SlideShare una empresa de Scribd logo
1 de 22
Descargar para leer sin conexión
Math Tutor  1
CHAPTER- 05
ga¨g msL¨v, Mo I mgwó
05.01 µwgK †e‡Rvo, µwgK †Rvo I µwgK msL¨vi †hvMdj
†R‡b wbb - 35
 µwgK †e‡Rvo msL¨vi †hvMdj †ei Kivi wbqg n‡”Q, †h KqwU µwgK †e‡Rvo msL¨vi †hvMdj †ei Ki‡Z n‡e, H
msLvi mv‡_ H msL¨v‡KB ¸Y K‡i ev H msL¨v‡K eM© Ki‡jB †hvMdj cvIqv hvq| †hgb- cÖ_g 4wU µwgK †e‡Rvo
msL¨vi †hvMdj KZ? mnR DËi n‡”Q- 4 4 = 42
= 16| Giƒc nIqvi KviY wb‡Pi D`vniY¸‡jv †`‡L wbb-
 4 wU µwgK †e‡Rvo msL¨vi †hvMdj = 1 + 3 + 5 + 7 = 16 , hv 4 Gi eM©|
 5 wU µgwK †e‡Rvo msL¨vi †hvMdj = 1 + 3 + 5 + 7 + 9 = 25, hv 5 Gi eM© |
GKBfv‡e, n msL¨K µwgK ¯^vfvweK †e‡Rvo msL¨vi †hvMdj n‡e n × n ev, n Gi eM© = n2
.
 µwgK †Rvo msL¨vi †hvMdj †ei Kivi wbqg n‡”Q, †h KqwU µwgK †Rvo msL¨vi †hvMdj †ei Ki‡Z n‡e, H
msL¨vi mv‡_ Zvi c‡ii msL¨v ¸Y Ki‡Z n‡e| †hgb- 5 wU µwgK †Rvo msL¨vi †hvMdj KZ? mnR DËi n‡”Q,
5  6 = 30| Giƒc nIqvi KviY wb‡Pi D`vnviY¸‡jv †`‡L wbb-
 5 wU µgwK †Rvo msL¨vi †hvMdj = 2 + 4 + 6 + 8 + 10 = 30, hv 5 × 6 = 30
 6 wU µwgK †Rvo msL¨vi †hvMdj = 2 + 4 + 6 + 8 + 10 + 12 = 42, hv 6 × 7 = 42
GKBfv‡e, n msL¨K µwgK †Rvo msL¨vi †hvMdj n‡e- n Gi mv‡_ Zvi c‡ii msL¨v n + 1 Gi ¸Y A_©vr, n 
(n + 1) = n (n + 1)
 µwgK †Rvo msL¨vi †hvMdj n (n + 1) †K 2 Øviv fvM Ki‡j µwgK msL¨vi †hvMdj †ei nq| †hgb- 7 wU µwgK
†Rvo msL¨vi †hvMdj = 78 = 56| Gevi 56 †K 2 Øviv fvM Ki‡j 7 wU µwgK msL¨vi †hvMdj †ei n‡e|
A_©vr, 7 wU µwgK msL¨vi †hvMdj = 56  2 = 28| Zvn‡j µwgK msL¨vi †hvMdj †ei Kivi m~ÎwU `vov‡”Q-
2
)1n(n 
|
 †h †Kvb msL¨K µwgK msL¨vi ¸Yd‡ji mv‡_ 1 †hvM Ki‡j c~Y©eM© msL¨v cvIqv hvq| †hgb- 4 wU µwgK msL¨vi
¸Yd‡ji mv‡_ 1 †hvM Kiv hvK- 1 × 2 × 3 × 4 = 24 + 1 = 25| cÖvß 25 GKwU c~Y© eM© msL¨v| (4bs cÖkœ †`Lyb)
 m~θ‡jv gyL¯Í bv K‡i ev¯Í‡e cÖ‡qvM K‡i †`Lyb Zvn‡j mn‡RB g‡b _vK‡e|
01. x msL¨K µwgK ¯^vfvweK †e‡Rvo msL¨vi †hvMdj
KZ? mnKvixcwievicwiKíbvKg©KZ©v:16
x 2x
𝑥2
2x + 1 DËi: M
02. cÖ_g `kwU we‡Rvo msL¨vi †hvMdj KZ? RbcÖkvmb
gš¿Yvj‡qiAax‡bPSC-GimnKvixcwiPvjK:16
100 81
1000 109 DËi: K
cÖ_g 10wU we‡Rvo msL¨vi †hvMdj= 102
= 100|
03. cÖ_g 6wU ¯^vfvweK msL¨vi mgwó KZ? mvaviYexgv
K‡c©v‡ikbmnKvixe¨e¯’vcKc‡`wb‡qvMcixÿ:16
15 18
21 24 DËi: M
6 Gi mv‡_ Zvi c‡ii msL¨v 7 ¸Y Kiæb Gfv‡e-
6 × 7 = 42 Ges 42 †K 2 Øviv fvM Kiæb |
A_©vr, 42 ÷ 2 = 21|
04. a, b, c, d PviwU µwgK ¯^vfvweK msL¨v n‡j wb‡Pi
†KvbwU c~Y©eM© msL¨v? ICB CapitalManagement
Ltd.-2019
abcd ab + cd
abcd + 1 abcd - 1 DËi: MNM
LK
mgvavb
NM
LK
mgvavb
NM
LK
NM
LK
†ewmK, GgwmwKD I wjwLZ Av‡jvPbv 
2  Math Tutor
05.02 ga¨g msL¨v wbY©q
†R‡b wbb -36
 ga¨g msL¨v (middle number) : aiæb, 1, 2, 3 GLv‡b 3wU µwgK msL¨v (consecutive number) Av‡Q,
G‡`i gv‡S 2 n‡”Q ga¨g msL¨v (middle number)| A_©vr, we‡Rvo msL¨K µwgK msL¨vi Mo ev gv‡SiwU n‡”Q
ga¨g msL¨v (middle number)|
 †e‡Rvo msL¨K µwgK msL¨vi †hvMdj †_‡K ga¨g msL¨v wbY©q Kivi wbqg: aiæb, 1, 2, 3 µwgK msL¨v wZbwUi
†hvMdj (1+2+3) n‡”Q 6| Avcbv‡K ejv nj, 3wU µwgK msL¨vi †hvMdj 6 n‡j ga¨eZx©/ga¨g msL¨v KZ?
G‡ÿ‡Î Lye mn‡RB Avcwb ga¨g msL¨vwU †ei Ki‡Z cv‡ib| wKfv‡e? Rv÷, †h KqwU msL¨vi †hvMdj ejv n‡q‡Q,
†mwU w`‡q †hvMdj‡K fvM Kiæb| A_©vr, 3 wU µwgK msL¨vi †hvMdj 6 n‡j,
ga¨g msL¨v =
c`msL¨v
hvMdj/mgwó†
=
3
6
= 2|
AviI †`Lyb-
 3 wU µwgK msL¨vi †hvMdj 12 n‡j, Zv‡`i ga¨eZx©/ga¨g msL¨vwU KZ? DËi: 12 ÷ 3 = 4 (ga¨g msL¨v)
 5 wU µwgK msL¨vi †hvMdj 25 n‡j, Zv‡`i ga¨eZx©/ga¨g msL¨vwU KZ? DËi: 25 ÷ 5 = 5(ga¨g msL¨v)
 †e‡Rvo msL¨K µwgK †Rvo I µwgK †e‡Rvo msL¨vi †hvMdj †_‡K ga¨g msL¨v wbY©q: †e‡Rvo msL¨K µwgK
msL¨vi ga¨g msL¨v †ei Kivi †h wbqg, †e‡Rvo msL¨K µwgK †Rvo msL¨v I µwgK †e‡Rvo msL¨vi ga¨g msL¨v
†ei KiviI GKB wbqg|
 wZbwU µwgK †e‡Rvo msL¨vi †hvMdj 57| ga¨g msL¨vwU KZ?
DËi: 57 ÷ 3 = 19 (ga¨g msL¨v)|  18, 19 , 20
 cvuPwU µwgK †Rvo msL¨vi †hvMdj 40| ga¨g msL¨vwU KZ?
DËi: 40 ÷ 5 = 8 (ga¨g msL¨v)  4, 6, 8 , 10, 12
 ga¨g msL¨v †_‡K evKx msL¨v¸‡jv wbY©q Kivi wbqg:
 †e‡Rvo msL¨K µwgK msL¨vi †ÿ‡Î : ïiæ‡ZB a‡i wbw”Q 3wU µwgK msL¨vi ga¨g msL¨v 5| GLv‡b 5 Gi
ev‡g GKwU I Wv‡b GKwU msL¨v Av‡Q| ev‡giwU †ei Ki‡Z 5 †_‡K 1 we‡qvM Kie Ges Wv‡biwU †ei Ki‡Z 5
Gi mv‡_ 1 †hvM Kie A_©vr, 4  5  6
 5wU µwgK msL¨vi ga¨g msL¨v 3 n‡j, evKx msL¨v¸‡jv Kx Kx?
 ga¨g msL¨v †_‡K ev‡g †M‡j 1 K‡i n«vm Ki‡Z _vKe Ges Wv‡b †M‡j 1 K‡i e„w× Ki‡Z _vKe|
12345
 †e‡Rvo msL¨K µwgK †Rvo I we‡Rvo msL¨vi †ÿ‡Î: †Rvo I †e‡Rv‡oi †ÿ‡Î ev‡g †M‡j 2 K‡i n«vm I Wv‡b
†M‡j 2 K‡i e„w× †c‡Z _vK‡e|
 5wU µwgK †Rvo msL¨vi ga¨g msL¨v 6 n‡j, evKx msL¨v¸‡jv wK wK?
 6 †_‡K ev‡g 2 K‡i n«vm I Wv‡b 2 K‡i e„w× Kiv n‡q‡Q- 246810
 7 wU µwgK we‡Rvo msL¨vi ga¨g msL¨v 21 n‡j, evKx msL¨v¸‡jv wK wK?
 15171921232527
05. wZbwU we‡Rvo µwgK msL¨vi †hvMdj 57 n‡j
ga¨eZ©x msL¨v KZ? evsjv‡`ke¨vsKmnKvixcwiPvjK:10
19 21
17 16 DËi: K
57 †K 3 Øviv fvM Ki‡jB ga¨g msL¨vwU cvIqv
hv‡e|  ga¨eZx© msL¨v = 57  3 = 19|
06. wZbwU µwgK msL¨vi †hvMdj 30, eowU I †QvUwUi
we‡qvMdj 2 n‡j †QvU msL¨vwU- †m‡KÛvixGWz‡Kkb†m±i
Bb‡f÷‡g›U†cÖvMÖvg,mn._vbvgva¨wgKwkÿvKg©KZ©vc‡`wbe©vPbxcixÿv:15
7 9
10 11 DËi: L
ga¨g msL¨v : 30 ÷ 3 = 10|  msL¨v¸‡jv =
91011| cÖ‡kœ ejv n‡q‡Q, eo msL¨v I †QvU
msL¨vi we‡qvMdj 2| A_©vr, 11 - 9 = 2|
mgvavb
NM
LK
mgvavb
NM
LK
Math Tutor  3
myZivs, †QvU msL¨vwU n‡”Q- 9|
07. wZbwU µwgK msL¨vi †hvMdj 240 n‡j, eo `ywUi
mgwó KZ? evsjv‡`ke¨vsKmnKvixcwiPvjK:09
79 159
169 161 DËi: N DËi: N
ga¨g msL¨v : 240  3 = 80|
 msL¨v¸‡jv = 798081
 eo `ywU msL¨vi †hvMdj = 80 + 81 = 161.
08. cvuPwU µwgK c~Y©msL¨vi †hvMdj n‡”Q 105| cÖ_g
`ywU msL¨vi †hvMdj n‡”Q- BangladeshCommercial
BankLtd.JuniorOfficer:08
39 21
19 41 DËi: K DËi: K
ga¨g msL¨v = 105 ÷ 5 = 21|
msL¨v¸‡jv = 1920212223
 cÖ_g `ywU msL¨vi †hvMdj = 19 + 20 = 39|
09. wZbwU µwgK msL¨vi †hvMdj 123| ÿz`ªZg msL¨v
`yBwUi ¸Ydj KZ? 12ZgwkÿKwbeÜb(¯‹zj/mgch©vq2)-15
625 1640
1600 900 DËi: L DËi: L
ga¨g msL¨v = 123  3 = 41|
msL¨v¸‡jv = 404142
 ÿ`ªZg msL¨v `ywUi ¸Ydj = 4041 = 1640
10. wZbwU µwgK msL¨vi †hvMdj 123| †QvU msL¨vwU
KZ? †m‡KÛvwiGWz‡Kkb†m±iBb‡f÷‡g›U†cÖvMÖvgDc‡Rjv,_vbv
GKv‡WwgKmycvifvBRvi15
30 45
40 49 DËi: M
11. 5wU µwgK msL¨vi †hvMdj 100 n‡j, cÖ_g msL¨v I
†kl msL¨vi ¸Ydj KZ? WvKI†Uwj‡hvMv‡hvMwefv‡MiWvK
Awa`߇iiwewìs Ifviwkqvi2018
246 242
396 484 DËi: M
12. 17wU µwgK †Rvo msL¨vi Mo 42| avivwU wb¤œZi
†_‡K D”PZi w`‡K mvRv‡bv n‡j Z…Zxq msL¨vwU KZ?
evsjv‡`ke¨vsKmnKvix cwiPvjK:11
28 29
30 34 DËi: M
avivwUi ga¨g msL¨v ev Mo n‡”Q 42|
msL¨v¸‡jv = 262830323436
38404244464850525
45658| wb¤œZi 26 †_‡K Z…Zxq †Rvo
msL¨vwU n‡”Q 30|
 kU©KvU: Mo 42 Gi Av‡M 8wU msL¨v Av‡Q, cÖwZwU 2
K‡i n«vm cv‡i| Zvigv‡b me‡P‡q ev‡gi msL¨v
msL¨vwU 82 = 16 Kg n‡e- 42 - 16 = 26|
Gevi 26 †_‡K Z…Zxq msL¨vwU n‡”Q 30|
13. cuvPwU avivevwnK we‡Rvo msL¨vi Mo 61| me‡P‡q
eo I †QvU msL¨v؇qi cv_©K¨ KZ?evsjv‡`ke¨vsKmnKvix
cwiPvjK(†Rbv‡ijmvBW):16
2 8
5 †Kv‡bvwUB bq DËi: L
ga¨g msL¨v ev Mo = 61|
msL¨vMy‡jv = 5759616365
 me‡P‡q eo I †QvU msL¨v؇qi cv_©K¨ =
65 - 57 = 8|
05.03 cici wKQzmsL¨K msL¨vi cÖ_g K‡qKwUi †hvMdj w`‡q c‡ii K‡qKwUi †hvMdj PvB‡j
†R‡b wbb - 37
 cici x msL¨K msL¨vi cÖ_g K‡qKwUi †hvMdj w`‡q c‡ii x msL¨K msL¨vi †hvMdj PvB‡j Avgiv GB kU©KvUwU
e¨envi Ki‡Z cvwi- †kl x msL¨K msL¨vi †hvMdj = cÖ_g x msL¨K msL¨vi †hvMdj + †klmsL¨K Gi eM©|
Pjyb †UKwbKwU †ewmK †_‡K ey‡S †bqv hvK- cici 6wU msL¨vi cÖ_g wZbwU msL¨vi †hvMdj 6 n‡j, †kl wZbwU
msL¨vi †hvMdj KZ? aiæY 6 wU msL¨v n‡”Q- 1, 2, 3, 4, 5, 6
1 + 2 + 3 + 4 + 5 + 6
= 6 (3wU) + 15(3wU)
 6 + 32
= 15 (1g wZbwU †hvMdj 6 Gi mv‡_ †kl 3 msL¨K Gi eM© †hvM Ki‡j 15 nq)
14. cici `kwU msL¨vi cÖ_g 5wUi †hvMdj 560 n‡j,
†kl 5wUi †hvMdj KZ? 18ZgwewmGm
540 565
570 585 DËi: N
g‡b Kwi, cici 10 wU msL¨v = x, x + 1, x +
2, x + 3, x + 4, x + 5, x + 6, x + 7, x + 8
, x + 9|
cÖ_g 5wU msL¨vi †hvMdj = x + (x + 1) + (x +
2) + ( x + 3) + (x + 4) = 5x + 10
†kl 5wU msL¨vi †hvMdj = (x + 5) + (x + 6) +mgvavb
NM
LK
mgvavb
NM
LK
mgvavb
NM
LK
NM
LK
NM
LK
mgvavb
NM
LK
mgvavb
NM
LK
mgvavb
NM
LK
4  Math Tutor
( x + 7) + (x + 8) + (x + 9) = 5x + 35
kZ©g‡Z, 5x + 10 = 560
ev, 5x = 560 - 10  x =
5
550
= 110|
myZivs, †kl 5wU msL¨vi †hvMdj = 5x + 35
= (5110) + 35 = 550 + 35 = 585
 kU©KvUt †kl msL¨v¸‡jvi †hvMdj = cÖ_g
msL¨v¸‡jvi †hvMdj + †klmsL¨K Gi eM©
= 560 + 52
= 560 + 25 = 585
15. QqwU cici c~Y©msL¨v †`qv Av‡Q| cÖ_g 3wUi
†hvMdj 27 n‡j †kl 3wUi †hvMdj KZ? mve†iwR÷vi:
01/13Zg†emiKvix wkÿKwbeÜbIcÖZ¨qbcixÿv(¯‹zj/mgch©vq):16
36 33
32 30 DËi: K
†kl 3wU †hvMdj = 27 + 32
= 27 + 9 = 36
16. QqwU µwgK c~Y© msL¨vi cÖ_g wZbwUi Mo 8 n‡j,
†kl wZbwUi †hvMdj- ¯^v¯’¨IcwieviKj¨vYgš¿Yvj‡qi
wmwbqi÷vdbvm© (evwZjK…Z)2017
29 31
33 35 DËi: M
1g wZbwUi †gvU = 8 3= 24|
†kl wZbwUi †gvU = 24 + 32
= 33|
05.04 Mo wb‡q †ewmK Av‡jvPbv
†R‡b wbb - 38
 cvuP wfÿyK K, L, M, N Ges O mvivw`b wfÿv K‡i h_vµ‡g 81, 87, 90, 95 Ges 82 UvKv Avq K‡i, Zvn‡j
Zv‡`i Mo UvKv KZ n‡e?
 ïiæ‡Z GKwU NUbvi Dci wbf©i Kiv hvK| aiv hvK, GB cvuP Rb wfÿzK GKwU Pzw³ Kij Giƒc- Zviv mvivw`b
cÖ‡Z¨‡K hv Avq Ki‡e, w`b †k‡l me UvKv GKÎ K‡i mevB mgvbfv‡e fvM K‡i wb‡e| GKw`b K, L, M, N Ges
O h_vµ‡g 81, 87, 90, 95 Ges 82 UvKv Avq Kij, Zv‡`i Pzw³ †gvZv‡eK cÖ‡Z¨‡Ki UvKv GKÎ K‡i mgvb K‡i
fvM K‡i wb‡Z GKwU cv‡K© G‡m emj| Zv‡`i `j‡bZv me UvKv GKÎ K‡i †djj| †`Lv †Mj me wg‡j †gvU 81 + 87
+ 90 + 95 + 82 = 435 UvKv n‡q‡Q| a‡i †bqv hvK, wfÿzKiv me GK UvKvi K‡qb wfÿv †c‡qwQj| hv‡nvK,
Gevi `j‡bZv Kzievwbi gvs‡mi gZ K‡i 5 Uv _‡ji cÖwZwU‡Z cÖwZevi 1 wU K‡i K‡qb ivL‡Z jvMj| fvM‡k‡l †`Lv
†Mj cÖ‡Z¨‡K 87 UvKv K‡i fv‡M †c‡q‡Q| g~j K_v- GKvwaK Dr‡mi wfbœ wfbœ cwigvY †hvM K‡i c~Yivq cÖwZwU
Drm‡K mgvb K‡i fvM K‡i †`qvB n‡”Q Mo| wfÿyK‡`i GB m¤ú~Y© wn‡mewU MvwYwZK dgy©jvq wnmve Kiv hvK-
Mo 87
K L M N O
 M‡oi AmvaviY †UKwbKt Avevi M‡í †diZ hvIqv hvK| Gevi wfÿyK‡`i `j‡bZv c~‡e©i b¨vq GKUv K‡i K‡qb
fvM bv GKUz wfbœ Dcvq Aej¤^b Ki‡jb| wZwb †`L‡jb cÖ‡Z¨‡K †h UvKv AvR‡K Avq K‡i‡Q, Zv‡`i g‡a¨
me‡P‡q Kg K Avq K‡i‡Q 81 UvKv| wfÿzK `j‡bZv Gevi mevB‡K ejj- cÖ‡Z¨‡K 80 UvKv K‡i †Zvgv‡`i
Kv‡Q †i‡L AwZwi³ LyuPiv UvKv¸‡jv Rgv Ki| cÖ‡Z¨‡K 80 UvKv K‡i †i‡L AwZwi³ LyPiv UvKv¸‡jv mevB Rgv
Kij = K 1 UvKv + L 7 UvKv + M 10 UvKv + N 15 UvKv + O 2 UvKv = 35 UvKv| Gevi wfÿzK `j‡bZv GB
35 UvKv‡K 5 R‡bi g‡a¨ fvM K‡i wbj, Gevi cÖ‡Z¨‡K AviI 7 UvKv K‡i ‡cj| c~‡e© †c‡qwQj 80 UvKv Ges c‡i
†cj 7 UvKv K‡i A_©vr cÖ‡Z¨‡K †cj 80 + 7 = 87 UvKv K‡i| GB 87 UvKvB n‡”Q Mo| GB AvBwWqv e¨envi
K‡i Lye `ªæZ M‡oi mgm¨v mgvavb Kiv hvq|
mgvavb
NM
LK
mgvavb
NM
LK
81
87
90
95
82
 avc t-
†gvU wbY©q: 81 + 87 + 90 + 95 + 82 = 435
 avc t-
Mo =
msL¨vivwki
mgwóivwkiKwZcqGKRvZxq
=
5
435
= 87|
 g‡b ivLyb: wfÿzK‡`i †gvU UvKv n‡”Q ÔGKRvZxq
KwZcq ivwki mgwóÕ Ges wfÿzK‡`i msL¨v n‡”Q
Ôivwki msL¨vÕ|
Math Tutor  5
 we¯ÍvwiZ wbq‡g M‡oi A¼ mgvavb Kivi Rb¨ memgq Mo‡K †gvU K‡i mgvavb Kiæb|
17. 73, 75, 77, 79 I 81 Gi Mo KZ? cÖv_wgKwe`¨vjq
mnKvixwkÿK1992
75 76
77 78 DËi: M
ivwk¸‡jvi mgwó = 73 + 75 + 77 + 79 + 81
= 385  Mo =
5
385
= 77 |
 kU©KvU:  Mo 70 (hv me msL¨vi gv‡S Av‡Q) aiv
nj  70 e¨ZxZ evKx As‡ki mgwó- 3 + 5 + 7
+ 9 + 11 = 35 | GB mgwó 35 †K Gevi 5 w`‡q
fvM K‡i Mo Kiv nj - 35  5 = 7|
 Mo = 70 + 7 = 77|
 g‡b ivLyb: 1g av‡ci Mo I 2q av‡ci Mo †hvM K‡i
Kvw•LZ ÔMoÕ cvIqv hvq|
18. 11, 12, 13, 14 Ges 15 GB msL¨v¸‡jvi Mo n‡e-
cwievicwiKíbvAwa`߇Iwewfbœ c‡`wb‡qvM2014
24 13
15 †Kv‡bvwUB bq DËi: L
ivwk¸‡jvi mgwó = 11 + 12 + 13 + 14 + 15
= 65|  Mo =
5
65
= 13 |
 kU©KvU:  cÖ_g Mo = 10|  evKx As‡ki mgwó
= 1 + 2 + 3 + 4 + 5 = 15  Mo =
5
15
= 3|
 Mo = 10 + 3 = 13|
19. 13, 16, 18, 24, 34 Gi Mo KZ? ¯^v¯’¨wkÿvIcwievi
Kj¨vYwefv‡MiAwdmmnvqK2019
16 18
19 21 DËi: N
 cÖ_g Mo = 10|  evKx As‡ki mgwó = 3
+ 6 + 8 + 14 + 24 = 55 Ges Mo =
5
55
= 11
 Mo = 10 + 11 = 21|
 g‡b ivLyb: M‡o ivwk¸‡jvi cv_©K¨ Kg ev ivwk¸‡jv
mn‡R wn‡me Kiv †M‡j Ôgy‡L gy‡L ey‡S mgvavbÕ Kiv
fv‡jv | wKš‘ cv_©K¨ †ewk ev ivwk¸‡jv wn‡me Ki‡Z
RwUj g‡b n‡j mvaviY wbq‡g mgvavb KivB DËg|
20. 6, 8 I 10 Gi Mo KZ? †m‡KÛvwiGWz‡Kkb†m±i
†W‡fjc‡g›U†cÖvMÖvgM‡elYvKg©KZ©v 2015
6 8
10 12 DËi: L
21. 5, 11, 13, 7, 8 Ges 10 msL¨v¸‡jvi Mo KZ?
13ZgwkÿKwbeÜb(¯‹zj-2) 2016
6 7
8 9 DËi: N
05.05 mgwó wbY©q
†R‡b wbb- 39
 †hvM K‡i mgwó wbY©q Kiv: cÖ‡kœ wfbœ cwigvY †`qv _vK‡j †m¸‡jv †hvM K‡i mgwó †ei Ki‡Z n‡e| †hgb-
22. †`‡jvqvi †Kvb 5 wel‡q 75, 81, 84, 90 Ges 80 b¤^i †cj †m †gvU KZ b¤^i †cj?
†gvU b¤^i = 75 + 81 + 84 + 90 + 80 = 410|
 ¸Y K‡i mgwó wbY©q Kiv : cÖ‡kœ Mo †`qv _vK‡j ¸Y K‡i mgwó †ei Ki‡Z nq|
23. 3 wU msL¨vi Mo 20 n‡j, msL¨v 3wUi mgwó KZ?
3 wU msL¨vi mgwó = 3 × 20 = 60| A_©vr, †h KqwU Dcv`v‡bi msL¨v †`qv _vK‡e Zvi mv‡_ Zv‡`i Mo‡K
¸Y Ki‡jB mgwó cvIqv hvq| myZivs, mgwó = Mo × Dcv`v‡bi msL¨v|
 g‡b ivLyb: we¯ÍvwiZ wbq‡g M‡oi A¼ Ki‡Z n‡j Avcbv‡K evi evi mgwó †ei Ki‡Z n‡e, ZvB Dc‡iv³ mgwó
wbY©‡qi wbqg `ywU me mgq g‡b ivLyb|
24. RyjvB gv‡mi •`wbK e„wócv‡Zi Mo 0.65 †m.wg.
wQj| H gv‡mi †gvU e„wócv‡Zi cwigvY KZ? cÖwZiÿv
gš¿Yvj‡qi Aax‡b¸ßms‡KZcwi`߇iimvBeviAwdmvi05
20.15 †m.wg. 20.20 †m.wg.
20.25 †m.wg. 65 †m.wg. DËi: K
RyjvB gvm 31 w`‡b nq|
 RyjvB gv‡mi †gvU e„wócv‡Zi cwigvY
= (0.65  31) †m.wg. = 20.15 †m.wg. |
25. 2000 mv‡j †deªæqvwi gv‡mi •`wbK e„wócv‡Zi Mo
wQj 0.55 †m.wg.| H gv‡mi †gvU e„wócv‡Zi cwigvY
KZ? mv‡K©j A¨vWRy‡U›U, Dc‡Rjv Avbmvi wfwWwc
Kg©KZ©v 2015
mgvavb
NM
LK
mgvavb
mgvavb
NM
LK
NM
LK
mgvavb
NM
LK
mgvavb
NM
LK
mgvavb
NM
LK
6  Math Tutor
15.5 †m.wg. 15.4 †m.wg.
15.95 †m.wg. 15.55 †m.wg. DËi: M
2000 mvj Awael©| Awae‡l© †d«eyqvwi gvm nq 29
w`‡b|  †d«eyqvwi gv‡mi †gvU e„wócvZ
= (0.55  29) †m.wg. = 15.95 †m.wg.|
26. 3wU msL¨vi Mo 33| `yBwU msL¨v 24 Ges 42 n‡j
Aci msL¨vwU KZ? Lv`¨Awa`߇iimn.DcLv`¨cwi`k©K12
12 22
32 33 DËi: N
3 wU msL¨vi mgwó = 333 = 99 Ges 2 wU
msL¨vi mgwó = 24 + 42 = 66
 Aci msL¨vwU = 99 - 66 = 33|
05.06 †hvM K‡i mgwó I ¸Y K‡i mgwó †_‡K GKwU msL¨vi gvb wbY©q
†R‡b wbb-40
 Mo A‡¼i we¯ÍvwiZ wbqg eyS‡Z Avgv‡`i Kv‡Q KwVb g‡b nq bv, Z‡e we¯ÍvwiZ wbq‡g mgvav‡b mgq †ewk jv‡M
weavq ÔkU©KvU wbqgÕ d‡jv Kiv A‡bK mgq Riæwi n‡q c‡o| Avgvi GB As‡k Avev‡iv wfÿzK`‡ji M‡í
wd‡i hve| hw` MíwU Avcwb c‡o bv _v‡Kb Zvn‡j Ô‡R‡b wbb-00Õ c‡o Zvici GLvb †_‡K ïiæ Kiæb-
wfÿK`‡ji c~‡e©i cÖkœwU Gevi GKUz Nywi‡q Kiv hvK- wfÿzK K, L, M Ges N mvivw`‡b wfÿv K‡i h_vµ‡g
81, 87, 90 Ges 95 UvKv, Zvn‡j wfÿyK O Avi KZ UvKv wfÿv Ki‡j Zv‡`i Mo wfÿv n‡e 87 UvKv?
GB mgvavb GKvwaK wbq‡g Ki‡Z cvwi| Avwg GLv‡b `ywU wbqg wb‡q K_v eje, `ywUB †ewmK|
 wbqg : `ywU †gvU †ei Kivi gva¨‡g- K, L, M Ges N Gi †gvU †ei Kie (†hvM K‡i) Ges K, L, M, N I O
Gi †gvU (¸Y K‡i)| ( †R‡b wbb -00 †`‡L wbb)
K, L, M Ges N (4 R‡bi) Gi †gvU wfÿv = 81 + 87 + 90 + 95 = 353
K, L, M, N Ges O (5R‡bi) Gi †gvU wfÿv = 87  5 = 435
Gevi 5 R‡bi †gvU †_‡K 4 R‡bi †gvU we‡qvM Kiæb, Zvn‡j 1 Rb (O) Gi wfÿv †ei n‡q Avm‡e|
 O Gi wfÿv = 435 - 353 = 82|
 wbqg : GB wbqgwU †ewmK I kU©‡UKwbK DfqB Kvfvi Ki‡e| Pjyb wfÿzK`‡ji cÖ_g MÖvdwU‡Z wd‡i hvB-
Mo 87
K L M N O
 avc 02: Avcwb B‡Zvg‡a¨ †`L‡Z †c‡q‡Qb A¨vk Kvjv‡ii Kjvg¸‡jv eø¨vK Kvjv‡ii ÔMo ev mgvb ev mgZjÕ
†j‡f‡ji †P‡q Kg ev †ewk| GLb Avcbv‡K hw` GKUv KvR Ki‡Z ejv nq †h, Avcwb A¨vk Kvjv‡ii Ge‡ov-
†_e‡ov Kjvg¸‡jv KvUQvuU K‡i eø¨vK Kvjv‡ii gZ mgvb Ki‡eb| Zvn‡j Avcwb wK Ki‡eb? Avcwb wbðq
†hLv‡b †ewk Av‡Q †mLvb †_‡K †K‡U wb‡q †hLv‡b Kg Av‡Q †mLv‡b †Rvov jvMv‡eb| A‡bKUv Ge‡ov †_e‡ov
gvwU‡K Avgiv †Kv`vj w`‡q mgZj Kwi †hfv‡e wVK †miKg|
 avc 03: Gevi Avgiv Avevi MÖv‡di msL¨vi w`‡K g‡bvwb‡ek Kie| msL¨v¸‡jv‡K Avgiv KvUQvuU (Kg/†ewk)
K‡i cÖwZwU‡K 87 Gi mgvb Kie| Pjyb ïiæ Kiv hvK-
K Gi mv‡_ 6 †hvM Ki‡Z n‡e KviY 6 NvUwZ Av‡Q = 81 + 6 = 87 (Aci c„ôvq)
mgvavb
mgvavb
NM
LK
mgvavb
NM
LK
81
87
90
95
x
avc¸‡jv co–b
 avc 01: Avmyb Avgiv GZÿY wfÿvi UvKvi †h wPšÍv
K‡iwQ, †mUv fz‡j wM‡q Rv÷ MÖv‡di Ge‡ov-†_e‡ov
Kjvg¸‡jvi w`‡K bRi †`B Ges fv‡jvfv‡e jÿ¨
Ki‡j †`L‡eb- A¨vk Kvjvi Gi Kjvg¸‡jv Ge‡ov-
†_e‡ov Ges eø¨vK Kvjv‡ii Kjvg mgvb ev mgZj
(2/3 evi LuywU‡q LuywU‡q †`Lyb)| me‡P‡q †ewk bRi
w`b eø¨vK Kvjv‡ii mgvb ev mgZ‡ji w`‡K, hv Zxi
wPý Øviv eySv‡bv n‡q‡Q|
Math Tutor  7
L Gi mv‡_ †hvM ev we‡qvM Ki‡Z n‡e bv, KviY NvUwZ ev †ewk †bB = 87 + 0 = 87
M Gi mv‡_ 3 we‡qvM Ki‡Z n‡e, KviY 3 †ewk Av‡Q = 90 - 3 = 87
N Gi mv‡_ 8 we‡qvM Ki‡Z n‡e, KviY 8 †ewk Av‡Q = 95 - 8 = 87
K, L, M Ges N GB 4 wU †K mgvb Ki‡Z wM‡q †ewk Av‡Q = 6 + 0 - 3 - 8 = - 5| (gy‡L gy‡L wn‡me K‡i
GB jvBbwU mivmwi cÖkœc‡Î wj‡L †dj‡eb)| cÖvd Abyhvqx, †h‡nZz O Gi wfÿv 87 †_‡K Kg ZvB O Gi wfÿvi
mv‡_ 5 †hvM K‡i w`‡j O Gi Mo wfÿv 87 cvIqv hv‡e|
aiv hvK, O Gi wfÿv x
x + 5 = 87 ev, x = 87 - 5 = 82|
 mycvi kU©KvU t mycvi kU©KvU n‡”Q- mivmwi Mo 87 Gi †P‡q †Kvb msL¨v eo n‡j Ô†ewk AskUzKzÕ we‡qvM Ges †QvU
n‡j ÔKg AskUzKzÕ †hvM Ki‡Z n‡e| Pjyb welqwU GKwU KvíwbK NUbvi mv‡_ eY©bv Kiv hvK|
(NUbvi eY©bvi mgq Avcbvi KvR n‡e- Avwg hv hv eje Zvi me wb‡P ewY©Z ÔO Gi wfÿvÕ jvBbwUi mv‡_ cÖwZevi
wgjv‡Z _vK‡eb|)
 cÖ_‡g mvwe©K Mo 87 wjL‡jb| wjLv gvÎ 87 msL¨vwU Avcbvi mv‡_ K_v ej‡Z ïiæ Kij! Avcwb wb‡Ri Kvb‡K
wek¦vm Ki‡Z cvi‡Qb bv, wK n‡”Q Gme! 87 Avcbv‡K wRÁvmv Kij, ÔZzwg wK ej‡Z cv‡iv Avgvi cv‡k wKQz msL¨v
†Kb †hvM (+) I we‡qvM (-) K‡iwQ? Avcwb bv m~PK gv_v SvwK‡q ej‡jb- Ôbv ej‡Z cvwi bv| Avcwb KviY Rvb‡Z
PvB‡jb, Ô †Kb wKQz msL¨v †hvM-we‡qvM K‡iQ?Õ 87 Avevi ej‡Z ïiæ Kij, ÔPj, †Zvgv‡K Avmj NUbvUv Ly‡j
ewj|Õ Avcwb g‡bvgy»Ki n‡q 87 Gi K_v ïbwQ‡jb| 87 ejj, Ô K, L, M, N G‡`i mevi msL¨v Avgvi gZ 87
nIqvi K_v wQj| wKš‘ †`L, K Gi Av‡Q 81, ej‡Z cvi‡e K-Gi evKx 6 †Mj †Kv_vq? ïb, H 6 Avwg Avgvi
c‡K‡U cy‡i †i‡LwQ! Õ Avcwb †`L‡jb ZvB‡Zv! 87 Gi cv‡k H 6 †K †hvM Ae¯’vq †`L‡Z cvIqv hv‡”Q! 87 Avevi
ejj, Ô L Gi msL¨vwU †`‡LQ? †m wKš‘ Avgvi gZB †`L‡Z, †ePviv Lye PvjvK, ZvB Zvi KvQ †_‡K wK”Qz evwM‡q
wb‡Z cvwiwb, GRb¨ Avgvi cv‡k †`L k~b¨ (0) wj‡L †i‡LwQ|Õ Avcwb †`L‡jb K_v mZ¨| 87 Avevi ej‡Z ïiæ
Kij, Ô M Gi msL¨v n‡”Q 90, Zvi Avgvi gZ 87 nIqvi K_v wQj, evKx 3 †m †Kv_vq †cj? ejwQ, M GKUv Av¯Í
e`gvBk| †m Avgvi KvQ †_‡K 3 †Rvi K‡i wQwb‡q wb‡q †M‡Q| †`LQ bv, GRb¨ Avwg Avgvi cv‡k 3 we‡qvM
K‡iwQ!Õ 87 Gevi GKUy `g wbj| ÔH †h N Gi 95 msL¨vwU‡Z †h AwZwi³ 8 Av‡Q IUvI Avgvi KvQ †_‡K wQwb‡q
wb‡q‡Q, ZvB GeviI 8 we‡qvM Ki‡Z n‡q‡Q| ey‡SQ Avmj NUbvwU wK?Õ Avcwb 87 Gi †kl cÖ‡kœ nVvr †Nvi KvU‡ZB
†`L‡Z †c‡jb-
 O Gi wfÿv = 87 + 6 + 0 - 3 - 8 = 87 - 5 = 82
27. GKRb e¨vUmg¨vb cÖ_g wZbwU T-20 ‡Ljvq 82, 85
I 92 ivb K‡ib| PZz_© †Ljvq KZ ivb Ki‡j Zvi
Mo ivb 87 n‡e? cÖv_wgK mnKvix wkÿK -2018
86 87
88 89 DËi: N
(3wU †Ljvi †gvU I 4 wU †Ljvi †gvU †ei K‡i
we‡qvM Ki‡Z n‡e)
cÖ_g 3wU T-20 †Ljvi iv‡bi mgwó = 82 + 85 +
92 = 259
4wU †Ljvi Mo ivb = 87
∴ Ó Ó †gvU Ó = 87  4 = 348
myZivs, 4_© †Ljvq ivb Ki‡Z n‡e = 348 - 259
= 89|
 kU©KvUt PZz_© †Ljvi ivb = 87 + 5 + 2 - 5
= 87 + 2 = 89|
28. cixÿvq ÔKÕ Gi cÖvß b¤^i h_vµ‡g 70, 85 I 75|
PZz_© cixÿvq Zv‡K KZ b¤^i †c‡Z n‡e †hb Zvi Mo
cÖvß b¤^i 80 nq? cÖv_wgK mnKvix wkÿK - 2018;
cÖavb wkÿK (bvMwj½g)-12
82 88
90 78 DËi: M
3 cixÿvq cÖvß bv¤^v‡ii mgwó = 70 + 85 + 75mgvavb
NM
LK
mgvavb
NM
LK
8  Math Tutor
= 230
4wU cixÿvq cÖvß bv¤^v‡ii mgwó = 80  4 = 320
 PZz_© cixÿvq bv¤^vi †c‡Z n‡e = 320 - 230 = 90|
 kU©KvUt PZz_© cixÿvq cÖvß b¤^i: 80 + 10 - 5 + 5
= 80 + 10 = 90|
29. cixÿvq ÔKÕ Gi cÖvß b¤^i h_vµ‡g 82, 85 I 92|
PZz_© cixÿvq Zv‡K KZ b¤^i †c‡Z n‡e †hb Zvi Mo
cÖvß b¤^i 87 nq? cÖavb wkÿK 2012 (evMvbwejvm)
K. 89 L. 88
M. 86 N. 91 DËi: K DËi: K
28 bs Gi Abyiƒc mgvavb|
 kU©KvUt 87 + 5 + 2 - 5 = 89|
30. cixÿvq K Gi cÖvß b¤^i h_vµ‡g 75, 85 I 80|
PZz_© cixÿvq Zv‡K KZ b¤^i †c‡Z n‡e †hb Zvi Mo
cªvß b¤^i 82 nq? cÖavb wkÿK (wµmvbw_gvg)-12
90 89
92 88 DËi: N
82 + 7 - 3 + 2 = 88|
31. 0.6 n‡jv 0.2, 0.8, 1 Ges x Gi Mo gvb | x Gi
gvb KZ? cÖwZiÿvgš¿Yvj‡qiAax‡bmvBdviAwdmvit99
0.2 0.4
.67 2.4 DËi: L
x e¨ZxZ 3 wU msL¨vi mgwó = 0.2 + 0.8 + 1 = 2
x mn 4wU msL¨vi mgwó = 0.6  4 = 2.4
 x Gi gvb = 2.4 - 2 = .4
 kU©KvU: x = 0.6 + 0.4 - 0.2 - 0.4 = 0.4
32. 4, 6, 7 Ges x Gi Mo gvb 5.5 n‡j x-Gi gvb
KZ? cÖvK-cÖv_wgKmnKvixwkÿK-15;cÖvK-cÖv_wgKmnKvix
wkÿK(Mvgv)2014;
5.0 7.5
6.8 6.5 DËi: K
x = 5.5 + 1.5 -.5 -1.5 = 5
05.07 ¸Y K‡i `ywU mgwó wbY©q I †mLvb †_‡K GKwU msL¨vi gvb wbY©q
33. 11wU msL¨vi Mo 30| cÖ_g cvuPwU msL¨vi Mo 25 I
†kl cvuPwU msL¨v Mo 28| lô msL¨vwU KZ? mnKvix
wkÿK (Rev)-11; mnKvix wkÿK (hgybv)-08
55 58
65 67 DËi: M
11wU msL¨vi mgwó = 3011 = 330
cÖ_g 5wU msL¨vi mgwó = 255 = 125
†kl 5wU msL¨vi mgwó = 285 = 140
∴ 10wU msL¨vi mgwó = 125 + 140 = 265
∴ 6ô msL¨v = 330 - 265 = 65|
 kU©KvUt lô msL¨v = 30 + (55) + (52)
= 30 + 25 + 10 = 65|
34. †Kv‡bv GK ¯’v‡b mßv‡ni Mo ZvcgvÎv 300
†mj-
wmqvm| cÖ_g 3 w`‡bi Mo ZvcgvÎv 280
†mjwmqvm
I †kl 3 w`‡bi Mo ZvcgvÎv 290
†mjwmqvm n‡j
PZz_© w`‡bi ZvcgvÎv KZ? mnKvix wkÿK (nvmbv‡nbv)-
11, mnKvix wkÿK (Lyjbv)-06
330
†m. 360
†m.
390
†m. 430
†m. DËi: M
7 w`‡bi ZvcgvÎvi mgwó = 300
× 7 = 2100
cÖ_g 3 w`‡bi ZvcgvÎvi mgwó = 280
× 3 = 840
†kl 3 w`‡bi ZvcgvÎvi mgwó = 290 × 3 = 870
6 w`‡bi ZvcgvÎvi mgwó = 840
+ 870
= 1710
myZivs, PZz_© w`‡bi ZvcgvÎv = 2100
- 1710
= 390
 kU©KvUt PZz_© w`‡bi ZvcgvÎv = 300
+ (20
3)
+ (10
3) = 390
|
35. 10wU msL¨vi †hvMdj 462| cÖ_g PviwUi Mo 52,
†kl 5wUi Mo 38| cÂg msL¨vwU KZ? cÖvK-cÖv_wgK
mnKvix wkÿK - 2015; cÖvK-cÖv_wgK mnKvix wkÿK
(ivBb) 2015
50 62
64 60 DËi: M
10wU msL¨vi Mo = 46.2 , cÖ_g PviwU‡Z Kgv‡Z
n‡e 5.8  5 = 23.2 Ges †kl 5wU‡Z e„w× Ki‡Z
n‡e 8.2  5 = 41|
A_©vr, cÂg msL¨vwU = 46.2 - 23.2 + 41 = 64|
mgvavb
NM
LK
mgvavb
NM
LK
mgvavb
NM
LK
mgvavb
NM
LK
mgvavb
NM
LK
mgvavb
NM
LK
mgvavb
Math Tutor  9
05.08 mvwe©K Mo wbY©q
†R‡b wbb - 41
 `yB ev Z‡ZvwaK Mo w`‡q Zv‡`i mvwe©K Mo †ei Ki‡Z ejv n‡j, Avgiv cÖ_‡g Mo¸‡jv‡K †gvU-G iƒcvšÍi Kie
Ges cÖvß c„_K c„_K †gvU †hvM K‡i mvwe©K †gvU †ei Kie| Gevi †gvU ivwki msL¨v Øviv mvwe©K †gvU‡K fvM K‡i
mvwe©K Mo †ei Kie|
(K) c„_K c„_K Mo †_‡K mvwe©K Mo †ei Kiv
36. †Kv‡bv †kÖwYi 12 Rb Qv‡Îi †Kv‡bv cixÿvq djv-
d‡ji Mo 70 | Aci 18 R‡bi djvd‡ji Mo 80|
Z‡e 30 Rb Qv‡Îi djvd‡ji mvwe©K Mo KZ?
wnmveiÿY Kg©KZv© : 96; cÖv_wgKwkÿvAwa`߇iimnKvix
jvB‡eªwiqvbKvgK¨vUvjMvi2018
73.75 75.25
76 77.125 DËi: M
12 Rb Qv‡Îi djvd‡ji Mo 70 n‡j, Zv‡`i
†gvU djvdj = 7012 = 840
18 Rb Qv‡Îi djvd‡ji Mo 80 n‡j, Zv‡`i
†gvU djvdj = 80 18 = 1440
†gvU QvÎ = 12 + 18 = 30 Rb Ges Zv‡`i
djvd‡ji †hvMdj = 840 + 1440 = 2280
 30 Rb Qv‡Îi djvd‡ji mvwe©K Mo =
30
2280
= 76
 ey‡S ey‡S kU©KvU:
12 Rb 18 Rb
 wP‡Î jÿ¨ Kiæb, 12 Rb Qv‡Îi M‡oi †P‡q 18 Rb
Qv‡Îi Mo 10 K‡i †ewk| Avgiv hw` 12 + 18 =
30 Rb Qv‡Îi Mo •Zwi Ki‡Z PvB, Zvn‡j GB 18
R‡bi AwZwi³ Mo 10 K‡i †gvU 180 (1018),
30 R‡bi gv‡S mgvb K‡i fvM K‡i w`‡Z n‡e|
 Mo 70 †h‡nZz 12 I 18 Df‡qi gv‡S _vKvi A_©
30 R‡bi gv‡S _vKv| GRb¨ cÖ_‡g 30 R‡bi Mo
70 a‡i AwZwi³ 180 Mo K‡i †hvM K‡i w`‡Z
n‡e|
30 R‡bi Mo = 70 +
30
1810 
= 70 + 6 = 76
 g‡b ivLyb:
 hZ R‡bi M‡oi gv‡S ÔAwZwi³ MoÕ
_vK‡e ZZRb Øviv ÔAwZwi³ MoÕ ¸Y K‡i †gvU
AwZwi³ †ei Ki‡Z n‡e| †hgb: cÖ`Ë A‡¼ 18
R‡bi gv‡S ÔAwZwi³ MoÕ 10 wQj, ZvB 18 Øviv ¸Y
K‡i †gvU AwZwi³ 180 †ei Kiv n‡q‡Q|
 Zvici †gvU AwZwi³‡K mvwe©K msL¨v Øviv fvM
Ki‡Z n‡e| †hgb- †gvU AwZwi³ 180 †K mvwe©K
msL¨v 30 Øviv fvM Kiv n‡q‡Q|
37. GKRb †evjvi M‡o 20 ivb w`‡q 12 DB‡KU cvb|
cieZ©x †Ljvq M‡o 4 ivb w`‡q 4wU DB‡KU cvb|
wZwb M‡o DB‡KU cÖwZ KZ ivb w`‡q‡Qb? cÖvK-cÖv_wgK
mnKvix wkÿK(‡nvqvs‡nv)2013
14 16
18 19 DËi: L
12 DB‡KU †c‡Z ivb †`q = 20 12 = 240
4 DB‡KU †c‡Z ivb †`q = 4  4 = 16
me©‡gvU ivb = 240 + 16 = 256
me©‡gvU cÖvß DB‡KU = 12 + 4 = 16
 DB‡KU cÖwZ Mo ivb †`q =
16
256
= 16|
 ey‡S ey‡S kU©KvU:
12 DB‡K‡U Mo ivb 4 + AwZwi³ Mo 16 ivb
4 DB‡K‡U Mo ivb 4
16 DB‡K‡U Mo ivb 4
12 DB‡K‡U †gvU AwZwi³ 1612
 Mo = 4 +
16
1216 
= 4 + 12 = 16|
38. GKRb †evjvi M‡o 22 ivb w`‡q 6wU DB‡KU cvb|
cieZ©x †Ljvq M‡o 14 ivb w`‡q 4wU DB‡KU cvb|
wZwb M‡o DB‡KU cÖwZ KZ ivb w`‡q‡Qb ? cÖvK-
cÖv_wgK mnKvix wkÿK (wSjvg) 2013
14.0 16.0
18. 0 18.8 DËi: N
ey‡S ey‡S kU©KvU:mgvavb
NM
LK
mgvavb
NM
LK
mgvavb
NM
LK
80
70
10
10  Math Tutor
6 DB‡K‡U Mo ivb 14 + AwZwi³ Mo 8 ivb
4 DB‡K‡U Mo ivb 14
10 DB‡K‡U Mo ivb 14
6 DB‡K‡U †gvU AwZwi³ 86
 Mo = 14 +
10
68 
= 14 + 4.8 = 18.8
39. GKRb †evjvi M‡o 18 ivb w`‡q 10 DB‡KU cvb|
cieZ©x Bwbs‡m M‡o 4 ivb w`‡q 4 DB‡KU cvb| wZwb
DB‡KU cÖwZ M‡o KZ ivb w`‡q‡Qb? cÖvK-cÖv_wgK
mnKvix wkÿK (wgwmwmwc) 2013
12 13
14 16 DËi: M
DB‡KU cÖwZ Mo ivb = 4 +
14
1410
= 4 + 10= 14|
40. GKRb †evjvi M‡o 17 ivb w`‡q 7wU DB‡KU cvb|
cieZ©x Bwbs‡m M‡o 8 ivb w`‡q 3wU DB‡KU cvb|
wZwb DB‡KU cÖwZ KZ ivb w`‡q‡Qb? cÖvK-cÖv_wgK
mnKvix wkÿK (`vRjv) 2013
12 14.3
15.5 16 DËi: L
ey‡S ey‡S kU©KvU:
 Mo = 8 +
10
79
= 8 + 6.3 = 14.3
41. GKRb †evjvi M‡o 14 ivb w`‡q 12wU DB‡KU cvb|
cieZ©x †Ljvq M‡o 6 ivb w`‡q 4wU DB‡KU cvb|
GLb Zvi DB‡KU cÖwZ Mo ivb KZ? cÖavb wkÿK
(cÙ)-09
9 10
12 14 DËi: M
ey‡S ey‡S kU©‡UKwbK:
Mo = 6 +
16
128
= 6 + 6 = 12
42. M msL¨K msL¨vi Mo A Ges N msL¨K Mo B
n‡j me¸‡jv msL¨vi Mo KZ? 23Zg wewmGm
2
BA 
2
BNAM 
NM
BNAM


BA
BNAM


DËi: M
M msL¨K msL¨vi Mo A n‡j,
M msL¨K msL¨vi †hvMdj = MA
N msL¨K msL¨vi Mo B n‡j,
N msL¨K msL¨vi †hvMdj = NB
†gvU msL¨v = M+N
Ges msL¨v¸‡jvi †hvMdj = AM+BN
∴ Zv‡`i Mo =
NM
BNAM


43. p msL¨K msL¨vi Mo m Ges q msL¨K Mo n|
me¸‡jv msL¨vi Mo KZ? cÖavb wkÿK (cÙ)-09
p+q
2
m+n
2
pm +qn
p+q
pm +qn
m+n
DËi: M
44. x msL¨K †Q‡ji eq‡mi Mo y eQi Ges a msL¨K
†Q‡ji eq‡mi Mo b eQi| me †Q‡ji eq‡mi Mo
KZ? cÖavb wkÿK (wkDjx)-09
x+2
2
y+b
2
xy +ab
y+b
xy+ab
x+a
DËi: N
(L) mvwe©K M‡oi Zzjbvq cÖ`Ë GKvs‡ki Mo eo n‡j
45. 100 Rb wkÿv_x©i cwimsL¨v‡b Mo b¤^i 70| G‡`i
g‡a¨ 60 Rb QvÎxi Mo b¤^i 75 n‡j, Qv·`i Mo
b¤^i KZ? 35ZgwewmGmwcÖwj.
55.5 65.5
60.5 62.5 DËi: N
100 Rb wkÿv_x©i †gvU b¤^i = 70  100
= 7000
60 Rb QvÎxi †gvU b¤^i = 75  60
= 4500
(hv‡`i Mo †ei Ki‡eb, Zv‡`i †gvU Av‡M †ei Kiæb)
(100 - 60 ) ev 40 Rb Qv‡Îi †gvU b¤^i
= 7000 - 4500 = 2500
 40 Rb Qv‡Îi Mo b¤^i =
40
2500
= 62.5
mgvavb
NM
LK
NM
LK
NM
LK
mgvavb
NM
LK
mgvavb
NM
LK
mgvavb
NM
LK
mgvavb
NM
LK
Math Tutor  11
 ey‡S ey‡S kU©KvU:
75
70
60 Rb 100 Rb 40 Rb
 100 ev 60 + 40 R‡bi Mo n‡”Q 70| GLv‡b 60
ev 40 Gi †h‡Kvb GKwU Mo e„w× †c‡j Ab¨ GKwU
Mo n«vm cv‡e|
 cÖkœvbyhvqx, 60 Gi Mo 70 A‡cÿv e„w× †c‡q‡Q,
Zvn‡j wbwðZfv‡e 40 Gi Mo 70 A‡cÿv n«vm cv‡e
 60 R‡b hZ e„w× †c‡q‡Q, 40 R‡b ZZ n«vm †c‡q‡Q|
KviY †gvU cwigv‡Yi †Kvb cwieZ©b nq bv, ïay GK
RvqMv †_‡K Av‡iK RvqMvq ¯’vbvšÍi nq|
 60 R‡bi Mo 5 K‡i e„w× cvIqvq †gvU e„w× †c‡q‡Q
560 = 300, GB 300, 40 R‡bi cÖ‡Z¨‡K
mgvb K‡i †Q‡o w`‡q‡Q| A_©vr, Zviv cÖ‡Z¨‡K †Q‡o
w`‡q‡Q -
40
300
= 7.5 K‡i|
 7.5 K‡i †Q‡o †`qvi ci 40 R‡bi Mo
n‡e = 70 - 7.5 = 62.5 |
 g‡b ivLyb: mvwe©K Mo †_‡K cÖ`Ë MowU eo n‡j †h
MowU PvIqv n‡e †mB MowU Aek¨B n‡e †QvU| ZvB
mvwe©K Mo †_‡K we‡qvM K‡i †QvU MowU †ei Ki‡Z
n‡e| †hgb: mvwe©K Mo 70 †_‡K cÖ`Ë Mo 75 eo
wQj, ZvB we‡qvM K‡i mgvavb Kiv n‡q‡Q| Avevi
mvwe©K Mo †_‡K cÖ`Ë Mo †QvU n‡j †hvM K‡i
mgvavb Ki‡Z n‡e| †hgb: 50 bs cÖkœ †`Lyb|
46. 100 Rb wkÿv_©xi Mo b¤^i 90, hvi g‡a¨ 75 Rb
wkÿv_x©i Mo b¤^i 95| Aewkó wkÿv_x©‡`i Mo b¤^i
KZ? gv`K`ªe¨ wbqš¿Y Awa`߇ii Dc-cwi`k©K-18
75 70
80 65 DËi: K
75 Rb wkÿv_x©i Mo b¤^i 5 K‡i e„w× cvIqvq
†gvU 5  75 = 375 e„w× †c‡q‡Q, hv 25 Rb
†_‡K n«vm †c‡q‡Q| 25 Rb †_‡K Mo AvKv‡i n«vm
†c‡q‡Q-
25
375
= 15 K‡i|
 25 R‡bi b¤^‡ii Mo = 90 - 15 = 75|
47. 15 Rb Qv‡Îi Mo eqm 29 eQi| Zv‡`i Avevi `yRb
Qv‡Îi eq‡mi Mo 55 eQi| Zvn‡j evwK 13 Rb
Qv‡Îi eq‡mi Mo KZ n‡e? †iwR. †emiKvwi mnKvix
wkÿK (UMi)-11; mnKvix wkÿK (Ki‡Zvqv)-10; cÖavb
wkÿK (K¨vwgwjqv)-12; cÖavb wkÿK (ewikvj wefvM)-08
25 eQi 26 eQi
27 eQi 28 eQi DËi: K
13 Rb Qv‡Îi Mo = 29 -
13
226 
= 29 - 4 = 25|
48. 9 Rb Qv‡Îi Mo eqm 15 ermi| 3 Rb Qv‡Îi
eq‡mi Mo 17 ermi n‡j evwK 6 Rb Qv‡Îi eq‡mi
Mo KZ? †iwR. cÖv_wgK we`¨v. mn. wkÿK(kvcjv)-11
14 ermi 15 ermi
16 ermi 17 ermi DËi: K
6 Rb Qv‡Îi eq‡mi Mo = 15 -
6
32 
= 15 - 1 = 14|
49. 20 Rb evjK I 15 Rb evwjKvi Mo eqm 15 eQi|
evjK‡`i Mo eqm 15.5 eQi n‡j evwjKv‡`i Mo
eqm KZ? cÖvK-cÖv_wgK mnKvix wkÿK (`vwbqye) -13
14 eQi 14 eQi 4 gvm
14 eQi 6 gvm 14 eQi 8 gvm DËi: L
15 Rb evwjKvi Mo = 15 -
15
10
= 15 -
3
2
= 14
3
1
eQi = 14 eQi
3
1
 12 gvm
= 14 eQi 4 gvm|
(M) mvwe©K M‡oi Zzjbvq cÖ`Ë GKvs‡ki Mo †QvU n‡j
50. 9 wU msL¨vi Mo 12| Gi g‡a¨ cÖ_g 7 wU msL¨vi
Mo 10| evKx msL¨v `ywUi Mo KZ? BADC (‡÷vi
wKcvi) 17
17 18
19 20 DËi: M
9 wU msL¨vi mgwó = 12  9 = 108
7wU msL¨vi mgwó = 10  7 = 70
evKx (9 - 7) ev 2 wU msL¨vi †gvU = 108 - 70
= 38
mgvavb
NM
LK
mgvavb
NM
LK
mgvavb
NM
LK
mgvavb
NM
LK
mgvavb
NM
LK
12  Math Tutor
 evKx msL¨vi Mo =
2
38
= 19|
 ey‡S ey‡S kU©KvU:
12
10
7wU msL¨v 9wU msL¨v 2wU msL¨v
 mvwe©K M‡oi Zzjbvq 7wU msL¨vi Mo †QvU nIqvq
Aci 2wU msL¨vi Mo eo n‡e|
 7 wU msL¨vi Mo 2 K‡i n«vm cvIqvq †gvU 27 =
14 n«vm †c‡q‡Q, GB 14, 2 wU msL¨v‡Z wM‡q hy³
n‡e Ges Zv Mo AvKv‡i A_©vr,
2
14
= 7 K‡i|
 2wU msL¨vi Mo = 12 + 7 = 19|
 mivmwi wjL‡eb:
2 wU msL¨vi Mo = 12 +
2
14
= 12 + 7 = 19|
51. GK †`vKvb`vi 12 w`‡b 504 UvKv Avq Ki‡jb|
cÖ_g 4 w`‡b Mo Avq 40 UvKv n‡j evwK w`b¸‡jvi
Mo Avq KZ UvKv n‡e? mnKvix wkÿK (BQvgwZ)-10;
40 UvKv 42 UvKv
43 UvKv 47 UvKv DËi: M
†`qv Av‡Q, 12 w`‡bi cÖvß Avq 504 UvKv
cÖ_g 4 w`‡bi †gvU Avq = 40  4 = 160 UvKv
evKx (12 - 4) ev 8 w`‡bi †gvU Avq = 504 - 160
= 344 UvKv
 evKx w`b¸‡jvi Mo Avq =
8
344
UvKv
= 43 UvKv|
 ey‡S ey‡S kU©KvU: cÖ`Ë cÖ‡kœ mvwe©K MowU †`qv †bB,
ZvB Avgiv †mwU Av‡M †ei K‡i wbe-
12
504
= 42|
 8 w`‡bi Mo = 42 +
8
8
= 42 + 1 = 43|
(N) Dc‡iv³ (L) I (M) Gi kU©KvU wbqg `ywU GKB A‡¼ cÖ‡qvM
52| 6 Rb cyiæl, 8 Rb ¯¿x‡jvK Ges 1 Rb evj‡Ki
eq‡mi Mo 35 eQi| cyiæ‡li eq‡mi Mo 40 Ges
¯¿x‡jvK‡`i eq‡mi Mo 34 eQi| evj‡Ki eqm KZ?
cÖvK-cÖv_wgK mnKvix wkÿK-(Avjdv)-14; mnKvix
wkÿK-(cÙ)-12
14 eQi 13 eQi
16 eQi 15 eQi DËi: L
6 Rb cyiæl + 8 Rb ¯¿x †jvK + 1 Rb evjK =
15 R‡bi †gvU eqm = 35  15 = 525 |
6 Rb cyiæ‡li †gvU eqm = 40  6 = 240
8 Rb ¯¿x‡jv‡Ki †gvU eqm = 34  8 = 272
6 Rb cyiæl + 8 Rb ¯¿x‡jv‡Ki †gvU eqm = 240 +
272 = 512
 1 Rb evj‡Ki eqm = 525 - 512 = 13|
 ey‡S ey‡S kU©KvU:
1 evj‡Ki eqm = 35 -
1
65 
+
1
81
= 35 - 30 + 8 = 13 eQi|
05.09 `ywU mgwói cv_©K¨ †_‡K 1wU msL¨v wbY©q
†R‡b wbb- 42
 `ywU Mo _vK‡e, GKwU Mo †_‡K Ab¨ GKwU M‡o 1wU msL¨v †ewk _vK‡e| †hgb- 2 wU msL¨vi Mo I 3wU msL¨vi
Mo , 10wU msL¨vi Mo I 11 wU msL¨vi Mo BZ¨vw` |
 `ywU M‡oi mgwói cv_©K¨ †_‡K 1wU msL¨v wbY©q Kiv nq| †hgb- 3wU msL¨vi mgwó †_‡K 2 wUi mgwó, 5wU msL¨vi
mgwó †_‡K 4 wUi mgwó , 7wU msL¨vi mgwó †_‡K 6 wUi mgwó we‡qvM K‡i 1 wU msL¨v wbY©q Kiv nq|
 Avgiv mvg‡b GKwU‡K Kg msL¨vi Mo Ges Ab¨ GKwU‡K †ewk msL¨vi Mo wn‡m‡e wPwýZ Kie|
mgvavb
NM
LK
mgvavb
NM
LK
Math Tutor  13
(K) †ewki msL¨vi Mo hw` Kg msL¨vi Mo †_‡K gv‡b eo nq
†R‡b wbb- 43
 evwn¨K `„wó‡Z A¼¸‡jvi `vM wfbœ wfbœ g‡b n‡jI †gBb ÷ªvKPvi ûeû GKB| ZvB cÖwZwU A¼ wb‡q fv‡jvfv‡e wPšÍv
Kiæb, †`L‡eb G‡`i gv‡S PgrKvi †hvMm~Î †c‡q †M‡Qb| Avwg `xN© mgq wb‡q A¼¸‡jv G¸‡jv web¨¯Í K‡iwQ,
Avcbv‡`i KvR n‡”Q evievi PP©v g~j †d«gUv‡K AvqË¡ Kiv| GB e‡qi cÖwZwU P¨vÞv‡ii †ÿ‡Î GKB K_v cÖ‡hvR¨|
 g‡b ivLyb: kU© †UKwb‡K †h msL¨vi gvb †ei Ki‡eb, †mB msL¨vwU †h M‡oi gv‡S Av‡Q, Zv‡K wfwË a‡i mgvavb
Ki‡Z n‡e| †hgb 53 bs cÖ‡kœ ÔZ…Zxq msL¨vwUi gvb †ei Ki‡Z n‡e, †hwU 30 M‡oi gv‡S Av‡Q, ZvB kU©‡UKwb‡K
30 †K wfwË a‡i mgvavb Kiv n‡q‡Q| g~j Av‡jvPbvq †ewmKmn Rvb‡Z cvi‡eb|
 GKwU gRvi Z_¨: kU© †UKwb‡K mgvav‡bi †ÿ‡Î eqm msµvšÍ A‡¼ GKUv gRvi welq n‡”Q, wcZv ev gvZv I
mšÍvb‡`i Mo eqm †`qv _vK‡j Aek¨B wcZv ev gvZvi eqm H Mo A‡cÿv †ewk n‡e Ges mšÍv‡bi eqm H Mo
A‡cÿv Aek¨B Kg n‡e| GRb¨ cÖ‡kœ wcZv ev gvZvi eqm PvIqv n‡j H M‡oi mv‡_ †hvM K‡i mgvavb †ei Ki‡Z
n‡e| Ges cÖ‡kœ mšÍv‡bi eqm PvIqv n‡j H Mo †_‡K we‡qvM K‡i mgvavb Ki‡Z n‡e|
53. cÖ_g I wØZxq msL¨vi Mo 25| cÖ_g, wØZxq I Z…Zxq
msL¨vi Mo 30 n‡j, Z…Zxq msL¨vwU KZ? b¨vkbvj
GwMÖKvjPvivj†UK‡bvjwR†cÖvMÖvg2019
25 40
90 50 DËi: L
1g I 2 q msL¨vi mgwó = 252 = 50
1g, 2q I 3q msL¨vi mgwó = 30  3 = 90
3q msL¨vwU = 90 - 50 = 40|
 ey‡S ey‡S kU©KvUt
30
25
1g 2q 1g 2q 3q
 ïiæ‡Z 1g I 2q msL¨vi Mo wQj 25| c‡i 3q
msL¨vwU hy³ nIqvq Zv‡`i Mo e„w× †c‡q nq 30|
G‡ÿ‡Î 1g I 2q msL¨vi Mo 5 K‡i e„w× cvIqvq
†gvU 52 = 10 e„w× cvq| GB 10 G‡m‡Q Z…Zxq
msL¨vwU †_‡K (wP‡Îi A¨vk Kvjvi jÿ¨ Kiæb)|
Zvn‡j Z…Zxq msL¨vwU n‡e- Z…Zxq msL¨v Mo + 1g I
2q msL¨vi e„w×K…Z Ask|
 Z…Zxq msL¨v = 30 + (52) = 30 + 10 = 40|
 g‡b ivLyb: †h msL¨vwUi gvb †ei Ki‡Z n‡e †mwUi
Mo Gi mv‡_ evKx msL¨v¸‡jvi e„w×K…Z Ask †hvM
Ki‡Z n‡e| †h msL¨vwU cÖ‡kœ PvIqv nq †mwU
mvaviYZ †ewk msL¨vi M‡o cvIqv hvq|
54. wcZv, gvZv I cy‡Îi eq‡mi Mo 37| Avevi wcZv I
cy‡Îi eq‡mi Mo 35 eQi| gvZvi eqm KZ?
evsjv‡`kcjøxDbœqb †ev‡W©iDc‡RjvcjøxDbœqbKg©KZv2015
38 eQi 41 eQi
45 eQi 48 eQi DËi: L
wcZv, gvZv I cy‡Îi †gvU eqm = 37  3
= 111
wcZv I cy‡Îi †gvU eqm = 35  2 = 70
 gvZvi eqm = 111 - 70 = 41|
 ey‡S ey‡S kU©KvUt
gvZvi eqm = 37 + (22) = 37 + 4 = 41
55. wcZv I 2 cy‡Îi eq‡mi Mo 30 eQi| `yB cy‡Îi
eq‡mi Mo 20 eQi| wcZvi eqm KZ? cÖvK-cÖv_wgK
mnKvixwkÿK (Ki‡Zvqv)2013
20 eQi 40 eQi
50 eQi 60 eQi DËi: M
ey‡S ey‡S kU©KvUt
wcZvi eqm = 30 + (102) = 30 + 20 = 50|
56. wcZv I `yB mšÍv‡bi eq‡mi Mo 27 eQi| `yB
mšÍv‡bi eq‡mi Mo 20 eQi n‡j wcZvi eqm KZ?
WvK I †Uwj‡hvMv‡hvM wefv‡Mi Gw÷‡gUi 2018
47 eQi 41 eQi
37 eQi 31 eQi DËi: L
wcZvi eqm = 27 + (72) = 27 + 14 = 41
57. `yB mšÍv‡bi eq‡mi Mo 10 ermi I gvZvmn Zv‡`i
eq‡mi Mo 17 ermi n‡j, gvZvi eqm KZ? cÖvK-
cÖv_wgK mnKvix wkÿK (wSjvg) 2013
28 ermi 30 ermi
31 ermi 32 ermi DËi: M
gvZvi eqm = 17 + (7  2) = 17 + 14 = 31
58. wZb fvB‡qi eq‡mi Mo 16 eQi| wcZvmn 3 fvB‡qi
eq‡mi Mo 25 eQi n‡j, wcZvi eqm KZ?
cÖvK-cÖv_wgK mnKvix wkÿK - 2016 (gyw³‡hv×v)
mgvavb
NM
LK
mgvavb
NM
LK
mgvavb
NM
LK
mgvavb
NM
LK
mgvavb
NM
LK
14  Math Tutor
45 42
52 41 DËi: M
wcZvi eqm = 25 + (93) = 25 + 27 = 52|
59. wZb mšÍv‡bi eq‡mi Mo 6 ermi I wcZvmn Zv‡`i
eq‡mi Mo 13 ermi n‡j wcZvi eqm KZ? cÖvK-
cÖv_wgK mnKvix wkÿK (‡nvqvs‡nv) 2013
32 ermi 33 ermi
34 ermi 36 ermi DËi: M
wcZvi eqm = 13 + (73) = 13 + 21 = 34
60. wZb cy‡Îi eq‡mi Mo 16 eQi| wcZvmn cy·`i
eq‡mi Mo 25 eQi| wcZvi eqm KZ? mnKvix wkÿK
(BQvgwZ)-10;mnKvix wkÿK (XvKv wefvM)-06
45 eQi 48 eQi
50 eQi 52 eQi DËi: N
61. cvuP mšÍv‡bi Mo 7 eQi Ges wcZvmn Zv‡`i eq‡mi
Mo 13 eQi| wcZvi eqm KZ? cÖvK-cÖv_wgKmnKvix
wkÿK(weUv) 2014
43 eQi 33 eQi
53 eQi 63 eQi DËi: K
wcZvi eqm = 13 + (65) 13 + 30 = 43
62. wcZv I 2 cy‡Îi eq‡mi Mo 30 eQi| `yB cy‡Îi
eq‡mi Mo 20 eQi| wcZvi eqm KZ? cÖvK-cÖv_wgK
mnKvix wkÿK-13 (Ki‡Zvqv); mnKvix wkÿK
(gyw³‡hv×v)-10; mnKvix wkÿK (Ki‡Zvqv)-10
20 eQi 40 eQi
50 eQi 60 eQi DËi: M
63. †Kv‡bv †kÖwY‡Z 20 Rb Qv‡Îi eq‡mi Mo 10 eQi|
wkÿKmn Zv‡`i eq‡mi Mo 12 eQi n‡j, wkÿ‡Ki
eqm KZ? cÖvK-cÖv_wgK mnKvix wkÿK (ivBb)-13
32 eQi 42 eQi
52 eQi 62 eQi DËi: M
64. †Kv‡bv †kÖwYi 24 Rb Qv‡Îi Mo eqm 14 eQi| hw`
GKRb †kÖwY wkÿ‡Ki eqm Zv‡`i eq‡mi mv‡_ †hvM
Kiv nq Z‡e eq‡mi Mo GK ermi e„w× cvq|
wkÿ‡Ki eqm KZ? evsjv‡`k †ijI‡qi Dc-
mnKvix cÖ‡KŠkjx 2013
40 ermi 39 ermi
45 ermi 35 ermi DËi: L
24 Rb Qv‡Îi eq‡mi mgwó = 14 24
= 336 eQi
Zv‡`i mv‡_ GKRb wkÿK †hvM n‡j Zv‡`i msL¨v
n‡e 25 Rb Ges Zv‡`i Mo eqm 1 ermi e„w×
cvIqvq bZzb Mo n‡e 15 eQi|
wkÿKmn 25 R‡bi eq‡mi mgwó = 15  25
= 375 eQi
 wkÿ‡Ki eqm = 375 - 336 = 39 eQi|
 wkÿ‡Ki eqm = 15 + (241) = 15 + 24 = 39
 g‡b ivLyb: Dc‡iv³ mgm¨v¸‡jvi mv‡_ GB mgm¨vi
†Kvb cv_©K¨ †bB| GLv‡b Z_¨¸‡jv c~‡e©i b¨vq
mivmwi bv w`‡q c‡ivÿfv‡e w`‡q‡Q| GB †QvÆ
welqwU eyS‡Z cvi‡j MwYZ Avcbvi Rb¨ mnR n‡q
DV‡e|
65. 10 Rb Qv‡Îi Mo eqm 15 eQi| bZzb GKRb QvÎ
Avmvq Mo eqm 16 eQi n‡j bZzb Qv‡Îi eqm KZ
eQi? gnv-wnmve wbixÿK I wbqš¿‡Ki Kvh©vj‡qi Aaxb
AwWUi 2015
20 24
26 †Kv‡bvwUB bq DËi: M
10 Rb Qv‡Îi eq‡mi mgwó = 1510 = 150 eQi
bZzb QvÎ mn 11 Qv‡Îi eq‡mi mgwó = 1611
= 176 eQi
 bZzb Qv‡Îi eqm = 176 - 150 = 26 eQi|
 ey‡S ey‡S kU©KvUt 16 + (110) = 16 + 10 = 26
66. GKRb wµ‡KUv‡ii 10 Bwbs‡mi iv‡bi Mo 45.5|
11 Zg Bwbs‡m KZ ivb K‡i AvDU n‡j me Bwbsm
wgwj‡q Zvi iv‡bi Mo 50 n‡e? Dc‡RjvmnKvwiK…wl
Kg©KZv© 2011
55 ivb 45 ivb
130 ivb 95 ivb DËi: N
10 Bwbs‡mi iv‡bi mgwó = 45.5  10 = 455
11 Bwbs‡mi iv‡bi mgwó = 5011 = 550
 11 Zg Bwbs‡mi ivb = 550 - 455 = 95 ivb|
 ey‡S ey‡S kU©KvU: 50 + (4.510) = 50 + 45
= 95 ivb|
67. Kwi‡gi †bZ…Z¡vaxb 6 m`‡m¨i GKwU `‡ji m`m¨‡`i
eq‡mi Mo 8.5| Kwig‡K ev` w`‡j Aewkó‡`i
eq‡mi Mo K‡g `uvovq 7.2| Kwi‡gi eqm KZ?
we‡Kwe Awdmvi: 07
7.8 10.8
12.6 15 DËi: N
6 m`m¨ `‡ji m`m¨‡`i eq‡mi mgwó = 8.56mgvavb
NM
LK
mgvavb
NM
LK
mgvavb
NM
LK
mgvavb
NM
LK
NM
LK
NM
LK
mgvavb
NM
LK
NM
LK
mgvavb
NM
LK
mgvavb
NM
LK
Math Tutor  15
Ô = 51 eQi
Kwig e¨ZxZ evKx m`m¨‡`i eq‡mi mgwó = 7.25
= 36 eQi
 Kwi‡gi eqm = 51 - 36 = 15 eQi|
 Kwi‡gi eqm = 8.5 + (1.35) = 8.5 + 6.5
= 15
68. 7 msL¨vi Mo 12 | GKwU b¤^i evwZj Ki‡j Mo nq
11| evwZjK…Z msL¨vwU KZ? †mvbvjx, RbZv Ges
AMÖYx e¨vsK Awdmvi: 08
7 10
12 18 DËi: N
evwZjK…Z msL¨vwU = 12 + (1 6) = 18 |
69. 11 Rb †jv‡Ki Mo IRb 70 †KwR| 90 †KwR
IR‡bi GKRb †jvK P‡j †M‡j evKx‡`i Mo IRb
KZ nq? cÖvK-cÖv_wgK mnKvix wkÿK (†WjUv) 2014
68 †KwR 72 †KwR
80 †KwR 62 †KwR DËi: K
11 Rb †jv‡Ki IR‡bi mgwó = 7011 = 770
1 Rb †jvK P‡j †M‡j evKx 10 Rb †jv‡Ki IR‡bi
mgwó = 770 - 90 = 680 ivb
 evKx‡`i (10 Rb) Mo IRb =
10
680
= 68|
 †h P‡j wM‡q‡Q Zvi Mo IRb 70 †KwR wQj, wKš‘ †m
wb‡q †M‡Q 90 †KwR| A_©vr, †ewk wb‡q †M‡Q 20
†KwR, hv evKx 10 R‡bi cÖ‡Z¨‡Ki KvQ †_‡K 2
†KwR K‡i wb‡q †M‡Q| GRb¨ evKx 10 R‡bi eqm
Mo IRb 70 †KwR †_‡K 2 †KwR K‡i n«vm cv‡e|
 evKx‡`i Mo IRb = 70 - 2 = 68 †KwR|
70. 11 Rb evj‡Ki Mo IRb 50 †KwR| 40 †KwR
IR‡bi GKRb evjK P‡j †M‡j evwK‡`i Mo IRb
KZ n‡e? †c‡Uªvevsjv Gi D”Pgvb mnKvix 2017
50 †KwR 49 †KwR
51 †KwR 60 †KwR DËi: M
whwb P‡j †M‡jb wZwb 50 Gi cwie‡Z© 40 eQi
wb‡q †M‡Qb, †i‡L †M‡Qb 10 eQi| GB 10 eQi
evwK 10 R‡bi gv‡S Mo K‡i w`‡j 1 K‡i e„w× cv‡e|
 evwK‡`i Mo IRb = 50 + 1 = 51 †KwR|
71. iweevi †_‡K kwbevi ch©šÍ †Kv‡bv ¯’v‡bi Mo e„wócvZ
3Ó| iweevi †_‡K ïµevi ch©šÍ Mo e„wócvZ 2”| H
mßv‡ni kwbev‡i e„wócv‡Zi cwigvY KZ? mnKvix
wkÿK -07 (XvKv wefvM)
1” 5”
7” 9” DËi: N
iweevi †_‡K kwbevi 7 w`‡bi e„wócv‡Zi mgwó
= 3Ó  7 = 21Ó|
iweevi †_‡K ïµevi 6 w`‡bi e„wócv‡Zi mgwó
= 2Ó 6 = 12Ó|
 kwbev‡ii e„wócv‡Zi cwigvY = 21Ó - 12Ó
= 9Ó|
 ey‡S ey‡S kU©KvUt kwbev‡i e„wócv‡Zi cwigvY
= 3 + (16) = 3 + 6 = 9Ó|
72. 3wU msL¨vi Mo 6 Ges H 3wU msL¨vmn †gvU 4wU
msL¨vi Mo 8 n‡j PZz_© msL¨vwUi A‡a©‡Ki gvb KZ?
cÖv_wgK we`¨vjq mnKvix wkÿK 2019
7 8
5 6 DËi: K
PZz_© msL¨vwU = 8 + (23) = 8 + 6 = 14
 msL¨vwUi A‡a©K =
2
14
= 7|
(L) †ewk msL¨vi Mo hw` Kg msL¨vi Mo †_‡K gv‡b †QvU nq
73. wcZv I gvZvi eq‡mi Mo 45 eQi| Avevi wcZv,
gvZv I GK cy‡Îi eq‡mi Mo 36 eQi| cy‡Îi eqm
KZ? cÖv_wgKmnKvixwkÿKwb‡qvMcixÿv2015
20 eQi 18 eQi
14 eQi 16 eQi DËi: L
wcZv I gvZvi eq‡mi mgwó = 45  2
= 90 eQi|
wcZv, gvZv I GK cy‡Îi eq‡mi mgwó = 36  3
= 108 eQi|
 cy‡Îi eqm = 108 - 90 = 18 eQi|
 ey‡S ey‡S kU©‡UKwbK:
18 eQi
wcZv gvZv wcZv gvZv cyÎ
 ïiæ‡Z wcZv I gvZvi eq‡mi Mo wQj 45| c‡i
cyÎ hy³ nIqvq eq‡mi Mo n«vm †c‡q nq 36|
mgvavb
NM
LK
mgvavb
NM
LK
mgvavb
NM
LK
mgvavb
NM
LK
mgvavb
NM
LK
mgvavb
NM
LK
16  Math Tutor
G‡ÿ‡Î wcZv I gvZvi eq‡mi Mo (45-36) ev 9
K‡i †gvU 18 n«vm cvq| GB n«vmK…Z eqm wM‡q
cy‡Îi eq‡mi mv‡_ hy³ n‡q cy‡Îi Mo eqm n‡q‡Q
36| wKš‘ cÖK…Zc‡ÿ cy‡Îi eqm 36 †_‡K Av‡iv
Kg| cy‡Îi eqm †ei Ki‡Z n‡j wcZv I gvZvi
n«vmK…Z eqm cy‡Îi eqm †_‡K ev` w`‡Z n‡e|
cy‡Îi eqm : 36 - (92) = 36 - 18 = 18 eQi|
74. wcZv I gvZvi eq‡mi Mo 20 ermi| wcZv, gvZv I
cy‡Îi eq‡mi Mo 16 ermi n‡j cy‡Îi eqm KZ?
cÖvK-cÖv_wgK mnKvixwkÿK(`vRjv,†nvqvs‡nv,wgwmwmwc)13
8 ermi 15 ermi
16 ermi 16
2
1
ermi DËi: K
ey‡S ey‡S kU©KvU: cy‡Îi eqm = 16 - (42)
= 8 ermi|
75. wcZv I gvZvi eq‡mi Mo 25 ermi| wcZv, gvZv I
cy‡Îi eq‡mi Mo 18 ermi n‡j cy‡Îi eqm KZ?
cÖvK-cÖv_wgK mnKvix wkÿK (‡nvqvs‡nv) 2013
2 ermi 4 ermi
5 ermi 6 ermi DËi: L
ey‡S ey‡S kU©KvU: cy‡Îi eqm = 18 - (72)
= 18 - 14 = 4 ermi|
76. wcZv I gvZvi eq‡mi Mo 30 ermi| wcZv, gvZv I
cy‡Îi Mo eqm 24 ermi n‡j, cy‡Îi eqm KZ?
cÖvK-cÖv_wgK mnKvix wkÿK (wgwmwmwc) 2013
8 ermi 10 ermi
11 ermi 12 ermi DËi: N
cy‡Îi eqm = 24 - (62) = 24 - 12
= 12 eQi|
77. wcZv I gvZvi eq‡mi Mo 20 ermi| wcZv, gvZv I
cy‡Îi eq‡mi Mo 16 ermi n‡j cy‡Îi eqm KZ?
cÖvK-cÖv_wgK mnKvix wkÿK (`vRjv) 2013
8 ermi 15 ermi
16 ermi 16.5 ermi DËi: K
cy‡Îi eqm = 16 - 8 = 8 eQi|
78. wcZv I gvZvi eq‡mi Mo 42 eQi| Avevi wcZv,
gvZv I GK cy‡Îi Mo eqm 32 eQi| cy‡Îi eqm
KZ? cÖvK-cÖv_wgK mnKvix wkÿK-13 (eywoM½v)
8 eQi 10 eQi
12 eQi 14 eQi DËi: M
cy‡Îi eqm = 32 - 20 = 12 eQi|
79. wcZv I gvZvi eq‡mi Mo 40 ermi| wcZv, gvZv I
cy‡Îi eq‡mi Mo 32 ermi n‡j cy‡Îi eqm KZ?
mnKvix wkÿK (nvmbv‡nbv)-11
12 ermi 14 ermi
16 ermi 18 ermi DËi: M
cy‡Îi eqm = 32 - 16 = 16 ermi|
80. wcZv I gvZvi Mo eqm 36 eQi| wcZv, gvZv I
cy‡Îi Mo eqm 28 eQi n‡j, cy‡Îi eqm KZ?
mnKvix wkÿK (gyw³‡hv×v)-10
9 eQi 11 eQi
12 eQi 15 eQi DËi: M
81. wcZv I gvZvi Mo eqm 35 eQi| wcZv, gvZv I
cy‡Îi Mo eqm 27 eQi n‡j cy‡Îi eqm KZ?
mnKvix wkÿK (gyw³‡hv×v)-10
9 eQi 11 eQi
12 eQi 14 eQi DËi: L
82. wcZv I gvZvi Mo eqm 40 eQi| wcZv, gvZv I
cy‡Îi Mo eqm 32 eQi n‡j, cy‡Îi eqm KZ? cÖavb
wkÿK (XvKv wefvM)-07
14 eQi 16 eQi
18 eQi 20 eQi DËi: L
83. 12 Rb Qv‡Îi eq‡mi Mo 20 eQi | hw` bZzb
GKRb Qv‡Îi eqm AšÍf~©³ Kiv nq, Z‡e eq‡mi Mo
1 eQi K‡g hvq| bZzb Qv‡Îi eqm KZ? IFICBank
probationaryofficer:09
5 7
9 11 DËi: L
12 Rb Qv‡Îi eq‡mi mgwó = 2012 = 240 eQi
GKRb Qv‡Îi eqm AšÍfz©³ Kivq 13 Rb Qv‡Îi
eq‡mi Mo 1 n«vm †c‡q 19 nq|
13 Rb Qv‡Îi eq‡mi mgwó = 19  13 = 247 eQi
 bZzb Qv‡Îi eqm = 247 - 240 = 7 eQi&
 ey‡S ey‡S kU©KvU:
bZzb Qv‡Îi eqm = 19 - (12 1) = 19 - 12 = 7
84. †Kv‡bv †kÖwY‡Z 20 Rb QvÎxi eq‡mi Mo 12 eQi| 4
Rb bZzb QvÎx fwZ© nIqv‡Z eq‡mi Mo 4 gvm K‡g
†Mj| bZzb 4 Rb QvÎxi eq‡mi Mo KZ? cÖvK-
cÖv_wgK mnKvix wkÿK 2013 (hgybv); mnKvix
wkÿK 2012 (cÙ); mnKvix wkÿK 2008 (†Mvjvc)
11 eQi 9 eQiLK
mgvavb
NM
LK
NM
LK
NM
LK
NM
LK
mgvavb
NM
LK
mgvavb
NM
LK
mgvavb
NM
LK
mgvavb
NM
LK
mgvavb
NM
LK
mgvavb
NM
LK
Math Tutor  17
10 eQi 8 eQi DËi: M
20 Rb QvÎxi eq‡mi mgwó = 1220 eQi
= 240 eQi
4 Rb bZzb QvÎx fwZ© nIqvq 24 QvÎxi eq‡mi Mo
nq (12 eQi - 4 gvm) ev 11 eQi 8 gvm|
24 Rb QvÎxi eq‡mi mgwó = 11 eQi 8 gvm24
= (11 +
3
2
)24 eQi
= 11  24 eQi +
3
2
24 eQi
= 264 eQi + 16 eQi = 280 eQi|
bZzb 4 Rb QvÎxi eqm = 280 - 240 = 40 eQi|
 bZzb 4 Rb QvÎxi eq‡mi Mo =
4
40
eQi
= 10 eQi|
 g‡b ivLyb: GLv‡b 8 gvm‡K eQ‡i iƒcvšÍi Kiv n‡q‡Q
12
8
ev
3
2
eQi| A‡¼ gvm I eQi GKmv‡_ _vK‡j
Ges Avcwb MYbvq `ÿ bv n‡j we¯ÍvwiZ wbq‡gB
mgvavb Ki‡eb)
 ey‡S ey‡S kU©KvU:
4 Rb bZzb QvÎxi eq‡mi Mo
= 11 eQi 8 gvm - (
4
204
gvm)
= 11 eQi 8 gvm - 20 gvm
= 11 eQi 8 gvm - 1 eQi 8 gvm
= 10 eQi|
(GLv‡b 4 Rb QvÎxi Mo nIqvq (420) †K 4 Øviv
fvM Kiv n‡q‡Q| MYbvq `ÿ _vK‡j K‡qK †m‡K‡Û
mgvavb Kiv m¤¢e)
(M) GB av‡c (K) I (L) wbqg AbymiY Kiv n‡q‡Q wKš‘ `v‡M GKUz wfbœZv Av‡Q
85. wZb eQi Av‡M iwng I Kwi‡gi iq‡mi Mo wQj 18
eQi| Avjg Zv‡`i mv‡_ †hvM`vb Kivq Zv‡`i
eq‡mi Mo ‡e‡o 22 eQi nq| Avj‡gi eqm KZ?
mnKvixwkÿK(K‡cvZvÿ)-10;†iwR÷vW© cÖv_wgKwe`¨vjqmnKvix
wkÿK(wkDwj)2011
30 eQi 28 eQi
27 eQi 24 eQi DËi: N
(cÖ‡kœ wZb eQi Av‡M iwng I Kwi‡gi eq‡mi Mo
†`qv Av‡Q, †mwU‡K eZ©gvb eq‡mi M‡o iƒcvšÍi Ki‡Z n‡e)
wZb eQi Av‡M iwng I Kwi‡gi eq‡mi Mo wQj 18
eZ©gv‡b iwng I Kwi‡gi eq‡mi Mo = 18+3 = 21
eZ©gv‡b Zv‡`i eq‡mi mgwó = 212 = 42 eQi
iwng, Kwig I Avj‡gi eq‡mi Mo = 22 eQi
Zv‡`i eq‡mi mgwó = 223 = 66 eQi
Avj‡gi eqm = 66 - 42 = 24 eQi|
 ey‡S ey‡S kU©KvU: (cÖ_‡g eZ©gvb eqm †ei K‡i wb‡Z
n‡e, Zvici c~‡e© wbq‡g mgvavb Ki‡Z n‡e)
iwng I Kwi‡gi eZ©gvb eq‡mi Mo = 18+3 = 21
iwng, Kwig I Avj‡gi eq‡mi Mo = 22
 Avj‡gi eqm = 22 + (1  2) = 24 eQi|
86. wcZv I `yB cy‡Îi Mo eqm 20 eQi| `yB eQi c~‡e©
`yB cy‡Îi Mo eqm wQj 12 eQi| wcZvi eZ©gvb
eqm KZ? cÖvK-cÖv_wgKmnKvixwkÿK(myigv,kxZjÿ¨v)2013
26 eQi 28 eQi
30 eQi 32 eQi DËi: N
`yB cy‡Îi eZ©gvb eq‡mi Mo = 12 + 2 = 14
 wcZvi eZ©gvb eqm = 20 + (62)
= 20 + 12 = 32 eQi|
87. wZb eQi Av‡M `yB †ev‡bi eq‡mi Mo wQj 24 eQi|
eZ©gv‡b `yB †evb I Zv‡`i GK fvB‡qi eq‡mi Mo
25 eQi| fvB‡qi eZ©gvb eqm KZ eQi? evsjv‡`k
wkwcs K‡cv©‡ik‡b wmwbqi A¨vwm÷¨v›U 2018
27 24
21 18 DËi: M
`yB †ev‡bi eZ©gvb eq‡mi Mo = 24 + 3 = 27
fvB‡qi eZ©gvb eqm = 25 - (22) = 21
88. wcZv I `yB cy‡Îi eZ©gvb Mo eqm 20 ermi| 2
ermi ci `yB cy‡Îi Mo eqm 12 ermi n‡j wcZvi
eZ©gvb eqm KZ? cÖvK-cÖv_wgKmnKvixwkÿK(`vRjv,
wgwmwmwc)2013
40 ermi 42 ermi
43 ermi 44 ermi DËi: K
(cÖ‡kœ `yB ermi ci `yB cy‡Îi eq‡mi Mo †`qv Av‡Q, †mwU‡K
eZ©gvb eq‡mi M‡o iƒcvšÍi Ki‡Z n‡e)
`yB cy‡Îi eZ©gvb eq‡mi Mo = 12 - 2 = 10 ermi
Zv‡`i eZ©gvb eq‡mi mgwó = 102 = 20 ermi
mgvavb
NM
LK
mgvavb
NM
LK
mgvavb
NM
LK
mgvavb
NM
LK
mgvavb
NM
18  Math Tutor
wcZv I `yB cy‡Îi eq‡mi Mo = 20 ermi
Zv‡`i eq‡mi mgwó = 20  3 = 60 ermi
 wcZvi eZ©gvb eqm = 60 - 20 = 40 ermi|
 ey‡S ey‡S kU©KvU:
`yB cy‡Îi eZ©gvb eq‡mi Mo = 12 - 2 = 10
wcZv I `yB cy‡Îi eq‡mi Mo = 20 eQi
 wcZvi eqm = 20 + (102) = 40 eQi|
89. wcZv I `yB cy‡Îi eZ©gvb Mo eqm 22 ermi| 3
ermi ci `yB cy‡Îi Mo eqm 13 ermi n‡j wcZvi
eZ©gvb eqm KZ? cjøx we`y¨Zvqb †ev‡W©i mnKvix
Gb‡dvm©‡g›U †Kv-AwW©‡bUi 2017
40 ermi 42 ermi
43 ermi 46 ermi DËi: L
ey‡S ey‡S kU©KvU:
`yB cy‡Îi eZ©gvb eq‡mi Mo = 13 - 3 = 10
wcZvi eZ©gvb eqm = 22 + (102) = 42|
(N) GK R‡bi cwie‡Z© bZzb GKRb †hvM †`qvi d‡j Mo e„w× ev n«vm nIqv
90. 8 R‡bi GKwU `‡j 65 †KwR IR‡bi GKR‡bi
cwie‡Z© bZzb GKRb †hvM †`qvq Zv‡`i Mo IRb
2.5 †KwR †e‡o hvq| bZzb e¨w³i IRb KZ †KwR?
evsjv‡`kK…wlDbœqbK‡cv©‡ik‡bimnKvixcÖmvkwbKKg©KZ©v2017
45 76
80 85 DËi: N
bZzb e¨w³ †hvM`vb Kivq IRb e„w× cvq
= 2.5  8 †KwR = 20 †KwR|
 bZzb e¨w³i IRb = 65 + 20 = 85 †KwR|
 ey‡S ey‡S kU©KvU:
8 R‡bi `‡j 65 †KwR IR‡bi GKRb P‡j hvq Ges
Zvi cwie‡Z© whwb Av‡mb Zvui IRbI hw` 65 †KwR
nZ, Zvn‡j Zv‡`i Mo IR‡bi †Kvb cwieZ©b nZ
bv| wKš‘ H e¨w³ `‡j †hvM`vb Kivi ci Zv‡`i
cÖ‡Z¨‡Ki Mo IRb 2.5 †KwR K‡i †e‡o †M‡Q| Zvi
gv‡b, bZzb †hvM`vbK…Z e¨w³i eqm Ô65 + AviI
†ewkÕ n‡e| GLb cÖkœ n‡”Q 65 Gi †P‡q KZUzKz
†ewk n‡e? mnR DËi n‡”Q- 8 R‡bi Mo hZ e„w×
†c‡q‡Q Zvi mgwói mgvb|
bZzb e¨w³i IRb = 65 + (82.5)
= 65 + 20 = 85 eQi|
 g‡b ivLyb: e„w× bv †c‡q hw` n«vm †cZ Zvn‡j †hvM
bv n‡q we‡qvM nZ| 92 bs cÖkœ †`Lyb
91. 8 Rb †jv‡Ki Mo eqm 2 e„w× cvq hLb 24 eQi
eqmx †Kvb †jv‡Ki cwie‡Z© GKRb gwnjv †hvM
†`q| gwnjvwUi eqm KZ? RbZv e¨vsK (EO)-17
35 eQi 28 eQi
32 eQi 40 eQi DËi: N
ey‡S ey‡S kU©KvU:
gwnjvi eqm = 24 + (28) = 24 + 16 = 40|
92. 7 Rb †jv‡Ki Mo IRb 3 cvDÛ K‡g hvq hLb 10
†÷vb IR‡bi GKRb †jv‡Ki cwie‡Z© bZzb GKRb
†hvM`vb K‡i| bZzb †jvKwUi IRb KZ? cÖv_wgK
we`¨vjqmnKvixwkÿK(`ovUvbv)2008
9 †÷vb 8 †÷vb
8
2
1
†÷vb 7
2
1
†÷vb DËi: M
Avgiv Rvwb, 14 cvDÛ = 1 †÷vb
bZzb †jvK †hvM`vb Kivq IRb K‡g hvq
= 37 = 21 cvDÛ = 1.5 †÷vb
bZzb †jv‡Ki IRb = 10 - 1.5 †÷vb = 8.5 †÷vb|
 ey‡S ey‡S mgvavb:
bZzb †jvKwUi IRb = 10 - 1.5 = 8.5 †÷vb|
†R‡b wbb - 44
 hv‡`i Mo †ei Ki‡eb, Zvi Av‡M Zv‡`i †gvU †ei Ki‡eb|
93. P Ges Q Gi mgwó 72| R Gi gvb 42| P, Q
Ges R Gi Mo KZ? evsjv‡`ke¨vsKA¨vwmm‡U›UwW‡i±i:08
32 34
36 38 DËi: N
(P, Q Ges R Gi Mo †ei Ki‡Z n‡e, GRb¨ P,
Q Ges R Gi mgwó †ei Ki‡Z n‡e)
P, Q Ges R Gi mgwó = 72 + 42 = 114
 P, Q Ges R Gi Mo =
3
114
= 38|
94. A Ges B Gi mgwó 40 Ges C =32 n‡j, A, B
Ges C Gi Mo KZ? evsjv‡`ke¨vsKAwdmvi:01
24 26
28 30 DËi: K
A, B I C Gi mgwó = 40 + 32 = 72 |mgvavb
NM
LKmgvavb
NM
LK
mgvavb
NM
LK
mgvavb
NM
LK
mgvavb
NM
LK
mgvavb
NM
LK
Math Tutor  19
 A, B I C Gi Mo =
3
72
= 24 |
95. 𝐱 I y Gi gv‡bi Mo 9 Ges z = 12 n‡j 𝒙, y, z
Gi gv‡bi Mo KZ? 20ZgwewmGm
6 9
10 12 DËi: M
x I y Gi gv‡bi mgwó = 9  2 = 18
∴ x, y, z Gi gv‡bi mgwó = 18 + 12 = 30
myZivs, 𝑥, y, z Gi Mo =
3
30
= ১০ DËit M
96. K, L I M Gi Mo eqm 40 eQi, K I M Gi eqm
GK‡Î 85 eQi L Gi eqm n‡e- cwievi-cwiKíbv
†gwW‡KjAwdmvi 1994
30 eQi 35 eQi
40 eQi 45 eQi DËi: L
K, L I M Gi eq‡mi mgwó = 403 = 120 eQi
K I M Gi eq‡mi mgwó = 85 eQi|
 L Gi eqm = 120 - 85 eQi = 35 eQi|
97. wZbwU msL¨vi Mo 24| `yBwU msL¨v 21 I 23 n‡j,
Z…Zxq msL¨vwU KZ? evsjv‡`ke¨vsKA¨vwmm‡U›U wW‡i±i:06
20 24
26 28 DËi: N
wZbwU msL¨vi mgwó = 24 3 = 72
`yBwU msL¨vi mgwó = 21 + 23 = 44
myZivs, Z…Zxq msL¨v = 72 - 44 = 28
98. wZbwU msL¨vi Mo 7| hw` `yBwU msL¨v 0 nq, Z‡e
Z…Zxq msL¨vwU KZ? †mvbvjx,RbZvIAMÖYxe¨vsK:08
15 17
19 21 DËi: N
wZbwU msL¨vi mgwó = 7  3 = 21
`yBwU msL¨vi mgwó = 0 + 0 = 0
 Z…Zxq msL¨vwU = 21 - 0 = 21 |
99. wZbRb †jv‡Ki IR‡bi Mo 53 †KwR| G‡`i Kv‡iv
IRb 51 †KwRi Kg bq| G‡`i GKR‡bi m‡e©v”P
IRb n‡e- cwievicwiKíbvAwa.mn.cwiKíbvKg©KZ©v12
53 †KwR 55 †KwR
57 †KwR 59 †KwR DËi: M
wZbRb †jv‡Ki IR‡bi mgwó = 533 †KwR
= 159 †KwR
`yRb †jv‡Ki IRb me©wb¤œ Ki‡j Aci Rb †jv‡Ki IRb
m‡e©v”P Kiv m¤¢e| cÖkœvbyhvqx `yRb †jv‡Ki IRb me©wb¤œ
51 Kiv hv‡e|
`yRb †jv‡Ki me©wb¤œ IR‡bi mgwó = 51  2 †KwR
= 102 †KwR
 3q †jv‡Ki m‡e©v”P IRb n‡e = 159 - 102 †KwR
= 57 †KwR|
100. wZb m`‡m¨i GKwU weZK©`‡ji m`m¨‡`i Mo eqm
24 eQi| hw` †Kvb m`‡m¨i eqmB 21 Gi wb‡P bv
nq Zv‡`i †Kvb GKR‡bi eqm m‡e©v”P KZ n‡Z
cv‡i? 33Zg wewmGm wcÖwjwgbvwi
25 eQi 30 eQi
28 eQi 32 eQi DËi: L
GKRb †jv‡Ki m‡e©v”P ehm = 24 + (32)
= 24 + 6 = 30 eQi|
101. 3 eÜzi IR‡bi Mo 33 †KwR | wZbR‡bi ga¨
†Kvb eÜzi IRbB 31 †KwRi Kg bq| wZb eÜzi
GKR‡bi IRb m‡ev©”P KZ n‡Z cv‡i? evsjv‡`k
e¨vsK Awdmvi : 01
37 35
33 32 DËi: K
GKR‡bi m‡e©v”P IRb = 33 + (22) †KwR
= 33 + 4 †KwR
= 37 †KwR|
05.10
102. wcZv I cy‡Îi eq‡mi Mo 40 eQi Ges gvZv I H
cy‡Îi eq‡mi Mo 35 eQi| gvZvi eqm 50 eQi
n‡j, wcZvi eqm KZ? 14Zg †emiKvwi cÖfvlK
wbeÜb cixÿv 2017
50 eQi 60 eQi
40 eQi 85 eQi DËi: L
wcZv I cy‡Îi eq‡mi Mo = 40 eQi
wcZv I cy‡Îi eq‡mi mgwó = 40  2 = 80 eQi
gvZv I cy‡Îi eq‡mi Mo = 35 eQi
 gvZv I cy‡Îi eq‡mi mgwó = 35  2 = 70 eQi
(wcZvi eqm †ei Ki‡Z n‡j cy‡Îi eqm Rvb‡Z n‡e)
cy‡Îi eqm = (70 - 50) eQi = 20 eQi
 wcZvi eqm = (80 - 20 ) eQi = 60 eQi|
 ey‡S ey‡S kU©KvU 01:
wcZv + cyÎ  Mo 40 eQi  †gvU 402 = 80
gvZv + cyÎ  Mo 35 eQi  †gvU 352 = 70
wcZv  gvZv = 10
wcZvi eqm gvZvi †P‡q 10 eQi †ewk|
mgvavb
NM
LK
mgvavb
NM
LK
mgvavb
NM
LK
mgvavb
NM
LK
mgvavb
NM
LK
mgvavb
NM
LK
mgvavb
NM
LK
mgvavb
NM
LK
20  Math Tutor
 wcZvi eqm = 50 + 10 = 60 eQi|
 ey‡S ey‡S kU©KvU 02:
wcZvi mv‡_ cy‡Îi Mo, gvZvi mv‡_ cy‡Îi M‡oi
†P‡q 5 †ewk , ZvB wcZvi eqm gvZvi eq‡mi †P‡q
†ewk n‡e|
 wcZvi eqm = 50 + (52) = 50 + 10
= 60 eQi|
 g‡b ivLyb: gvZvi eqm †`qv Av‡Q, wcZvi eqm †ei
Ki‡Z n‡e| gvZvi Zzjbvq wcZvi eqm hZUzKz †ewk
†mwU gv‡qi eq‡mi mv‡_ †hvM Ki‡Z n‡e| Avevi hw`
wcZvi eqm †`qv _vKZ, Zvn‡j wcZvi eqm †_‡K
gvZvi eqm hZUzKz Kg n‡e †mwU wcZvi eqm †_‡K
we‡qvM Ki‡Z n‡e|
103. iwng I Kwi‡gi eq‡mi Mo 35 eQi| iwng I
nvgRvi eq‡mi Mo 20 eQi| nvgRvi eqm 11
eQi n‡j Kwi‡gi eqm KZ? 16Zg†emiKvwiwkÿK
wbeÜb(K‡jR/mgch©vq) 2019
40 eQi 41 eQi
42 eQi 43 eQi DËi: L
nvgRvi eqm †`qv Av‡Q, Kwi‡gi eqm †ei Ki‡Z
n‡e| nvgRvi eq‡mi mv‡_ Kwi‡gi eqm hZUzKz †ewk
†mwU †hvM Ki‡Z n‡e|
Kwi‡gi eqm = 11 + (152) = 41 eQi|
104. wcZv I 3 cy‡Îi eqm A‡cÿv gvZv I 3 cy‡Îi
eq‡mi Mo 1
2
1
eQi Kg| gvZvi eqm 30 n‡j
wcZvi eqm KZ? cÖvK-cÖv_wgKmnKvixwkÿK(†gNbv)2013
30 eQi 31
2
1
eQi
36 eQi 38 eQi DËi: M
wcZvi eqm = 30 + ( 1.54) = 36 eQi|
105. wcZv I `yB cy‡Îi eqm A‡cÿv gvZv I D³ `yB
cy‡Îi eq‡mi Mo 2 eQi Kg| wcZvi eqm 30 eQi
n‡j gvZvi eqm KZ? cÖv_wgK we`¨vjq mnKvwi wkÿK
(emšÍ) 2010
20 eQi 22 eQi
24 eQi 25 eQi DËi: M
wcZvi eqm †`qv Av‡Q, gvZvi eqm †ei Ki‡Z
n‡e| ZvB wcZvi eq‡mi †_‡K gvZvi eqm hZUzKz
Kg †mwU we‡qvM Ki‡Z n‡e|
 gvZvi eqm = 30 - (23) = 24 eQi|
106. wcZv I Pvi cy‡Îi eq‡mi Mo, gvZv I Pvi cy‡Îi
eq‡mi Mo A‡cÿv 2 eQi †ewk| wcZvi eqm 60
n‡j gvZvi eqm KZ? Rbkw³ Kg©ms¯’vb I cÖwkÿY
ey¨‡ivi Dc-cwiPvjK 2007
48 eQi 52 eQi
50 eQi 56 eQi DËi: M
gvZvi eqm = 60 - (25) = 50 eQi|
107. eya, e„n¯úwZ I ïµev‡ii Mo ZvcgvÎv 400
c Ges
e„n¯úwZ, ïµ I kwbev‡ii Mo ZvcgvÎv 410
c |
kwbev‡ii ZvcgvÎv 420
c | kwbev‡ii ZvcgvÎv 420
c n‡j eyaev‡ii ZvcgvÎv KZ? bvwm©s I wgWIqvBdvwi
Awa`߇ii wmwbqi ÷vd bvm© 2018
380
c 390
c
410
c 420
c DËi: L
kwbev‡ii ZvcgvÎv †`qv Av‡Q, eyaev‡ii ZvcgvÎv
†ei Ki‡Z n‡e| cÖkœvbymv‡i, eyaev‡ii (e„n¯úwZ I
ïµevimn) ZvcgvÎvi Mo kwbev‡ii (e„n¯úwZ I
ïµevimn) ZvcgvÎvi M‡oi †P‡q Kg, ZvB
kwbev‡ii ZvcgvÎv †_‡K we‡qvM Ki‡Z n‡e|
 kwbev‡ii ZvcgvÎv = 420
c - (13) = 390
c
108. K, L I M Gi gvwmK Mo †eZb 500 UvKv| L, M I
N Gi gvwmK Mo †eZb 450 UvKv| K Gi †eZb
540 UvKv n‡j N Gi †eZb KZ? cÖvK-cÖv_wgK mn.
wkÿK (cÙv) 2013
375 UvKv 380 UvKv
385 UvKv 390 UvKv DËi: N
K Gi †eZb †`qv Av‡Q, N Gi †eZb †ei Ki‡Z
n‡e| K Gi ( L I M mn) M‡oi Zzjbvq N ( L I M
mn) Mo Kg, ZvB K Gi †eZb †_‡K we‡qvM Ki‡Z
n‡e|
 N Gi †eZb = 540 - (503) = 540 - 150
= 390 UvKv |
mgvavb
NM
LK
mgvavb
NM
LK
mgvavb
NM
LK
mgvavb
NM
LK
mgvavb
NM
LK
mgvavb
NM
LK
m¤ú~Y© Aa¨vqwU‡Z †Kv_vI †Kvb fzj ÎæwU cwijwÿZ n‡j Avgv‡K `qv K‡i AewnZ Ki‡eb|
 †dmey‡K fb/ kabial.noor A_ev B‡gB‡j kabialnoor@gmail.com AewnZ Kiæb|
Math Tutor  21
109. 20 Rb QvÎ MwYZ cixÿvq AskMÖnY Kij| Zv‡`i
g‡a¨ `yBRb M‡o 60 b¤^i, †Zi Rb M‡o 65 b¤^i I
Aewkó mK‡j M‡o 55 b¤^i †cj| QvÎiv M‡o KZ
b¤^i †cj? 24ZgwewmGm(wjwLZ)
2 Rb Qv‡Îi Mo b¤^i = 60
 2 Rb Qv‡Îi †gvU b¤^i = 60  2 = 120
13 Rb Qv‡Îi Mo b¤^i = 65
13 Rb Qv‡Îi †gvU b¤^i = 65  13 = 845
Aewkó QvÎ msL¨v = 20 - 2 - 13 Rb = 5 Rb
5 Rb Qv‡Îi Mo b¤^i = 55
 5 Rb Qv‡Îi †gvU b¤^i = 55  5 = 275
20 Rb Qv‡Îi †gvU b¤^i = 120 + 845 + 275
= 1240
 20 Rb Qv‡Îi Mo b¤^i =
20
1240
= 62| (DËi)
110. 5 Rb evj‡Ki eq‡mi Mo 10 eQi| H `‡j AviI 2
Rb evjK †hvM w`j| Zv‡`i mK‡ji eq‡mi Mo nq
12 eQi| †hvM`vbKvix evjK `ywU hw` mgeqmx nq
Z‡e Zv‡`i cÖ‡Z¨‡Ki eqm KZ? cywjkmve-B¯ú‡c±i
(wbi¯¿)wb‡qvMcixÿv(cyiæl/bvix)2012 (wjwLZ)
5 Rb evj‡Ki eq‡mi Mo 10 eQi
 5 Rb evj‡Ki †gvU eqm = 105 eQi
= 50 eQi
Avevi,
(5+2) ev 7 Rb evj‡Ki Mo 12 eQi
 7 Rb evj‡Ki †gvU eqm = 127 eQi
= 84 eQi|
2 Rb evj‡Ki †gvU eqm = 84 - 50 eQi
= 34 eQi
`yRb evjK mgqeqmx nIqvq Zv‡`i eq‡mi Mo n‡e
Zv‡`i cÖ‡Z¨‡Ki eqm|
 Zv‡`i cÖ‡Z¨‡Ki eqm =
2
34
eQi = 17 eQi|
(DËi)
111. K I L Gi gvwmK Av‡qi Mo 300 UvKv, L I M Gi
gvwmK Av‡qi Mo 350 UvKv Ges K I M Gi gvwmK
Av‡qi Mo 325 UvKv| K Gi gvwmK Avq KZ? cywjk
mve-B݇c±iwb‡qvMcixÿv1999 (wjwLZ)
K I L Gi gvwmK Mo Avq 300 UvKv
K I L Gi gvwmK †gvU Avq = 300  2 UvKv
= 600 UvKv
L I M Gi gvwmK Mo Avq 350 UvKv
L I M Gi gvwmK †gvU Avq = 350  2 UvKv
= 700 UvKv
K I M Gi gvwmK Mo Avq 325 UvKv
K I M Gi gvwmK †gvU Avq = 325  2 UvKv
= 650 UvKv
GLb,
K + L + L + M + K + M Gi
†gvU Avq = 600 + 700 + 650 UvKv
ev, 2 ( K + L + M) Gi †gvU Avq = 1950 UvKv
 K + L + M Gi †gvU Avq =
2
1950
UvKv
= 975 UvKv
myZivs, K Gi gvwmK Avq = (K + L + M Gi gvwmK
Avq) - ( L + M Gi gvwmK Avq) = (975 - 700)
UvKv = 275 UvKv| (DËi)
112. KwZcq Qv‡Îi MwY‡Zi cÖvß b¤^‡ii mgwó 1190 Gi
mv‡_ 88 b¤^i cÖvß GKRb Qv‡Îi b¤^i †hvM nIqv‡K
Qv·`i cÖvß b¤^‡ii Mo 1 †e‡o †Mj| KZRb Qv‡Îi
cÖvß b¤^‡ii mgwó 1190? ¯^v¯’¨IcwieviKj¨vY gš¿Yvj‡qi
¯^v¯’¨wkÿvIcwieviKj¨vYwefv‡MiZ…Zxq†kÖwYiRbej-19(wjwLZ)
g‡b Kwi, †gvU Qv‡Îi msL¨v = x Rb
Ges Zv‡`i b¤^‡ii Mo =
x
1190
1 Rb Qv‡Îi 88 b¤^i †hvM nIqvq †gvU QvÎ = x+1
Rb Ges Zv‡`i Mo =
1
881190


x
kZ©g‡Z,
1
881190


x
-
x
1190
= 1
ev,
)x(x
xx
1
119011901278


= 1
ev, x2
+ x = 88x  1190 = 0
ev, x2
+ x  88x  1190 = 0
ev, x2
 87x  1190 = 0
ev, x2
 70x  17x + 1190 = 0
ev, x( x - 70) - 17 ( x - 70) = 0
ev, (x - 70) (x - 17) = 0
x - 70 = 0 A_ev x - 17 = 0
 x = 70  x = 17
mgvavb
mgvavb
mgvavb
mgvavb
ïay wjwLZ Av‡jvPbv 
22  Math Tutor
myZivs QvÎ msL¨v 70 A_ev 17 Rb|
113. GKRb †`vKvb`vi 12 w`‡b 500 UvKv Avq
Ki‡jv Avi cÖ_g 4 w`‡bi Mo Avq 40 UvKv n‡j
Aewkó w`b¸wji Mo Avq KZ? evsjv‡`k†ijI‡q
mnKvix†÷kbgv÷vi2018(wjwLZ)
†`qv Av‡Q, 12 w`‡bi †gvU Avq = 500 UvKv
cÖ_g 4 w`‡b †gvU Avq = 40 4 = 160 UvKv
Aewkó (12 - 4) ev 8 w`‡bi Avq = 500 - 160
= 340 UvKv|
114. 7wU msL¨vi Mo 40| Gi mv‡_ 3wU msL¨v †hvM Kiv
n‡jv| msL¨v 3wUi Mo 21| mgwóMZfv‡e 10wU
msL¨vi Mo KZ? cwi‡ekAwa`߇iiAwdmmnKvix Kvg
Kw¤úDUvigy`ªvÿwiK2018(wjwLZ)
7wU msL¨vi Mo 40
 7wU msL¨vi mgwó = 40 7 = 280
3 wU msL¨vi Mo 21
 3wU msL¨vi mgwó = 21  3 = 63
(7 + 3) ev 10 wU msL¨vi mgwó = 280 + 63
= 343
 10 wU msL¨vi Mo =
10
343
= 34.3 | (DËi)
115. hw` 5wU µwgK we‡Rvo msL¨vi Mo 55 nq Z‡e
†kl `ywU msL¨vi Mo KZ? cÖv_wgKIMYwkÿvgš¿Yvj‡qi
mvuUgy`ªvÿwiKKvgKw¤úDUviAcv‡iUi2017(wjwLZ)
g‡bKwi, 1g µwgK we‡Rvo msL¨vwU x
2q Ó Ó Ó x + 2
3q Ó Ó Ó x + 4
4_© Ó Ó Ó x + 6
5g Ó Ó Ó x + 8
†`qv Av‡Q, 5wU µwgK we‡Rvo msL¨vi Mo 55
5 wU µwgK we‡Rvo msL¨vi mgwó 555 = 275
cÖkœg‡Z,
x + x + 2 + x + 4 + x + 6 + x + 8 = 275
ev, 5x + 20 = 275
ev, 5x = 275 - 20
ev, 5x = 255
 x =
5
255
= 51
†kl `ywU msL¨v h_vµ‡g x + 6 = 51 + 6 = 57
Ges x + 8 = 51 + 8 = 59 |
 †kl `ywU msL¨vi Mo =
2
5957
=
2
116
= 58
116. wcZv I gvZvi Mo eqm 35 eQi| wcZv, gvZv I
cy‡Îi Mo eqm 27 eQi n‡j cy‡Îi eqm KZ? e¯¿ I
cvUgš¿Yvj‡qiDc-mnvKvixcvUDbœqbKg©KZ©v2012(wjwLZ)
wcZv I gvZvi Mo eqm 35 eQi
 wcZv I gvZvi †gvU eqm = 352 eQi
= 70 eQi
wcZv, gvZv I cy‡Îi Mo eqm 27 eQi
 wcZv, gvZv I cy‡Îi †gvU eqm = 273 eQi
= 81 eQi
cy‡Îi eqm = 81 - 70 eQi = 11 eQi| (DËi)
117. wcZv I Zv‡`i Pvi mšÍv‡bi eq‡mi Mo 22 eQi 5
gvm| gvZv I Zvu‡`i H Pvi mšÍv‡bi eq‡mi Mo 21
eQi 2 gvm| wcZvi eqm 45 eQj n‡j, gvZvi eqm
KZ? wb¤œ gva¨wgKMwYZ(1996wkÿvel©)cÖkœgvjv3
wcZv I Pvi mšÍv‡bi eq‡mi mgwó = 22 eQi 5
gvm  5 = 112 eQi 1 gvm
 Pvi mšÍv‡bi eq‡mi mgwó = 112 eQi 1 gvm -
45 eQi = 67 eQi 1 gvm
Avevi, gvZv I Pvi mšÍv‡bi eq‡mi mgwó = 21 eQi
2 gvm  5 = 105 eQi 10 gvm
 gvZvi eqm = gvZv I Pvi mšÍv‡bi eq‡mi mgwó
- Pvi mšÍv‡bi eq‡mi mgwó = 105 eQi 10 gvm -
67 eQi 1 gvm = 38 eQi 9 gvm| (DËi)
118. †Kvb we`¨vj‡qi GKwU †kÖwYi 25 Rb Qv‡Îi eq‡mi
Mo 12 eQi| H †kÖwY‡Z 14, 15 I 21 eQi eq‡mi
3 Rb bZzb QvÎ fwZ© nj| H †kÖwY‡Z eZ©gv‡b
Qv·`i eq‡mi Mo KZ? wb¤œ gva¨wgKMwYZ(1996wkÿvel©)
cÖkœgvjv3
25 Rb Qv‡Îi †gvU eqm = 12  25 = 300 eQi
3 Rb bZzb Qv‡Îi †gvU eqm = (14 + 15 + 21 ) eQi
= 50 eQi|
(25 + 3) ev 28 Rb Qv‡Îi †gvU eqm
= 300 + 50 eQi
= 350 eQi|
28 Rb Qv‡Îi eq‡mi Mo =
28
350
eQi
= 12.5 eQi
AZGe, H †kÖwY‡Z eZ©gv‡b Qv·`i eq‡mi Mo = 12.5
eQi| (DËi)
mgvavb
mgvavb
mgvavb
mgvavb
mgvavb
mgvavb

Más contenido relacionado

La actualidad más candente

Sucok o logaridom [www.onlinebcs.com]
Sucok o logaridom [www.onlinebcs.com]Sucok o logaridom [www.onlinebcs.com]
Sucok o logaridom [www.onlinebcs.com]Itmona
 
Advanced excel 2013 bangla book (1)
Advanced excel 2013 bangla book (1)Advanced excel 2013 bangla book (1)
Advanced excel 2013 bangla book (1)Md.Habibulla sujon
 
Production technology of ginger and turmeric in Bangla
Production technology of ginger and turmeric in BanglaProduction technology of ginger and turmeric in Bangla
Production technology of ginger and turmeric in BanglaMohammedNureYousuf
 
Effect of Foreign Remittance on Bangladesh Economy
Effect of Foreign Remittance on Bangladesh EconomyEffect of Foreign Remittance on Bangladesh Economy
Effect of Foreign Remittance on Bangladesh EconomyAhsan Ferdous
 
The five secand [www.onlinebcs.com.]
The five secand [www.onlinebcs.com.]The five secand [www.onlinebcs.com.]
The five secand [www.onlinebcs.com.]Itmona
 
6659.1.1 fundamentals of c
6659.1.1 fundamentals of c6659.1.1 fundamentals of c
6659.1.1 fundamentals of cS.M. Abu Sadat
 
Everyday of-a-muslim-in-the-light-of-sunnah-present-day-single-view
Everyday of-a-muslim-in-the-light-of-sunnah-present-day-single-view Everyday of-a-muslim-in-the-light-of-sunnah-present-day-single-view
Everyday of-a-muslim-in-the-light-of-sunnah-present-day-single-view Sonali Jannat
 
Article child rights
Article child rightsArticle child rights
Article child rightsNazmul Karim
 
Leaflet-Rehabilitation Services
Leaflet-Rehabilitation ServicesLeaflet-Rehabilitation Services
Leaflet-Rehabilitation ServicesShakawat Hossain
 
Primari techer analysis suggestion & syllabus [www.onlinebcs.com]
Primari techer analysis suggestion & syllabus [www.onlinebcs.com]Primari techer analysis suggestion & syllabus [www.onlinebcs.com]
Primari techer analysis suggestion & syllabus [www.onlinebcs.com]Itmona
 
Corporate Social Responsibilities in Bangladesh
Corporate Social Responsibilities in BangladeshCorporate Social Responsibilities in Bangladesh
Corporate Social Responsibilities in BangladeshMuhammad Karim
 

La actualidad más candente (20)

Sucok o logaridom [www.onlinebcs.com]
Sucok o logaridom [www.onlinebcs.com]Sucok o logaridom [www.onlinebcs.com]
Sucok o logaridom [www.onlinebcs.com]
 
Ms excel bangla guide complete tutorial with picture by tanbircox
Ms excel bangla guide complete tutorial with picture by tanbircoxMs excel bangla guide complete tutorial with picture by tanbircox
Ms excel bangla guide complete tutorial with picture by tanbircox
 
Advanced excel 2013 bangla book (1)
Advanced excel 2013 bangla book (1)Advanced excel 2013 bangla book (1)
Advanced excel 2013 bangla book (1)
 
Production technology of ginger and turmeric in Bangla
Production technology of ginger and turmeric in BanglaProduction technology of ginger and turmeric in Bangla
Production technology of ginger and turmeric in Bangla
 
Class 1
Class 1Class 1
Class 1
 
Presentation 1
Presentation 1Presentation 1
Presentation 1
 
Effect of Foreign Remittance on Bangladesh Economy
Effect of Foreign Remittance on Bangladesh EconomyEffect of Foreign Remittance on Bangladesh Economy
Effect of Foreign Remittance on Bangladesh Economy
 
Mgmt 1
Mgmt 1Mgmt 1
Mgmt 1
 
The five secand [www.onlinebcs.com.]
The five secand [www.onlinebcs.com.]The five secand [www.onlinebcs.com.]
The five secand [www.onlinebcs.com.]
 
6659.1.1 fundamentals of c
6659.1.1 fundamentals of c6659.1.1 fundamentals of c
6659.1.1 fundamentals of c
 
Everyday of-a-muslim-in-the-light-of-sunnah-present-day-single-view
Everyday of-a-muslim-in-the-light-of-sunnah-present-day-single-view Everyday of-a-muslim-in-the-light-of-sunnah-present-day-single-view
Everyday of-a-muslim-in-the-light-of-sunnah-present-day-single-view
 
Final presentation
Final presentationFinal presentation
Final presentation
 
Sidantopotro_46_2015
Sidantopotro_46_2015Sidantopotro_46_2015
Sidantopotro_46_2015
 
Article child rights
Article child rightsArticle child rights
Article child rights
 
产业
产业产业
产业
 
Leaflet-Rehabilitation Services
Leaflet-Rehabilitation ServicesLeaflet-Rehabilitation Services
Leaflet-Rehabilitation Services
 
VAT return in bd
VAT return in bdVAT return in bd
VAT return in bd
 
Formulario derivadas
Formulario derivadasFormulario derivadas
Formulario derivadas
 
Primari techer analysis suggestion & syllabus [www.onlinebcs.com]
Primari techer analysis suggestion & syllabus [www.onlinebcs.com]Primari techer analysis suggestion & syllabus [www.onlinebcs.com]
Primari techer analysis suggestion & syllabus [www.onlinebcs.com]
 
Corporate Social Responsibilities in Bangladesh
Corporate Social Responsibilities in BangladeshCorporate Social Responsibilities in Bangladesh
Corporate Social Responsibilities in Bangladesh
 

Similar a 05 average (math tutor by kabial noor) [www.itmona.com]

02. number (math tutor by kabial noor) [www.itmona.com]
02.  number (math tutor  by kabial noor) [www.itmona.com]02.  number (math tutor  by kabial noor) [www.itmona.com]
02. number (math tutor by kabial noor) [www.itmona.com]Itmona
 
03. root & square (math tutor by kabial noor) [www.itmona.com]
03. root & square (math tutor by kabial noor) [www.itmona.com]03. root & square (math tutor by kabial noor) [www.itmona.com]
03. root & square (math tutor by kabial noor) [www.itmona.com]Itmona
 
Basic Electricity. (1-20) Chpter OK.pptx
Basic Electricity. (1-20) Chpter OK.pptxBasic Electricity. (1-20) Chpter OK.pptx
Basic Electricity. (1-20) Chpter OK.pptxsubratasarker21
 
Iba mcq math solution( 2017 2019) by khairul alam [www.itmona.com]
Iba mcq math solution( 2017 2019) by khairul alam  [www.itmona.com]Iba mcq math solution( 2017 2019) by khairul alam  [www.itmona.com]
Iba mcq math solution( 2017 2019) by khairul alam [www.itmona.com]Itmona
 
04. lcm (math tutor by kabial noor [www.onlinebcs.com]
04. lcm (math tutor by kabial noor [www.onlinebcs.com]04. lcm (math tutor by kabial noor [www.onlinebcs.com]
04. lcm (math tutor by kabial noor [www.onlinebcs.com]Itmona
 
math-2
math-2math-2
math-2Mainu4
 
mot-44
mot-44mot-44
mot-44Mainu4
 
Primary math solution (1st phase) by khairul alam
Primary math solution (1st phase) by khairul alamPrimary math solution (1st phase) by khairul alam
Primary math solution (1st phase) by khairul alamItmona
 
Accounting-0137 Chapter 1 Lecture 6
Accounting-0137 Chapter 1 Lecture 6Accounting-0137 Chapter 1 Lecture 6
Accounting-0137 Chapter 1 Lecture 6Cambriannews
 
Tail to tail shed 20 dairy cow in bangla
Tail to tail shed 20 dairy cow in banglaTail to tail shed 20 dairy cow in bangla
Tail to tail shed 20 dairy cow in banglaMohammad Ruhul Amin
 
Keranigonj text part 1
Keranigonj text part 1Keranigonj text part 1
Keranigonj text part 1Nasrul Hamid
 
Accounting Chapter 1 Lecture 6
Accounting Chapter 1 Lecture 6Accounting Chapter 1 Lecture 6
Accounting Chapter 1 Lecture 6Cambriannews
 
B.n.p 11-01-2012
B.n.p 11-01-2012B.n.p 11-01-2012
B.n.p 11-01-2012azad12915
 

Similar a 05 average (math tutor by kabial noor) [www.itmona.com] (20)

02. number (math tutor by kabial noor) [www.itmona.com]
02.  number (math tutor  by kabial noor) [www.itmona.com]02.  number (math tutor  by kabial noor) [www.itmona.com]
02. number (math tutor by kabial noor) [www.itmona.com]
 
8 math
8 math8 math
8 math
 
03. root & square (math tutor by kabial noor) [www.itmona.com]
03. root & square (math tutor by kabial noor) [www.itmona.com]03. root & square (math tutor by kabial noor) [www.itmona.com]
03. root & square (math tutor by kabial noor) [www.itmona.com]
 
Bangladesh SME LOAN policy
Bangladesh SME LOAN policyBangladesh SME LOAN policy
Bangladesh SME LOAN policy
 
Basic Electricity. (1-20) Chpter OK.pptx
Basic Electricity. (1-20) Chpter OK.pptxBasic Electricity. (1-20) Chpter OK.pptx
Basic Electricity. (1-20) Chpter OK.pptx
 
Iba mcq math solution( 2017 2019) by khairul alam [www.itmona.com]
Iba mcq math solution( 2017 2019) by khairul alam  [www.itmona.com]Iba mcq math solution( 2017 2019) by khairul alam  [www.itmona.com]
Iba mcq math solution( 2017 2019) by khairul alam [www.itmona.com]
 
04. lcm (math tutor by kabial noor [www.onlinebcs.com]
04. lcm (math tutor by kabial noor [www.onlinebcs.com]04. lcm (math tutor by kabial noor [www.onlinebcs.com]
04. lcm (math tutor by kabial noor [www.onlinebcs.com]
 
math-2
math-2math-2
math-2
 
Mathematics (9 & 10)
Mathematics (9 & 10)Mathematics (9 & 10)
Mathematics (9 & 10)
 
SSC Math Class 9-10
SSC Math Class 9-10SSC Math Class 9-10
SSC Math Class 9-10
 
mot-44
mot-44mot-44
mot-44
 
Primary math solution (1st phase) by khairul alam
Primary math solution (1st phase) by khairul alamPrimary math solution (1st phase) by khairul alam
Primary math solution (1st phase) by khairul alam
 
Accounting-0137 Chapter 1 Lecture 6
Accounting-0137 Chapter 1 Lecture 6Accounting-0137 Chapter 1 Lecture 6
Accounting-0137 Chapter 1 Lecture 6
 
Tail to tail shed 20 dairy cow in bangla
Tail to tail shed 20 dairy cow in banglaTail to tail shed 20 dairy cow in bangla
Tail to tail shed 20 dairy cow in bangla
 
Keranigonj text part 1
Keranigonj text part 1Keranigonj text part 1
Keranigonj text part 1
 
FISH Training Module for RED
FISH Training Module for REDFISH Training Module for RED
FISH Training Module for RED
 
Book ridrog kotokatha (1st volume)
Book ridrog kotokatha (1st volume)Book ridrog kotokatha (1st volume)
Book ridrog kotokatha (1st volume)
 
Accounting Chapter 1 Lecture 6
Accounting Chapter 1 Lecture 6Accounting Chapter 1 Lecture 6
Accounting Chapter 1 Lecture 6
 
B.n.p 11-01-2012
B.n.p 11-01-2012B.n.p 11-01-2012
B.n.p 11-01-2012
 
Bazarzarkaran February 2020
Bazarzarkaran February 2020Bazarzarkaran February 2020
Bazarzarkaran February 2020
 

Más de Itmona

Road transport (brta) motor vehicle inspector examination question paper 2017...
Road transport (brta) motor vehicle inspector examination question paper 2017...Road transport (brta) motor vehicle inspector examination question paper 2017...
Road transport (brta) motor vehicle inspector examination question paper 2017...Itmona
 
Post office job question 2016 [www.onlinebcs.com]
Post office job question 2016 [www.onlinebcs.com]Post office job question 2016 [www.onlinebcs.com]
Post office job question 2016 [www.onlinebcs.com]Itmona
 
41st bcs written question mathematical reasoning
41st bcs written question mathematical reasoning41st bcs written question mathematical reasoning
41st bcs written question mathematical reasoningItmona
 
41st bcs written exam subject mental skills
41st bcs written exam subject mental skills41st bcs written exam subject mental skills
41st bcs written exam subject mental skillsItmona
 
41st bcs written math question 2021
41st bcs written math question 202141st bcs written math question 2021
41st bcs written math question 2021Itmona
 
41st bcs written exam question solution mental skills
41st bcs written exam question solution mental skills41st bcs written exam question solution mental skills
41st bcs written exam question solution mental skillsItmona
 
41st bcs written test mathematical reasoning solution 2021
41st bcs written test mathematical reasoning solution 202141st bcs written test mathematical reasoning solution 2021
41st bcs written test mathematical reasoning solution 2021Itmona
 
41st bcs written bengali question
41st bcs written bengali question41st bcs written bengali question
41st bcs written bengali questionItmona
 
4 december kgdcl question solution 2021
4 december kgdcl question solution  20214 december kgdcl question solution  2021
4 december kgdcl question solution 2021Itmona
 
Bangladesh gas field job question solution 2021
Bangladesh gas field job question solution 2021Bangladesh gas field job question solution 2021
Bangladesh gas field job question solution 2021Itmona
 
Ministry of defense junior teacher of dhaka cantonment 2021
Ministry of defense junior teacher of dhaka cantonment 2021Ministry of defense junior teacher of dhaka cantonment 2021
Ministry of defense junior teacher of dhaka cantonment 2021Itmona
 
Dshe accounting assistant exam questions solution 2013
Dshe accounting assistant exam questions solution 2013Dshe accounting assistant exam questions solution 2013
Dshe accounting assistant exam questions solution 2013Itmona
 
Dshe office assistant exam questions solution 2021
Dshe office assistant exam questions solution 2021Dshe office assistant exam questions solution 2021
Dshe office assistant exam questions solution 2021Itmona
 
Road transport (brta) motor vehicle inspector examination question paper 2017
Road transport (brta) motor vehicle inspector examination question paper 2017Road transport (brta) motor vehicle inspector examination question paper 2017
Road transport (brta) motor vehicle inspector examination question paper 2017Itmona
 
National security intelligence agency (nsi) field officer 2018[www.onlinebcs....
National security intelligence agency (nsi) field officer 2018[www.onlinebcs....National security intelligence agency (nsi) field officer 2018[www.onlinebcs....
National security intelligence agency (nsi) field officer 2018[www.onlinebcs....Itmona
 
Food department's assistant sub food inspector question ‍solution 2021
Food department's assistant sub food inspector  question ‍solution 2021Food department's assistant sub food inspector  question ‍solution 2021
Food department's assistant sub food inspector question ‍solution 2021Itmona
 
Titas gas transmission and distribution company limited assistant manager 2018
Titas gas transmission and distribution company limited assistant manager 2018Titas gas transmission and distribution company limited assistant manager 2018
Titas gas transmission and distribution company limited assistant manager 2018Itmona
 
Assistant manager, gas transmission company limited
Assistant manager, gas transmission company limitedAssistant manager, gas transmission company limited
Assistant manager, gas transmission company limitedItmona
 
Dbbl probationary-officer-software-job-exam-question
Dbbl probationary-officer-software-job-exam-questionDbbl probationary-officer-software-job-exam-question
Dbbl probationary-officer-software-job-exam-questionItmona
 
Education and research institute upazila [www.onlinebcs.com]
Education and research institute upazila [www.onlinebcs.com]Education and research institute upazila [www.onlinebcs.com]
Education and research institute upazila [www.onlinebcs.com]Itmona
 

Más de Itmona (20)

Road transport (brta) motor vehicle inspector examination question paper 2017...
Road transport (brta) motor vehicle inspector examination question paper 2017...Road transport (brta) motor vehicle inspector examination question paper 2017...
Road transport (brta) motor vehicle inspector examination question paper 2017...
 
Post office job question 2016 [www.onlinebcs.com]
Post office job question 2016 [www.onlinebcs.com]Post office job question 2016 [www.onlinebcs.com]
Post office job question 2016 [www.onlinebcs.com]
 
41st bcs written question mathematical reasoning
41st bcs written question mathematical reasoning41st bcs written question mathematical reasoning
41st bcs written question mathematical reasoning
 
41st bcs written exam subject mental skills
41st bcs written exam subject mental skills41st bcs written exam subject mental skills
41st bcs written exam subject mental skills
 
41st bcs written math question 2021
41st bcs written math question 202141st bcs written math question 2021
41st bcs written math question 2021
 
41st bcs written exam question solution mental skills
41st bcs written exam question solution mental skills41st bcs written exam question solution mental skills
41st bcs written exam question solution mental skills
 
41st bcs written test mathematical reasoning solution 2021
41st bcs written test mathematical reasoning solution 202141st bcs written test mathematical reasoning solution 2021
41st bcs written test mathematical reasoning solution 2021
 
41st bcs written bengali question
41st bcs written bengali question41st bcs written bengali question
41st bcs written bengali question
 
4 december kgdcl question solution 2021
4 december kgdcl question solution  20214 december kgdcl question solution  2021
4 december kgdcl question solution 2021
 
Bangladesh gas field job question solution 2021
Bangladesh gas field job question solution 2021Bangladesh gas field job question solution 2021
Bangladesh gas field job question solution 2021
 
Ministry of defense junior teacher of dhaka cantonment 2021
Ministry of defense junior teacher of dhaka cantonment 2021Ministry of defense junior teacher of dhaka cantonment 2021
Ministry of defense junior teacher of dhaka cantonment 2021
 
Dshe accounting assistant exam questions solution 2013
Dshe accounting assistant exam questions solution 2013Dshe accounting assistant exam questions solution 2013
Dshe accounting assistant exam questions solution 2013
 
Dshe office assistant exam questions solution 2021
Dshe office assistant exam questions solution 2021Dshe office assistant exam questions solution 2021
Dshe office assistant exam questions solution 2021
 
Road transport (brta) motor vehicle inspector examination question paper 2017
Road transport (brta) motor vehicle inspector examination question paper 2017Road transport (brta) motor vehicle inspector examination question paper 2017
Road transport (brta) motor vehicle inspector examination question paper 2017
 
National security intelligence agency (nsi) field officer 2018[www.onlinebcs....
National security intelligence agency (nsi) field officer 2018[www.onlinebcs....National security intelligence agency (nsi) field officer 2018[www.onlinebcs....
National security intelligence agency (nsi) field officer 2018[www.onlinebcs....
 
Food department's assistant sub food inspector question ‍solution 2021
Food department's assistant sub food inspector  question ‍solution 2021Food department's assistant sub food inspector  question ‍solution 2021
Food department's assistant sub food inspector question ‍solution 2021
 
Titas gas transmission and distribution company limited assistant manager 2018
Titas gas transmission and distribution company limited assistant manager 2018Titas gas transmission and distribution company limited assistant manager 2018
Titas gas transmission and distribution company limited assistant manager 2018
 
Assistant manager, gas transmission company limited
Assistant manager, gas transmission company limitedAssistant manager, gas transmission company limited
Assistant manager, gas transmission company limited
 
Dbbl probationary-officer-software-job-exam-question
Dbbl probationary-officer-software-job-exam-questionDbbl probationary-officer-software-job-exam-question
Dbbl probationary-officer-software-job-exam-question
 
Education and research institute upazila [www.onlinebcs.com]
Education and research institute upazila [www.onlinebcs.com]Education and research institute upazila [www.onlinebcs.com]
Education and research institute upazila [www.onlinebcs.com]
 

Último

Dyslexia AI Workshop for Slideshare.pptx
Dyslexia AI Workshop for Slideshare.pptxDyslexia AI Workshop for Slideshare.pptx
Dyslexia AI Workshop for Slideshare.pptxcallscotland1987
 
Spellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please PractiseSpellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please PractiseAnaAcapella
 
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptxMaritesTamaniVerdade
 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxRamakrishna Reddy Bijjam
 
ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.MaryamAhmad92
 
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptxSKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptxAmanpreet Kaur
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfciinovamais
 
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...christianmathematics
 
Graduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - EnglishGraduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - Englishneillewis46
 
Food safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdfFood safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdfSherif Taha
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdfQucHHunhnh
 
Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.pptRamjanShidvankar
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdfQucHHunhnh
 
ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701bronxfugly43
 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxDenish Jangid
 
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...pradhanghanshyam7136
 
General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...Poonam Aher Patil
 
Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxVishalSingh1417
 
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...ZurliaSoop
 
Micro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfMicro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfPoh-Sun Goh
 

Último (20)

Dyslexia AI Workshop for Slideshare.pptx
Dyslexia AI Workshop for Slideshare.pptxDyslexia AI Workshop for Slideshare.pptx
Dyslexia AI Workshop for Slideshare.pptx
 
Spellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please PractiseSpellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please Practise
 
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docx
 
ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.
 
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptxSKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
 
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
 
Graduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - EnglishGraduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - English
 
Food safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdfFood safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdf
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 
Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.ppt
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
 
ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701
 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
 
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
 
General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...
 
Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptx
 
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
 
Micro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfMicro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdf
 

05 average (math tutor by kabial noor) [www.itmona.com]

  • 1. Math Tutor  1 CHAPTER- 05 ga¨g msL¨v, Mo I mgwó 05.01 µwgK †e‡Rvo, µwgK †Rvo I µwgK msL¨vi †hvMdj †R‡b wbb - 35  µwgK †e‡Rvo msL¨vi †hvMdj †ei Kivi wbqg n‡”Q, †h KqwU µwgK †e‡Rvo msL¨vi †hvMdj †ei Ki‡Z n‡e, H msLvi mv‡_ H msL¨v‡KB ¸Y K‡i ev H msL¨v‡K eM© Ki‡jB †hvMdj cvIqv hvq| †hgb- cÖ_g 4wU µwgK †e‡Rvo msL¨vi †hvMdj KZ? mnR DËi n‡”Q- 4 4 = 42 = 16| Giƒc nIqvi KviY wb‡Pi D`vniY¸‡jv †`‡L wbb-  4 wU µwgK †e‡Rvo msL¨vi †hvMdj = 1 + 3 + 5 + 7 = 16 , hv 4 Gi eM©|  5 wU µgwK †e‡Rvo msL¨vi †hvMdj = 1 + 3 + 5 + 7 + 9 = 25, hv 5 Gi eM© | GKBfv‡e, n msL¨K µwgK ¯^vfvweK †e‡Rvo msL¨vi †hvMdj n‡e n × n ev, n Gi eM© = n2 .  µwgK †Rvo msL¨vi †hvMdj †ei Kivi wbqg n‡”Q, †h KqwU µwgK †Rvo msL¨vi †hvMdj †ei Ki‡Z n‡e, H msL¨vi mv‡_ Zvi c‡ii msL¨v ¸Y Ki‡Z n‡e| †hgb- 5 wU µwgK †Rvo msL¨vi †hvMdj KZ? mnR DËi n‡”Q, 5  6 = 30| Giƒc nIqvi KviY wb‡Pi D`vnviY¸‡jv †`‡L wbb-  5 wU µgwK †Rvo msL¨vi †hvMdj = 2 + 4 + 6 + 8 + 10 = 30, hv 5 × 6 = 30  6 wU µwgK †Rvo msL¨vi †hvMdj = 2 + 4 + 6 + 8 + 10 + 12 = 42, hv 6 × 7 = 42 GKBfv‡e, n msL¨K µwgK †Rvo msL¨vi †hvMdj n‡e- n Gi mv‡_ Zvi c‡ii msL¨v n + 1 Gi ¸Y A_©vr, n  (n + 1) = n (n + 1)  µwgK †Rvo msL¨vi †hvMdj n (n + 1) †K 2 Øviv fvM Ki‡j µwgK msL¨vi †hvMdj †ei nq| †hgb- 7 wU µwgK †Rvo msL¨vi †hvMdj = 78 = 56| Gevi 56 †K 2 Øviv fvM Ki‡j 7 wU µwgK msL¨vi †hvMdj †ei n‡e| A_©vr, 7 wU µwgK msL¨vi †hvMdj = 56  2 = 28| Zvn‡j µwgK msL¨vi †hvMdj †ei Kivi m~ÎwU `vov‡”Q- 2 )1n(n  |  †h †Kvb msL¨K µwgK msL¨vi ¸Yd‡ji mv‡_ 1 †hvM Ki‡j c~Y©eM© msL¨v cvIqv hvq| †hgb- 4 wU µwgK msL¨vi ¸Yd‡ji mv‡_ 1 †hvM Kiv hvK- 1 × 2 × 3 × 4 = 24 + 1 = 25| cÖvß 25 GKwU c~Y© eM© msL¨v| (4bs cÖkœ †`Lyb)  m~θ‡jv gyL¯Í bv K‡i ev¯Í‡e cÖ‡qvM K‡i †`Lyb Zvn‡j mn‡RB g‡b _vK‡e| 01. x msL¨K µwgK ¯^vfvweK †e‡Rvo msL¨vi †hvMdj KZ? mnKvixcwievicwiKíbvKg©KZ©v:16 x 2x 𝑥2 2x + 1 DËi: M 02. cÖ_g `kwU we‡Rvo msL¨vi †hvMdj KZ? RbcÖkvmb gš¿Yvj‡qiAax‡bPSC-GimnKvixcwiPvjK:16 100 81 1000 109 DËi: K cÖ_g 10wU we‡Rvo msL¨vi †hvMdj= 102 = 100| 03. cÖ_g 6wU ¯^vfvweK msL¨vi mgwó KZ? mvaviYexgv K‡c©v‡ikbmnKvixe¨e¯’vcKc‡`wb‡qvMcixÿ:16 15 18 21 24 DËi: M 6 Gi mv‡_ Zvi c‡ii msL¨v 7 ¸Y Kiæb Gfv‡e- 6 × 7 = 42 Ges 42 †K 2 Øviv fvM Kiæb | A_©vr, 42 ÷ 2 = 21| 04. a, b, c, d PviwU µwgK ¯^vfvweK msL¨v n‡j wb‡Pi †KvbwU c~Y©eM© msL¨v? ICB CapitalManagement Ltd.-2019 abcd ab + cd abcd + 1 abcd - 1 DËi: MNM LK mgvavb NM LK mgvavb NM LK NM LK †ewmK, GgwmwKD I wjwLZ Av‡jvPbv 
  • 2. 2  Math Tutor 05.02 ga¨g msL¨v wbY©q †R‡b wbb -36  ga¨g msL¨v (middle number) : aiæb, 1, 2, 3 GLv‡b 3wU µwgK msL¨v (consecutive number) Av‡Q, G‡`i gv‡S 2 n‡”Q ga¨g msL¨v (middle number)| A_©vr, we‡Rvo msL¨K µwgK msL¨vi Mo ev gv‡SiwU n‡”Q ga¨g msL¨v (middle number)|  †e‡Rvo msL¨K µwgK msL¨vi †hvMdj †_‡K ga¨g msL¨v wbY©q Kivi wbqg: aiæb, 1, 2, 3 µwgK msL¨v wZbwUi †hvMdj (1+2+3) n‡”Q 6| Avcbv‡K ejv nj, 3wU µwgK msL¨vi †hvMdj 6 n‡j ga¨eZx©/ga¨g msL¨v KZ? G‡ÿ‡Î Lye mn‡RB Avcwb ga¨g msL¨vwU †ei Ki‡Z cv‡ib| wKfv‡e? Rv÷, †h KqwU msL¨vi †hvMdj ejv n‡q‡Q, †mwU w`‡q †hvMdj‡K fvM Kiæb| A_©vr, 3 wU µwgK msL¨vi †hvMdj 6 n‡j, ga¨g msL¨v = c`msL¨v hvMdj/mgwó† = 3 6 = 2| AviI †`Lyb-  3 wU µwgK msL¨vi †hvMdj 12 n‡j, Zv‡`i ga¨eZx©/ga¨g msL¨vwU KZ? DËi: 12 ÷ 3 = 4 (ga¨g msL¨v)  5 wU µwgK msL¨vi †hvMdj 25 n‡j, Zv‡`i ga¨eZx©/ga¨g msL¨vwU KZ? DËi: 25 ÷ 5 = 5(ga¨g msL¨v)  †e‡Rvo msL¨K µwgK †Rvo I µwgK †e‡Rvo msL¨vi †hvMdj †_‡K ga¨g msL¨v wbY©q: †e‡Rvo msL¨K µwgK msL¨vi ga¨g msL¨v †ei Kivi †h wbqg, †e‡Rvo msL¨K µwgK †Rvo msL¨v I µwgK †e‡Rvo msL¨vi ga¨g msL¨v †ei KiviI GKB wbqg|  wZbwU µwgK †e‡Rvo msL¨vi †hvMdj 57| ga¨g msL¨vwU KZ? DËi: 57 ÷ 3 = 19 (ga¨g msL¨v)|  18, 19 , 20  cvuPwU µwgK †Rvo msL¨vi †hvMdj 40| ga¨g msL¨vwU KZ? DËi: 40 ÷ 5 = 8 (ga¨g msL¨v)  4, 6, 8 , 10, 12  ga¨g msL¨v †_‡K evKx msL¨v¸‡jv wbY©q Kivi wbqg:  †e‡Rvo msL¨K µwgK msL¨vi †ÿ‡Î : ïiæ‡ZB a‡i wbw”Q 3wU µwgK msL¨vi ga¨g msL¨v 5| GLv‡b 5 Gi ev‡g GKwU I Wv‡b GKwU msL¨v Av‡Q| ev‡giwU †ei Ki‡Z 5 †_‡K 1 we‡qvM Kie Ges Wv‡biwU †ei Ki‡Z 5 Gi mv‡_ 1 †hvM Kie A_©vr, 4  5  6  5wU µwgK msL¨vi ga¨g msL¨v 3 n‡j, evKx msL¨v¸‡jv Kx Kx?  ga¨g msL¨v †_‡K ev‡g †M‡j 1 K‡i n«vm Ki‡Z _vKe Ges Wv‡b †M‡j 1 K‡i e„w× Ki‡Z _vKe| 12345  †e‡Rvo msL¨K µwgK †Rvo I we‡Rvo msL¨vi †ÿ‡Î: †Rvo I †e‡Rv‡oi †ÿ‡Î ev‡g †M‡j 2 K‡i n«vm I Wv‡b †M‡j 2 K‡i e„w× †c‡Z _vK‡e|  5wU µwgK †Rvo msL¨vi ga¨g msL¨v 6 n‡j, evKx msL¨v¸‡jv wK wK?  6 †_‡K ev‡g 2 K‡i n«vm I Wv‡b 2 K‡i e„w× Kiv n‡q‡Q- 246810  7 wU µwgK we‡Rvo msL¨vi ga¨g msL¨v 21 n‡j, evKx msL¨v¸‡jv wK wK?  15171921232527 05. wZbwU we‡Rvo µwgK msL¨vi †hvMdj 57 n‡j ga¨eZ©x msL¨v KZ? evsjv‡`ke¨vsKmnKvixcwiPvjK:10 19 21 17 16 DËi: K 57 †K 3 Øviv fvM Ki‡jB ga¨g msL¨vwU cvIqv hv‡e|  ga¨eZx© msL¨v = 57  3 = 19| 06. wZbwU µwgK msL¨vi †hvMdj 30, eowU I †QvUwUi we‡qvMdj 2 n‡j †QvU msL¨vwU- †m‡KÛvixGWz‡Kkb†m±i Bb‡f÷‡g›U†cÖvMÖvg,mn._vbvgva¨wgKwkÿvKg©KZ©vc‡`wbe©vPbxcixÿv:15 7 9 10 11 DËi: L ga¨g msL¨v : 30 ÷ 3 = 10|  msL¨v¸‡jv = 91011| cÖ‡kœ ejv n‡q‡Q, eo msL¨v I †QvU msL¨vi we‡qvMdj 2| A_©vr, 11 - 9 = 2| mgvavb NM LK mgvavb NM LK
  • 3. Math Tutor  3 myZivs, †QvU msL¨vwU n‡”Q- 9| 07. wZbwU µwgK msL¨vi †hvMdj 240 n‡j, eo `ywUi mgwó KZ? evsjv‡`ke¨vsKmnKvixcwiPvjK:09 79 159 169 161 DËi: N DËi: N ga¨g msL¨v : 240  3 = 80|  msL¨v¸‡jv = 798081  eo `ywU msL¨vi †hvMdj = 80 + 81 = 161. 08. cvuPwU µwgK c~Y©msL¨vi †hvMdj n‡”Q 105| cÖ_g `ywU msL¨vi †hvMdj n‡”Q- BangladeshCommercial BankLtd.JuniorOfficer:08 39 21 19 41 DËi: K DËi: K ga¨g msL¨v = 105 ÷ 5 = 21| msL¨v¸‡jv = 1920212223  cÖ_g `ywU msL¨vi †hvMdj = 19 + 20 = 39| 09. wZbwU µwgK msL¨vi †hvMdj 123| ÿz`ªZg msL¨v `yBwUi ¸Ydj KZ? 12ZgwkÿKwbeÜb(¯‹zj/mgch©vq2)-15 625 1640 1600 900 DËi: L DËi: L ga¨g msL¨v = 123  3 = 41| msL¨v¸‡jv = 404142  ÿ`ªZg msL¨v `ywUi ¸Ydj = 4041 = 1640 10. wZbwU µwgK msL¨vi †hvMdj 123| †QvU msL¨vwU KZ? †m‡KÛvwiGWz‡Kkb†m±iBb‡f÷‡g›U†cÖvMÖvgDc‡Rjv,_vbv GKv‡WwgKmycvifvBRvi15 30 45 40 49 DËi: M 11. 5wU µwgK msL¨vi †hvMdj 100 n‡j, cÖ_g msL¨v I †kl msL¨vi ¸Ydj KZ? WvKI†Uwj‡hvMv‡hvMwefv‡MiWvK Awa`߇iiwewìs Ifviwkqvi2018 246 242 396 484 DËi: M 12. 17wU µwgK †Rvo msL¨vi Mo 42| avivwU wb¤œZi †_‡K D”PZi w`‡K mvRv‡bv n‡j Z…Zxq msL¨vwU KZ? evsjv‡`ke¨vsKmnKvix cwiPvjK:11 28 29 30 34 DËi: M avivwUi ga¨g msL¨v ev Mo n‡”Q 42| msL¨v¸‡jv = 262830323436 38404244464850525 45658| wb¤œZi 26 †_‡K Z…Zxq †Rvo msL¨vwU n‡”Q 30|  kU©KvU: Mo 42 Gi Av‡M 8wU msL¨v Av‡Q, cÖwZwU 2 K‡i n«vm cv‡i| Zvigv‡b me‡P‡q ev‡gi msL¨v msL¨vwU 82 = 16 Kg n‡e- 42 - 16 = 26| Gevi 26 †_‡K Z…Zxq msL¨vwU n‡”Q 30| 13. cuvPwU avivevwnK we‡Rvo msL¨vi Mo 61| me‡P‡q eo I †QvU msL¨v؇qi cv_©K¨ KZ?evsjv‡`ke¨vsKmnKvix cwiPvjK(†Rbv‡ijmvBW):16 2 8 5 †Kv‡bvwUB bq DËi: L ga¨g msL¨v ev Mo = 61| msL¨vMy‡jv = 5759616365  me‡P‡q eo I †QvU msL¨v؇qi cv_©K¨ = 65 - 57 = 8| 05.03 cici wKQzmsL¨K msL¨vi cÖ_g K‡qKwUi †hvMdj w`‡q c‡ii K‡qKwUi †hvMdj PvB‡j †R‡b wbb - 37  cici x msL¨K msL¨vi cÖ_g K‡qKwUi †hvMdj w`‡q c‡ii x msL¨K msL¨vi †hvMdj PvB‡j Avgiv GB kU©KvUwU e¨envi Ki‡Z cvwi- †kl x msL¨K msL¨vi †hvMdj = cÖ_g x msL¨K msL¨vi †hvMdj + †klmsL¨K Gi eM©| Pjyb †UKwbKwU †ewmK †_‡K ey‡S †bqv hvK- cici 6wU msL¨vi cÖ_g wZbwU msL¨vi †hvMdj 6 n‡j, †kl wZbwU msL¨vi †hvMdj KZ? aiæY 6 wU msL¨v n‡”Q- 1, 2, 3, 4, 5, 6 1 + 2 + 3 + 4 + 5 + 6 = 6 (3wU) + 15(3wU)  6 + 32 = 15 (1g wZbwU †hvMdj 6 Gi mv‡_ †kl 3 msL¨K Gi eM© †hvM Ki‡j 15 nq) 14. cici `kwU msL¨vi cÖ_g 5wUi †hvMdj 560 n‡j, †kl 5wUi †hvMdj KZ? 18ZgwewmGm 540 565 570 585 DËi: N g‡b Kwi, cici 10 wU msL¨v = x, x + 1, x + 2, x + 3, x + 4, x + 5, x + 6, x + 7, x + 8 , x + 9| cÖ_g 5wU msL¨vi †hvMdj = x + (x + 1) + (x + 2) + ( x + 3) + (x + 4) = 5x + 10 †kl 5wU msL¨vi †hvMdj = (x + 5) + (x + 6) +mgvavb NM LK mgvavb NM LK mgvavb NM LK NM LK NM LK mgvavb NM LK mgvavb NM LK mgvavb NM LK
  • 4. 4  Math Tutor ( x + 7) + (x + 8) + (x + 9) = 5x + 35 kZ©g‡Z, 5x + 10 = 560 ev, 5x = 560 - 10  x = 5 550 = 110| myZivs, †kl 5wU msL¨vi †hvMdj = 5x + 35 = (5110) + 35 = 550 + 35 = 585  kU©KvUt †kl msL¨v¸‡jvi †hvMdj = cÖ_g msL¨v¸‡jvi †hvMdj + †klmsL¨K Gi eM© = 560 + 52 = 560 + 25 = 585 15. QqwU cici c~Y©msL¨v †`qv Av‡Q| cÖ_g 3wUi †hvMdj 27 n‡j †kl 3wUi †hvMdj KZ? mve†iwR÷vi: 01/13Zg†emiKvix wkÿKwbeÜbIcÖZ¨qbcixÿv(¯‹zj/mgch©vq):16 36 33 32 30 DËi: K †kl 3wU †hvMdj = 27 + 32 = 27 + 9 = 36 16. QqwU µwgK c~Y© msL¨vi cÖ_g wZbwUi Mo 8 n‡j, †kl wZbwUi †hvMdj- ¯^v¯’¨IcwieviKj¨vYgš¿Yvj‡qi wmwbqi÷vdbvm© (evwZjK…Z)2017 29 31 33 35 DËi: M 1g wZbwUi †gvU = 8 3= 24| †kl wZbwUi †gvU = 24 + 32 = 33| 05.04 Mo wb‡q †ewmK Av‡jvPbv †R‡b wbb - 38  cvuP wfÿyK K, L, M, N Ges O mvivw`b wfÿv K‡i h_vµ‡g 81, 87, 90, 95 Ges 82 UvKv Avq K‡i, Zvn‡j Zv‡`i Mo UvKv KZ n‡e?  ïiæ‡Z GKwU NUbvi Dci wbf©i Kiv hvK| aiv hvK, GB cvuP Rb wfÿzK GKwU Pzw³ Kij Giƒc- Zviv mvivw`b cÖ‡Z¨‡K hv Avq Ki‡e, w`b †k‡l me UvKv GKÎ K‡i mevB mgvbfv‡e fvM K‡i wb‡e| GKw`b K, L, M, N Ges O h_vµ‡g 81, 87, 90, 95 Ges 82 UvKv Avq Kij, Zv‡`i Pzw³ †gvZv‡eK cÖ‡Z¨‡Ki UvKv GKÎ K‡i mgvb K‡i fvM K‡i wb‡Z GKwU cv‡K© G‡m emj| Zv‡`i `j‡bZv me UvKv GKÎ K‡i †djj| †`Lv †Mj me wg‡j †gvU 81 + 87 + 90 + 95 + 82 = 435 UvKv n‡q‡Q| a‡i †bqv hvK, wfÿzKiv me GK UvKvi K‡qb wfÿv †c‡qwQj| hv‡nvK, Gevi `j‡bZv Kzievwbi gvs‡mi gZ K‡i 5 Uv _‡ji cÖwZwU‡Z cÖwZevi 1 wU K‡i K‡qb ivL‡Z jvMj| fvM‡k‡l †`Lv †Mj cÖ‡Z¨‡K 87 UvKv K‡i fv‡M †c‡q‡Q| g~j K_v- GKvwaK Dr‡mi wfbœ wfbœ cwigvY †hvM K‡i c~Yivq cÖwZwU Drm‡K mgvb K‡i fvM K‡i †`qvB n‡”Q Mo| wfÿyK‡`i GB m¤ú~Y© wn‡mewU MvwYwZK dgy©jvq wnmve Kiv hvK- Mo 87 K L M N O  M‡oi AmvaviY †UKwbKt Avevi M‡í †diZ hvIqv hvK| Gevi wfÿyK‡`i `j‡bZv c~‡e©i b¨vq GKUv K‡i K‡qb fvM bv GKUz wfbœ Dcvq Aej¤^b Ki‡jb| wZwb †`L‡jb cÖ‡Z¨‡K †h UvKv AvR‡K Avq K‡i‡Q, Zv‡`i g‡a¨ me‡P‡q Kg K Avq K‡i‡Q 81 UvKv| wfÿzK `j‡bZv Gevi mevB‡K ejj- cÖ‡Z¨‡K 80 UvKv K‡i †Zvgv‡`i Kv‡Q †i‡L AwZwi³ LyuPiv UvKv¸‡jv Rgv Ki| cÖ‡Z¨‡K 80 UvKv K‡i †i‡L AwZwi³ LyPiv UvKv¸‡jv mevB Rgv Kij = K 1 UvKv + L 7 UvKv + M 10 UvKv + N 15 UvKv + O 2 UvKv = 35 UvKv| Gevi wfÿzK `j‡bZv GB 35 UvKv‡K 5 R‡bi g‡a¨ fvM K‡i wbj, Gevi cÖ‡Z¨‡K AviI 7 UvKv K‡i ‡cj| c~‡e© †c‡qwQj 80 UvKv Ges c‡i †cj 7 UvKv K‡i A_©vr cÖ‡Z¨‡K †cj 80 + 7 = 87 UvKv K‡i| GB 87 UvKvB n‡”Q Mo| GB AvBwWqv e¨envi K‡i Lye `ªæZ M‡oi mgm¨v mgvavb Kiv hvq| mgvavb NM LK mgvavb NM LK 81 87 90 95 82  avc t- †gvU wbY©q: 81 + 87 + 90 + 95 + 82 = 435  avc t- Mo = msL¨vivwki mgwóivwkiKwZcqGKRvZxq = 5 435 = 87|  g‡b ivLyb: wfÿzK‡`i †gvU UvKv n‡”Q ÔGKRvZxq KwZcq ivwki mgwóÕ Ges wfÿzK‡`i msL¨v n‡”Q Ôivwki msL¨vÕ|
  • 5. Math Tutor  5  we¯ÍvwiZ wbq‡g M‡oi A¼ mgvavb Kivi Rb¨ memgq Mo‡K †gvU K‡i mgvavb Kiæb| 17. 73, 75, 77, 79 I 81 Gi Mo KZ? cÖv_wgKwe`¨vjq mnKvixwkÿK1992 75 76 77 78 DËi: M ivwk¸‡jvi mgwó = 73 + 75 + 77 + 79 + 81 = 385  Mo = 5 385 = 77 |  kU©KvU:  Mo 70 (hv me msL¨vi gv‡S Av‡Q) aiv nj  70 e¨ZxZ evKx As‡ki mgwó- 3 + 5 + 7 + 9 + 11 = 35 | GB mgwó 35 †K Gevi 5 w`‡q fvM K‡i Mo Kiv nj - 35  5 = 7|  Mo = 70 + 7 = 77|  g‡b ivLyb: 1g av‡ci Mo I 2q av‡ci Mo †hvM K‡i Kvw•LZ ÔMoÕ cvIqv hvq| 18. 11, 12, 13, 14 Ges 15 GB msL¨v¸‡jvi Mo n‡e- cwievicwiKíbvAwa`߇Iwewfbœ c‡`wb‡qvM2014 24 13 15 †Kv‡bvwUB bq DËi: L ivwk¸‡jvi mgwó = 11 + 12 + 13 + 14 + 15 = 65|  Mo = 5 65 = 13 |  kU©KvU:  cÖ_g Mo = 10|  evKx As‡ki mgwó = 1 + 2 + 3 + 4 + 5 = 15  Mo = 5 15 = 3|  Mo = 10 + 3 = 13| 19. 13, 16, 18, 24, 34 Gi Mo KZ? ¯^v¯’¨wkÿvIcwievi Kj¨vYwefv‡MiAwdmmnvqK2019 16 18 19 21 DËi: N  cÖ_g Mo = 10|  evKx As‡ki mgwó = 3 + 6 + 8 + 14 + 24 = 55 Ges Mo = 5 55 = 11  Mo = 10 + 11 = 21|  g‡b ivLyb: M‡o ivwk¸‡jvi cv_©K¨ Kg ev ivwk¸‡jv mn‡R wn‡me Kiv †M‡j Ôgy‡L gy‡L ey‡S mgvavbÕ Kiv fv‡jv | wKš‘ cv_©K¨ †ewk ev ivwk¸‡jv wn‡me Ki‡Z RwUj g‡b n‡j mvaviY wbq‡g mgvavb KivB DËg| 20. 6, 8 I 10 Gi Mo KZ? †m‡KÛvwiGWz‡Kkb†m±i †W‡fjc‡g›U†cÖvMÖvgM‡elYvKg©KZ©v 2015 6 8 10 12 DËi: L 21. 5, 11, 13, 7, 8 Ges 10 msL¨v¸‡jvi Mo KZ? 13ZgwkÿKwbeÜb(¯‹zj-2) 2016 6 7 8 9 DËi: N 05.05 mgwó wbY©q †R‡b wbb- 39  †hvM K‡i mgwó wbY©q Kiv: cÖ‡kœ wfbœ cwigvY †`qv _vK‡j †m¸‡jv †hvM K‡i mgwó †ei Ki‡Z n‡e| †hgb- 22. †`‡jvqvi †Kvb 5 wel‡q 75, 81, 84, 90 Ges 80 b¤^i †cj †m †gvU KZ b¤^i †cj? †gvU b¤^i = 75 + 81 + 84 + 90 + 80 = 410|  ¸Y K‡i mgwó wbY©q Kiv : cÖ‡kœ Mo †`qv _vK‡j ¸Y K‡i mgwó †ei Ki‡Z nq| 23. 3 wU msL¨vi Mo 20 n‡j, msL¨v 3wUi mgwó KZ? 3 wU msL¨vi mgwó = 3 × 20 = 60| A_©vr, †h KqwU Dcv`v‡bi msL¨v †`qv _vK‡e Zvi mv‡_ Zv‡`i Mo‡K ¸Y Ki‡jB mgwó cvIqv hvq| myZivs, mgwó = Mo × Dcv`v‡bi msL¨v|  g‡b ivLyb: we¯ÍvwiZ wbq‡g M‡oi A¼ Ki‡Z n‡j Avcbv‡K evi evi mgwó †ei Ki‡Z n‡e, ZvB Dc‡iv³ mgwó wbY©‡qi wbqg `ywU me mgq g‡b ivLyb| 24. RyjvB gv‡mi •`wbK e„wócv‡Zi Mo 0.65 †m.wg. wQj| H gv‡mi †gvU e„wócv‡Zi cwigvY KZ? cÖwZiÿv gš¿Yvj‡qi Aax‡b¸ßms‡KZcwi`߇iimvBeviAwdmvi05 20.15 †m.wg. 20.20 †m.wg. 20.25 †m.wg. 65 †m.wg. DËi: K RyjvB gvm 31 w`‡b nq|  RyjvB gv‡mi †gvU e„wócv‡Zi cwigvY = (0.65  31) †m.wg. = 20.15 †m.wg. | 25. 2000 mv‡j †deªæqvwi gv‡mi •`wbK e„wócv‡Zi Mo wQj 0.55 †m.wg.| H gv‡mi †gvU e„wócv‡Zi cwigvY KZ? mv‡K©j A¨vWRy‡U›U, Dc‡Rjv Avbmvi wfwWwc Kg©KZ©v 2015 mgvavb NM LK mgvavb mgvavb NM LK NM LK mgvavb NM LK mgvavb NM LK mgvavb NM LK
  • 6. 6  Math Tutor 15.5 †m.wg. 15.4 †m.wg. 15.95 †m.wg. 15.55 †m.wg. DËi: M 2000 mvj Awael©| Awae‡l© †d«eyqvwi gvm nq 29 w`‡b|  †d«eyqvwi gv‡mi †gvU e„wócvZ = (0.55  29) †m.wg. = 15.95 †m.wg.| 26. 3wU msL¨vi Mo 33| `yBwU msL¨v 24 Ges 42 n‡j Aci msL¨vwU KZ? Lv`¨Awa`߇iimn.DcLv`¨cwi`k©K12 12 22 32 33 DËi: N 3 wU msL¨vi mgwó = 333 = 99 Ges 2 wU msL¨vi mgwó = 24 + 42 = 66  Aci msL¨vwU = 99 - 66 = 33| 05.06 †hvM K‡i mgwó I ¸Y K‡i mgwó †_‡K GKwU msL¨vi gvb wbY©q †R‡b wbb-40  Mo A‡¼i we¯ÍvwiZ wbqg eyS‡Z Avgv‡`i Kv‡Q KwVb g‡b nq bv, Z‡e we¯ÍvwiZ wbq‡g mgvav‡b mgq †ewk jv‡M weavq ÔkU©KvU wbqgÕ d‡jv Kiv A‡bK mgq Riæwi n‡q c‡o| Avgvi GB As‡k Avev‡iv wfÿzK`‡ji M‡í wd‡i hve| hw` MíwU Avcwb c‡o bv _v‡Kb Zvn‡j Ô‡R‡b wbb-00Õ c‡o Zvici GLvb †_‡K ïiæ Kiæb- wfÿK`‡ji c~‡e©i cÖkœwU Gevi GKUz Nywi‡q Kiv hvK- wfÿzK K, L, M Ges N mvivw`‡b wfÿv K‡i h_vµ‡g 81, 87, 90 Ges 95 UvKv, Zvn‡j wfÿyK O Avi KZ UvKv wfÿv Ki‡j Zv‡`i Mo wfÿv n‡e 87 UvKv? GB mgvavb GKvwaK wbq‡g Ki‡Z cvwi| Avwg GLv‡b `ywU wbqg wb‡q K_v eje, `ywUB †ewmK|  wbqg : `ywU †gvU †ei Kivi gva¨‡g- K, L, M Ges N Gi †gvU †ei Kie (†hvM K‡i) Ges K, L, M, N I O Gi †gvU (¸Y K‡i)| ( †R‡b wbb -00 †`‡L wbb) K, L, M Ges N (4 R‡bi) Gi †gvU wfÿv = 81 + 87 + 90 + 95 = 353 K, L, M, N Ges O (5R‡bi) Gi †gvU wfÿv = 87  5 = 435 Gevi 5 R‡bi †gvU †_‡K 4 R‡bi †gvU we‡qvM Kiæb, Zvn‡j 1 Rb (O) Gi wfÿv †ei n‡q Avm‡e|  O Gi wfÿv = 435 - 353 = 82|  wbqg : GB wbqgwU †ewmK I kU©‡UKwbK DfqB Kvfvi Ki‡e| Pjyb wfÿzK`‡ji cÖ_g MÖvdwU‡Z wd‡i hvB- Mo 87 K L M N O  avc 02: Avcwb B‡Zvg‡a¨ †`L‡Z †c‡q‡Qb A¨vk Kvjv‡ii Kjvg¸‡jv eø¨vK Kvjv‡ii ÔMo ev mgvb ev mgZjÕ †j‡f‡ji †P‡q Kg ev †ewk| GLb Avcbv‡K hw` GKUv KvR Ki‡Z ejv nq †h, Avcwb A¨vk Kvjv‡ii Ge‡ov- †_e‡ov Kjvg¸‡jv KvUQvuU K‡i eø¨vK Kvjv‡ii gZ mgvb Ki‡eb| Zvn‡j Avcwb wK Ki‡eb? Avcwb wbðq †hLv‡b †ewk Av‡Q †mLvb †_‡K †K‡U wb‡q †hLv‡b Kg Av‡Q †mLv‡b †Rvov jvMv‡eb| A‡bKUv Ge‡ov †_e‡ov gvwU‡K Avgiv †Kv`vj w`‡q mgZj Kwi †hfv‡e wVK †miKg|  avc 03: Gevi Avgiv Avevi MÖv‡di msL¨vi w`‡K g‡bvwb‡ek Kie| msL¨v¸‡jv‡K Avgiv KvUQvuU (Kg/†ewk) K‡i cÖwZwU‡K 87 Gi mgvb Kie| Pjyb ïiæ Kiv hvK- K Gi mv‡_ 6 †hvM Ki‡Z n‡e KviY 6 NvUwZ Av‡Q = 81 + 6 = 87 (Aci c„ôvq) mgvavb mgvavb NM LK mgvavb NM LK 81 87 90 95 x avc¸‡jv co–b  avc 01: Avmyb Avgiv GZÿY wfÿvi UvKvi †h wPšÍv K‡iwQ, †mUv fz‡j wM‡q Rv÷ MÖv‡di Ge‡ov-†_e‡ov Kjvg¸‡jvi w`‡K bRi †`B Ges fv‡jvfv‡e jÿ¨ Ki‡j †`L‡eb- A¨vk Kvjvi Gi Kjvg¸‡jv Ge‡ov- †_e‡ov Ges eø¨vK Kvjv‡ii Kjvg mgvb ev mgZj (2/3 evi LuywU‡q LuywU‡q †`Lyb)| me‡P‡q †ewk bRi w`b eø¨vK Kvjv‡ii mgvb ev mgZ‡ji w`‡K, hv Zxi wPý Øviv eySv‡bv n‡q‡Q|
  • 7. Math Tutor  7 L Gi mv‡_ †hvM ev we‡qvM Ki‡Z n‡e bv, KviY NvUwZ ev †ewk †bB = 87 + 0 = 87 M Gi mv‡_ 3 we‡qvM Ki‡Z n‡e, KviY 3 †ewk Av‡Q = 90 - 3 = 87 N Gi mv‡_ 8 we‡qvM Ki‡Z n‡e, KviY 8 †ewk Av‡Q = 95 - 8 = 87 K, L, M Ges N GB 4 wU †K mgvb Ki‡Z wM‡q †ewk Av‡Q = 6 + 0 - 3 - 8 = - 5| (gy‡L gy‡L wn‡me K‡i GB jvBbwU mivmwi cÖkœc‡Î wj‡L †dj‡eb)| cÖvd Abyhvqx, †h‡nZz O Gi wfÿv 87 †_‡K Kg ZvB O Gi wfÿvi mv‡_ 5 †hvM K‡i w`‡j O Gi Mo wfÿv 87 cvIqv hv‡e| aiv hvK, O Gi wfÿv x x + 5 = 87 ev, x = 87 - 5 = 82|  mycvi kU©KvU t mycvi kU©KvU n‡”Q- mivmwi Mo 87 Gi †P‡q †Kvb msL¨v eo n‡j Ô†ewk AskUzKzÕ we‡qvM Ges †QvU n‡j ÔKg AskUzKzÕ †hvM Ki‡Z n‡e| Pjyb welqwU GKwU KvíwbK NUbvi mv‡_ eY©bv Kiv hvK| (NUbvi eY©bvi mgq Avcbvi KvR n‡e- Avwg hv hv eje Zvi me wb‡P ewY©Z ÔO Gi wfÿvÕ jvBbwUi mv‡_ cÖwZevi wgjv‡Z _vK‡eb|)  cÖ_‡g mvwe©K Mo 87 wjL‡jb| wjLv gvÎ 87 msL¨vwU Avcbvi mv‡_ K_v ej‡Z ïiæ Kij! Avcwb wb‡Ri Kvb‡K wek¦vm Ki‡Z cvi‡Qb bv, wK n‡”Q Gme! 87 Avcbv‡K wRÁvmv Kij, ÔZzwg wK ej‡Z cv‡iv Avgvi cv‡k wKQz msL¨v †Kb †hvM (+) I we‡qvM (-) K‡iwQ? Avcwb bv m~PK gv_v SvwK‡q ej‡jb- Ôbv ej‡Z cvwi bv| Avcwb KviY Rvb‡Z PvB‡jb, Ô †Kb wKQz msL¨v †hvM-we‡qvM K‡iQ?Õ 87 Avevi ej‡Z ïiæ Kij, ÔPj, †Zvgv‡K Avmj NUbvUv Ly‡j ewj|Õ Avcwb g‡bvgy»Ki n‡q 87 Gi K_v ïbwQ‡jb| 87 ejj, Ô K, L, M, N G‡`i mevi msL¨v Avgvi gZ 87 nIqvi K_v wQj| wKš‘ †`L, K Gi Av‡Q 81, ej‡Z cvi‡e K-Gi evKx 6 †Mj †Kv_vq? ïb, H 6 Avwg Avgvi c‡K‡U cy‡i †i‡LwQ! Õ Avcwb †`L‡jb ZvB‡Zv! 87 Gi cv‡k H 6 †K †hvM Ae¯’vq †`L‡Z cvIqv hv‡”Q! 87 Avevi ejj, Ô L Gi msL¨vwU †`‡LQ? †m wKš‘ Avgvi gZB †`L‡Z, †ePviv Lye PvjvK, ZvB Zvi KvQ †_‡K wK”Qz evwM‡q wb‡Z cvwiwb, GRb¨ Avgvi cv‡k †`L k~b¨ (0) wj‡L †i‡LwQ|Õ Avcwb †`L‡jb K_v mZ¨| 87 Avevi ej‡Z ïiæ Kij, Ô M Gi msL¨v n‡”Q 90, Zvi Avgvi gZ 87 nIqvi K_v wQj, evKx 3 †m †Kv_vq †cj? ejwQ, M GKUv Av¯Í e`gvBk| †m Avgvi KvQ †_‡K 3 †Rvi K‡i wQwb‡q wb‡q †M‡Q| †`LQ bv, GRb¨ Avwg Avgvi cv‡k 3 we‡qvM K‡iwQ!Õ 87 Gevi GKUy `g wbj| ÔH †h N Gi 95 msL¨vwU‡Z †h AwZwi³ 8 Av‡Q IUvI Avgvi KvQ †_‡K wQwb‡q wb‡q‡Q, ZvB GeviI 8 we‡qvM Ki‡Z n‡q‡Q| ey‡SQ Avmj NUbvwU wK?Õ Avcwb 87 Gi †kl cÖ‡kœ nVvr †Nvi KvU‡ZB †`L‡Z †c‡jb-  O Gi wfÿv = 87 + 6 + 0 - 3 - 8 = 87 - 5 = 82 27. GKRb e¨vUmg¨vb cÖ_g wZbwU T-20 ‡Ljvq 82, 85 I 92 ivb K‡ib| PZz_© †Ljvq KZ ivb Ki‡j Zvi Mo ivb 87 n‡e? cÖv_wgK mnKvix wkÿK -2018 86 87 88 89 DËi: N (3wU †Ljvi †gvU I 4 wU †Ljvi †gvU †ei K‡i we‡qvM Ki‡Z n‡e) cÖ_g 3wU T-20 †Ljvi iv‡bi mgwó = 82 + 85 + 92 = 259 4wU †Ljvi Mo ivb = 87 ∴ Ó Ó †gvU Ó = 87  4 = 348 myZivs, 4_© †Ljvq ivb Ki‡Z n‡e = 348 - 259 = 89|  kU©KvUt PZz_© †Ljvi ivb = 87 + 5 + 2 - 5 = 87 + 2 = 89| 28. cixÿvq ÔKÕ Gi cÖvß b¤^i h_vµ‡g 70, 85 I 75| PZz_© cixÿvq Zv‡K KZ b¤^i †c‡Z n‡e †hb Zvi Mo cÖvß b¤^i 80 nq? cÖv_wgK mnKvix wkÿK - 2018; cÖavb wkÿK (bvMwj½g)-12 82 88 90 78 DËi: M 3 cixÿvq cÖvß bv¤^v‡ii mgwó = 70 + 85 + 75mgvavb NM LK mgvavb NM LK
  • 8. 8  Math Tutor = 230 4wU cixÿvq cÖvß bv¤^v‡ii mgwó = 80  4 = 320  PZz_© cixÿvq bv¤^vi †c‡Z n‡e = 320 - 230 = 90|  kU©KvUt PZz_© cixÿvq cÖvß b¤^i: 80 + 10 - 5 + 5 = 80 + 10 = 90| 29. cixÿvq ÔKÕ Gi cÖvß b¤^i h_vµ‡g 82, 85 I 92| PZz_© cixÿvq Zv‡K KZ b¤^i †c‡Z n‡e †hb Zvi Mo cÖvß b¤^i 87 nq? cÖavb wkÿK 2012 (evMvbwejvm) K. 89 L. 88 M. 86 N. 91 DËi: K DËi: K 28 bs Gi Abyiƒc mgvavb|  kU©KvUt 87 + 5 + 2 - 5 = 89| 30. cixÿvq K Gi cÖvß b¤^i h_vµ‡g 75, 85 I 80| PZz_© cixÿvq Zv‡K KZ b¤^i †c‡Z n‡e †hb Zvi Mo cªvß b¤^i 82 nq? cÖavb wkÿK (wµmvbw_gvg)-12 90 89 92 88 DËi: N 82 + 7 - 3 + 2 = 88| 31. 0.6 n‡jv 0.2, 0.8, 1 Ges x Gi Mo gvb | x Gi gvb KZ? cÖwZiÿvgš¿Yvj‡qiAax‡bmvBdviAwdmvit99 0.2 0.4 .67 2.4 DËi: L x e¨ZxZ 3 wU msL¨vi mgwó = 0.2 + 0.8 + 1 = 2 x mn 4wU msL¨vi mgwó = 0.6  4 = 2.4  x Gi gvb = 2.4 - 2 = .4  kU©KvU: x = 0.6 + 0.4 - 0.2 - 0.4 = 0.4 32. 4, 6, 7 Ges x Gi Mo gvb 5.5 n‡j x-Gi gvb KZ? cÖvK-cÖv_wgKmnKvixwkÿK-15;cÖvK-cÖv_wgKmnKvix wkÿK(Mvgv)2014; 5.0 7.5 6.8 6.5 DËi: K x = 5.5 + 1.5 -.5 -1.5 = 5 05.07 ¸Y K‡i `ywU mgwó wbY©q I †mLvb †_‡K GKwU msL¨vi gvb wbY©q 33. 11wU msL¨vi Mo 30| cÖ_g cvuPwU msL¨vi Mo 25 I †kl cvuPwU msL¨v Mo 28| lô msL¨vwU KZ? mnKvix wkÿK (Rev)-11; mnKvix wkÿK (hgybv)-08 55 58 65 67 DËi: M 11wU msL¨vi mgwó = 3011 = 330 cÖ_g 5wU msL¨vi mgwó = 255 = 125 †kl 5wU msL¨vi mgwó = 285 = 140 ∴ 10wU msL¨vi mgwó = 125 + 140 = 265 ∴ 6ô msL¨v = 330 - 265 = 65|  kU©KvUt lô msL¨v = 30 + (55) + (52) = 30 + 25 + 10 = 65| 34. †Kv‡bv GK ¯’v‡b mßv‡ni Mo ZvcgvÎv 300 †mj- wmqvm| cÖ_g 3 w`‡bi Mo ZvcgvÎv 280 †mjwmqvm I †kl 3 w`‡bi Mo ZvcgvÎv 290 †mjwmqvm n‡j PZz_© w`‡bi ZvcgvÎv KZ? mnKvix wkÿK (nvmbv‡nbv)- 11, mnKvix wkÿK (Lyjbv)-06 330 †m. 360 †m. 390 †m. 430 †m. DËi: M 7 w`‡bi ZvcgvÎvi mgwó = 300 × 7 = 2100 cÖ_g 3 w`‡bi ZvcgvÎvi mgwó = 280 × 3 = 840 †kl 3 w`‡bi ZvcgvÎvi mgwó = 290 × 3 = 870 6 w`‡bi ZvcgvÎvi mgwó = 840 + 870 = 1710 myZivs, PZz_© w`‡bi ZvcgvÎv = 2100 - 1710 = 390  kU©KvUt PZz_© w`‡bi ZvcgvÎv = 300 + (20 3) + (10 3) = 390 | 35. 10wU msL¨vi †hvMdj 462| cÖ_g PviwUi Mo 52, †kl 5wUi Mo 38| cÂg msL¨vwU KZ? cÖvK-cÖv_wgK mnKvix wkÿK - 2015; cÖvK-cÖv_wgK mnKvix wkÿK (ivBb) 2015 50 62 64 60 DËi: M 10wU msL¨vi Mo = 46.2 , cÖ_g PviwU‡Z Kgv‡Z n‡e 5.8  5 = 23.2 Ges †kl 5wU‡Z e„w× Ki‡Z n‡e 8.2  5 = 41| A_©vr, cÂg msL¨vwU = 46.2 - 23.2 + 41 = 64| mgvavb NM LK mgvavb NM LK mgvavb NM LK mgvavb NM LK mgvavb NM LK mgvavb NM LK mgvavb
  • 9. Math Tutor  9 05.08 mvwe©K Mo wbY©q †R‡b wbb - 41  `yB ev Z‡ZvwaK Mo w`‡q Zv‡`i mvwe©K Mo †ei Ki‡Z ejv n‡j, Avgiv cÖ_‡g Mo¸‡jv‡K †gvU-G iƒcvšÍi Kie Ges cÖvß c„_K c„_K †gvU †hvM K‡i mvwe©K †gvU †ei Kie| Gevi †gvU ivwki msL¨v Øviv mvwe©K †gvU‡K fvM K‡i mvwe©K Mo †ei Kie| (K) c„_K c„_K Mo †_‡K mvwe©K Mo †ei Kiv 36. †Kv‡bv †kÖwYi 12 Rb Qv‡Îi †Kv‡bv cixÿvq djv- d‡ji Mo 70 | Aci 18 R‡bi djvd‡ji Mo 80| Z‡e 30 Rb Qv‡Îi djvd‡ji mvwe©K Mo KZ? wnmveiÿY Kg©KZv© : 96; cÖv_wgKwkÿvAwa`߇iimnKvix jvB‡eªwiqvbKvgK¨vUvjMvi2018 73.75 75.25 76 77.125 DËi: M 12 Rb Qv‡Îi djvd‡ji Mo 70 n‡j, Zv‡`i †gvU djvdj = 7012 = 840 18 Rb Qv‡Îi djvd‡ji Mo 80 n‡j, Zv‡`i †gvU djvdj = 80 18 = 1440 †gvU QvÎ = 12 + 18 = 30 Rb Ges Zv‡`i djvd‡ji †hvMdj = 840 + 1440 = 2280  30 Rb Qv‡Îi djvd‡ji mvwe©K Mo = 30 2280 = 76  ey‡S ey‡S kU©KvU: 12 Rb 18 Rb  wP‡Î jÿ¨ Kiæb, 12 Rb Qv‡Îi M‡oi †P‡q 18 Rb Qv‡Îi Mo 10 K‡i †ewk| Avgiv hw` 12 + 18 = 30 Rb Qv‡Îi Mo •Zwi Ki‡Z PvB, Zvn‡j GB 18 R‡bi AwZwi³ Mo 10 K‡i †gvU 180 (1018), 30 R‡bi gv‡S mgvb K‡i fvM K‡i w`‡Z n‡e|  Mo 70 †h‡nZz 12 I 18 Df‡qi gv‡S _vKvi A_© 30 R‡bi gv‡S _vKv| GRb¨ cÖ_‡g 30 R‡bi Mo 70 a‡i AwZwi³ 180 Mo K‡i †hvM K‡i w`‡Z n‡e| 30 R‡bi Mo = 70 + 30 1810  = 70 + 6 = 76  g‡b ivLyb:  hZ R‡bi M‡oi gv‡S ÔAwZwi³ MoÕ _vK‡e ZZRb Øviv ÔAwZwi³ MoÕ ¸Y K‡i †gvU AwZwi³ †ei Ki‡Z n‡e| †hgb: cÖ`Ë A‡¼ 18 R‡bi gv‡S ÔAwZwi³ MoÕ 10 wQj, ZvB 18 Øviv ¸Y K‡i †gvU AwZwi³ 180 †ei Kiv n‡q‡Q|  Zvici †gvU AwZwi³‡K mvwe©K msL¨v Øviv fvM Ki‡Z n‡e| †hgb- †gvU AwZwi³ 180 †K mvwe©K msL¨v 30 Øviv fvM Kiv n‡q‡Q| 37. GKRb †evjvi M‡o 20 ivb w`‡q 12 DB‡KU cvb| cieZ©x †Ljvq M‡o 4 ivb w`‡q 4wU DB‡KU cvb| wZwb M‡o DB‡KU cÖwZ KZ ivb w`‡q‡Qb? cÖvK-cÖv_wgK mnKvix wkÿK(‡nvqvs‡nv)2013 14 16 18 19 DËi: L 12 DB‡KU †c‡Z ivb †`q = 20 12 = 240 4 DB‡KU †c‡Z ivb †`q = 4  4 = 16 me©‡gvU ivb = 240 + 16 = 256 me©‡gvU cÖvß DB‡KU = 12 + 4 = 16  DB‡KU cÖwZ Mo ivb †`q = 16 256 = 16|  ey‡S ey‡S kU©KvU: 12 DB‡K‡U Mo ivb 4 + AwZwi³ Mo 16 ivb 4 DB‡K‡U Mo ivb 4 16 DB‡K‡U Mo ivb 4 12 DB‡K‡U †gvU AwZwi³ 1612  Mo = 4 + 16 1216  = 4 + 12 = 16| 38. GKRb †evjvi M‡o 22 ivb w`‡q 6wU DB‡KU cvb| cieZ©x †Ljvq M‡o 14 ivb w`‡q 4wU DB‡KU cvb| wZwb M‡o DB‡KU cÖwZ KZ ivb w`‡q‡Qb ? cÖvK- cÖv_wgK mnKvix wkÿK (wSjvg) 2013 14.0 16.0 18. 0 18.8 DËi: N ey‡S ey‡S kU©KvU:mgvavb NM LK mgvavb NM LK mgvavb NM LK 80 70 10
  • 10. 10  Math Tutor 6 DB‡K‡U Mo ivb 14 + AwZwi³ Mo 8 ivb 4 DB‡K‡U Mo ivb 14 10 DB‡K‡U Mo ivb 14 6 DB‡K‡U †gvU AwZwi³ 86  Mo = 14 + 10 68  = 14 + 4.8 = 18.8 39. GKRb †evjvi M‡o 18 ivb w`‡q 10 DB‡KU cvb| cieZ©x Bwbs‡m M‡o 4 ivb w`‡q 4 DB‡KU cvb| wZwb DB‡KU cÖwZ M‡o KZ ivb w`‡q‡Qb? cÖvK-cÖv_wgK mnKvix wkÿK (wgwmwmwc) 2013 12 13 14 16 DËi: M DB‡KU cÖwZ Mo ivb = 4 + 14 1410 = 4 + 10= 14| 40. GKRb †evjvi M‡o 17 ivb w`‡q 7wU DB‡KU cvb| cieZ©x Bwbs‡m M‡o 8 ivb w`‡q 3wU DB‡KU cvb| wZwb DB‡KU cÖwZ KZ ivb w`‡q‡Qb? cÖvK-cÖv_wgK mnKvix wkÿK (`vRjv) 2013 12 14.3 15.5 16 DËi: L ey‡S ey‡S kU©KvU:  Mo = 8 + 10 79 = 8 + 6.3 = 14.3 41. GKRb †evjvi M‡o 14 ivb w`‡q 12wU DB‡KU cvb| cieZ©x †Ljvq M‡o 6 ivb w`‡q 4wU DB‡KU cvb| GLb Zvi DB‡KU cÖwZ Mo ivb KZ? cÖavb wkÿK (cÙ)-09 9 10 12 14 DËi: M ey‡S ey‡S kU©‡UKwbK: Mo = 6 + 16 128 = 6 + 6 = 12 42. M msL¨K msL¨vi Mo A Ges N msL¨K Mo B n‡j me¸‡jv msL¨vi Mo KZ? 23Zg wewmGm 2 BA  2 BNAM  NM BNAM   BA BNAM   DËi: M M msL¨K msL¨vi Mo A n‡j, M msL¨K msL¨vi †hvMdj = MA N msL¨K msL¨vi Mo B n‡j, N msL¨K msL¨vi †hvMdj = NB †gvU msL¨v = M+N Ges msL¨v¸‡jvi †hvMdj = AM+BN ∴ Zv‡`i Mo = NM BNAM   43. p msL¨K msL¨vi Mo m Ges q msL¨K Mo n| me¸‡jv msL¨vi Mo KZ? cÖavb wkÿK (cÙ)-09 p+q 2 m+n 2 pm +qn p+q pm +qn m+n DËi: M 44. x msL¨K †Q‡ji eq‡mi Mo y eQi Ges a msL¨K †Q‡ji eq‡mi Mo b eQi| me †Q‡ji eq‡mi Mo KZ? cÖavb wkÿK (wkDjx)-09 x+2 2 y+b 2 xy +ab y+b xy+ab x+a DËi: N (L) mvwe©K M‡oi Zzjbvq cÖ`Ë GKvs‡ki Mo eo n‡j 45. 100 Rb wkÿv_x©i cwimsL¨v‡b Mo b¤^i 70| G‡`i g‡a¨ 60 Rb QvÎxi Mo b¤^i 75 n‡j, Qv·`i Mo b¤^i KZ? 35ZgwewmGmwcÖwj. 55.5 65.5 60.5 62.5 DËi: N 100 Rb wkÿv_x©i †gvU b¤^i = 70  100 = 7000 60 Rb QvÎxi †gvU b¤^i = 75  60 = 4500 (hv‡`i Mo †ei Ki‡eb, Zv‡`i †gvU Av‡M †ei Kiæb) (100 - 60 ) ev 40 Rb Qv‡Îi †gvU b¤^i = 7000 - 4500 = 2500  40 Rb Qv‡Îi Mo b¤^i = 40 2500 = 62.5 mgvavb NM LK NM LK NM LK mgvavb NM LK mgvavb NM LK mgvavb NM LK mgvavb NM LK
  • 11. Math Tutor  11  ey‡S ey‡S kU©KvU: 75 70 60 Rb 100 Rb 40 Rb  100 ev 60 + 40 R‡bi Mo n‡”Q 70| GLv‡b 60 ev 40 Gi †h‡Kvb GKwU Mo e„w× †c‡j Ab¨ GKwU Mo n«vm cv‡e|  cÖkœvbyhvqx, 60 Gi Mo 70 A‡cÿv e„w× †c‡q‡Q, Zvn‡j wbwðZfv‡e 40 Gi Mo 70 A‡cÿv n«vm cv‡e  60 R‡b hZ e„w× †c‡q‡Q, 40 R‡b ZZ n«vm †c‡q‡Q| KviY †gvU cwigv‡Yi †Kvb cwieZ©b nq bv, ïay GK RvqMv †_‡K Av‡iK RvqMvq ¯’vbvšÍi nq|  60 R‡bi Mo 5 K‡i e„w× cvIqvq †gvU e„w× †c‡q‡Q 560 = 300, GB 300, 40 R‡bi cÖ‡Z¨‡K mgvb K‡i †Q‡o w`‡q‡Q| A_©vr, Zviv cÖ‡Z¨‡K †Q‡o w`‡q‡Q - 40 300 = 7.5 K‡i|  7.5 K‡i †Q‡o †`qvi ci 40 R‡bi Mo n‡e = 70 - 7.5 = 62.5 |  g‡b ivLyb: mvwe©K Mo †_‡K cÖ`Ë MowU eo n‡j †h MowU PvIqv n‡e †mB MowU Aek¨B n‡e †QvU| ZvB mvwe©K Mo †_‡K we‡qvM K‡i †QvU MowU †ei Ki‡Z n‡e| †hgb: mvwe©K Mo 70 †_‡K cÖ`Ë Mo 75 eo wQj, ZvB we‡qvM K‡i mgvavb Kiv n‡q‡Q| Avevi mvwe©K Mo †_‡K cÖ`Ë Mo †QvU n‡j †hvM K‡i mgvavb Ki‡Z n‡e| †hgb: 50 bs cÖkœ †`Lyb| 46. 100 Rb wkÿv_©xi Mo b¤^i 90, hvi g‡a¨ 75 Rb wkÿv_x©i Mo b¤^i 95| Aewkó wkÿv_x©‡`i Mo b¤^i KZ? gv`K`ªe¨ wbqš¿Y Awa`߇ii Dc-cwi`k©K-18 75 70 80 65 DËi: K 75 Rb wkÿv_x©i Mo b¤^i 5 K‡i e„w× cvIqvq †gvU 5  75 = 375 e„w× †c‡q‡Q, hv 25 Rb †_‡K n«vm †c‡q‡Q| 25 Rb †_‡K Mo AvKv‡i n«vm †c‡q‡Q- 25 375 = 15 K‡i|  25 R‡bi b¤^‡ii Mo = 90 - 15 = 75| 47. 15 Rb Qv‡Îi Mo eqm 29 eQi| Zv‡`i Avevi `yRb Qv‡Îi eq‡mi Mo 55 eQi| Zvn‡j evwK 13 Rb Qv‡Îi eq‡mi Mo KZ n‡e? †iwR. †emiKvwi mnKvix wkÿK (UMi)-11; mnKvix wkÿK (Ki‡Zvqv)-10; cÖavb wkÿK (K¨vwgwjqv)-12; cÖavb wkÿK (ewikvj wefvM)-08 25 eQi 26 eQi 27 eQi 28 eQi DËi: K 13 Rb Qv‡Îi Mo = 29 - 13 226  = 29 - 4 = 25| 48. 9 Rb Qv‡Îi Mo eqm 15 ermi| 3 Rb Qv‡Îi eq‡mi Mo 17 ermi n‡j evwK 6 Rb Qv‡Îi eq‡mi Mo KZ? †iwR. cÖv_wgK we`¨v. mn. wkÿK(kvcjv)-11 14 ermi 15 ermi 16 ermi 17 ermi DËi: K 6 Rb Qv‡Îi eq‡mi Mo = 15 - 6 32  = 15 - 1 = 14| 49. 20 Rb evjK I 15 Rb evwjKvi Mo eqm 15 eQi| evjK‡`i Mo eqm 15.5 eQi n‡j evwjKv‡`i Mo eqm KZ? cÖvK-cÖv_wgK mnKvix wkÿK (`vwbqye) -13 14 eQi 14 eQi 4 gvm 14 eQi 6 gvm 14 eQi 8 gvm DËi: L 15 Rb evwjKvi Mo = 15 - 15 10 = 15 - 3 2 = 14 3 1 eQi = 14 eQi 3 1  12 gvm = 14 eQi 4 gvm| (M) mvwe©K M‡oi Zzjbvq cÖ`Ë GKvs‡ki Mo †QvU n‡j 50. 9 wU msL¨vi Mo 12| Gi g‡a¨ cÖ_g 7 wU msL¨vi Mo 10| evKx msL¨v `ywUi Mo KZ? BADC (‡÷vi wKcvi) 17 17 18 19 20 DËi: M 9 wU msL¨vi mgwó = 12  9 = 108 7wU msL¨vi mgwó = 10  7 = 70 evKx (9 - 7) ev 2 wU msL¨vi †gvU = 108 - 70 = 38 mgvavb NM LK mgvavb NM LK mgvavb NM LK mgvavb NM LK mgvavb NM LK
  • 12. 12  Math Tutor  evKx msL¨vi Mo = 2 38 = 19|  ey‡S ey‡S kU©KvU: 12 10 7wU msL¨v 9wU msL¨v 2wU msL¨v  mvwe©K M‡oi Zzjbvq 7wU msL¨vi Mo †QvU nIqvq Aci 2wU msL¨vi Mo eo n‡e|  7 wU msL¨vi Mo 2 K‡i n«vm cvIqvq †gvU 27 = 14 n«vm †c‡q‡Q, GB 14, 2 wU msL¨v‡Z wM‡q hy³ n‡e Ges Zv Mo AvKv‡i A_©vr, 2 14 = 7 K‡i|  2wU msL¨vi Mo = 12 + 7 = 19|  mivmwi wjL‡eb: 2 wU msL¨vi Mo = 12 + 2 14 = 12 + 7 = 19| 51. GK †`vKvb`vi 12 w`‡b 504 UvKv Avq Ki‡jb| cÖ_g 4 w`‡b Mo Avq 40 UvKv n‡j evwK w`b¸‡jvi Mo Avq KZ UvKv n‡e? mnKvix wkÿK (BQvgwZ)-10; 40 UvKv 42 UvKv 43 UvKv 47 UvKv DËi: M †`qv Av‡Q, 12 w`‡bi cÖvß Avq 504 UvKv cÖ_g 4 w`‡bi †gvU Avq = 40  4 = 160 UvKv evKx (12 - 4) ev 8 w`‡bi †gvU Avq = 504 - 160 = 344 UvKv  evKx w`b¸‡jvi Mo Avq = 8 344 UvKv = 43 UvKv|  ey‡S ey‡S kU©KvU: cÖ`Ë cÖ‡kœ mvwe©K MowU †`qv †bB, ZvB Avgiv †mwU Av‡M †ei K‡i wbe- 12 504 = 42|  8 w`‡bi Mo = 42 + 8 8 = 42 + 1 = 43| (N) Dc‡iv³ (L) I (M) Gi kU©KvU wbqg `ywU GKB A‡¼ cÖ‡qvM 52| 6 Rb cyiæl, 8 Rb ¯¿x‡jvK Ges 1 Rb evj‡Ki eq‡mi Mo 35 eQi| cyiæ‡li eq‡mi Mo 40 Ges ¯¿x‡jvK‡`i eq‡mi Mo 34 eQi| evj‡Ki eqm KZ? cÖvK-cÖv_wgK mnKvix wkÿK-(Avjdv)-14; mnKvix wkÿK-(cÙ)-12 14 eQi 13 eQi 16 eQi 15 eQi DËi: L 6 Rb cyiæl + 8 Rb ¯¿x †jvK + 1 Rb evjK = 15 R‡bi †gvU eqm = 35  15 = 525 | 6 Rb cyiæ‡li †gvU eqm = 40  6 = 240 8 Rb ¯¿x‡jv‡Ki †gvU eqm = 34  8 = 272 6 Rb cyiæl + 8 Rb ¯¿x‡jv‡Ki †gvU eqm = 240 + 272 = 512  1 Rb evj‡Ki eqm = 525 - 512 = 13|  ey‡S ey‡S kU©KvU: 1 evj‡Ki eqm = 35 - 1 65  + 1 81 = 35 - 30 + 8 = 13 eQi| 05.09 `ywU mgwói cv_©K¨ †_‡K 1wU msL¨v wbY©q †R‡b wbb- 42  `ywU Mo _vK‡e, GKwU Mo †_‡K Ab¨ GKwU M‡o 1wU msL¨v †ewk _vK‡e| †hgb- 2 wU msL¨vi Mo I 3wU msL¨vi Mo , 10wU msL¨vi Mo I 11 wU msL¨vi Mo BZ¨vw` |  `ywU M‡oi mgwói cv_©K¨ †_‡K 1wU msL¨v wbY©q Kiv nq| †hgb- 3wU msL¨vi mgwó †_‡K 2 wUi mgwó, 5wU msL¨vi mgwó †_‡K 4 wUi mgwó , 7wU msL¨vi mgwó †_‡K 6 wUi mgwó we‡qvM K‡i 1 wU msL¨v wbY©q Kiv nq|  Avgiv mvg‡b GKwU‡K Kg msL¨vi Mo Ges Ab¨ GKwU‡K †ewk msL¨vi Mo wn‡m‡e wPwýZ Kie| mgvavb NM LK mgvavb NM LK
  • 13. Math Tutor  13 (K) †ewki msL¨vi Mo hw` Kg msL¨vi Mo †_‡K gv‡b eo nq †R‡b wbb- 43  evwn¨K `„wó‡Z A¼¸‡jvi `vM wfbœ wfbœ g‡b n‡jI †gBb ÷ªvKPvi ûeû GKB| ZvB cÖwZwU A¼ wb‡q fv‡jvfv‡e wPšÍv Kiæb, †`L‡eb G‡`i gv‡S PgrKvi †hvMm~Î †c‡q †M‡Qb| Avwg `xN© mgq wb‡q A¼¸‡jv G¸‡jv web¨¯Í K‡iwQ, Avcbv‡`i KvR n‡”Q evievi PP©v g~j †d«gUv‡K AvqË¡ Kiv| GB e‡qi cÖwZwU P¨vÞv‡ii †ÿ‡Î GKB K_v cÖ‡hvR¨|  g‡b ivLyb: kU© †UKwb‡K †h msL¨vi gvb †ei Ki‡eb, †mB msL¨vwU †h M‡oi gv‡S Av‡Q, Zv‡K wfwË a‡i mgvavb Ki‡Z n‡e| †hgb 53 bs cÖ‡kœ ÔZ…Zxq msL¨vwUi gvb †ei Ki‡Z n‡e, †hwU 30 M‡oi gv‡S Av‡Q, ZvB kU©‡UKwb‡K 30 †K wfwË a‡i mgvavb Kiv n‡q‡Q| g~j Av‡jvPbvq †ewmKmn Rvb‡Z cvi‡eb|  GKwU gRvi Z_¨: kU© †UKwb‡K mgvav‡bi †ÿ‡Î eqm msµvšÍ A‡¼ GKUv gRvi welq n‡”Q, wcZv ev gvZv I mšÍvb‡`i Mo eqm †`qv _vK‡j Aek¨B wcZv ev gvZvi eqm H Mo A‡cÿv †ewk n‡e Ges mšÍv‡bi eqm H Mo A‡cÿv Aek¨B Kg n‡e| GRb¨ cÖ‡kœ wcZv ev gvZvi eqm PvIqv n‡j H M‡oi mv‡_ †hvM K‡i mgvavb †ei Ki‡Z n‡e| Ges cÖ‡kœ mšÍv‡bi eqm PvIqv n‡j H Mo †_‡K we‡qvM K‡i mgvavb Ki‡Z n‡e| 53. cÖ_g I wØZxq msL¨vi Mo 25| cÖ_g, wØZxq I Z…Zxq msL¨vi Mo 30 n‡j, Z…Zxq msL¨vwU KZ? b¨vkbvj GwMÖKvjPvivj†UK‡bvjwR†cÖvMÖvg2019 25 40 90 50 DËi: L 1g I 2 q msL¨vi mgwó = 252 = 50 1g, 2q I 3q msL¨vi mgwó = 30  3 = 90 3q msL¨vwU = 90 - 50 = 40|  ey‡S ey‡S kU©KvUt 30 25 1g 2q 1g 2q 3q  ïiæ‡Z 1g I 2q msL¨vi Mo wQj 25| c‡i 3q msL¨vwU hy³ nIqvq Zv‡`i Mo e„w× †c‡q nq 30| G‡ÿ‡Î 1g I 2q msL¨vi Mo 5 K‡i e„w× cvIqvq †gvU 52 = 10 e„w× cvq| GB 10 G‡m‡Q Z…Zxq msL¨vwU †_‡K (wP‡Îi A¨vk Kvjvi jÿ¨ Kiæb)| Zvn‡j Z…Zxq msL¨vwU n‡e- Z…Zxq msL¨v Mo + 1g I 2q msL¨vi e„w×K…Z Ask|  Z…Zxq msL¨v = 30 + (52) = 30 + 10 = 40|  g‡b ivLyb: †h msL¨vwUi gvb †ei Ki‡Z n‡e †mwUi Mo Gi mv‡_ evKx msL¨v¸‡jvi e„w×K…Z Ask †hvM Ki‡Z n‡e| †h msL¨vwU cÖ‡kœ PvIqv nq †mwU mvaviYZ †ewk msL¨vi M‡o cvIqv hvq| 54. wcZv, gvZv I cy‡Îi eq‡mi Mo 37| Avevi wcZv I cy‡Îi eq‡mi Mo 35 eQi| gvZvi eqm KZ? evsjv‡`kcjøxDbœqb †ev‡W©iDc‡RjvcjøxDbœqbKg©KZv2015 38 eQi 41 eQi 45 eQi 48 eQi DËi: L wcZv, gvZv I cy‡Îi †gvU eqm = 37  3 = 111 wcZv I cy‡Îi †gvU eqm = 35  2 = 70  gvZvi eqm = 111 - 70 = 41|  ey‡S ey‡S kU©KvUt gvZvi eqm = 37 + (22) = 37 + 4 = 41 55. wcZv I 2 cy‡Îi eq‡mi Mo 30 eQi| `yB cy‡Îi eq‡mi Mo 20 eQi| wcZvi eqm KZ? cÖvK-cÖv_wgK mnKvixwkÿK (Ki‡Zvqv)2013 20 eQi 40 eQi 50 eQi 60 eQi DËi: M ey‡S ey‡S kU©KvUt wcZvi eqm = 30 + (102) = 30 + 20 = 50| 56. wcZv I `yB mšÍv‡bi eq‡mi Mo 27 eQi| `yB mšÍv‡bi eq‡mi Mo 20 eQi n‡j wcZvi eqm KZ? WvK I †Uwj‡hvMv‡hvM wefv‡Mi Gw÷‡gUi 2018 47 eQi 41 eQi 37 eQi 31 eQi DËi: L wcZvi eqm = 27 + (72) = 27 + 14 = 41 57. `yB mšÍv‡bi eq‡mi Mo 10 ermi I gvZvmn Zv‡`i eq‡mi Mo 17 ermi n‡j, gvZvi eqm KZ? cÖvK- cÖv_wgK mnKvix wkÿK (wSjvg) 2013 28 ermi 30 ermi 31 ermi 32 ermi DËi: M gvZvi eqm = 17 + (7  2) = 17 + 14 = 31 58. wZb fvB‡qi eq‡mi Mo 16 eQi| wcZvmn 3 fvB‡qi eq‡mi Mo 25 eQi n‡j, wcZvi eqm KZ? cÖvK-cÖv_wgK mnKvix wkÿK - 2016 (gyw³‡hv×v) mgvavb NM LK mgvavb NM LK mgvavb NM LK mgvavb NM LK mgvavb NM LK
  • 14. 14  Math Tutor 45 42 52 41 DËi: M wcZvi eqm = 25 + (93) = 25 + 27 = 52| 59. wZb mšÍv‡bi eq‡mi Mo 6 ermi I wcZvmn Zv‡`i eq‡mi Mo 13 ermi n‡j wcZvi eqm KZ? cÖvK- cÖv_wgK mnKvix wkÿK (‡nvqvs‡nv) 2013 32 ermi 33 ermi 34 ermi 36 ermi DËi: M wcZvi eqm = 13 + (73) = 13 + 21 = 34 60. wZb cy‡Îi eq‡mi Mo 16 eQi| wcZvmn cy·`i eq‡mi Mo 25 eQi| wcZvi eqm KZ? mnKvix wkÿK (BQvgwZ)-10;mnKvix wkÿK (XvKv wefvM)-06 45 eQi 48 eQi 50 eQi 52 eQi DËi: N 61. cvuP mšÍv‡bi Mo 7 eQi Ges wcZvmn Zv‡`i eq‡mi Mo 13 eQi| wcZvi eqm KZ? cÖvK-cÖv_wgKmnKvix wkÿK(weUv) 2014 43 eQi 33 eQi 53 eQi 63 eQi DËi: K wcZvi eqm = 13 + (65) 13 + 30 = 43 62. wcZv I 2 cy‡Îi eq‡mi Mo 30 eQi| `yB cy‡Îi eq‡mi Mo 20 eQi| wcZvi eqm KZ? cÖvK-cÖv_wgK mnKvix wkÿK-13 (Ki‡Zvqv); mnKvix wkÿK (gyw³‡hv×v)-10; mnKvix wkÿK (Ki‡Zvqv)-10 20 eQi 40 eQi 50 eQi 60 eQi DËi: M 63. †Kv‡bv †kÖwY‡Z 20 Rb Qv‡Îi eq‡mi Mo 10 eQi| wkÿKmn Zv‡`i eq‡mi Mo 12 eQi n‡j, wkÿ‡Ki eqm KZ? cÖvK-cÖv_wgK mnKvix wkÿK (ivBb)-13 32 eQi 42 eQi 52 eQi 62 eQi DËi: M 64. †Kv‡bv †kÖwYi 24 Rb Qv‡Îi Mo eqm 14 eQi| hw` GKRb †kÖwY wkÿ‡Ki eqm Zv‡`i eq‡mi mv‡_ †hvM Kiv nq Z‡e eq‡mi Mo GK ermi e„w× cvq| wkÿ‡Ki eqm KZ? evsjv‡`k †ijI‡qi Dc- mnKvix cÖ‡KŠkjx 2013 40 ermi 39 ermi 45 ermi 35 ermi DËi: L 24 Rb Qv‡Îi eq‡mi mgwó = 14 24 = 336 eQi Zv‡`i mv‡_ GKRb wkÿK †hvM n‡j Zv‡`i msL¨v n‡e 25 Rb Ges Zv‡`i Mo eqm 1 ermi e„w× cvIqvq bZzb Mo n‡e 15 eQi| wkÿKmn 25 R‡bi eq‡mi mgwó = 15  25 = 375 eQi  wkÿ‡Ki eqm = 375 - 336 = 39 eQi|  wkÿ‡Ki eqm = 15 + (241) = 15 + 24 = 39  g‡b ivLyb: Dc‡iv³ mgm¨v¸‡jvi mv‡_ GB mgm¨vi †Kvb cv_©K¨ †bB| GLv‡b Z_¨¸‡jv c~‡e©i b¨vq mivmwi bv w`‡q c‡ivÿfv‡e w`‡q‡Q| GB †QvÆ welqwU eyS‡Z cvi‡j MwYZ Avcbvi Rb¨ mnR n‡q DV‡e| 65. 10 Rb Qv‡Îi Mo eqm 15 eQi| bZzb GKRb QvÎ Avmvq Mo eqm 16 eQi n‡j bZzb Qv‡Îi eqm KZ eQi? gnv-wnmve wbixÿK I wbqš¿‡Ki Kvh©vj‡qi Aaxb AwWUi 2015 20 24 26 †Kv‡bvwUB bq DËi: M 10 Rb Qv‡Îi eq‡mi mgwó = 1510 = 150 eQi bZzb QvÎ mn 11 Qv‡Îi eq‡mi mgwó = 1611 = 176 eQi  bZzb Qv‡Îi eqm = 176 - 150 = 26 eQi|  ey‡S ey‡S kU©KvUt 16 + (110) = 16 + 10 = 26 66. GKRb wµ‡KUv‡ii 10 Bwbs‡mi iv‡bi Mo 45.5| 11 Zg Bwbs‡m KZ ivb K‡i AvDU n‡j me Bwbsm wgwj‡q Zvi iv‡bi Mo 50 n‡e? Dc‡RjvmnKvwiK…wl Kg©KZv© 2011 55 ivb 45 ivb 130 ivb 95 ivb DËi: N 10 Bwbs‡mi iv‡bi mgwó = 45.5  10 = 455 11 Bwbs‡mi iv‡bi mgwó = 5011 = 550  11 Zg Bwbs‡mi ivb = 550 - 455 = 95 ivb|  ey‡S ey‡S kU©KvU: 50 + (4.510) = 50 + 45 = 95 ivb| 67. Kwi‡gi †bZ…Z¡vaxb 6 m`‡m¨i GKwU `‡ji m`m¨‡`i eq‡mi Mo 8.5| Kwig‡K ev` w`‡j Aewkó‡`i eq‡mi Mo K‡g `uvovq 7.2| Kwi‡gi eqm KZ? we‡Kwe Awdmvi: 07 7.8 10.8 12.6 15 DËi: N 6 m`m¨ `‡ji m`m¨‡`i eq‡mi mgwó = 8.56mgvavb NM LK mgvavb NM LK mgvavb NM LK mgvavb NM LK NM LK NM LK mgvavb NM LK NM LK mgvavb NM LK mgvavb NM LK
  • 15. Math Tutor  15 Ô = 51 eQi Kwig e¨ZxZ evKx m`m¨‡`i eq‡mi mgwó = 7.25 = 36 eQi  Kwi‡gi eqm = 51 - 36 = 15 eQi|  Kwi‡gi eqm = 8.5 + (1.35) = 8.5 + 6.5 = 15 68. 7 msL¨vi Mo 12 | GKwU b¤^i evwZj Ki‡j Mo nq 11| evwZjK…Z msL¨vwU KZ? †mvbvjx, RbZv Ges AMÖYx e¨vsK Awdmvi: 08 7 10 12 18 DËi: N evwZjK…Z msL¨vwU = 12 + (1 6) = 18 | 69. 11 Rb †jv‡Ki Mo IRb 70 †KwR| 90 †KwR IR‡bi GKRb †jvK P‡j †M‡j evKx‡`i Mo IRb KZ nq? cÖvK-cÖv_wgK mnKvix wkÿK (†WjUv) 2014 68 †KwR 72 †KwR 80 †KwR 62 †KwR DËi: K 11 Rb †jv‡Ki IR‡bi mgwó = 7011 = 770 1 Rb †jvK P‡j †M‡j evKx 10 Rb †jv‡Ki IR‡bi mgwó = 770 - 90 = 680 ivb  evKx‡`i (10 Rb) Mo IRb = 10 680 = 68|  †h P‡j wM‡q‡Q Zvi Mo IRb 70 †KwR wQj, wKš‘ †m wb‡q †M‡Q 90 †KwR| A_©vr, †ewk wb‡q †M‡Q 20 †KwR, hv evKx 10 R‡bi cÖ‡Z¨‡Ki KvQ †_‡K 2 †KwR K‡i wb‡q †M‡Q| GRb¨ evKx 10 R‡bi eqm Mo IRb 70 †KwR †_‡K 2 †KwR K‡i n«vm cv‡e|  evKx‡`i Mo IRb = 70 - 2 = 68 †KwR| 70. 11 Rb evj‡Ki Mo IRb 50 †KwR| 40 †KwR IR‡bi GKRb evjK P‡j †M‡j evwK‡`i Mo IRb KZ n‡e? †c‡Uªvevsjv Gi D”Pgvb mnKvix 2017 50 †KwR 49 †KwR 51 †KwR 60 †KwR DËi: M whwb P‡j †M‡jb wZwb 50 Gi cwie‡Z© 40 eQi wb‡q †M‡Qb, †i‡L †M‡Qb 10 eQi| GB 10 eQi evwK 10 R‡bi gv‡S Mo K‡i w`‡j 1 K‡i e„w× cv‡e|  evwK‡`i Mo IRb = 50 + 1 = 51 †KwR| 71. iweevi †_‡K kwbevi ch©šÍ †Kv‡bv ¯’v‡bi Mo e„wócvZ 3Ó| iweevi †_‡K ïµevi ch©šÍ Mo e„wócvZ 2”| H mßv‡ni kwbev‡i e„wócv‡Zi cwigvY KZ? mnKvix wkÿK -07 (XvKv wefvM) 1” 5” 7” 9” DËi: N iweevi †_‡K kwbevi 7 w`‡bi e„wócv‡Zi mgwó = 3Ó  7 = 21Ó| iweevi †_‡K ïµevi 6 w`‡bi e„wócv‡Zi mgwó = 2Ó 6 = 12Ó|  kwbev‡ii e„wócv‡Zi cwigvY = 21Ó - 12Ó = 9Ó|  ey‡S ey‡S kU©KvUt kwbev‡i e„wócv‡Zi cwigvY = 3 + (16) = 3 + 6 = 9Ó| 72. 3wU msL¨vi Mo 6 Ges H 3wU msL¨vmn †gvU 4wU msL¨vi Mo 8 n‡j PZz_© msL¨vwUi A‡a©‡Ki gvb KZ? cÖv_wgK we`¨vjq mnKvix wkÿK 2019 7 8 5 6 DËi: K PZz_© msL¨vwU = 8 + (23) = 8 + 6 = 14  msL¨vwUi A‡a©K = 2 14 = 7| (L) †ewk msL¨vi Mo hw` Kg msL¨vi Mo †_‡K gv‡b †QvU nq 73. wcZv I gvZvi eq‡mi Mo 45 eQi| Avevi wcZv, gvZv I GK cy‡Îi eq‡mi Mo 36 eQi| cy‡Îi eqm KZ? cÖv_wgKmnKvixwkÿKwb‡qvMcixÿv2015 20 eQi 18 eQi 14 eQi 16 eQi DËi: L wcZv I gvZvi eq‡mi mgwó = 45  2 = 90 eQi| wcZv, gvZv I GK cy‡Îi eq‡mi mgwó = 36  3 = 108 eQi|  cy‡Îi eqm = 108 - 90 = 18 eQi|  ey‡S ey‡S kU©‡UKwbK: 18 eQi wcZv gvZv wcZv gvZv cyÎ  ïiæ‡Z wcZv I gvZvi eq‡mi Mo wQj 45| c‡i cyÎ hy³ nIqvq eq‡mi Mo n«vm †c‡q nq 36| mgvavb NM LK mgvavb NM LK mgvavb NM LK mgvavb NM LK mgvavb NM LK mgvavb NM LK
  • 16. 16  Math Tutor G‡ÿ‡Î wcZv I gvZvi eq‡mi Mo (45-36) ev 9 K‡i †gvU 18 n«vm cvq| GB n«vmK…Z eqm wM‡q cy‡Îi eq‡mi mv‡_ hy³ n‡q cy‡Îi Mo eqm n‡q‡Q 36| wKš‘ cÖK…Zc‡ÿ cy‡Îi eqm 36 †_‡K Av‡iv Kg| cy‡Îi eqm †ei Ki‡Z n‡j wcZv I gvZvi n«vmK…Z eqm cy‡Îi eqm †_‡K ev` w`‡Z n‡e| cy‡Îi eqm : 36 - (92) = 36 - 18 = 18 eQi| 74. wcZv I gvZvi eq‡mi Mo 20 ermi| wcZv, gvZv I cy‡Îi eq‡mi Mo 16 ermi n‡j cy‡Îi eqm KZ? cÖvK-cÖv_wgK mnKvixwkÿK(`vRjv,†nvqvs‡nv,wgwmwmwc)13 8 ermi 15 ermi 16 ermi 16 2 1 ermi DËi: K ey‡S ey‡S kU©KvU: cy‡Îi eqm = 16 - (42) = 8 ermi| 75. wcZv I gvZvi eq‡mi Mo 25 ermi| wcZv, gvZv I cy‡Îi eq‡mi Mo 18 ermi n‡j cy‡Îi eqm KZ? cÖvK-cÖv_wgK mnKvix wkÿK (‡nvqvs‡nv) 2013 2 ermi 4 ermi 5 ermi 6 ermi DËi: L ey‡S ey‡S kU©KvU: cy‡Îi eqm = 18 - (72) = 18 - 14 = 4 ermi| 76. wcZv I gvZvi eq‡mi Mo 30 ermi| wcZv, gvZv I cy‡Îi Mo eqm 24 ermi n‡j, cy‡Îi eqm KZ? cÖvK-cÖv_wgK mnKvix wkÿK (wgwmwmwc) 2013 8 ermi 10 ermi 11 ermi 12 ermi DËi: N cy‡Îi eqm = 24 - (62) = 24 - 12 = 12 eQi| 77. wcZv I gvZvi eq‡mi Mo 20 ermi| wcZv, gvZv I cy‡Îi eq‡mi Mo 16 ermi n‡j cy‡Îi eqm KZ? cÖvK-cÖv_wgK mnKvix wkÿK (`vRjv) 2013 8 ermi 15 ermi 16 ermi 16.5 ermi DËi: K cy‡Îi eqm = 16 - 8 = 8 eQi| 78. wcZv I gvZvi eq‡mi Mo 42 eQi| Avevi wcZv, gvZv I GK cy‡Îi Mo eqm 32 eQi| cy‡Îi eqm KZ? cÖvK-cÖv_wgK mnKvix wkÿK-13 (eywoM½v) 8 eQi 10 eQi 12 eQi 14 eQi DËi: M cy‡Îi eqm = 32 - 20 = 12 eQi| 79. wcZv I gvZvi eq‡mi Mo 40 ermi| wcZv, gvZv I cy‡Îi eq‡mi Mo 32 ermi n‡j cy‡Îi eqm KZ? mnKvix wkÿK (nvmbv‡nbv)-11 12 ermi 14 ermi 16 ermi 18 ermi DËi: M cy‡Îi eqm = 32 - 16 = 16 ermi| 80. wcZv I gvZvi Mo eqm 36 eQi| wcZv, gvZv I cy‡Îi Mo eqm 28 eQi n‡j, cy‡Îi eqm KZ? mnKvix wkÿK (gyw³‡hv×v)-10 9 eQi 11 eQi 12 eQi 15 eQi DËi: M 81. wcZv I gvZvi Mo eqm 35 eQi| wcZv, gvZv I cy‡Îi Mo eqm 27 eQi n‡j cy‡Îi eqm KZ? mnKvix wkÿK (gyw³‡hv×v)-10 9 eQi 11 eQi 12 eQi 14 eQi DËi: L 82. wcZv I gvZvi Mo eqm 40 eQi| wcZv, gvZv I cy‡Îi Mo eqm 32 eQi n‡j, cy‡Îi eqm KZ? cÖavb wkÿK (XvKv wefvM)-07 14 eQi 16 eQi 18 eQi 20 eQi DËi: L 83. 12 Rb Qv‡Îi eq‡mi Mo 20 eQi | hw` bZzb GKRb Qv‡Îi eqm AšÍf~©³ Kiv nq, Z‡e eq‡mi Mo 1 eQi K‡g hvq| bZzb Qv‡Îi eqm KZ? IFICBank probationaryofficer:09 5 7 9 11 DËi: L 12 Rb Qv‡Îi eq‡mi mgwó = 2012 = 240 eQi GKRb Qv‡Îi eqm AšÍfz©³ Kivq 13 Rb Qv‡Îi eq‡mi Mo 1 n«vm †c‡q 19 nq| 13 Rb Qv‡Îi eq‡mi mgwó = 19  13 = 247 eQi  bZzb Qv‡Îi eqm = 247 - 240 = 7 eQi&  ey‡S ey‡S kU©KvU: bZzb Qv‡Îi eqm = 19 - (12 1) = 19 - 12 = 7 84. †Kv‡bv †kÖwY‡Z 20 Rb QvÎxi eq‡mi Mo 12 eQi| 4 Rb bZzb QvÎx fwZ© nIqv‡Z eq‡mi Mo 4 gvm K‡g †Mj| bZzb 4 Rb QvÎxi eq‡mi Mo KZ? cÖvK- cÖv_wgK mnKvix wkÿK 2013 (hgybv); mnKvix wkÿK 2012 (cÙ); mnKvix wkÿK 2008 (†Mvjvc) 11 eQi 9 eQiLK mgvavb NM LK NM LK NM LK NM LK mgvavb NM LK mgvavb NM LK mgvavb NM LK mgvavb NM LK mgvavb NM LK mgvavb NM LK
  • 17. Math Tutor  17 10 eQi 8 eQi DËi: M 20 Rb QvÎxi eq‡mi mgwó = 1220 eQi = 240 eQi 4 Rb bZzb QvÎx fwZ© nIqvq 24 QvÎxi eq‡mi Mo nq (12 eQi - 4 gvm) ev 11 eQi 8 gvm| 24 Rb QvÎxi eq‡mi mgwó = 11 eQi 8 gvm24 = (11 + 3 2 )24 eQi = 11  24 eQi + 3 2 24 eQi = 264 eQi + 16 eQi = 280 eQi| bZzb 4 Rb QvÎxi eqm = 280 - 240 = 40 eQi|  bZzb 4 Rb QvÎxi eq‡mi Mo = 4 40 eQi = 10 eQi|  g‡b ivLyb: GLv‡b 8 gvm‡K eQ‡i iƒcvšÍi Kiv n‡q‡Q 12 8 ev 3 2 eQi| A‡¼ gvm I eQi GKmv‡_ _vK‡j Ges Avcwb MYbvq `ÿ bv n‡j we¯ÍvwiZ wbq‡gB mgvavb Ki‡eb)  ey‡S ey‡S kU©KvU: 4 Rb bZzb QvÎxi eq‡mi Mo = 11 eQi 8 gvm - ( 4 204 gvm) = 11 eQi 8 gvm - 20 gvm = 11 eQi 8 gvm - 1 eQi 8 gvm = 10 eQi| (GLv‡b 4 Rb QvÎxi Mo nIqvq (420) †K 4 Øviv fvM Kiv n‡q‡Q| MYbvq `ÿ _vK‡j K‡qK †m‡K‡Û mgvavb Kiv m¤¢e) (M) GB av‡c (K) I (L) wbqg AbymiY Kiv n‡q‡Q wKš‘ `v‡M GKUz wfbœZv Av‡Q 85. wZb eQi Av‡M iwng I Kwi‡gi iq‡mi Mo wQj 18 eQi| Avjg Zv‡`i mv‡_ †hvM`vb Kivq Zv‡`i eq‡mi Mo ‡e‡o 22 eQi nq| Avj‡gi eqm KZ? mnKvixwkÿK(K‡cvZvÿ)-10;†iwR÷vW© cÖv_wgKwe`¨vjqmnKvix wkÿK(wkDwj)2011 30 eQi 28 eQi 27 eQi 24 eQi DËi: N (cÖ‡kœ wZb eQi Av‡M iwng I Kwi‡gi eq‡mi Mo †`qv Av‡Q, †mwU‡K eZ©gvb eq‡mi M‡o iƒcvšÍi Ki‡Z n‡e) wZb eQi Av‡M iwng I Kwi‡gi eq‡mi Mo wQj 18 eZ©gv‡b iwng I Kwi‡gi eq‡mi Mo = 18+3 = 21 eZ©gv‡b Zv‡`i eq‡mi mgwó = 212 = 42 eQi iwng, Kwig I Avj‡gi eq‡mi Mo = 22 eQi Zv‡`i eq‡mi mgwó = 223 = 66 eQi Avj‡gi eqm = 66 - 42 = 24 eQi|  ey‡S ey‡S kU©KvU: (cÖ_‡g eZ©gvb eqm †ei K‡i wb‡Z n‡e, Zvici c~‡e© wbq‡g mgvavb Ki‡Z n‡e) iwng I Kwi‡gi eZ©gvb eq‡mi Mo = 18+3 = 21 iwng, Kwig I Avj‡gi eq‡mi Mo = 22  Avj‡gi eqm = 22 + (1  2) = 24 eQi| 86. wcZv I `yB cy‡Îi Mo eqm 20 eQi| `yB eQi c~‡e© `yB cy‡Îi Mo eqm wQj 12 eQi| wcZvi eZ©gvb eqm KZ? cÖvK-cÖv_wgKmnKvixwkÿK(myigv,kxZjÿ¨v)2013 26 eQi 28 eQi 30 eQi 32 eQi DËi: N `yB cy‡Îi eZ©gvb eq‡mi Mo = 12 + 2 = 14  wcZvi eZ©gvb eqm = 20 + (62) = 20 + 12 = 32 eQi| 87. wZb eQi Av‡M `yB †ev‡bi eq‡mi Mo wQj 24 eQi| eZ©gv‡b `yB †evb I Zv‡`i GK fvB‡qi eq‡mi Mo 25 eQi| fvB‡qi eZ©gvb eqm KZ eQi? evsjv‡`k wkwcs K‡cv©‡ik‡b wmwbqi A¨vwm÷¨v›U 2018 27 24 21 18 DËi: M `yB †ev‡bi eZ©gvb eq‡mi Mo = 24 + 3 = 27 fvB‡qi eZ©gvb eqm = 25 - (22) = 21 88. wcZv I `yB cy‡Îi eZ©gvb Mo eqm 20 ermi| 2 ermi ci `yB cy‡Îi Mo eqm 12 ermi n‡j wcZvi eZ©gvb eqm KZ? cÖvK-cÖv_wgKmnKvixwkÿK(`vRjv, wgwmwmwc)2013 40 ermi 42 ermi 43 ermi 44 ermi DËi: K (cÖ‡kœ `yB ermi ci `yB cy‡Îi eq‡mi Mo †`qv Av‡Q, †mwU‡K eZ©gvb eq‡mi M‡o iƒcvšÍi Ki‡Z n‡e) `yB cy‡Îi eZ©gvb eq‡mi Mo = 12 - 2 = 10 ermi Zv‡`i eZ©gvb eq‡mi mgwó = 102 = 20 ermi mgvavb NM LK mgvavb NM LK mgvavb NM LK mgvavb NM LK mgvavb NM
  • 18. 18  Math Tutor wcZv I `yB cy‡Îi eq‡mi Mo = 20 ermi Zv‡`i eq‡mi mgwó = 20  3 = 60 ermi  wcZvi eZ©gvb eqm = 60 - 20 = 40 ermi|  ey‡S ey‡S kU©KvU: `yB cy‡Îi eZ©gvb eq‡mi Mo = 12 - 2 = 10 wcZv I `yB cy‡Îi eq‡mi Mo = 20 eQi  wcZvi eqm = 20 + (102) = 40 eQi| 89. wcZv I `yB cy‡Îi eZ©gvb Mo eqm 22 ermi| 3 ermi ci `yB cy‡Îi Mo eqm 13 ermi n‡j wcZvi eZ©gvb eqm KZ? cjøx we`y¨Zvqb †ev‡W©i mnKvix Gb‡dvm©‡g›U †Kv-AwW©‡bUi 2017 40 ermi 42 ermi 43 ermi 46 ermi DËi: L ey‡S ey‡S kU©KvU: `yB cy‡Îi eZ©gvb eq‡mi Mo = 13 - 3 = 10 wcZvi eZ©gvb eqm = 22 + (102) = 42| (N) GK R‡bi cwie‡Z© bZzb GKRb †hvM †`qvi d‡j Mo e„w× ev n«vm nIqv 90. 8 R‡bi GKwU `‡j 65 †KwR IR‡bi GKR‡bi cwie‡Z© bZzb GKRb †hvM †`qvq Zv‡`i Mo IRb 2.5 †KwR †e‡o hvq| bZzb e¨w³i IRb KZ †KwR? evsjv‡`kK…wlDbœqbK‡cv©‡ik‡bimnKvixcÖmvkwbKKg©KZ©v2017 45 76 80 85 DËi: N bZzb e¨w³ †hvM`vb Kivq IRb e„w× cvq = 2.5  8 †KwR = 20 †KwR|  bZzb e¨w³i IRb = 65 + 20 = 85 †KwR|  ey‡S ey‡S kU©KvU: 8 R‡bi `‡j 65 †KwR IR‡bi GKRb P‡j hvq Ges Zvi cwie‡Z© whwb Av‡mb Zvui IRbI hw` 65 †KwR nZ, Zvn‡j Zv‡`i Mo IR‡bi †Kvb cwieZ©b nZ bv| wKš‘ H e¨w³ `‡j †hvM`vb Kivi ci Zv‡`i cÖ‡Z¨‡Ki Mo IRb 2.5 †KwR K‡i †e‡o †M‡Q| Zvi gv‡b, bZzb †hvM`vbK…Z e¨w³i eqm Ô65 + AviI †ewkÕ n‡e| GLb cÖkœ n‡”Q 65 Gi †P‡q KZUzKz †ewk n‡e? mnR DËi n‡”Q- 8 R‡bi Mo hZ e„w× †c‡q‡Q Zvi mgwói mgvb| bZzb e¨w³i IRb = 65 + (82.5) = 65 + 20 = 85 eQi|  g‡b ivLyb: e„w× bv †c‡q hw` n«vm †cZ Zvn‡j †hvM bv n‡q we‡qvM nZ| 92 bs cÖkœ †`Lyb 91. 8 Rb †jv‡Ki Mo eqm 2 e„w× cvq hLb 24 eQi eqmx †Kvb †jv‡Ki cwie‡Z© GKRb gwnjv †hvM †`q| gwnjvwUi eqm KZ? RbZv e¨vsK (EO)-17 35 eQi 28 eQi 32 eQi 40 eQi DËi: N ey‡S ey‡S kU©KvU: gwnjvi eqm = 24 + (28) = 24 + 16 = 40| 92. 7 Rb †jv‡Ki Mo IRb 3 cvDÛ K‡g hvq hLb 10 †÷vb IR‡bi GKRb †jv‡Ki cwie‡Z© bZzb GKRb †hvM`vb K‡i| bZzb †jvKwUi IRb KZ? cÖv_wgK we`¨vjqmnKvixwkÿK(`ovUvbv)2008 9 †÷vb 8 †÷vb 8 2 1 †÷vb 7 2 1 †÷vb DËi: M Avgiv Rvwb, 14 cvDÛ = 1 †÷vb bZzb †jvK †hvM`vb Kivq IRb K‡g hvq = 37 = 21 cvDÛ = 1.5 †÷vb bZzb †jv‡Ki IRb = 10 - 1.5 †÷vb = 8.5 †÷vb|  ey‡S ey‡S mgvavb: bZzb †jvKwUi IRb = 10 - 1.5 = 8.5 †÷vb| †R‡b wbb - 44  hv‡`i Mo †ei Ki‡eb, Zvi Av‡M Zv‡`i †gvU †ei Ki‡eb| 93. P Ges Q Gi mgwó 72| R Gi gvb 42| P, Q Ges R Gi Mo KZ? evsjv‡`ke¨vsKA¨vwmm‡U›UwW‡i±i:08 32 34 36 38 DËi: N (P, Q Ges R Gi Mo †ei Ki‡Z n‡e, GRb¨ P, Q Ges R Gi mgwó †ei Ki‡Z n‡e) P, Q Ges R Gi mgwó = 72 + 42 = 114  P, Q Ges R Gi Mo = 3 114 = 38| 94. A Ges B Gi mgwó 40 Ges C =32 n‡j, A, B Ges C Gi Mo KZ? evsjv‡`ke¨vsKAwdmvi:01 24 26 28 30 DËi: K A, B I C Gi mgwó = 40 + 32 = 72 |mgvavb NM LKmgvavb NM LK mgvavb NM LK mgvavb NM LK mgvavb NM LK mgvavb NM LK
  • 19. Math Tutor  19  A, B I C Gi Mo = 3 72 = 24 | 95. 𝐱 I y Gi gv‡bi Mo 9 Ges z = 12 n‡j 𝒙, y, z Gi gv‡bi Mo KZ? 20ZgwewmGm 6 9 10 12 DËi: M x I y Gi gv‡bi mgwó = 9  2 = 18 ∴ x, y, z Gi gv‡bi mgwó = 18 + 12 = 30 myZivs, 𝑥, y, z Gi Mo = 3 30 = ১০ DËit M 96. K, L I M Gi Mo eqm 40 eQi, K I M Gi eqm GK‡Î 85 eQi L Gi eqm n‡e- cwievi-cwiKíbv †gwW‡KjAwdmvi 1994 30 eQi 35 eQi 40 eQi 45 eQi DËi: L K, L I M Gi eq‡mi mgwó = 403 = 120 eQi K I M Gi eq‡mi mgwó = 85 eQi|  L Gi eqm = 120 - 85 eQi = 35 eQi| 97. wZbwU msL¨vi Mo 24| `yBwU msL¨v 21 I 23 n‡j, Z…Zxq msL¨vwU KZ? evsjv‡`ke¨vsKA¨vwmm‡U›U wW‡i±i:06 20 24 26 28 DËi: N wZbwU msL¨vi mgwó = 24 3 = 72 `yBwU msL¨vi mgwó = 21 + 23 = 44 myZivs, Z…Zxq msL¨v = 72 - 44 = 28 98. wZbwU msL¨vi Mo 7| hw` `yBwU msL¨v 0 nq, Z‡e Z…Zxq msL¨vwU KZ? †mvbvjx,RbZvIAMÖYxe¨vsK:08 15 17 19 21 DËi: N wZbwU msL¨vi mgwó = 7  3 = 21 `yBwU msL¨vi mgwó = 0 + 0 = 0  Z…Zxq msL¨vwU = 21 - 0 = 21 | 99. wZbRb †jv‡Ki IR‡bi Mo 53 †KwR| G‡`i Kv‡iv IRb 51 †KwRi Kg bq| G‡`i GKR‡bi m‡e©v”P IRb n‡e- cwievicwiKíbvAwa.mn.cwiKíbvKg©KZ©v12 53 †KwR 55 †KwR 57 †KwR 59 †KwR DËi: M wZbRb †jv‡Ki IR‡bi mgwó = 533 †KwR = 159 †KwR `yRb †jv‡Ki IRb me©wb¤œ Ki‡j Aci Rb †jv‡Ki IRb m‡e©v”P Kiv m¤¢e| cÖkœvbyhvqx `yRb †jv‡Ki IRb me©wb¤œ 51 Kiv hv‡e| `yRb †jv‡Ki me©wb¤œ IR‡bi mgwó = 51  2 †KwR = 102 †KwR  3q †jv‡Ki m‡e©v”P IRb n‡e = 159 - 102 †KwR = 57 †KwR| 100. wZb m`‡m¨i GKwU weZK©`‡ji m`m¨‡`i Mo eqm 24 eQi| hw` †Kvb m`‡m¨i eqmB 21 Gi wb‡P bv nq Zv‡`i †Kvb GKR‡bi eqm m‡e©v”P KZ n‡Z cv‡i? 33Zg wewmGm wcÖwjwgbvwi 25 eQi 30 eQi 28 eQi 32 eQi DËi: L GKRb †jv‡Ki m‡e©v”P ehm = 24 + (32) = 24 + 6 = 30 eQi| 101. 3 eÜzi IR‡bi Mo 33 †KwR | wZbR‡bi ga¨ †Kvb eÜzi IRbB 31 †KwRi Kg bq| wZb eÜzi GKR‡bi IRb m‡ev©”P KZ n‡Z cv‡i? evsjv‡`k e¨vsK Awdmvi : 01 37 35 33 32 DËi: K GKR‡bi m‡e©v”P IRb = 33 + (22) †KwR = 33 + 4 †KwR = 37 †KwR| 05.10 102. wcZv I cy‡Îi eq‡mi Mo 40 eQi Ges gvZv I H cy‡Îi eq‡mi Mo 35 eQi| gvZvi eqm 50 eQi n‡j, wcZvi eqm KZ? 14Zg †emiKvwi cÖfvlK wbeÜb cixÿv 2017 50 eQi 60 eQi 40 eQi 85 eQi DËi: L wcZv I cy‡Îi eq‡mi Mo = 40 eQi wcZv I cy‡Îi eq‡mi mgwó = 40  2 = 80 eQi gvZv I cy‡Îi eq‡mi Mo = 35 eQi  gvZv I cy‡Îi eq‡mi mgwó = 35  2 = 70 eQi (wcZvi eqm †ei Ki‡Z n‡j cy‡Îi eqm Rvb‡Z n‡e) cy‡Îi eqm = (70 - 50) eQi = 20 eQi  wcZvi eqm = (80 - 20 ) eQi = 60 eQi|  ey‡S ey‡S kU©KvU 01: wcZv + cyÎ  Mo 40 eQi  †gvU 402 = 80 gvZv + cyÎ  Mo 35 eQi  †gvU 352 = 70 wcZv  gvZv = 10 wcZvi eqm gvZvi †P‡q 10 eQi †ewk| mgvavb NM LK mgvavb NM LK mgvavb NM LK mgvavb NM LK mgvavb NM LK mgvavb NM LK mgvavb NM LK mgvavb NM LK
  • 20. 20  Math Tutor  wcZvi eqm = 50 + 10 = 60 eQi|  ey‡S ey‡S kU©KvU 02: wcZvi mv‡_ cy‡Îi Mo, gvZvi mv‡_ cy‡Îi M‡oi †P‡q 5 †ewk , ZvB wcZvi eqm gvZvi eq‡mi †P‡q †ewk n‡e|  wcZvi eqm = 50 + (52) = 50 + 10 = 60 eQi|  g‡b ivLyb: gvZvi eqm †`qv Av‡Q, wcZvi eqm †ei Ki‡Z n‡e| gvZvi Zzjbvq wcZvi eqm hZUzKz †ewk †mwU gv‡qi eq‡mi mv‡_ †hvM Ki‡Z n‡e| Avevi hw` wcZvi eqm †`qv _vKZ, Zvn‡j wcZvi eqm †_‡K gvZvi eqm hZUzKz Kg n‡e †mwU wcZvi eqm †_‡K we‡qvM Ki‡Z n‡e| 103. iwng I Kwi‡gi eq‡mi Mo 35 eQi| iwng I nvgRvi eq‡mi Mo 20 eQi| nvgRvi eqm 11 eQi n‡j Kwi‡gi eqm KZ? 16Zg†emiKvwiwkÿK wbeÜb(K‡jR/mgch©vq) 2019 40 eQi 41 eQi 42 eQi 43 eQi DËi: L nvgRvi eqm †`qv Av‡Q, Kwi‡gi eqm †ei Ki‡Z n‡e| nvgRvi eq‡mi mv‡_ Kwi‡gi eqm hZUzKz †ewk †mwU †hvM Ki‡Z n‡e| Kwi‡gi eqm = 11 + (152) = 41 eQi| 104. wcZv I 3 cy‡Îi eqm A‡cÿv gvZv I 3 cy‡Îi eq‡mi Mo 1 2 1 eQi Kg| gvZvi eqm 30 n‡j wcZvi eqm KZ? cÖvK-cÖv_wgKmnKvixwkÿK(†gNbv)2013 30 eQi 31 2 1 eQi 36 eQi 38 eQi DËi: M wcZvi eqm = 30 + ( 1.54) = 36 eQi| 105. wcZv I `yB cy‡Îi eqm A‡cÿv gvZv I D³ `yB cy‡Îi eq‡mi Mo 2 eQi Kg| wcZvi eqm 30 eQi n‡j gvZvi eqm KZ? cÖv_wgK we`¨vjq mnKvwi wkÿK (emšÍ) 2010 20 eQi 22 eQi 24 eQi 25 eQi DËi: M wcZvi eqm †`qv Av‡Q, gvZvi eqm †ei Ki‡Z n‡e| ZvB wcZvi eq‡mi †_‡K gvZvi eqm hZUzKz Kg †mwU we‡qvM Ki‡Z n‡e|  gvZvi eqm = 30 - (23) = 24 eQi| 106. wcZv I Pvi cy‡Îi eq‡mi Mo, gvZv I Pvi cy‡Îi eq‡mi Mo A‡cÿv 2 eQi †ewk| wcZvi eqm 60 n‡j gvZvi eqm KZ? Rbkw³ Kg©ms¯’vb I cÖwkÿY ey¨‡ivi Dc-cwiPvjK 2007 48 eQi 52 eQi 50 eQi 56 eQi DËi: M gvZvi eqm = 60 - (25) = 50 eQi| 107. eya, e„n¯úwZ I ïµev‡ii Mo ZvcgvÎv 400 c Ges e„n¯úwZ, ïµ I kwbev‡ii Mo ZvcgvÎv 410 c | kwbev‡ii ZvcgvÎv 420 c | kwbev‡ii ZvcgvÎv 420 c n‡j eyaev‡ii ZvcgvÎv KZ? bvwm©s I wgWIqvBdvwi Awa`߇ii wmwbqi ÷vd bvm© 2018 380 c 390 c 410 c 420 c DËi: L kwbev‡ii ZvcgvÎv †`qv Av‡Q, eyaev‡ii ZvcgvÎv †ei Ki‡Z n‡e| cÖkœvbymv‡i, eyaev‡ii (e„n¯úwZ I ïµevimn) ZvcgvÎvi Mo kwbev‡ii (e„n¯úwZ I ïµevimn) ZvcgvÎvi M‡oi †P‡q Kg, ZvB kwbev‡ii ZvcgvÎv †_‡K we‡qvM Ki‡Z n‡e|  kwbev‡ii ZvcgvÎv = 420 c - (13) = 390 c 108. K, L I M Gi gvwmK Mo †eZb 500 UvKv| L, M I N Gi gvwmK Mo †eZb 450 UvKv| K Gi †eZb 540 UvKv n‡j N Gi †eZb KZ? cÖvK-cÖv_wgK mn. wkÿK (cÙv) 2013 375 UvKv 380 UvKv 385 UvKv 390 UvKv DËi: N K Gi †eZb †`qv Av‡Q, N Gi †eZb †ei Ki‡Z n‡e| K Gi ( L I M mn) M‡oi Zzjbvq N ( L I M mn) Mo Kg, ZvB K Gi †eZb †_‡K we‡qvM Ki‡Z n‡e|  N Gi †eZb = 540 - (503) = 540 - 150 = 390 UvKv | mgvavb NM LK mgvavb NM LK mgvavb NM LK mgvavb NM LK mgvavb NM LK mgvavb NM LK m¤ú~Y© Aa¨vqwU‡Z †Kv_vI †Kvb fzj ÎæwU cwijwÿZ n‡j Avgv‡K `qv K‡i AewnZ Ki‡eb|  †dmey‡K fb/ kabial.noor A_ev B‡gB‡j kabialnoor@gmail.com AewnZ Kiæb|
  • 21. Math Tutor  21 109. 20 Rb QvÎ MwYZ cixÿvq AskMÖnY Kij| Zv‡`i g‡a¨ `yBRb M‡o 60 b¤^i, †Zi Rb M‡o 65 b¤^i I Aewkó mK‡j M‡o 55 b¤^i †cj| QvÎiv M‡o KZ b¤^i †cj? 24ZgwewmGm(wjwLZ) 2 Rb Qv‡Îi Mo b¤^i = 60  2 Rb Qv‡Îi †gvU b¤^i = 60  2 = 120 13 Rb Qv‡Îi Mo b¤^i = 65 13 Rb Qv‡Îi †gvU b¤^i = 65  13 = 845 Aewkó QvÎ msL¨v = 20 - 2 - 13 Rb = 5 Rb 5 Rb Qv‡Îi Mo b¤^i = 55  5 Rb Qv‡Îi †gvU b¤^i = 55  5 = 275 20 Rb Qv‡Îi †gvU b¤^i = 120 + 845 + 275 = 1240  20 Rb Qv‡Îi Mo b¤^i = 20 1240 = 62| (DËi) 110. 5 Rb evj‡Ki eq‡mi Mo 10 eQi| H `‡j AviI 2 Rb evjK †hvM w`j| Zv‡`i mK‡ji eq‡mi Mo nq 12 eQi| †hvM`vbKvix evjK `ywU hw` mgeqmx nq Z‡e Zv‡`i cÖ‡Z¨‡Ki eqm KZ? cywjkmve-B¯ú‡c±i (wbi¯¿)wb‡qvMcixÿv(cyiæl/bvix)2012 (wjwLZ) 5 Rb evj‡Ki eq‡mi Mo 10 eQi  5 Rb evj‡Ki †gvU eqm = 105 eQi = 50 eQi Avevi, (5+2) ev 7 Rb evj‡Ki Mo 12 eQi  7 Rb evj‡Ki †gvU eqm = 127 eQi = 84 eQi| 2 Rb evj‡Ki †gvU eqm = 84 - 50 eQi = 34 eQi `yRb evjK mgqeqmx nIqvq Zv‡`i eq‡mi Mo n‡e Zv‡`i cÖ‡Z¨‡Ki eqm|  Zv‡`i cÖ‡Z¨‡Ki eqm = 2 34 eQi = 17 eQi| (DËi) 111. K I L Gi gvwmK Av‡qi Mo 300 UvKv, L I M Gi gvwmK Av‡qi Mo 350 UvKv Ges K I M Gi gvwmK Av‡qi Mo 325 UvKv| K Gi gvwmK Avq KZ? cywjk mve-B݇c±iwb‡qvMcixÿv1999 (wjwLZ) K I L Gi gvwmK Mo Avq 300 UvKv K I L Gi gvwmK †gvU Avq = 300  2 UvKv = 600 UvKv L I M Gi gvwmK Mo Avq 350 UvKv L I M Gi gvwmK †gvU Avq = 350  2 UvKv = 700 UvKv K I M Gi gvwmK Mo Avq 325 UvKv K I M Gi gvwmK †gvU Avq = 325  2 UvKv = 650 UvKv GLb, K + L + L + M + K + M Gi †gvU Avq = 600 + 700 + 650 UvKv ev, 2 ( K + L + M) Gi †gvU Avq = 1950 UvKv  K + L + M Gi †gvU Avq = 2 1950 UvKv = 975 UvKv myZivs, K Gi gvwmK Avq = (K + L + M Gi gvwmK Avq) - ( L + M Gi gvwmK Avq) = (975 - 700) UvKv = 275 UvKv| (DËi) 112. KwZcq Qv‡Îi MwY‡Zi cÖvß b¤^‡ii mgwó 1190 Gi mv‡_ 88 b¤^i cÖvß GKRb Qv‡Îi b¤^i †hvM nIqv‡K Qv·`i cÖvß b¤^‡ii Mo 1 †e‡o †Mj| KZRb Qv‡Îi cÖvß b¤^‡ii mgwó 1190? ¯^v¯’¨IcwieviKj¨vY gš¿Yvj‡qi ¯^v¯’¨wkÿvIcwieviKj¨vYwefv‡MiZ…Zxq†kÖwYiRbej-19(wjwLZ) g‡b Kwi, †gvU Qv‡Îi msL¨v = x Rb Ges Zv‡`i b¤^‡ii Mo = x 1190 1 Rb Qv‡Îi 88 b¤^i †hvM nIqvq †gvU QvÎ = x+1 Rb Ges Zv‡`i Mo = 1 881190   x kZ©g‡Z, 1 881190   x - x 1190 = 1 ev, )x(x xx 1 119011901278   = 1 ev, x2 + x = 88x  1190 = 0 ev, x2 + x  88x  1190 = 0 ev, x2  87x  1190 = 0 ev, x2  70x  17x + 1190 = 0 ev, x( x - 70) - 17 ( x - 70) = 0 ev, (x - 70) (x - 17) = 0 x - 70 = 0 A_ev x - 17 = 0  x = 70  x = 17 mgvavb mgvavb mgvavb mgvavb ïay wjwLZ Av‡jvPbv 
  • 22. 22  Math Tutor myZivs QvÎ msL¨v 70 A_ev 17 Rb| 113. GKRb †`vKvb`vi 12 w`‡b 500 UvKv Avq Ki‡jv Avi cÖ_g 4 w`‡bi Mo Avq 40 UvKv n‡j Aewkó w`b¸wji Mo Avq KZ? evsjv‡`k†ijI‡q mnKvix†÷kbgv÷vi2018(wjwLZ) †`qv Av‡Q, 12 w`‡bi †gvU Avq = 500 UvKv cÖ_g 4 w`‡b †gvU Avq = 40 4 = 160 UvKv Aewkó (12 - 4) ev 8 w`‡bi Avq = 500 - 160 = 340 UvKv| 114. 7wU msL¨vi Mo 40| Gi mv‡_ 3wU msL¨v †hvM Kiv n‡jv| msL¨v 3wUi Mo 21| mgwóMZfv‡e 10wU msL¨vi Mo KZ? cwi‡ekAwa`߇iiAwdmmnKvix Kvg Kw¤úDUvigy`ªvÿwiK2018(wjwLZ) 7wU msL¨vi Mo 40  7wU msL¨vi mgwó = 40 7 = 280 3 wU msL¨vi Mo 21  3wU msL¨vi mgwó = 21  3 = 63 (7 + 3) ev 10 wU msL¨vi mgwó = 280 + 63 = 343  10 wU msL¨vi Mo = 10 343 = 34.3 | (DËi) 115. hw` 5wU µwgK we‡Rvo msL¨vi Mo 55 nq Z‡e †kl `ywU msL¨vi Mo KZ? cÖv_wgKIMYwkÿvgš¿Yvj‡qi mvuUgy`ªvÿwiKKvgKw¤úDUviAcv‡iUi2017(wjwLZ) g‡bKwi, 1g µwgK we‡Rvo msL¨vwU x 2q Ó Ó Ó x + 2 3q Ó Ó Ó x + 4 4_© Ó Ó Ó x + 6 5g Ó Ó Ó x + 8 †`qv Av‡Q, 5wU µwgK we‡Rvo msL¨vi Mo 55 5 wU µwgK we‡Rvo msL¨vi mgwó 555 = 275 cÖkœg‡Z, x + x + 2 + x + 4 + x + 6 + x + 8 = 275 ev, 5x + 20 = 275 ev, 5x = 275 - 20 ev, 5x = 255  x = 5 255 = 51 †kl `ywU msL¨v h_vµ‡g x + 6 = 51 + 6 = 57 Ges x + 8 = 51 + 8 = 59 |  †kl `ywU msL¨vi Mo = 2 5957 = 2 116 = 58 116. wcZv I gvZvi Mo eqm 35 eQi| wcZv, gvZv I cy‡Îi Mo eqm 27 eQi n‡j cy‡Îi eqm KZ? e¯¿ I cvUgš¿Yvj‡qiDc-mnvKvixcvUDbœqbKg©KZ©v2012(wjwLZ) wcZv I gvZvi Mo eqm 35 eQi  wcZv I gvZvi †gvU eqm = 352 eQi = 70 eQi wcZv, gvZv I cy‡Îi Mo eqm 27 eQi  wcZv, gvZv I cy‡Îi †gvU eqm = 273 eQi = 81 eQi cy‡Îi eqm = 81 - 70 eQi = 11 eQi| (DËi) 117. wcZv I Zv‡`i Pvi mšÍv‡bi eq‡mi Mo 22 eQi 5 gvm| gvZv I Zvu‡`i H Pvi mšÍv‡bi eq‡mi Mo 21 eQi 2 gvm| wcZvi eqm 45 eQj n‡j, gvZvi eqm KZ? wb¤œ gva¨wgKMwYZ(1996wkÿvel©)cÖkœgvjv3 wcZv I Pvi mšÍv‡bi eq‡mi mgwó = 22 eQi 5 gvm  5 = 112 eQi 1 gvm  Pvi mšÍv‡bi eq‡mi mgwó = 112 eQi 1 gvm - 45 eQi = 67 eQi 1 gvm Avevi, gvZv I Pvi mšÍv‡bi eq‡mi mgwó = 21 eQi 2 gvm  5 = 105 eQi 10 gvm  gvZvi eqm = gvZv I Pvi mšÍv‡bi eq‡mi mgwó - Pvi mšÍv‡bi eq‡mi mgwó = 105 eQi 10 gvm - 67 eQi 1 gvm = 38 eQi 9 gvm| (DËi) 118. †Kvb we`¨vj‡qi GKwU †kÖwYi 25 Rb Qv‡Îi eq‡mi Mo 12 eQi| H †kÖwY‡Z 14, 15 I 21 eQi eq‡mi 3 Rb bZzb QvÎ fwZ© nj| H †kÖwY‡Z eZ©gv‡b Qv·`i eq‡mi Mo KZ? wb¤œ gva¨wgKMwYZ(1996wkÿvel©) cÖkœgvjv3 25 Rb Qv‡Îi †gvU eqm = 12  25 = 300 eQi 3 Rb bZzb Qv‡Îi †gvU eqm = (14 + 15 + 21 ) eQi = 50 eQi| (25 + 3) ev 28 Rb Qv‡Îi †gvU eqm = 300 + 50 eQi = 350 eQi| 28 Rb Qv‡Îi eq‡mi Mo = 28 350 eQi = 12.5 eQi AZGe, H †kÖwY‡Z eZ©gv‡b Qv·`i eq‡mi Mo = 12.5 eQi| (DËi) mgvavb mgvavb mgvavb mgvavb mgvavb mgvavb