbU 90 †m‡KÛ 14 wgwbU 240 †m‡KÛ DËi: M 2 3, 5, 7, 8, 10 5 3, 5, 7, 4, 5 3. 1, 7, 4, 1 ∴ 3, 5, 7, 8 I 10 Gi j.mv.¸ = 25374 = 840 myZivs, N›Uv¸‡jv cybivq GK‡Î evR‡e = 840 †m‡KÛ ci = 60 840 wgwbU ci = 14 wgwbU ci|  †m‡KÛ‡K 60 w`‡q fvM K‡i wgwb‡U iƒcvšÍi Kiv nj 19. KZ¸‡jv N›Uv GKmv‡_ evRvi 10 †mt, 15 †mt, 20 †mt Ges 25 †mt ci ci evR‡Z jvMj| Dnviv Avevi KZÿY ci GK‡Î evR‡e? _vbvwkÿvAwdmvit96,evsjv‡`kcjøx we`y¨Zvqb†ev‡W©imnKvixcwiPvjK(cÖkvmb)-16 1wgwbU 20 †m‡KÛ 1 wgwbU 30 †m‡KÛ 3 wgwbU 5 wgwbU DËi: N 10, 15, 20 I 25 Gi j.mv.¸ = 300  N›Uv¸‡jv Avevi GK‡Î evR‡e = 300 †m‡KÛ ci = 60 300 = 5 wgwbU ci| 20. 5wU N›Uv GK‡Î †e‡R h_vµ‡g 5, 10, 15, 20 I 25 †m‡KÛ AšÍi Avevi evR‡Z jvMj, KZÿY ci N›Uv ¸‡jv Avevi GK‡Î evR‡e? 12Zg†emiKvwiwkÿKwbeÜb (¯‹zj/mgch©vq)2015 5 wgwbU 6 wgwbU 10 wgwbU 5 N›Uv DËi: K 21. 2wU Nwo h_vµ‡g 10 I 25 wgwbU AšÍi ev‡R| GKevi GK‡Î evRvi ci Avevi KLb Nwo `yÕwU GK‡Î evR‡e? K‡›Uªvjvi†Rbv‡ijwW‡dÝdvBbvÝ-GiKvh©vj‡qAaxbAwWUi-2014 20 wgwbU ci 30 wgwbU ci 50 wgwbU ci 100 wgwbU ci DËi: M 22. eykiv, Glv I wcÖZzB 5 wgwbU, 10 wgwbU, 15 wgwbU AšÍi AšÍi GKwU K‡i PK‡jU Lvq| KZÿY ci Zviv GK‡Î PK‡jU Lvq? 7gcÖfvlKwbeÜbIcÖZ¨qbcixÿv-2011 25 wgwbU 50 wgwbU 40 wgwbU 30 wgwbU DËi: N 5, 10 I 15 Gi j.mv.¸ = 30| myZivs, eykiv, Glv I wcÖZzB 30 wgwbU ci GK‡Î PK‡jU Lv‡e| 23. wZb Rb †g‡q GKwU e„ËvKvi gv‡Vi Pvwiw`K eivei GKwU wbw`©ó ¯’vb †_‡K †`Šov‡bv ïiæ Kij Ges cÖ‡Z¨‡K GKwU cvK h_vµ‡g 24 †m‡KÛ, 36 †m‡KÛ Ges 48 †m‡K‡Û c~Y© K‡i| KZ mgq ci Zviv GKB ¯’v‡b wgwjZ n‡e? †Kvqvw›U‡UwUf A¨vcwUwUDU, Wt Avi, Gm AvMviIqvj; (evsjv) wiwcÖ›U-2020 2 wgwbU 20 †m‡KÛ 2 wgwbU 24 †m‡KÛ 3 wgwbU 36 †m‡KÛ 4 wgwbU 12 †m‡KÛ D: L 24, 36 I 48 Gi j.mv.¸ = 144 wZbRb †g‡q GKB ¯’v‡b wgwjZ n‡e = 144 †m‡KÛ ci mgvavb N M L K mgvavb N M L K N M L K N M L K mgvavb N M L K mgvavb N M L K
  • 6. 2  Math Tutor = 60 144 = 2 60 24 = 2 5 2 wgwbU ci = 2wgwbU 5 2 60 †m‡KÛ = 2wgwbU 24†m‡KÛ ci| 24. A, B Ges C GKB mg‡q, GKB w`‡K GKwU e„ËvKvi †÷wWqv‡gi Pvicv‡k †`Šov‡Z ïiæ K‡i| A GKwU cvK 252 †m‡K‡Û, B GKwU cvK 308 †m‡K‡Û Ges C GKwU cvK 198 †m‡K‡Û c~Y© K‡i| cÖ‡Z¨‡K GKB RvqMv †_‡K †`Šo ïiæ K‡i| cÖ‡Z¨‡K cybivq KLb ïiæi ¯’v‡b GKmv‡_ n‡e? †Kvqvw›U‡UwUf A¨vcwUwUDU, Wt Avi, Gm AvMviIqvj; (evsjv) wiwcÖ›U-2020 26 wgwbU 18 †m‡KÛ 42 wgwbU 36 †m‡KÛ 45 wgwbU 46 wgwbU 12 †m‡KÛ D: N 25. mxgv, wgbv Ges wigv GKwU e„ËvKvi †÷wWqv‡gi Pvicv‡k †`Šov‡Z ïiæ Kij| Zviv Zv‡`i GKcvK h_vµ‡g 54 †m‡KÐ, 42 †m‡KÐ Ges 63 †m‡KÐ mg‡q c~Y© Kij| KZ mgq ci Zviv ïiæi ¯’v‡b Avevi GKmv‡_ n‡e? †Kvqvw›U‡UwUf A¨vcwUwUDU,WtAvi,GmAvMviIqvj;(evsjv)wiwcÖ›U-2020 54, 42 I 63 Gi j.mv.¸ = 378|  mxgv, wgbv Ges wigv ïiæi mv‡_ GKmv‡_ n‡e = 378 †m‡KÛ ci | DËi: 378 †m‡KÛ ci 26. 5wU NÈv cÖ_‡g GK‡Î †e‡R c‡i h_vµ‡g 6, 12, 24, 30 I 40 †m‡KÐ AšÍi AšÍi evR‡Z jvMj| KZÿY c‡i N›Uv¸‡jv cybivq GK‡Î evR‡e? wb¤œ gva¨wgK MwYZ,lô†kÖwY(1996wkÿvel©),cÖkœgvjv1.4Gi9bscÖkœ 6, 12, 24, 30 I 40 Gi j.mv.¸ = 120  5wU N›Uv cybivq GK‡Î evR‡e 120 wgwbU ci = 60 120 = 2 wgwbU ci| DËi: 2 wgwbU 27. †Kv‡bv evm÷¨vÛ †_‡K 4wU evm GKwU wbw`©ó mgq ci h_vµ‡g 10 wK.wg., 20 wK.wg., 24 wK.wg. I 32 wK.wg. c_ AwZµg K‡i| Kgc‡ÿ KZ`~i c_ AwZµg Kivi ci evm PviwU GK‡Î wgwjZ n‡e? wb¤œ gva¨wgKMwYZ,lô†kÖwY (2013wkÿvel©),Abykxjbx1.3Gi13bscÖkœ 10, 20, 24 I 32 Gi j.mv.¸ = 480  4wU evm 480 wK.wg. c_ AwZµg Kivi ci Avevi GK‡Î wgwjZ n‡e| DËi: 480 wK.wg. 28. 4 Rb †jvK mv‡q`vev` †_‡K PµKvi iv¯Ívq mKvj 6Uvq GKB w`‡K hvÎv ïiæ K‡ib| Zvuiv cÖwZ N›Uvq h_vµ‡g 10, 20, 24 I 32 wK‡jvwgUvi c_ AwZµg K‡ib| Kgc‡ÿ KZ `~i c_ AwZµg Kivi c‡i Zvuiv Avevi GK‡Î wgwjZ n‡eb? wb¤œ gva¨wgKMwYZ,lô†kÖwY(1996wkÿvel©), cÖkœgvjv1.4Gi10bscÖkœ 10, 20, 24 I 32 Gi j.mv.¸ = 480  4 Rb †jvK Avevi GK‡Î wgwjZ n‡eb 480 wK.wg. ci| DËi: 480 wK.wg. 29. GKwU •e`y¨wZK hš¿ cÖwZ 60 †m‡KÛ AšÍi AvIqvR K‡i| Aci GKwU hš¿ 62 †m‡KÐ AšÍi AvIqvR K‡i| hw` Zviv GKmv‡_ mKvj 10Uvq AvIqvR K‡i _v‡K, Zvn‡j Zviv cybivq Avevi KLb GKmv‡_ AvIqvR Ki‡e? †Kvqvw›U‡UwUfA¨vcwUwUDU,WtAvi,GmAvMviIqvj; (evsjv)wiwcÖ›U-2020 10.30 a.m. 10.31 a.m. 10.59 a.m. 11 a.m. DËi: L 2 60, 62 30, 31 60 I 62 Gi j.mv.¸ = 23031 = 1860 ∴ •e`y¨wZK hš¿ `ywU cybivq Avevi GKmv‡_ AvIqvR Ki‡e 1860 †m‡KÐ ci = 60 1860 = 31 wgwbU ci| myZivs, •e`y¨wZK hš¿ `ywU mKvj 10 Uvq GK‡Î AvIqvR Kivi ci 31 wgwbU ci Avevi AvIqvR Ki‡e 10.31 a.m. G| 30. QqwU N›Uv GKmv‡_ evRv ïiæ K‡i Ges h_vµ‡g 2, 4, 6, 8, 10 Ges 12 †m‡KÛ AšÍi ev‡R| 30 wgwb‡U, Zviv KZevi GKmv‡_ evR‡e? †Kvqvw›U‡UwUfA¨vcwUwUDU,WtAvi, GmAvMviIqvj;(evsjv)wiwcÖ›U-2020 4 10 15 16 DËi: N 2, 4, 6, 8, 10 I 12 Gi j.mv.¸ = 120 ∴ QqwU N›Uv GKmv‡_ evR‡e 120 †m‡KÛ ci = 60 120 = 2 wgwbU ci| cÖ_gevi 1 mv‡_ evRvi ci, 2 wgwb‡U GK‡Î ev‡R AviI 1 evi ∴ 1 Ó Ó Ó Ó 2 1 Ó mgvavb N M L K mgvavb N M L K mgvavb mgvavb mgvavb mgvavb N M L K
  • 7. Math Tutor  3 ∴ 30Ó Ó Ó Ó 2 1 30 = 15 evi| myZivs, cÖ_‡g 1 I c‡i 15 evi †gvU 16 evi evR‡e|  kU©KvU: 1 j.mv.¸ mgq gvU †  = 1 2 30  = 15 + 1 = 16 evi| 31. wZbwU N›Uv GK‡Î evRvi ci Zviv 2 N›Uv, 3 NÈv I 4 N›Uv cici evR‡Z _vKj| 1 w`‡b Zviv KZevi GK‡Î evR‡e? cÖv_wgKwe`¨vjqmnKvixwkÿK(PZz_© avc)2019;11Zg †emKvwiwkÿKwbeÜb(¯‹zj/mgch©vq)-2014 12 evi 6 evi 4 evi 3 evi DËi: N 2, 3 I 4 Gi j.mv.¸ = 12| ∴ wZbwU N›Uv GK‡Î evR‡e 12 N›Uv ci| myZivs, 1 w`‡b ev 24 NÈvq †gvU evR‡e = 1 12 24  3 1 2    evi| 32. GKwU †Nvovi Mvwoi mvg‡bi PvKvi cwiwa 3 wgUvi, wcQ‡bi PvKvi cwiwa 4 wgUvi| MvwowU KZ c_ †M‡j mvg‡bi PvKv wcQ‡bi PvKvi †P‡q 100 evi †ewk Nyi‡e? WvKAwa`߇iDc‡Rjv†cv÷gv÷vi:10;gnvwnmvewbixÿKI wbqš¿‡Ki Kvh©vj‡qmnKvixcwimsL¨vbKg©KZ©v(2q†kÖwY):98,beg-`kg†kÖwY MwYZ,(1983ms¯‹iY)Abykxjbx1.1Gi44bscÖkœ 1 wK.wg. 1.2 wK.wg. 1.6 wK.wg. 1.8 wK.wg. DËi: L 3 I 4 Gi j.mv.¸ = 34 = 12 (PvKv `ywUi cwiwai j.mv.¸ n‡”Q PvKv `ywU‡K GKwU mgvb `~i‡Z¡i c_ Pj‡Z 12 wgUvi AwZµg Ki‡Z n‡e) 12 wgUvi c_ Pj‡Z m¤§yL PvKv‡K Nyi‡Z n‡e 3 12 = 4 evi 12 Ó Ó Ó wcQ‡bi Ó Ó Ó 4 12 = 3 evi (mvg‡bi PvKv A‡cÿv wcQ‡bi PvKv 1evi †ewk Ny‡i 12 wgUvi c_ Pj‡Z, Zvn‡j 100 evi †ewk Nyi‡j KZUzKz c_ Pj‡e?) mvg‡bi PvKv wcQ‡bi PvKv A‡cÿv 1evi †ewk Ny‡i 12 wgUv‡i Ó Ó Ó Ó Ó 100 Ó Ó Ó 12100Ó = 1200 wgUvi = 1000 1200 wK.wg. = 1.2 wK.wg.|  kU©KvUt mvg‡bi PvKv I wcQ‡bi PvKvi j.mv.¸ Gi mv‡_ Ô100 evi †ewk Nyi‡QÕ †mwU ¸Y Ki‡Z n‡e| Zvici wgUvi‡K wK‡jvwgUvi Ki‡Z 1000 Øviv fvM Ki‡Z n‡e| A_©vr, 34100 = 1200  1000 = 1.2 wKwg| 33. GKwU †Nvovi Mvwoi mvg‡bi PvKvi cwiwa 4 wgUvi, †cQ‡bi PvKvi cwiwa 5 wgUvi| MvwowU KZ c_ †M‡j mvg‡bi PvKv †cQ‡bi PvKvi †P‡q 200 evi †ewk Nyi‡e? cjøx Dbœqb I mgevq gš¿Yvj‡qi mnKvix cÖ‡KŠkjx (wmwfj) : 17; ciivóª gš¿Yvj‡qi Aax‡b cÖkvmwbK Kg©KZ©v : 01 1.2 wK.wg. 2.5 wK.wg. 4 wK.wg. 6 wK.wg. DËi: M 4 I 5 Gi j.mv.¸ = 45 = 20 20 wgUvi c_ Pj‡Z m¤§yL PvKv‡K †Nvi‡Z n‡e 4 20 = 5 evi 20 Ó Ó Ó wcQ‡bi Ó Ó Ó 5 20 = 4 evi mvg‡biPvKvwcQ‡biPvKvA‡cÿv1evi†ewk†Nv‡i20wgUv‡i Ó Ó Ó Ó Ó 200 Ó Ó Ó 20200Ó = 4000 wgUvi = 1000 4000 wK.wg. = 4 wK.wg.|  kU©KvUt 45200 = 4000  1000 = 4 wK.wg. 34. GKwU †Nvovi Mvwoi mvg‡bi PvKvi cwiwa 2 wgUvi Ges †cQ‡bi PvKvi cwiwa 3 wgUvi| Kgc‡ÿ KZ `~iZ¡ AwZµg Ki‡j mvg‡bi PvKv †cQ‡bi PvKv A‡cÿv 10 evi †ewk Nyi‡e? evsjv‡`kcjøxDbœqb†ev‡W©iDc‡Rjv cjøxDbœqbKg©KZ©v:13; cÖv_wgKwe`¨vjqmnKvixwkÿK(XvKvwefvM):02 60 wgUvi 20 wgUvi 25 wgUvi 40 wgUvi DËi: K 2310 = 60 wgUvi| mgvavb N M L K mgvavb N M L K mgvavb N M L K mgvavb N M L K c‡i 15 evi ïiæ‡Z 1evi +
  • 8. 2  Math Tutor  04.03 fvM‡kl _vK‡e †R‡b wbb- 25  j.mv.¸ mgm¨v mgvav‡b Avcbv‡K †h KvRwU mevi Av‡M Ki‡Z n‡e j.mv.¸ mgm¨v mgvav‡b ïiæ‡Z cÖ‡kœi kZ© wb‡q wPšÍv Kivi `iKvi †bB| cÖ_‡g cÖ‡kœ cÖ`Ë Drcv`K/fvRK ¸‡jvi j.mv.¸ wbY©q Kiæb| Zvici cÖ‡kœi kZ©vbymv‡i KvR Kiæb| GLv‡b Drcv`K/fvRK ej‡Z Zv‡`i‡K eySv‡bv n‡”Q- hv‡`i Øviv fvM Kivi K_v ejv nq| †hgb- (1) me‡P‡q †QvU †Kvb msL¨v‡K 7, 8 I 9 Øviv fvM Ki‡j 5 Aewkó _v‡K? (2) GKwU c~Y© msL¨v wbY©q Kiæb hv‡K 3, 4, 5 Ges 6 fvM Ki‡j h_vµ‡g 2, 3, 4 Ges 5 Aewkó _v‡K? cÖkœ `ywUi AvÛvijvBbK…Z msL¨v¸‡jvB n‡”Q cÖ‡kœ cÖ`Ë Drcv`K/fvRKmg~n|  †Kvb ÿz`ªZg msL¨v‡K 3, 5 I 6 Øviv fvM Ki‡j fvM‡kl n‡e 1? [17Zg wewmGm] 71 41 31 39 DËi: M ïiæ‡Z 3, 5, 6 Gi j.mv.¸ †ei Kiv hvK| 3 3, 5, 6 1, 5, 2 ∴ 3, 5 I 6 Gi jmv¸ = 3 × 5 × 2 = 30| AZGe, ÿz`ªZg msL¨vwU n‡”Q = 30 + 1 = 31|  fvM‡kl hZ _vK‡e j.mv.¸Õi mv‡_ ZZ †hvM Ki‡Z n‡e †Kb? Avgiv c~‡e© †R‡bwQ- GKvwaK fvRK †_‡K cÖvß j.mv.¸ H fvRK¸‡jv Øviv wbt‡k‡l wefvR¨| A_©vr, Avgiv wbwðZfv‡e ej‡Z cvwi, 3, 5 I 6 fvRK¸‡jv †_‡K cÖvß j.mv.¸ 30, hv fvRK 3/5/6 Øviv wbt‡k‡l wefvR¨| Zvi gv‡b j.mv.¸ 30 †K Avgiv ÿz`ªZg msL¨v ej‡Z cvwi| wKš‘ 30 †K ÿz`ªZg msL¨v ejv hv‡e bv| KviY cÖ‡kœ ejv n‡q‡Q- ÿz`ªZg msL¨vwU‡K 3/5/6 Øviv fvM Ki‡j wbt‡k‡l wefvR¨ n‡Z cvi‡e bv, fvM‡kl 1 _vK‡Z n‡e| GRb¨ wK Ki‡Z n‡e? ejwQ- wbt‡k‡l wefvR¨ msL¨vwUi mv‡_ AwZwi³ hv †hvM Ki‡eb ZvB fvM‡kl wn‡m‡e _vK‡e| A_©vr, AwZwi³ 1 †hvM Ki‡j, fvM‡kl 1 _vK‡e; AwZwi³ 2 †hvM Ki‡j fvM‡kl 2 _vK‡e| Pjyb †`Lv hvK- hLb 1 †hvM Ki‡eb- 30 + 1 = 31 3 ) 31 ( 10 5) 31 ( 6 6) 31 ( 5 30 30 30 1 1 1 hLb 2 †hvM Ki‡eb- 30 + 2 = 32 3 ) 32 ( 10 5) 32 ( 6 6) 32 ( 5 30 30 30 2 2 2 GLb Avgiv wbwØ©avq ej‡Z cvwi, G ai‡Yi mgm¨vq hZ fvM‡kl Rvb‡Z PvB‡e, ZZ j.mv.¸i mv‡_ †hvM K‡i w`‡jB n‡e| cÖ`Ë cÖ‡kœ fvM‡kl 1 Av‡Q ejvq, cÖvß j.mv.¸i mv‡_ 1 †hvM Kiv n‡q‡Q|  kU©KvU : hZ fvM‡kl _vK‡e, ZZ j.mv.¸i mv‡_ †hvM Ki‡Z n‡e| 35. †Kvb ÿy`ªZg msL¨v‡K 4, 5 I 6 Øviv fvM Ki‡j cÖwZ‡ÿ‡Î 1 Aewkó _v‡K? gva¨wgK mnKvix wkÿK-06 121 169 61 111 DËi: M cÖ_‡g jmv¸ †ei Kiæb, Zvici D³ jmv¸i mv‡_ 1 †hvM Kiæb| 4, 5 I 6 Gi jmv¸ = 60| ∴ wb‡Y©q ÿz`ªZg msL¨v = 60 + 1 = 61| 36. †Kvb& msL¨v‡K 4 I 6 Øviv fvM Ki‡j cÖwZ‡ÿ‡Î fvM‡kl 2 _v‡K? Dc‡Rjv cwimsL¨vb Kg©KZv©: 2010 8 10 12 14 DËi: N 4 I 6 Gi jmv¸ = 12| ∴ wb‡Y©q ÿz`ªZg msL¨v = 12 + 2 = 14| 37. me‡P‡q †QvU †Kvb msL¨v‡K 7, 8 I 9 Øviv fvM Ki‡j 5 Aewkó _v‡K? ivóªvqË e¨vsK wmwbqi Awdmvi: 00 499 599 549 509 DËi: N 7, 8 I 9 Gi jmv¸ = 504| ∴ wb‡Y©q ÿz`ªZg msL¨v = 504 + 5 = 509| mgvavb N M L K mgvavb N M L K mgvavb N M L K mgvavb N M L K
  • 9. 2  Math Tutor  04.04 h_vµ‡g fvM‡kl _vK‡e †R‡b wbb -26  avc -G Drcv`K/fvRK¸‡jvi j.mv.¸ †ei Kiæb| (GB KvRwU jmv¸i me A‡¼B Ki‡Z nq) avc -G cÖwZwU fvRK I fvM‡k‡li cv_©K¨ †ei Kiæb| Gevi ÔcÖvß j.mv.¸Õ †_‡K ÔfvRK I fvM‡k‡li cv_©K¨ we‡qvM Kiæb|  kU©KvUt wb‡Y©q ÿz`ªZg msL¨v = fvRK¸‡jvi jmv¸ - fvRK I fvM‡k‡li cv_©K¨ †Kb we‡qvM Ki‡Z n‡e, GB KviYwU GLv‡b e¨vL¨v m¤¢e nj bv, KviY †m‡ÿ‡Î j¤^v e¨vL¨v wjL‡Z n‡e| hw` KLbI my‡hvM nq jvBf K¬v‡m e¨vL¨v Kivi †Póv Kie Bbkvjøvn| 38. †Kvb ÿy`ªZg msL¨v‡K 20, 25, 30, 36 I 48 Øviv fvM Ki‡j h_vµ‡g 15, 20, 25, 31 I 43 fvM‡kl _v‡K? KvwiMix wkÿv Awa`߇ii Aax‡b Pxd BÝUªv±i: 03 3425 3478 3595 3565 DËi: M avc : 20, 25, 30, 36 I 48 GB fvRK¸‡jvi j.mv.¸ wbY©q Kiæb| 2 20, 25, 30, 36, 48 2 10, 25, 15, 18, 24 3 5, 25, 15, 9, 12 5 5, 25, 5, 3, 4 1, 5, 1, 3, 4 ∴ 20, 25, 30, 36 I 48 Gi j.mv.¸ = 2 × 2 × 3 × 5 × 5 × 3 × 4 = 3600 avc : fvRK I fvM‡k‡li cv_©K¨ †ei Kiæb- 20 25 30 36 48 15 20 25 31 43 5 5 5 5 5 ∴ wb‡Y©q ÿz`ªZg msL¨v = 3600 - 5 = 3595| 39. GKwU c~Y© msL¨v wbY©q Kiæb hv‡K 3, 4, 5 Ges 6 fvM Ki‡j h_vµ‡g 2, 3, 4 Ges 5 Aewkó _v‡K? _vbv mnKvix wkÿv Awdmvi: 05 47 49 57 59 DËi: N 3, 4, 5 Ges 6 Gi jmv¸ = 60 Ges cÖwZ‡ÿ‡Î Aewkó _v‡K 1| ∴ wb‡Y©q c~Y© msL¨v = 60 - 1 = 59| 40. †Kvb jwNó msL¨v‡K 24 I 36 Øviv fvM Ki‡j h_vµ‡g 14 I 26 Aewkó _vK‡e? hye Dbœqb Awa`߇ii mnKvix cwiPvjK: 94 48 62 72 84 DËi: L 24 I 36 Gi jmv¸ = 72 Ges cÖwZ‡ÿ‡Î Aewkó _v‡K 10 | ∴ wb‡Y©q jwNó msL¨v = 72 - 10 = 62|  04.05 ÿy`ªZg msL¨vi mv‡_ †hvM ev we‡qvM K‡i †R‡b wbb - 27  Ô†Kvb ÿz`ªZg msL¨v + = †hvMdjÕ Gi †ÿ‡Î fvRK¸‡jvi j.mv.¸ n‡”Q Ô†hvMdjÕ, †hvMd‡ji mv‡_ e‡·i †h msL¨vwU †hvM (+) Kiv n‡e †mB msL¨vwU we‡qvM (  ) Ki‡j Ôÿy`ªZg msL¨vÕ wU cvIqv hv‡e| 41, 42, 43 I 44 bs cÖkœ †`Lyb|  Ô†Kvb ÿz`ªZg msL¨v  = we‡qvMdjÕ Gi †ÿ‡Î fvRK¸‡jvi j.mv.¸ n‡”Q Ôwe‡qvMdjÕ, we‡qvMdj †_‡K e‡·i †h msL¨vwU we‡qvM (  ) Kiv n‡e †mB msL¨vwU †hvM (+) Ki‡j Ôÿy`ªZg msL¨vÕ wU cvIqv hv‡e| 45 I 46 bs cÖkœ †`Lyb|  kU©KvU: †hvM _vK‡j we‡qvM Ges we‡qvM _vK‡j †hvM Ki‡Z n‡e| 41. †Kvb ÿy`ªZg msL¨vi mv‡_ 2 †hvM Ki‡j †hvMdj 3, 6, 9, 12 Ges 15 Øviv wbt‡k‡l wefvR¨ n‡e? `ybx©wZ `gb ey¨‡iv cwi`k©K: 04 178 358 368 718 DËi: K 3 3, 6, 9, 12, 15 2 1, 2, 3, 4, 5 1, 1, 3, 2, 5 j.mv.¸ = 32325 = 180  ÿz`ªZg msL¨v = †hvMdj 2 = 180  2 = 178| mgvavb N M L K mgvavb N M L K mgvavb N M L K mgvavb N M L K
  • 10. 2  Math Tutor 42. †Kvb ÿz`ªZg msL¨vi mv‡_ 1 †hvM Ki‡j †hvMdj 3, 6, 9, 12, 15 Øviv wbt‡k‡l wefvR¨ n‡e? cvewjK r mvwf©m Kwgkb KZ…©K wbav©wiZ c`: 01 179 361 359 721 DËi: K 3, 6, 9, 12, 15 Gi jmv¸ = 180| ∴ ÿz`ªZg msL¨v = 180 - 1 = 179| 43. †Kvb ÿz`ªZg msL¨vi m‡½ 5 †hvM Ki‡j †hvMdj 16, 24 I 32 w`‡q wbt‡k‡l wefvR¨ n‡e? wb¤œ gva¨wgK MwYZ: lô †kÖwY (wkÿvel©-13) : D`vniY 9 96 101 91 19 DËi: M j.mv.¸ = 96| ∴ ÿz`ªZg msL¨v = 96 - 5=91| 44. †Kvb ÿz`ªZg msL¨vi mv‡_ 3 †hvM Ki‡j †hvMdj 21, 25, 27 I 35 Øviv wefvR¨ nq? beg-`kg †kÖwY MwYZ, (1983 ms¯‹iY) Abykxjbx 1.1 Gi 26 bs cÖkœ 4725 4728 4722 †Kv‡bvwUB bq DËi: M j.mv.¸ = 4725| ∴ ÿz`ªZg msL¨v = 4725 - 3 = 4722| 45. †Kvb ÿz`ªZg msL¨v n‡Z 1 we‡qvM Ki‡j we‡qvMdj 9, 12 I 15 Øviv wbt‡k‡l wefvR¨ n‡e? cvewjK mvwf©m Kwgk‡b mnKvix cwiPvjK: 04 121 181 241 361 DËi: L 3 9, 12, 15 3, 4, 5 j.mv.¸ = 3345 = 180  ÿz`ªZg msL¨v = 180 + 1 = 181| 46. †Kvb ÿz`ªZg msL¨v n‡Z 5 we‡qvM Ki‡j we‡qvMdj 5, 7, 21 I 35 Øviv wbt‡k‡l wefvR¨ n‡e? 105 110 115 120 DËi: L 5, 7, 21 I 35 Gi j.mv.¸ = 105| ∴ ÿz`ªZg msL¨v = 105 + 5 = 110 |  04.06 A‡¼i ÿz`ªZg ev e„nËg msL¨v †_‡K †Kvb jwNô msL¨v †hvM ev we‡qvM K‡i †R‡b ivLyb- 28  avc  : GKvwaK fvRK¸‡jvi j.mv.¸ †ei K‡i cÖ‡kœ cÖ`Ë wZb/Pvi/cuvP As‡Ki ÿz`ªZg msL¨v/e„nËg msL¨v‡K D³ j.mv.¸ Øviv fvM Ki‡Z n‡e Ges fvM †k‡l GKwU ÔfvM‡klÕ cvIqv hv‡e| g‡b ivLyb: j.mv.¸ Øviv fvM Kiv gv‡b j.mv.¸ n‡”Q D³ ÿz`ªZg/e„nËg msL¨vi fvRK|  avc  : cÖ‡kœ we‡qvMdj ejv _vK‡j ÔfvM‡klÕ-B DËi| 47 I 48 bs cÖkœ †`Lyb| Avi †hvMdj ejv _vK‡j ÔfvRK I fvM‡k‡li cv_©K¨Õ DËi| 49 I 50 bs cÖkœ †`Lyb| (K) we‡qvM _vK‡j 47. wZb A‡¼i ÿz`ªZg msL¨v n‡Z †Kvb jwNô msL¨v we‡qvM Ki‡j we‡qvMdj 5, 10, 15 Øviv wefvR¨ n‡e? cÖv_wgK we`¨vjq mnKvix wkÿK: 98 5 15 10 20 DËi: M 5 5, 10, 15 1, 2, 3 5, 10, 15 Gi j.mv.¸ = 523 = 30 wZb A‡¼i ÿz`ªZg msL¨v = 100 30) 100 ( 3 90 10  wb‡Y©q jwNó msL¨v 10|  g‡b ivLyb: wZb A‡¼i ÿz`ªZg msL¨v‡K 5, 10, 15 Øviv fvM Kiv †h K_v, G‡`i j.mv.¸ 30 Øviv fvM KivI GKB K_v| GRb¨ wZb A‡¼i ÿz`ªZg msL¨v‡K 5, 10, 15 Øviv fvM bv K‡i 30 Øviv fvM Kiv n‡q‡Q|  Avgiv †Kb fvRKmg~‡ni j.mv.¸ Øviv cÖ`Ë msL¨v‡K fvM Kwi? †KD PvB‡j e¨vL¨vwU c‡o wb‡Z cv‡ib- Reve: 5, 10, 15 Gi j.mv.¸ 30 †K GB fvRK¸‡jv Øviv fvM Ki‡j wbt‡k‡l wefvR¨ n‡e| GKBfv‡e 30 Gi MywYZK 30, 60, 90, 120 BZ¨vw`‡K fvM Ki‡jI 5, 10, 15 Øviv wbt‡k‡l wefvR¨ n‡e| cÖ‡kœ ejv n‡q‡Q wZb A‡¼i ÿz`ªZg msL¨v (100) †_‡K GKwU jwNô (ÿz`ªZg) msL¨v we‡qvM Kivi ci cÖvß we‡qvMdj †h‡nZz wbt‡k‡l wefvR¨ n‡e, †m‡nZz ÿz`ªZg msL¨vwU 100 Gi †P‡q †QvU n‡e Ges wbwðZfv‡e msL¨vwU 30 A_ev 30 Gi ¸wYZK 60 wKsev 90 n‡e| 100 - 10 = 90 100 - 40 = 60 100 - 70 = 30 Dc‡ii ZvwjKv †_‡K eySv hv‡”Q 100 †_‡K 10/40/70 mgvavb N M L K mgvavb N M L K mgvavb N M L K mgvavb N M L K mgvavb N M L K mgvavb N M L K
  • 11. 2  Math Tutor †h‡Kvb GKwU msL¨v we‡qvM Ki‡jB Avgiv 30 Gi ¸wYZK 30, 60 I 90 cvw”Q| wKš‘ Avcwb 10, 40, 70 Gi gv‡S †h‡Kvb msL¨v we‡qvM Ki‡Z cvi‡eb bv, Avcbv‡K we‡qvM Ki‡Z n‡e G‡`i gv‡S me‡P‡q jwNô msL¨vwU‡K| G‡`i gv‡S jwNô ( †QvU) msL¨v †KvbwU? wbwðZfv‡e 10| Gfv‡e cixÿvq mgvavb Ki‡Z †M‡j A‡bK †ewk mgq jvM‡e| MvwYwZK fvlvq GB mgm¨vwU AviI Kg mg‡q I mn‡R mgvavb Kiv hvq| Pjyb †`Lv hvK 5, 10 I 15 Gi ¸wYZK 30 †K w`‡q 100 †K fvM Ki‡j wK N‡U! 30) 100( 1 30) 100 ( 2 30) 100 ( 3 30 60 90 70 40 10 GKwU we¯§qKi welq jÿ¨ K‡i‡Qb? 30 w`‡q hLb 1 evi fvM w`jvg ZLb we‡qvM Kivi Rb¨ 10, 40, 70 Gi gv‡S eo msL¨v 70 †cjvg! GKBfv‡e hLb 2 evi fvM w`jvg ZLb 40 Ges hLb 3 evi w`jvg me‡P‡q †QvU msL¨v 10 †cjvg! A_©vr, m‡ev©”P msL¨K evi fvM w`‡j me‡P‡q †QvU fvM‡kl P‡j Av‡m| cÖ‡kœ PvIqv jwNô msL¨vwUB n‡”Q GB †QvU fvM‡klwU| GRb¨B Avgiv fvRKmg~‡ni ¸wYZK w`‡q cÖ`Ë msL¨v‡K fvM K‡i _vwK| 48. 5 A‡¼i ÿz`ªZg msL¨v n‡Z ‡Kvb jwNô msL¨v we‡qvM Ki‡j we‡qvMdj 5, 10, 15 Øviv wefvR¨ n‡e? cÖv_wgK we`¨vjq mnKvix wkÿK, PÆMÖvg wefvM:02 5 10 15 20 DËi: L (L) †hvM _vK‡j 49. Qq A‡¼i ÿz`ªZg msL¨vi mv‡_ †Kvb ÿz`ªZg msL¨v †hvM Ki‡j mgwó 2, 4, 6, 8, 10 I 12 Øviv wefvR¨ n‡e? beg-`kg †kÖwY MwYZ, (1983 ms¯‹iY) Abykxjbx 1.1 Gi 42 bs cÖkœ 2 2, 4, 6, 8, 10, 12 2 1, 2, 3, 4, 5, 6 3 1, 1, 3, 2, 5, 3 1, 1, 1, 2, 5, 1 j.mv.¸ = 22325 = 120 Qq A‡¼i ÿz`ªZg msL¨v = 100000 120) 100000 ( 833 960 400 360 40 AZGe, wb‡Y©q ÿz`ªZg msL¨v = 120 - 40 = 80| 50. 999999 -Gi m‡½ †Kvb ÿz`ªZg msL¨v †hvM Ki‡j †hvMdj 2,3,4,5 Ges 6 Øviv wbt‡k‡l wefvR¨ n‡e? 21Zg wewmGm 21 39 33 29 DËi: K 2, 3, 4, 5 I 6 Gi j.mv.¸ = 60 60) 999999 ( 16666 60 399 360 399 360 399 360 399 360 39 AZGe, wb‡Y©q j.mv.¸ = 60 - 39 = 21| (M) †hvM ev we‡qvM ejv bv _vK‡j  e„nËg msL¨vi †ÿ‡Î fvM‡kl we‡qvM K‡i wbt‡k‡l wefvR¨ Ki‡Z nq|  ÿz`ªZg msL¨vi †ÿ‡Î ÔfvRK I fvM‡klÕ Gi cv_©K¨ †hvM K‡i wbt‡k‡l wefvR¨ Ki‡Z nq| 51. Qq A‡¼i †Kvb ÿz`ªZg msL¨v 25, 50, 75 I 125 w`‡q wbt‡k‡l wefvR¨? 5 25, 50, 75, 125 5 5, 10, 15, 25 1, 2, 3, 5 j.mv.¸ = 55235 = 750 Qq A‡¼i ÿz`ªZg msL¨v = 100000 750) 100000 ( 133 750 2500 2250 2500 2250 250 (GLv‡b, wbt‡k‡l wefvR¨ msL¨vwU n‡e 100000 n‡Z 250 Kg A_ev 100000 n‡Z (750 - 250) ev 500 †ewk| wKš‘ 100000 n‡Z 250 Kg n‡j msL¨vwU (100000 - 250) ev 99750, hv cuvP A‡¼i weavq MÖnY‡hvM¨ bq|)  wb‡Y©q ÿy`ªZg msL¨v = 100000+ (750 - 250) = 100500| (DËi) mgvavb mgvavb N M L K mgvavb N M L K
  • 12. Math Tutor  3 52. Qq A‡¼i †Kvb e„nËg msL¨v 27, 45, 60, 72 I 96 Øviv wefvR¨? beg-`kg †kÖwY MwYZ, (1983 ms¯‹iY) Abykxjbx 1.1 Gi 38 bs cÖkœ 2 27, 45, 60, 72, 96 2 27, 45, 30, 36, 48 2 27, 45, 15, 18, 24 3 27, 45, 15, 9, 12 3 9, 15, 5, 3, 4 5 3, 5, 5, 1, 4 3, 1, 1, 1, 4 j.mv.¸ = 22233534 = 4320 Qq A‡¼i e„nËg msL¨v = 999999 4320 ) 999999 ( 231 8640 13599 12960 6399 4320 2079 (GLv‡b, wbt‡k‡l wefvR¨ msLvwU n‡e 999999 n‡Z 2079 Kg A_ev 999999 n‡Z ( 4320 - 2079) ev 2,241 †ewk| wKš‘ 999999 †_‡K 2,241 †ewk n‡j msL¨vwU (999999 + 2241) ev 1,002,240, hv mvZ A‡¼i weavq MÖnY †hvM¨ bq|)  wb‡Y©q e„nËg msL¨v = 999999 - 2079 = 997920 53. cuvP A‡¼i †Kvb e„nËg msL¨v‡K 16, 24, 30 I 36 w`‡q fvM Ki‡j cÖ‡Z¨Kevi fvM‡kl 10 _v‡K? (06 bs Gi gZ cvuP A‡¼I e„nËg msL¨vwU wbY©q K‡i, Zvici 10 †hvM Ki‡jB DËi P‡j Avm‡e|) 4 16, 24, 30, 36 2 4, 6, 30, 9 3 2, 3, 15, 9 2, 1, 5, 3 j.mv.¸ = 4232353 = 720 Qq A‡¼i e„nËg msL¨v = 99999 720 ) 99999 ( 138 720 2799 2160 6399 5760 639  wb‡Y©q e„nËg msL¨v = 99999 - 639 = 99360 wKš‘ cÖkœg‡Z, cÖ‡Z¨Kevi fvM‡kl 10 we`¨gvb _v‡K|  e„nËg msL¨v = 99360 + 10 = 99370 (DËi) M.mv.¸ (H.C.M) (K) ¸YbxqK (Factor)t ¸YbxqK Kx? ¸YbxqK n‡”Q †Kvb msL¨vi fvRKmg~n ev Drcv`K mg~n| †hgb- 20 ¸YbxqKmg~n Kx Kx? 20 Gi ¸YbxqKmg~n = 1, 2, 4, 5, 10, 20 20 Gi me‡P‡q †QvU ¸YbxqK 1 Ges me‡P‡q eo Drcv`K 20|  g‡b ivLyb: 1 †h‡Kvb msL¨vi Drcv`K ev ¸YbxqK Ges †Kvb msL¨vi me‡P‡q eo Drcv`K msL¨vwUi mgvb| mnR Ki‡j ej‡j, †Kvb msL¨vi Drcv`K KLbB Zvi †P‡q eo n‡Z cv‡i bv| (L) mvaviY ¸YbxqK (Common Factor)t Common kãwUi gv‡b †h‡nZz GKvwaK wRwb‡mi gv‡S mv`„k¨ ev wgj Ask, †m‡nZz mvaviY ¸YbxqK (Common Factor) ej‡Z GKvwaK msL¨vi gv‡S †h ¸YbxqK ev Drcv`Kmg~n wgj ev mv`„k¨ Av‡Q †m¸‡jv‡K eySvq| †hgb- 24 I 36 Gi mvaviY ¸YbxqK mg~n Kx Kx? 24 = 1, 2, 3, 4, 6, 8, 12, 24 36 = 1, 2, 3, 4, 6, 9, 12, 18, 36 28 I 36 Gi ¸YbxqK¸‡jvi gv‡S mvaviY ¸YbxqKmg~n n‡”Q 1, 2, 3, 4, 6, 12| (M) Mwiô mvaviY ¸YbxqK (Highest Common Factor) t Mwiô mvaviY ¸YbxqK ev M.mv.¸ n‡”Q mvaviY ¸YYxqK¸‡jvi gv‡S me‡P‡q eo ¸YYxqK| †hgb- Dc‡ii 24 I 36 Gi mvaviY ¸YbxqK 1, 2, mgvavb mgvavb
  • 13. 2  Math Tutor 3, 4, 6, 12 Gi gv‡S me‡P‡q eo ev Mwiô mvaviY ¸YbxqK ev M.mv.¸ n‡”Q 12|  g‡b ivLyb- M.mv.¸ wbY©‡qi gvÎ ewY©Z †KŠkjwU msÁv eyS‡Z mvnvh¨ Ki‡jI GB c×wZwU mgq mv‡cÿ, ZvB M.mv.¸ wbY©‡qi wKQz †KŠkj Avgiv wb‡P Zz‡j aijvg|  04.07 M.mv.¸ wbY©‡qi †KŠkjmg~n (K) fvM c×wZt †h `ywU msL¨vi M.mv.¸ wbY©q Ki‡eb, †mB msL¨v`ywUi gv‡S †QvU msL¨vwU w`‡q eo msL¨vwU‡K fvM ïiæ Ki‡eb| me‡k‡l †h fvRKwU w`‡q wbt‡k‡l wefvR¨ n‡e, †mwU n‡e M.mv.¸| 48. 12 I 30 Gi M.mv.¸ wbY©q Kiæb| (12 †QvU msL¨v, ZvB 12 w`‡q 30 †K fvM Ki‡Z n‡e|) 12) 30 ( 2 24 6 ) 12 ( 2 12 0  12 w`‡q 30 †K fvM Kivi ci 6 fvM‡kl _vKj| Zvici 6 w`‡q cÖ_g fvRK 12 †K fvM Kiv nj| GeviI hw` fvM‡kl _vKZ, †mB fvM‡kl w`‡q Zvi c~‡e©i fvRK 6 †K fvM KiZvg| 49. 28, 48 Ges 72 Gi M.mv.¸ wbY©q Kiæb| (Gevi `ywU msL¨vi cwie‡Z© 3wU msL¨v †`qv Av‡Q| cÖ_‡g 28 I 48 w`‡q ïiæ Kiv hvK|) 28) 48 ( 1 28 20) 28 ( 1 20 8) 20 ( 2 16 4) 8 ( 2 8 0 (Gevi 28 I 48 †_‡K cÖvß M.mv.¸ 4 w`‡q 72 †K fvM Ki‡Z n‡e|) 4) 72 ( 18 (†kl fvRK 4-B msL¨v 3wU M.mv.¸) 72 0  28, 48 Ges 72 Gi M.mv.¸ 4| (L) mswÿß c×wZ‡Z M.mv.¸ wbY©qt GLb †h c×wZ wb‡q Av‡jvPbv Kie, GwU LyeB ¸iæZ¡c~Y© c×wZ| G c×wZwU A‡bKUv j.mv.¸ wbY©‡qi c×wZi KvQvKvwQ| 50. 144, 240, 612 Gi M.mv.¸ wbY©q Kiæb| 2 144, 240, 612 2 72, 120, 306 3 36, 60, 153 12, 20, 51 (jÿ¨ Kiæb- fvRK 2, 2 I 3 Øviv cÖ‡Z¨K‡K fvM Kiv †M‡jI GLb Avi Ggb †Kvb fvRK cvIqv hv‡”Q bv, hv‡K w`‡q 12, 20 I 51 msL¨v wZbwU‡K GKmv‡_ fvM Kiv hvq| GLv‡b meKqwU‡K fvM Ki‡Z cviv fvRK 2, 2, 3 Gi ¸YdjB n‡”Q M.mv.¸ |  M.mv.¸ = 223 = 12|  G c×wZi myweav n‡”Q, j.mv.¸ I M.mv.¸ GKmv‡_ †ei Kiv hvq| Pjyb j.mv.¸ †ei Kiv hvK- 2 144, 240, 612 2 72, 120, 306 3 36, 60, 153 4 12, 20, 51 3 3, 5, 51 1, 5, 17  j.mv.¸ = 22343517 = 12,240 51. †Kvb e„nËg msL¨v Øviv 57, 93, 183 †K fvM Ki‡j †Kvb fvM‡kl _vK‡e bv? wb¤œ gva¨.MwYZ(6ô†kÖwY)Abykxjbx1.3 (cyivZb) 3 57, 93, 183 19, 31, 61 M.mv.¸ = 3|  wb‡Y©q e„nËg msL¨v = 3| (M) M.mv.¸ KLb 1 nq?: †h me msL¨vi M.mv.¸ wbY©q Kie, Zv‡`i gv‡S hw` 1 e¨ZxZ Avi †Kvb fvRK/ Drcv`K Kgb ev mv`„k¨ bv _v‡K| †hgb- 5 I 7 Gi M.mv.¸ 1| KviY 5 I 7 Gi gv‡S 1 Qvov Avi †Kvb Kgb Drcv`K †bB| 52. 2x I 3x Gi M.mv.¸ KZ? 2x I 3x Gi M.mv.¸ = x | 53. `ywU msLvi AbycvZ 11 : 17 n‡j msL¨v `ywUi M.mv.¸ KZ? awi, msL¨v `ywU n‡”Q 11x I 17x  M.mv.¸ = x 54. `ywU msL¨vi M.mv.¸ 3 n‡j msL¨v `ywU Kx Kx? msL¨v `ywU n‡e 3x I 3y | KviY 3x, 3y aivi Kvi‡Y GLv‡b 3 mv`„k¨ ev wgj Av‡Q, ZvB 3 M.mv.¸ mgvavb mgvavb mgvavb mgvavb mgvavb mgvavb mgvavb
  • 14. 2  Math Tutor n‡e|  g‡b ivLyb, Dc‡ii 05, 06 I 07 bs cÖ‡kœi mgvavb¸‡jv fv‡jv K‡i eySzb, Avgiv cieZx©‡Z GB AvBwWqv¸‡jv Kv‡R jvMve Bbkvjøvn&|  04.08 M.mv.¸Õi †ewmK mgm¨vewj g‡b ivLyb 29  mgvbfv‡e fvM K‡i †`qvi A_© n‡”Q M.mv.¸‡K wfwË a‡i fvM K‡i †`qv| ZvB †Kvb mgm¨vq mgvbfv‡e fvM K‡i †`qv eySv‡j g‡b Ki‡eb M.mv.¸ Ki‡Z ejv n‡q‡Q| 01 I 02 bs cÖkœ †`Lyb|  ÔcÖ_g I wØZxq msL¨vi ¸Ydj Ges wØZxq I Z…Zxq msL¨vi ¸YdjÕ Gi gv‡S wØZxq msL¨vwU `ywU ¸Yd‡jB Av‡Q e‡j wØZxq msL¨vwU n‡”Q M.mv.¸| 03 bs cÖkœ †`Lyb| 55. 125 wU Kjg I 145 wU †cwÝj KZR‡bi g‡a¨ mgvbfv‡M fvM Kiv hv‡e? wbev©Pb Kwgkb mwPevj‡qi †Rjv wbev©Pb Awdmvi I mnKvix mwPe-04 10 15 5 20 DËi: M 5 125, 145 25 , 29  5 evj‡Ki gv‡S Kjg I †cwÝj¸‡jv mgvbfv‡e fvM Kiv hv‡e|  125) 145 ( 1 125 20) 125 ( 6 120 5) 20 ( 4 20 0  5 evj‡Ki gv‡S Kjg I †cwÝj¸‡jv mgvbfv‡e fvM Kiv hv‡e| 56. KZRb evjK‡K 125 wU Kgjv‡jey Ges 145 wU Kjv mgvbfv‡e fvM K‡i †`qv hvq? A_© gš¿Yvj‡qi Awdm mnKvix -11 10 Rb‡K 05 Rb‡K 15 Rb‡K 25 Rb‡K DËi: L 57. cª_g I wØZxq msL¨vi ¸Ydj 35 Ges wØZxq I Z…Zxq msL¨vi ¸Ydj 63| wØZxq msL¨vwU KZ? cwiKíbv gš¿Yvj‡qi WvUv cÖ‡mwms Acv‡iUi: 02 5 6 7 8 DËi: M 7 35, 63 5, 9  wØZxq msL¨vwU 7|  1g 2q = 5  7 2q 3q = 7  9  wØZxq msL¨vwU 7| 58. GKwU †jvnvi cvZ I GKwU Zvgvi cv‡Zi •`N©¨ h_vµ‡g 672 †m. wg. I 960 †m. wg.| cvZ `yBwU †_‡K †K‡U †bIqv GKB gv‡ci me‡P‡q eo UzKivi •`N©¨ KZ n‡e? cÖ‡Z¨K cv‡Zi UzKivi msL¨v wbY©q Ki| wb¤œ gva¨wgKMwYZ(6ô†kÖwY)Abykxjbx1.3 cvZ `yBwU †_‡K †K‡U †bIqv GKB gv‡ci me‡P‡q eo UzKivi •`N©¨ nj 672 I 960 Gi gv‡S me‡P‡q eo Kgb ¸YbxqK ev M.mv.¸| 3 672, 960 8 224, 320 (Avcbviv †QvU †QvU msL¨v 4 28, 40 w`‡qI fvM Ki‡Z cv‡ib) 7, 10  me‡P‡q eo UzKivi •`N©¨ (M.mv.¸) = 384 = 96 †jvnvi cv‡Zi UzKivi msL¨v = 672  96 = 7wU Zvgvi cv‡Zi UzKivi msL¨v = 960  96 = 10wU| 59. `yBwU Wªv‡g h_vµ‡g 868 wjUvi I 980 wjUvi `ya Av‡Q| me‡P‡q eo gv‡ci cvÎ Øviv `yBwU Wªv‡gi `ya c~Y©msL¨K ev‡i gvcv hv‡e? wb¤œ gva¨wgKMwYZ(6ô†kÖwY) Abykxjbx1.3(cyivZb) 868 I 980 Gi M.mv.¸ 28 n‡”Q DËi| 60. `ywU AvqZvKvi ¸`vg N‡ii •`N©¨ h_vµ‡g 28 I 20 wgUvi Ges cÖ¯’ h_vµ‡g 12, 14 wgUvi| me‡P‡q eo †Kvb AvqZ‡bi cv_i w`‡q †Nii †g‡S cyivcywi †X‡K †djv hv‡e (Ges †Kvb cv_i AcPq n‡e bv) ? beg- `kg †kÖwY MwYZ, (1983 ms¯‹iY) Abykxjbx 1.1 Gi 46 bs cÖkœ cÖ_‡g ¸`vg Ni `ywUi †ÿÎdj †ei K‡i wb‡Z n‡e Ges Zv‡`i M.mv.¸ †ei Ki‡Z n‡e| 1g N‡ii †ÿÎdj = 2812 = 336 eM©wgUvi 2q N‡ii †ÿÎdj = 20  14 = 280 eM©wgUvi mgvavb mgvavb mgvavb mgvavb N M L K N M L K mgvavb N M L K
  • 15. 2  Math Tutor 336 I 280 Gi M.mv.¸ wbY©q Ki‡Z n‡e| 4 336, 280 2 84, 70 7 42, 35 6, 5 M.mv.¸ = 427 = 56| myZivs, wb‡Y©q cv_‡ii AvqZb = 56 eM©wgUvi| 61. GKwU AvqZvKvi N‡ii •`N©¨ 30 wgUvi, cÖ¯’ 12 wgUvi Av‡iKwU AvqZvKvi nj N‡ii •`N©¨ 20 wgUvi I cÖ¯’ 15 wgUvi| me‡P‡q eo †Kvb AvqZ‡bi Kv‡Vi UyKiv w`‡q Dfq N‡ii †g‡S cyivcywi †X‡K †djv hv‡e? beg- `kg †kÖwY MwYZ, (1983 ms¯‹iY) Abykxjbx 1.1 Gi 46 bs cÖkœ 1g N‡ii †ÿÎdj = 3012 = 360 eM©wgUvi 2q N‡ii †ÿÎdj = 2015 = 300 eM©wgUvi 15 360, 300 4 24, 20 6, 5 (eo eo msL¨v w`‡q fvM Ki‡j mgq Kg jvM‡e, Z‡e Avcwb `ye©j n‡j †QvU †QvU msL¨v w`‡q †Póv Kiæb) M.mv.¸ = 154 = 60| myZivs, wb‡Y©q eo Kv‡Vi UzKivi AvqZb = 60 eM©wgUvi|  04.09 cÖ‡Z¨Kevi 1 wU msL¨v Aewkó _vK‡j I †mwU D‡jøL _vK‡j †R‡b wbb-30  cÖ‡Z¨Kevi 1wU msL¨v Aewkó _vK‡j †mwU cÖ‡kœ cÖ`Ë cÖwZwU ¸wYZK †_‡K fvM‡kl/Aewkó we‡qvM Ki‡Z n‡e|  Zvici we‡qvMK…Z ¸wYZK¸‡jvi M.mv.¸ Ki‡Z n‡e| 62. †Kvb e„nËg msL¨v w`‡q 102 I 186 †K fvM Ki‡j cÖ‡Z¨Kevi 6 Aewkó _vK‡e| WvKI†Uwj‡hvMv‡hvMwnmveiÿK Kg©KZv© :03 12 15 16 22 DËi: K †h e„nËg msL¨v Øviv 102 I 186 †K fvM Ki‡j cÖ‡Z¨Kevi fvM‡kl _vK‡e †mwU nj (102 - 6) = 96 I (186 - 6) = 180| 96 ) 180 ( 1 96 84) 96 ( 1 84 12) 84 ( 7 84 0  96 I 180 Gi M.mv.¸ = 12|  wb‡Y©q e„nËg msL¨v = 12|  Drcv`‡K we‡kølY cÖ‡qvM K‡i M.mv.¸ wbY©q: 2 96, 180 2 48, 90 3 24, 45 8, 15  M.mv.¸ = 223 = 12| 63. †Kvb e„nËg msL¨v Øviv 100 I 184 †K fvM Ki‡j cÖ‡Z¨Kevi fvM‡kl 4 _vK‡e? wb¤œ gva¨wgKMwYZ(6ô†kÖwY) Abykxjbx1.3Gi 5bscÖkœ DËi: 12  04. 10 cÖwZwU ¸wYZ‡Ki Rb¨ c„_K c„_K Aewkó/fvM‡kl _vK‡j †R‡b wbb-31  cÖwZwU ¸wYZ‡Ki Rb¨ c„_K c„_K fvM‡kl _vK‡j cÖ`Ë ¸YwZKmg~n †_‡K c„_K c„_Kfv‡e fvM‡kl we‡qvM Ki‡Z n‡e|  Zvici we‡qvMK…Z ¸wYZK ¸‡jvi M.mv.¸ wbY©q Ki‡Z n‡e| 64. †Kvb e„nËg msL¨v Øviv 27, 40 I 65 †K fvM Ki‡j h_vµ‡g 3, 4, 5 fvM‡kl _vK‡e? ewnivMgb I cvm‡cvU© Awa`߇ii mnKvix cwiPvjK-11; ¯^ivóª gš¿Yvj‡qi Kviv Z¡Ë¡veavqK -10; wb¤œ gva¨wgK MwYZ (6ô †kÖwY), 1.3 Gi 6 bs 16 14 12 10 DËi: M 27 - 3 = 24 40 - 4 = 36 65 - 5 = 60 mgvavb N M L K mgvavb N M L K mgvavb
  • 16. 2  Math Tutor 24, 36 I 60 Gi M.mv.¸ wbY©q Ki‡Z n‡e| 12 24, 36, 60 (fvM c×wZ‡ZI Ki‡Z cv‡ib) 2, 3, 5  24, 36 I 60 Gi M.mv.¸ = 12|  wb‡Y©q e„nËg msL¨v 12| 65. 728 Ges 900 †K mev©‡cÿv eo †Kvb msL¨v Øviv fvM Ki‡j h_vµ‡g 8 Ges 4 Aewkó _vK‡e? cÖwZiÿv gš¿Yvj‡qi Aaxb GWwgwb‡÷ªwUf Awdmvi I cv‡mv©bvj Awdmvi-06 12 13 14 16 DËi: 728 - 8 = 720 900 - 4 = 896 720) 896 ( 1 720 176) 720 ( 4 704 16) 176 ( 11 176 0  720 I 896 Gi M.mv.¸ = 16|  4 720, 896 4 180, 224 (wefvR¨Zvi bxwZ e¨envi Ki‡j 45, 56 Lye `ªæZ mgvavb Kiv hvq)  720 I 895 Gi M.mv.¸ = 44 = 16| 66. 159 wU Avg, 227 wU Rvg I 401 wU wjPz me‡P‡q †ewk KZRb evj‡Ki g‡a¨ mgvbfv‡e fvM K‡i w`‡j 3 wU Avg, 6wU Rvg I 11wU wjPz Szwo‡Z _vK‡e? 159 - 3 = 156 wU Avg 227 - 6 = 221 wU Rvg 401 - 11 = 390 wU wjPz 156, 221 I 390 Gi M.mv.¸ wbY©q Ki‡Z n‡e| 13 156, 221, 390 12, 17, 30  156, 221 I 390 Gi M.mv.¸ = 13| myZivs, wb‡Y©q me‡P‡q †ewk evj‡Ki msL¨v 13 Rb|  g‡b ivLyb: `ªæZ wn‡me Kivi Rb¨ Avcbv‡K Aek¨B bvgZv I wefvR¨Zvi bxwZi Dci `Lj _vK‡Z n‡e|  04.11 cÖ‡Z¨Kevi 1 wU msL¨v Aewkó _vK‡j I †mwU D‡jøL bv _vK‡j †R‡b ivLyb-32  cÖwZ †ÿ‡Î GKB Aewkó n‡j I †mwU D‡jøL bv _vK‡j cÖ`Ë msL¨v a, b, c Gi Rb¨ (b - a) (c - b) (c - a) m~Î cÖ‡qvM K‡i M.mv.¸ Kivi msL¨v¸‡jv Lyu‡R †ei Ki‡Z n‡e| 67. †Kvb& e„nËg msL¨v Øviv 1305, 4665 I 6905-†K fvM Ki‡j cÖwZ‡ÿ‡Î GKB Aewkó _v‡K? beg- `kg †kÖwY MwYZ, (1983 ms¯‹iY) Abykxjbx 1.1 Gi 46 bs cÖk 4665 - 1305 = 3360 (b - a) 6905 - 4665 = 2240 (c - b) 6905 - 1305 = 5600 (c - a) 3360, 2240 I 5600 Gi M.mv.¸ wbY©q Ki‡Z n‡e| 2240) 3360 ( 1 2240 1120) 2240 ( 2 2240 0 1120 ) 5600 ( 5 5600 0 3360, 2240 I 5600 Gi M.mv.¸ = 1120 wb‡Y©q e„nËg msL¨v 1120| 68. e„nËg msL¨v N Øviv 1305, 4665 I 6905 †K fvM fvM Ki‡j cÖwZ‡ÿ‡Î GKB Aewkó _v‡K| N Gi A¼¸‡jvi mgwó KZ? WvPevsjve¨vsKwj.(cÖ‡ekbvwiAwdmvi) 2012 4 5 6 8 DËi: K 67 bs Gi gZ mgvavb Kivi ci e„nËg msL¨vwU (N) wbY©q Kiæb| Gici cÖkœvbyhvqx, D³ e„nËg msL¨vwUi A¼¸‡jvi †hvM Kiæb, Zvn‡jB DËi cvIqv hv‡e, †mwUi †hvMdjB n‡e DËi| e„nËg msL¨vwU = 1120 AZGe, e„nËg msL¨vwUi A¼¸‡jvi mgwó = 1 + 1 + 2 + 0 = 4| 69. †Kvb& e„nËg msL¨v Øviv 4003, 4126 I 4249-‡K fvM Ki‡j cÖwZ‡ÿ‡Î GKB Aewkó _v‡K? cjøxmÂq e¨vsK(K¨vk)2018 43 41 L K mgvavb N M L K mgvavb mgvavb mgvavb N M L K
  • 17. 2  Math Tutor 45 50 DËi: L 4126 - 4003 = 123 4249 - 4126 = 123 4249 - 4003 = 246 123, 123 I 246 Gi M.mv.¸ wbY©q Ki‡Z n‡e| 123) 123 ( 1 123 0 123 ) 246 ( 2 246 0 cÖ‡kœ †QvU GKUv RwUjZv Av‡Q| mivmwi DËi †bB| Ack‡b 123 Gi ¸wYZK _vK‡jI DËi nZ, wKš‘ †mwUI †bB| ZvB 123 †K Drcv`‡K we‡kølY K‡i †`L‡Z n‡e, 123 Gi †Kvb msL¨vi ¸wYZK| 3 123 41 41 Gi ¸wYZK n‡”Q 123, ZvB 123 Øviv fvM Ki‡j †hgb cÖwZ‡ÿ‡Î GKB Aewkó _vK‡e GKBfv‡e 41 Øviv fvM Ki‡jI GKB Aewkó _vK‡e|  wb‡Y©q e„nËg msL¨v = 41|  04.12 fMœvs‡ki j.mv.¸ I M.mv.¸ †R‡b wbb-33  fMœvskmg~‡ni j.mv.¸ : fMœvs‡ki j.mv.¸ wbY©q Kivi wbqg n‡”Q fMœvskmg~‡ni je¸‡jvi j.mv.¸ †ei Ki‡Z n‡e Ges ni¸‡jvi M.mv.¸ †ei Ki‡Z n‡e| fMœvs‡ki j.mv.¸ = M.mv.¸ jvi ni¸‡ j.mv.¸ jvi je¸‡  fMœvskmg~‡ni M.mv.¸ : fMœvs‡ki M.mv.¸ wbY©q Kivi wbqg n‡”Q fMœvskmg~‡ni je¸‡jvi M.mv¸ †ei Ki‡Z n‡e Ges ni¸‡jvi j.mv.¸ †ei Ki‡Z n‡e| fMœvs‡ki M.mv.¸ = j.mv.¸ jvi ni¸‡ M.mv.¸ jvi je¸‡  g‡b ivLyb: fMœvs‡ki j.mv.¸ PvB‡j j‡e j.mv¸ Ges fMœvs‡ki M.mv.¸ PvB‡j  j‡e M.mv.¸ | 70. 3 1 , 6 5 , 9 2 Ges 27 4 Gi j.mv.¸ KZ? 54 1 27 10 3 20 †Kv‡bvwUB bq DËi: M 1, 5, 2 Ges 4 Gi j.mv.¸ = 20 3, 6, 9 Ges 27 Gi M.mv.¸ = 3  wb‡Y©q j.mv.¸ = 3 20 | 71. 3 2 , 9 8 , 81 64 Ges 27 10 Gi M.mv.¸ KZ? 3 2 81 2 3 160 81 160 DËi: L 2, 8, 64 Ges 10 Gi M.mv.¸ = 2 3, 9, 81 Ges 27 Gi j.mv.¸ = 81  wb‡Y©q M.mv.¸ = 81 2 | 72. 3 2 , 5 3 , 7 4 Ges 13 9 Gi j.mv.¸ KZ? 36 36 1 1365 1 455 12 DËi: K 73. 10 9 , 25 12 , 35 18 Ges 40 21 Gi M.mv.¸ KZ? 5 3 5 252 1400 3 700 63 DËi: M N M L K N M L K mgvavb N M L K mgvavb N M L K mgvavb N M
  • 18. 2  Math Tutor 74. wZbwU N›Uv GK‡Î †e‡R 1 2 1 wgwbU, 2 2 1 wgwbU, 3 2 1 wgwbU AšÍi evR‡Z jvMj| b~¨bZg KZÿY ci NÈv¸‡jv cybivq GK‡Î evR‡e? cwiKíbvgš¿YvjqGescÖevmx Kj¨vYI•e‡`wkKKg©ms¯’vbgš¿Yvj‡qimnKvixcwiPvjK2006 12 2 1 wgwbU 32 2 1 wgwbU 52 2 1 wgwbU 72 2 1 wgwbU DËi: M (wgkÖ fMœvsk¸‡jv‡K AcÖK…Z fMœvs‡k iƒcvšÍi K‡i wbb) 1 2 1 wgwbU ev 2 3 wgwbU, 2 2 1 wgwbU ev 2 5 wgwbU, 3 2 1 wgwbU ev 2 7 wgwbU Gi j.mv.¸-B n‡e DËi| 3, 5 Ges 7 Gi j.mv.¸ = 105 Ges 2, 2 Ges 2 Gi M.mv.¸ = 2  wb‡Y©q j.mv.¸ = 2 105 = 52 2 1 |  04.13 j.mv.¸ I M.mv.¸I m¤úK© (K) msL¨v `ywUi ¸Ydj = j. mv. ¸  M. mv. ¸ 75. `yBwU msL¨vi M. mv.¸ I j. mv.¸ -Gi ¸Ydj msL¨v `ywUi - mve-†iwR÷vit92 †hvMd‡ji mgvb ¸Yd‡ji mgvb we‡qvMd‡ji mgvb fvMd‡ji mgvb DËi: L 76. `ywU msL¨vi ¸Ydj 1376| msL¨v `ywUi j. mv. ¸ 86 n‡j M. mv. ¸ KZ? Z_¨gš¿Yvj‡qiAax‡bmnKvixcwiPvjK, †MÖW-2t03 16 18 24 22 DËi: K msL¨v `ywUi ¸Ydj = j. mv. ¸  M. mv. ¸ ev, 1376 = 86  M. mv. ¸  M.mv.¸ = 86 1376 = 16| 77. `yBwU msL¨vi ¸Ydj 4235 Ges Zv‡`i j. mv. ¸ 385| msL¨v `yBwUi M. mv. ¸ KZ? KvwiMwiwkÿv Awa`߇iiAax‡bPxdBÝUªv±i:03 17 15 11 13 DËi: M 78. `ywU msL¨vi M. mv.¸ 16 Ges j. mv. ¸ 192| GKwU msL¨v 48 n‡j, Aci msL¨vwU KZ? cÖv_wgKwe`¨vjq mnKvixwkÿK:01 60 62 64 68 DËi: M GKwU msL¨v  Aci msL¨v = j. mv. ¸  M. mv. ¸ ev, 48  Aci msL¨v = 192  16  Aci msL¨v = 48 16 192  = 64| 79. `ywU msL¨vi j.mv.¸ 48 Ges M. mv. ¸ 4 | GKwU msL¨v 16 n‡j Aci msL¨vwU KZ? ¯’vbxqmiKvigš¿Yvj‡qi Aax‡bGjwRBwW‡ZmnKvixcÖ‡KŠkjx:05 12 22 24 32 DËi: K Aci msL¨v = 16 4 48  = 12| †R‡b wbb -34  GKwU m~Î w`‡q wZbwU m~Î AvqË¡ Kiv hvK-  msL¨v¸‡jvi j.mv.¸ = msL¨v¸‡jvi Abycv‡Zi ¸Ydj  msL¨v¸‡jvi M. mv. ¸  msL¨v¸‡jvi M.mv.¸ = ¸Ydj Zi Abycv‡ jvi msL¨v¸‡ j.mv.¸ jvi msL¨v¸‡  AbycvZ¸wji ¸Ydj = M.mv.¸ jvi msL¨v¸‡ j.mv.¸ jvi msL¨v¸‡   bs m~Î †_‡K evKx m~θ‡jv G‡m‡Q| LvZvq wj‡L evievi cÖ¨vKwUm Kiæb, mn‡RB Avq‡Ë¡ P‡j Avm‡e| mgvavb N M L K mgvavb N M L K N M L K mgvavb N M L K N M L K mgvavb N M L K
  • 19. 2  Math Tutor (L) `ywU msL¨vi AbycvZ I M.mv.¸ †_‡K j.mv.¸ wbY©q 80. `ywU msL¨vi AbycvZ 3 : 4 Ges Zv‡`i M.mv.¸ 4 n‡j, Zv‡`i j.mv.¸ KZ? 12 16 24 48 DËi: N g‡bKwi, msL¨v `ywU = 3x I 4x Ges Zv‡`i Mmv¸ = x cÖkœg‡Z, x = 4 ∴ msL¨v `ywU : 3 x = 3  4 = 12 I 4x = 4  4 = 16| myZivs, 2 12, 16 2 6, 8 3, 4 12 I 16 Gi j.mv.¸- 2  2  3  4 = 48|  kU©KvUt msL¨v¸‡jvi j.mv.¸ = msL¨v¸‡jvi Abycv‡Zi ¸Ydj  M. mv. ¸ = 3  4  4= 48|  kU©KvU †UKwb‡Ki e¨vL¨vt- msL¨v `ywUi AbycvZ‡K ¸.mv.¸ Øviv ¸Y Ki‡j msL¨v `ywU cvIqv hvq| †hgb- 3 : 4 AbycvZ‡K M.mv.¸ 4 Øviv ¸Y K‡i cÖvß msL¨v `ywU n‡”Q- 34 = 12 Ges 44 = 16| ∴ 12 I 16 Gi j.mv.¸ n‡”Q = 4 12, 16 3, 4 = 4 34 = 48| (M.mv.¸ 4 I AbycvZ 3 : 4) 81. `ywU msL¨vi AbycvZ 5 : 6 Ges Zv‡`i M. mv. ¸ 4 n‡j, msL¨v `ywUi j. mv. ¸ KZ? _vbvmn wkÿvAwdmvi:99 100 120 150 180 msL¨v¸‡jvi j.mv.¸ = 564 = 120 82. `yBwU msL¨vi AbycvZ 5 : 6 Ges Zv‡`i M.mv.¸ 6 n‡j, msL¨v `yBwUi j.mv.¸ KZ? `ybx©wZ`gbey¨‡ivcwi`k©K:04 210 180 150 120 DËi: L 83. `yBwU msL¨vi AbycvZ 5 : 6 Ges Zv‡`i M.mv.¸ 8 n‡j Zv‡`i j.mv.¸ KZ? RbcÖkvmbgš¿Yvj‡qicÖkvmwbK Kg©KZ©v:16 200 224 240 248 DËi: M 84. `yBwU msL¨vi 5 : 7 Ges Zv‡`i M.mv.¸ 6 n‡j, msL¨v `yBwUi j.mv.¸ KZ? cÖvK-cÖv_wgKmnKvixwkÿK(†WjUv):14 210 180 150 120 DËi: K  (M) `ywU msL¨vi AbycvZ I j.mv.¸ †_‡K M.mv.¸ wbY©q 85. `ywU msL¨vi AbycvZ 4 : 5 Ges msL¨v `ywUi j.mv.¸ 60 n‡j, M.mv.¸ KZ? 5 1 2 3 DËi: N g‡bKwi, M.mv.¸ = x Ges `ywU msL¨v = 4x I 5x (AbycvZ‡K ¸.mv.¸ Øviv ¸Y Ki‡j msL¨v `ywU cvIqv hvq) ∴ `ywU msL¨vi j.mv.¸ = x 4x, 5x 4, 5 = x 45 = 20x cÖkœg‡Z, 20x = 60 ev, x = 20 60 = 3 myZivs, wb‡Y©q M.mv.¸ = 3|  kU©KvUt msL¨v؇qi M.mv.¸ = ¸Ydj Zi Abycv‡ j.mv.¸ = 3 2 60 5 4 60    o 86. `yBwU msL¨vi AbycvZ 7 : 5 Ges Zv‡`i j.mv.¸ 140 n‡j msL¨v `yBwUi M.mv.¸ KZ? 39Zg wewmGm (we‡kl) wcÖwjwgbvwi 12 6 9 4 DËi: N msL¨v؇qi M.mv.¸ = ¸Ydj Zi Abycv‡ j.mv.¸ = 5 7 140  = 4| 87. `ywU msL¨vi AbycvZ 7 : 8 Ges Zv‡`i j.mv.¸ 280 n‡j msL¨v `yBwUi M.mv.¸ KZ? 15Zg †emiKvwi cÖfvlK wbeÜb (K‡jR/ch©vq) : 18 4 5 6 7 DËi: L N M L K mgvavb N M L K mgvavb N M L K N M L K N M L K N M L K mgvavb N M L K mgvavb N M L K
  • 20. 2  Math Tutor msL¨v؇qi M.mv.¸ = 8 7 280  = 5| 88. `ywU msL¨vi AbycvZ 5 : 7 Ges Zv‡`i j.mv.¸ 350| msL¨v `ywUi M.mv.¸- ¯^v¯’¨ cÖ‡KŠkj Awa`߇ii mn. cÖ‡KŠkjx (wmwfj) : 17 50 70 35 10 DËi: N 89. `ywU msL¨vi AbycvZ 5 : 6 Ges Zv‡`i j.mv.¸ 120; msL¨v `ywUi M.mv.¸ KZ? evsjv‡`k †ijI‡qi Dcmn. cÖ‡KŠkjx (wmwfj) : 16 3 4 5 6 DËi: L 90. wZbwU msL¨vi AbycvZ 3 : 4 : 5 Ges Zv‡`i j.mv.¸ 660 n‡j, msL¨v wZbwUi M.mv.¸ KZ? 5 4 3 11 DËi: N g‡bKwi, msL¨v wZbwUi M.mv.¸ = x Ges msL¨v wZbwU = 3x, 4x I 5x ∴ msL¨v·qi j.mv.¸ = x 3x, 4x, 5x 3, 4, 5 = x345 = 60x kZ©g‡Z, 60x = 660 ev, x = 60 660 = 11 myZivs, msL¨v wZbwUi M.mv.¸ = 11| 91. wZbwU msL¨vi AbycvZ 3 : 4 : 5 Ges Zv‡`i j.mv.¸ 240| G‡`i M.mv.¸ KZ? 8 7 6 4 DËi: N kU©KvUt msL¨v¸‡jvi M.mv.¸ = 5 4 3 240   4 6 240   o |  (N) `ywU msL¨vi AbycvZ I M.mv.¸/j.mv.¸ †_‡K msL¨v `ywU wbY©q, ÿz`ªZg ev e„nËg msL¨v wbY©q †R‡b wbb - 35  msL¨v `ywUi AbycvZ‡K ¸.mv.¸ Øviv ¸Y Ki‡j msL¨v `ywU cvIqv hvq| 92. `ywU msL¨vi AbycvZ 7 : 9 Ges msL¨v `ywUi M.mv.¸ 5 n‡j, ÿz`ªZg msL¨vwU KZ? 21 14 7 35 DËi: N g‡b Kwi, ÿz`ªZg msL¨vwU = 7x I e„nËg msL¨vwU = 9x Ges msL¨v `ywUi M.mv.¸ = x cÖkœg‡Z, x = 5 (M.mv.¸ x Gi mv‡_ `v‡Mi M.mv.¸ 5 Gi Zzjbv Kiv n‡q‡Q) myZivs, ÿz`ªZg msL¨vwU = 7x = 7  5 = 35|  kU©KvU t `ywU msL¨vi AbycvZ‡K M.mv.¸ Øviv ¸Y Ki‡j msL¨v `ywU cvIqv hvq| myZivs, msL¨v `ywU- 7 : 9 75 95 = 35 = 45 (ÿz`ªZg) (e„nËg) mivmwi Abycv‡Zi ÿz`ªZg ivwkwU‡K M.mv.¸ 5 Øviv ¸Y Kiæb, 75 = 35 (ÿz`ªZg msL¨v) 93. wZbwU msL¨vi M.mv.¸ 12 Ges Zv‡`i AbycvZ 1 : 2 : 3 n‡j, msL¨v wZbwU nj- 6, 12, 18 10, 20, 30 12, 24, 36 24, 48, 72 DËi: M g‡bKwi, msL¨v 3wU = x : 2x : 3x Ges Zv‡`i M.mv.¸ = x | cÖkœg‡Z, x = 12 myZivs, msL¨v 3 wU n‡”Q- x = 12, 2x = 212 = 24 I 3x = 312 = 36 |  kU©KvUt 1 : 2 : 3 M.mv.¸ 12 Øviv ¸Y K‡i- 12 24 36 94. `ywU msL¨vi AbycvZ 5 : 6 Ges Zv‡`i j.mv.¸ 360 n‡j msL¨v `yÕwU wK wK ? AvbmviI wfwWwcAwa`߇iimv‡K©j A¨vWRy‡U›U:05 45, 54 50, 60 60, 72 75, 90 DËi: M g‡bKwi, †QvU msL¨vwU = 5x I eo msL¨vwU = 6x (GLv‡b x n‡”Q msL¨v `ywUi M.mv.¸) msL¨v `ywUi j.mv.¸ = x 5x, 6x 5, 6 = x56 = 30x cÖkœg‡Z, 30x = 360 mgvavb N M L K mgvavb N M L K mgvavb N M L K mgvavb N M L K mgvavb N M L K N M L K N M L K mgvavb
  • 21. 2  Math Tutor ev, x = 12 30 360  myZivs, msL¨v `ywU = 5x = 512 = 60 Ges 6x = 6 12 = 72|  kU©KvUt j.mv.¸ †K AbycvZ `ywUi ¸Ydj Øviv fvM Ki‡j M.mv.¸ cvIqv hvq| A_©vr, M.mv.¸ = 30 360 6 5 360   12  Ges M.mv.¸ Øviv Abycv‡Zi ivwk `ywU‡K ¸Y Ki‡j msL¨v `ywU cvIqv hvq| msL¨v `ywU n‡”Q- 5 : 6 512 612 = 60 = 72  msL¨v `ywU = 60 I 72| 95. `ywU msL¨vi AbycvZ 3 : 4 Ges msL¨v `ywUi j.mv.¸ 84 n‡j, eo msL¨vwU KZ? 21 24 28 84 DËi: M msL¨v `ywUi M.mv.¸ = 7 4 3 84   Ges msL¨v `ywU n‡”Q- 3 : 4 37 47 = 21 = 28 (†QvU) (eo)  eo msL¨vwU = 28|  Abycv‡Zi eo ivwkwU‡K M.mv.¸ 7 Øviv ¸Y Ki‡jB mivmwi eo msL¨vwU cvIqv hv‡e|  eo msL¨v = 47 = 28| 96. wZbwU msL¨vi AbycvZ 3 : 4 : 5 Ges Zv‡`i j.mv.¸ 1200 n‡j, msL¨v wZbwU Kx Kx? 60 80 100 me KqwU DËi: N msL¨v wZbwUi M.mv.¸ = 20 5 4 3 1200    Ges msL¨v wZbwU n‡”Q- 3 : 4 : 5 M.mv.¸ 20 w`‡q ¸Y K‡i- 60 80 100 97. `yÕwU msL¨vi AbycvZ 5 : 8 Ges Zv‡`i j.mv.¸ 120 n‡j, msL¨v `ywU KZ? Rb¯^v¯’¨ cÖ‡KŠkj Awa`߇ii Dc- mnKvix cÖ‡KŠkjx (wmwfj) : 15 25, 40 20, 32 15, 24 10, 16 DËi: M  (O) cvuPwgkvwj 98. `ywU msL¨vi AbycvZ 2 : 3 Ges Zv‡`i M.mv.¸ I j.mv.¸-Gi ¸Ydj 33750 n‡j, msL¨v `ywUi †hvMdj KZ? 250 425 325 375 DËi: N g‡bKwi, msL¨v `ywU = 2x I 3x ∴ msL¨v `ywUi ¸Ydj = 2x3x = 6x2 (msL¨v`ywUi ¸Ydj = j. mv. ¸  M. mv. ¸ m~Îvbymv‡i kZ©g‡Z wjL‡Z cvwi|) kZ©g‡Z, 6x2 = 33750 ev, x2 = 6 33750 ev, x2 = 5625 ∴ x = 5625 = 75  msL¨v `ywUi †hvMdj = 2x + 3x = 5x = 5  75 = 375 99. `ywU msL¨vi M.mv.¸ 2 Ges Zv‡`i j.mv.¸ 70 n‡j, msL¨v `ywU wK wK? 14, 10 2, 35 6, 70 4, 70 DËi: K g‡bKwi, msL¨v `ywU = 2x I 2y (msL¨v؇qi gv‡S 2 n‡”Q M.mv.¸ 2)  j. mv. ¸ = 2 2x, 2y = 2xy = 2xy x , y cÖkœg‡Z, 2xy = 70 ev, xy = 35 2 70  xy = 35 †_‡K x I y Gi gvb n‡Z cv‡i- 1  35 = 35  1 I 35 A_ev 5  7 = 35  5 I 7 GLb, x I y Gi gvb 1 I 35 n‡j, msL¨v `ywU n‡e, 2 1 = 2 I 2 35 = 70 A_ev, x I y Gi gvb 5 I 7 n‡j, msL¨v `ywU n‡e, 2 5 = 10 I 27 = 14 †h‡nZz Ack‡b 14 I 10 Av‡Q †m‡nZz msL¨v `ywU mgvavb N M L K mgvavb N M L K N M L K mgvavb N M L K mgvavb N M L K
  • 22. 2  Math Tutor n‡e 14, 10| (DËi)  Option Test: msL¨v`ywUi j.mv.¸  M.mv.¸ = msL¨v؇qi ¸Ydj ev, 70  2 = 140 (cÖgvY Ki‡Z n‡e Ack‡bi msL¨v؇qi ¸Ydj = 140) 14, 10  14  10 = 140 (mwVK DËi) 2, 35  235 = 70 (mwVK bq) ... 100. `ywU msL¨vi mgwó 1000 Ges Zv‡`i j.mv.¸ 8919 n‡j msL¨v `ywU wK wK? 993, 7 989, 11 987, 13 991, 9 DËi: N g‡bKwi, msL¨v `ywU = x I y, mgwó = x + y Ges j.mv.¸ = xy (msL¨vØq mn‡gŠwjK n‡j Zv‡`i ¸YdjB j.mv.¸) GLv‡b, x + y = 1000 Ges xy = 8919 me KqwU Ack‡bi msL¨v؇qi †hvMdj 1000, ZvB †h Ack‡bi msL¨v؇qi ¸Ydj 8919 †mwUB DËi n‡e| ïay Ackb Gi msL¨v؇qi ¸Ydj wg‡j hv‡”Q- 9919 = 8919| 101. `ywU msL¨vi M.mv.¸ , mgwó I j.mv.¸ h_vµ‡g 36, 252 I 432| msL¨v `ywU wbY©q Ki| ? beg- `kg †kÖwY MwYZ, (1983 ms¯‹iY) Abykxjbx 1.1 Gi 21 bs cÖk g‡b Kwi, msL¨v `ywU 36x I 36y (x I y mn‡gŠwjK) kZ©vbymv‡i, 36x + 36y = 252 ev, 36 (x + y) = 252  x + y = 36 252 = 7 Avevi, 36x I 36y Gi j.mv.¸ = 36xy kZv©bymv‡i, 36xy = 432  xy = 36 432 = 12 GLv‡b, xy =12 †_‡K x I y Gi †h †h gvb n‡Z cv‡i- xy = 1  12, 2 6 , 34 | †h‡nZz, x + y = 7, †m‡nZz x = 3 I y = 4 n‡e|  msL¨vØq = 36x = 363 = 108 I 36y = 364 = 144  g‡b ivLyb: Dˇii w`‡K jÿ¨ K‡i †`Lyb, msL¨v`ywU M.mv.¸ 36 Gi ¸wYZK| me mgq g‡b ivL‡eb, cÖ‡kœ M.mv.¸ _vK‡j msL¨vØq memgq M.mv.¸Õi ¸wYZK n‡e| 102. `ywU msL¨vi M.mv.¸ 15 Ges j.mv.¸ 180| msL¨v `ywUi mgwó 105 n‡j, msL¨v `ywU wK wK? 30, 75 35, 70 45, 60 40, 65 DËi: M msL¨v`ywU Aek¨B M.mv.¸ 15 Gi ¸wYZK n‡e, GB `„wó‡KvY †_‡K Ackb I ev` hv‡e| evKx I Ack‡bi gv‡S Gi msL¨v`ywUi j.mv.¸ 180, hv cÖ‡kœ D‡jøwLZ msL¨v؇qi j.mv.¸ 180 Gi mv‡_ wg‡j hvq| 103. `ywU msL¨vi M.mv.¸ I j.mv.¸ h_vµ‡g 12 I 72| msL¨v `ywUi mgwó 60 n‡j, Zv‡`i g‡a¨ GKwU nj- 12 60 24 72 DËi: M meKqwU Ackb M.mv.¸ 12 Gi ¸wYZK| ZvB evKx kZ©¸‡jv hvPvB K‡i †`L‡Z n‡e| msL¨v `ywUi mgwó 60 Abymv‡i, `ywU msL¨vi GKwUB hw` 60 ev 72 nq, Znv‡j Ackb I ev` c‡i hv‡”Q|  Ackb K Abymv‡i, GKwU msL¨v 12 n‡j, AciwU 60 -12 = 48, hv‡`i j.mv.¸ 48 nIqvq ev`|  Ackb M Abymv‡i, GKwU msL¨v 24 n‡j, AciwU 60 - 24 = 36, hv‡`i j.mv.¸ 72 nIqvq GwUB mwVK DËi| 104. `ywU msL¨vi j.mv.¸ I M.mv.¸ Gi ¸Ydj 32| msL¨v `ywUi AšÍi 14 n‡j, eo msL¨vwU KZ? 4 2 18 16 DËi: N g‡bKwi, `ywU msL¨v x I y, G‡`i ¸Ydj = xy Ges AšÍi = x - y (†hLv‡b x > y) Avgiv Rvwb, `ywU msL¨vi ¸Ydj = M.mv.¸ I j.mv.¸Õi ¸Ydj, Zvn‡j xy = 32 ej‡Z cvwi| xy = 32 †_‡K 321, 162 I 84 msL¨v hyMj cvIqv hvq| cÖkœvbymv‡i, †h‡nZz msL¨v `ywUi AšÍi 14 n‡e, †m‡nZz 162 msL¨vhyMjwU mwVK|  eo msL¨vwU = 16| 105. `ywU msL¨vi M.mv.¸, AšÍi I j.mv.¸ h_vµ‡g 12, 60 I 2448| msL¨v `ywU wbY©q Ki| beg-`kg †kÖwY MwYZ, (1983 ms¯‹iY) Abykxjbx 1.1 Gi 22 bs cÖk , 17Zg wewmGm; 15Zg wkÿK wbeÜb (¯‹zj ch©vq-2) 104, 204 104, 144 104, 244 144, 204 DËi: N g‡b Kwi, msL¨v `ywU 12x I 12y (†hLv‡b x > y mgvavb N M L K mgvavb N M L K N L mgvavb N M L K M M K N L mgvavb N M L K mgvavb N mgvavb N M L K L K
  • 23. Math Tutor  3 Ges x, y mn‡gŠwjK ) kZ©vbymv‡i, 12x - 12y = 60 ev, 12 (x - y) = 60  x - y = 12 60 = 5 | Avevi, 12x I 12y Gi j.mv.¸ = 12xy kZv©bymv‡i, 12xy = 2448  xy = 12 2448 = 204 GLv‡b, xy = 204 I x - y = 5 Abymv‡i x I y Gi gvb wbY©q Kiv hvK- 2 204 2 102 3 51 17 x y = 1712 A_©vr, x = 17 Ges y = 12 msL¨v `ywU wbY©xZ nj|  msL¨vØq = 12x = 1217 = 204 I 12y = 1212 = 144  kU©KvUt msL¨v`ywU cÖ`Ë M.mv.¸ 12 Gi ¸wYZK n‡Z n‡e| wKš‘ Ackb , I Gi 104, 12 Gi ¸wYZK bq, ZvB GB Ackb wZbwU ev` hv‡e| Ackb Gi 144 I 204, 12 Gi ¸wYZK, ZvB GwUB mwVK DËi|  msL¨v؇qi AšÍidj 60 wKbv GB kZ©wU Ackb †_‡K hvPvB K‡i DËi †ei Kiv hvq| Ackb¸‡jvi gv‡S ïay Gi msL¨v؇qi AšÍi 60 n‡e| 106. `ywU msL¨vi M.mv.¸, AšÍi I j.mv.¸ h_vµ‡g 12, 60 I 2448| msL¨v `ywU wbY©q Kiæb| 33 Zg wewmGm wjwLZ 105 bs cÖ‡kœi mgvavb †`Lyb| 107. `ywU msL¨vi M.mv.¸ 21 Ges j.mv.¸ 4641| GKwU msL¨v 200 I 300 Gi ga¨eZx©; AciwU KZ? beg- `kg †kÖwY MwYZ, (1983 ms¯‹iY) Abykxjbx 1.1 Gi 39 bs cÖkœ ; 34 Zg wewmGm wjwLZ; 20Zg wewmGm wjwLZ g‡b Kwi, msL¨v `ywU 21x I 21y (GLv‡b x I y ci¯úi mn‡gŠwjK) 21x I 21y Gi j.mv.¸ = 21xy cÖkœg‡Z, 21xy = 4641  xy = 21 4641 = 221 xy = 221 †_‡K x I y Gi msL¨vhyMj¸‡jv †ei Kiv hvK- 13 221 17 xy = 1  221 xy = 13  17 x I y mn‡gŠwjK nIqvq x = 1, y = 221 I x = 13, y = 17 Dfq gvb wVK Av‡Q| wKš‘ ÔmsL¨vwU 200 I 300 Gi ga¨eZx© n‡Z n‡eÕ GB k‡Z© x = 13, y = 17 gvb mwVK| AZGe, wb‡Y©q msL¨v؇qi GKwU = 21x = 2113 = 273 I AciwU = 21y = 2117 = 357| DËi: Aci msL¨vwU 357| 108. Qq A‡¼i ÿz`ªZg msL¨vi mv‡_ †Kvb ÿz`ªZg msL¨v †hvM Ki‡j mgwó 2, 4, 6, 8, 10 I 12 Øviv wefvR¨ n‡e? cywjk mv‡R©›U wb‡qvM cixÿv 1997 43 bs cÖ‡kœi mgvavb †`Lyb| 109. cuvP A‡¼i e„nËg msL¨vi mv‡_ †Kvb ÿz`ªZg msL¨v †hvM Ki‡j †hvMdj 5, 8, 12 I 14 Øviv wefvR¨? ewnivMgb I cvm‡cvU© Awa`߇ii Awdm mnKvix Kvg Kw¤úDUvi gy`ªvÿwiK 2013 5, 8, 12 I 14-Gi j. mv. ¸ wbY©q Kwi| 2 5, 8, 12, 14 2 5, 4, 6, 7 5, 2, 3, 7  j.mv.¸ = 225237 = 840 cvuP A‡¼i e„nËg msL¨v = 99999 840) 99999 ( 119 840 1599 840 7599 7560 39 mgvavb mgvavb mgvavb mgvavb N N M L K ïay wjwLZ Av‡jvPbv  
  • 24. 2  Math Tutor AZGe, wb‡Y©q ÿz`ªZg msL¨v = 840 - 39 = 801| (DËi) 110. cvuP A‡¼i e„nËg msL¨vi m‡½ †Kvb ÿz`ªZg msL¨v †hvM Ki‡j †hvMdj 6, 8, 10 I 14 Øviv wefvR¨ n‡e? 10g wewmGm wjwLZ 109 bs mgvav‡bi Abyiƒc | wWwR‡Ui cv_©K¨ †`Lv †M‡jI j.mv.¸ I DËi GKB n‡e A_©vr DËi 801| 111. GKwU ¯‹z‡j wWªj Kivi mgq 8, 10 ev 12 wU jvBb Kiv hvq| H ¯‹z‡j AšÍZ c‡ÿ KZ Rb QvÎQvÎx wQj? RvZxq wbivcËv †Mv‡q›`v (NSI) 2019 8, 10 Ges 12 Gi j.mv.¸-B n‡e b~¨bZg QvÎQvÎx msL¨v| 2 8, 10, 12 2 4, 5, 6 2, 5, 3  8, 10 Ges 12 Gi j.mv.¸ = 22253 = 120 AZGe, H ¯‹z‡j QvÎ-QvÎx msL¨v 120 Rb| 112. †Kvb •mb¨`‡ji •mb¨‡K 8, 10 ev 12 mvwi‡Z Ges eM©vKv‡iI mvRv‡bv hvq| †mB •mb¨`‡ji ÿz`ªZg msL¨vwU wbY©q Kiæb hv Pvi A¼wewkó| 15 Zg wewmGm wjwLZ 2 8, 10, 12 2 4, 5, 6 2, 5, 3 ∴ j.mv.¸ = 222 5 3 = 120 Drcv`K Abymv‡i 120 Rb •mb¨‡K eM©vKv‡i mvRv‡bv hv‡e bv, ZvQvov msL¨vwU Pvi A¼wewkóI bv| GRb¨ 120 †K c~Y©eM© Kivi Rb¨ (253) Øviv ¸Y Ki‡Z n‡e| c~Y©eM© msL¨vwU = 1202 5 3 = 3600| Gevi cÖvß c~Y©eM© msL¨vwU‡K eM©vKv‡i mvRv‡bv hv‡e Ges GwU GKwU Pvi A¼wewkó msL¨v| myZivs, wb‡Y©q •mb¨ msL¨v 3600| (DËi) 113. 400 I 500-Gi ga¨eZx© †Kvb †Kvb msL¨v‡K 12, 15 I 20 Øviv fvM w`‡j cÖwZ †ÿ‡Î 10 Aewkó _v‡K? beg-`kg †kÖwY MwYZ, (1983 ms¯‹iY) Abykxjbx 1.1 Gi 28 bs cÖkœ 12, 15 I 20 Gi j.mv.¸ wbY©q Ki‡Z n‡e| 2 12, 15, 20 2 6, 15, 10 3 3, 15, 5 5 1, 5, 5 1, 1, 1 j.mv.¸ = 2235 = 60| myZivs wb‡Y©q msL¨v 60 Gi ¸wYZK + 10 n‡e Ges Dnv 400 I 500 Gi ga¨eZx© n‡e| 601 + 10 = 70, 400 I 500 Gi ga¨eZx© bq 602 + 10 = 130, 400 I 500 Gi ga¨eZx© bq 603 + 10 = 190, 400 I 500 Gi ga¨eZx© bq 604 + 10 = 250, 400 I 500 Gi ga¨eZx© bq 605 + 10 = 310, 400 I 500 Gi ga¨eZx© bq 606 + 10 = 370, 400 I 500 Gi ga¨eZx© bq 607 + 10 = 430, 400 I 500 Gi ga¨eZx© 608 + 10 = 490, 400 I 500 Gi ga¨eZx© AZGe, msL¨v `ywU 430 I 490| 114. †Kvb ÿz`ªZg msL¨v‡K 3, 4, 5, 6 I 7 Øviv fvM Ki‡j cÖwZ‡ÿ‡Î 1 Aewkó _v‡K wKš‘ 11 Øviv fvM w`‡j †Kvb Aewkó _v‡K bv? beg-`kg †kÖwY MwYZ, (1983 ms¯‹iY) Abykxjbx 1.1 Gi 35 bs cÖkœ 2 3, 4, 5, 6, 7 3 3, 2, 5, 3, 7 1, 2, 5, 1, 7  j.mv.¸ = 23257 = 420| myZivs wb‡Y©q ÿz`ªZg msL¨v 420 Gi ¸wYZK + 1 n‡e Ges Dnv 11 Øviv wefvR¨ n‡e| 420  1 + 1 = 421, 11 Øviv wefvR¨ bq 420  2 + 1 = 841, 11 Øviv wefvR¨ bq 420  3 + 1 = 1261, 11 Øviv wefvR¨ bq 420  4 + 1 = 1681, 11 Øviv wefvR¨ bq 420  5 + 1 = 2101, 11 Øviv wefvR¨| AZGe, wb‡Y©q msL¨v 2101 | 115. KZK¸‡jv PvivMvQ cÖwZ mvwi‡Z 3, 5, 6, 8, 10 I 12 wU K‡i jvMv‡Z wM‡q †`Lv †Mj †h cÖwZev‡i 2 wU Pviv evwK _v‡K wKš‘ cÖwZ mvwi‡Z 19wU K‡i jvMv‡j GKwU PvivI Aewkó _v‡K bv| b~¨bZg KZK¸‡jv PvivMvQ wQj? beg-`kg †kÖwY MwYZ, (1983 ms¯‹iY) Abykxjbx 1.1 Gi 28 bs cÖkœ 114 bs Gi Abyiƒc | j.mv.¸ = 120 ---------------- ---------------- 1206 + 2 = 722, 19 Øviv wefvR¨ n‡e|  wb‡Y©q PvivMv‡Qi msL¨v 722 wU| (DËi) 116. †gvUvgywU GK nvRvi wjPz _vKvi K_v, Ggb GK Szwo wjPz 80 Rb evj‡Ki g‡a¨ fvM Ki‡Z wM‡q †`Lv †Mj †h 30wU wjPz DØ„Ë _v‡K; wKš‘ evj‡Ki msL¨v 90 n‡j mgvavb mgvavb mgvavb mgvavb mgvavb mgvavb
  • 25. Math Tutor  3 wjPz¸‡jv mgvb fv‡M fvM Kiv †hZ| SzwowU‡Z cÖK…Zc‡ÿ KZwU wjPz wQj? 11Zg wewmGm wjwLZ wjPzi msL¨v n‡e 80 Gi ¸wYZK + 30 Ges Dnv 90 Øviv wefvR¨ n‡e| 80  1 + 30 = 110 , 90 Øviv wefvR¨ bq 80  2 + 30 = 190, 90 Øviv wefvR¨ bq 80  3 + 30 = 270, 90 Øviv wefvR¨ bq 80  4 + 30 = 350, 90 Øviv wefvR¨ bq 80  5 + 30 = 430, 90 Øviv wefvR¨ bq 80  6 + 30 = 510, 90 Øviv wefvR¨ bq 80  7 + 30 = 590, 90 Øviv wefvR¨ bq 80  8 + 30 = 670, 90 Øviv wefvR¨ bq 80  9 + 30 = 750, 90 Øviv wefvR¨ bq 80  10 + 30 = 830, 90 Øviv wefvR¨ bq 80  11 + 30 = 910, 90 Øviv wefvR¨ bq 80  12 + 30 = 990, 90 Øviv wefvR¨|  wb‡Y©q wjPzi msL¨v = 990 wU| 117. ÿz`ªZg msL¨vwU wbY©q Kiæb hvnv 13 Øviv wefvR¨ wKš‘ 4, 5, 6 I 9 Øviv fvM Ki‡j cÖwZ‡ÿ‡Î 1 Aewkó _v‡K| 29 Zg wewmGm wjwLZ 114 bs Gi Abyiƒc| DËi: 1261 118. 13 Øviv wefvR¨ ÿz`ªZg †Kvb msL¨v‡K 3, 4, 5, 6 I 7 Øviv fvM Ki‡j h_vµ‡g 1, 2, 3, 4 I 5 Aewkó _v‡K? beg-`kg †kÖwY MwYZ, (1983 ms¯‹iY) Abykxjbx 1.1 Gi 36 bs cÖkœ cÖ`Ë fvRK I fvM‡k‡li ga¨Kvi e¨eavb- 3 - 1 = 2 4 - 2 = 2 5 - 3 = 2 6 - 4 = 2 7 - 5 = 2 3, 4, 5, 6 I 7 Gi j.mv.¸ wbY©q Kiv hvK- 2 3, 4, 5, 6, 7 3 3, 2, 5, 3, 7 1, 2, 5, 1, 7  j.mv.¸ = 23257 = 420| myZivs, wb‡Y©q ÿz`ªZg msL¨vwU n‡e 420 Gi ¸wYZK  2 Ges Dnv 13 Øviv wefvR¨| 4201  2 = 418, 13 Øviv wefvR¨ bq 4202  2 = 838, 13 Øviv wefvR¨ bq 4203  2 = 1258, 13 Øviv wefvR¨ bq 420 4  2 = 1678, 13 Øviv wefvR¨ bq 420 5  2 = 2098, 13 Øviv wefvR¨ bq 420 6  2 = 2518, 13 Øviv wefvR¨ bq 4207  2 = 2938, 13 Øviv wefvR¨ | AZGe, wb‡Y©q msL¨v 2938| 119. Qq A‡¼i ÿz`ªZg msL¨v wbY©q Kiæb hv‡K 5, 7, 12, 15 Øviv fvM Ki‡j Aewkó h_vµ‡g 2, 4, 9, 12 _vK‡e| 25Zg wewmGm wjwLZ cÖ`Ë fvRK I fvM‡k‡li ga¨Kvi e¨eavb- 5 - 2 = 3 7 - 4 = 3 12 - 9 = 3 15 - 12 = 3 5, 7, 12 I 15 Gi j.mv.¸ wbY©q Kiv hvK- 5 5, 7, 12, 15 3 1, 7, 12, 3 1, 7, 4, 1  j.mv.¸ = 5374 = 420| Qq A‡¼i ÿz`ªZg msL¨v = 100000 420) 100000 ( 238 840 1600 1260 3400 3360 40 fvRK I fvM‡k‡li cv_©K¨ = 420 - 40 = 380  wb‡Y©q msL¨v = 100000 + 380 - 3 = 100377 (DËi)  wba©vwiZ A‡¼i ÿz`ªZg msL¨v‡K wbt‡k‡l wefvR¨ Ki‡Z ÔfvRK I fvM‡kl Gi cv_©K¨Õ †hvM Ki‡Z nq|  fvRKmg~n I Zv‡`i cÖ‡Z¨‡Ki fvM‡kl _vK‡j wbt‡k‡l wefvR¨ msL¨v †_‡K †mwU we‡qvM Ki‡Z nq|  cÖ`Ë A‡¼ cÖ_‡g Qq A‡¼i ÿz`ªZg msL¨v‡K wbt‡k‡l wefvR¨ Kiv n‡q‡Q Ges c‡i 3 we‡qvM K‡i cÖwZwU fvR‡Ki h_vµ‡g Aewkó ivLvi kZ© c~iY Kiv n‡q‡Q| 120. GKwU AvqZvKvi N‡ii •`N©¨ 30 wgUvi, cÖ¯’ 12 wgUvi| Av‡iKwU AvqZvKvi nj N‡ii •`N©¨ 20 wgUvi I cÖ¯’ 15 wgUvi| me‡P‡q eo †Kvb AvqZ‡bi UzKiv w`‡q Dfq N‡ii †g‡S cy‡ivcywi †X‡K †djv hv‡e? beg-`kg †kÖwY MwYZ, (1983 ms¯‹iY) Abykxjbx 1.1 Gi 36 bs cÖkœ ; 11Zg wewmGm 1g N‡ii †ÿÎdj = 30 wgUvi  12 wgUvi mgvavb mgvavb mgvavb mgvavb mgvavb
  • 26. 4  Math Tutor = 360 eM©wgUvi 2q N‡ii †ÿÎdj = 20 wgUvi  15 wgUvi = 300 eM©wgUvi 360 I 300 Gi M.mv.¸ wbY©q Ki‡Z n‡e| wb‡Y©q M.mv.¸ n‡e me‡P‡q eo AvqZ‡bi Kv‡Vi UzKiv| 300) 360 ( 1 300 60) 300 ( 5 300 0 M.mv.¸ = 60 | AZGe, wb‡Y©q Kv‡Vi UzKivi AvqZb = 60 eM©wgUvi 1g N‡i Kv‡Vi msL¨v = 360  60 = 6 wU 2q N‡i Kv‡Vi msL¨v = 300  60 = 5 wU †gvU Kv‡Vi msL¨v = 5 + 6 = 11 wU| 121. `ywU msL¨vi AbycvZ 3 : 4 Ges Zv‡`i j.mv.¸ 180 n‡j msL¨v `ywU wbY©q Kiæb| ewnivMgb I cvm‡cvU© Awa`߇ii Awdm mnKvix Kvg Kw¤úDUvi gy`ªvÿwiK 2013 g‡b Kwi, msL¨v `ywU = 3x I 4x Ges G‡`i j.mv.¸ = 3x  4x = 12x kZ©g‡Z, 12x = 180  x = 12 180 = 15| myZivs, msL¨v `ywU h_vµ‡g 3x = 3  15 = 45 Ges 4x = 4 15 = 60| (DËi) 122. `ywU msL¨vi AbycvZ 5 : 7 Ges Zv‡`i M.mv.¸ 4 n‡j msL¨v `ywUi j.mv.¸ KZ? weÁvb I cÖhyw³ gš¿Yvj‡qi mvuU gy`ªvÿwiK Kvg-Kw¤úDUvi Acv‡iUi/Awdm mnKvix Kvg-Kw¤úDUvi gy`ªvÿwiK 2017 g‡b Kwi, msL¨v `ywU = 5x I 7x Ges G‡`i M.mv.¸ = x kZ©g‡Z, x = 4  msL¨v `ywU h_vµ‡g 5x = 54 = 20 Ges 7x = 74 = 28| GLb, 20 I 28 Gi j.mv.¸ wbY©q Ki‡Z n‡e| 2 20, 28 2 10, 14 5, 7 wb‡Y©q j.mv.¸ = 2257 = 140| (DËi) 123. `ywU msL¨vi ¸Ydj 3380, Gi M.mv.¸ 13, msL¨v `ywUi j.mv.¸ KZ? evsjv‡`k †ijI‡qi mnKvix †÷kb gv÷vi 2016 Avgiv Rvwb, msL¨v `ywUi ¸Ydj = msL¨v `ywUi j.mv.¸  M.mv.¸ ev, 3380 = msL¨v `ywUi j.mv.¸  13  msL¨v `ywUi j.mv.¸ = 13 3380 = 260| (DËi)  wet `ªt avivevwnK †cv÷¸‡jv‡Z †cR bv¤^vi wVK †bB Ges cÖwZwU Aa¨v‡qi web¨vm g~j eB‡q wKQzUv cwieZ©b I cwiea©b n‡q hy³ n‡e| mgvavb mgvavb mgvavb