SlideShare una empresa de Scribd logo
1 de 56
ME 6604 - GAS DYNAMICS AND JET PROPULSION
UNIT – I
BASIC CONCEPTS AND FUNDAMENTALS OF
COMPRESSIBLE FLOW
T.SURESH
ASSISTANT PROFESSOR
DEPT OF MECHANICAL ENGG
KAMARAJ COLLEGE OF ENGINEERING
PART - A
• FUNDAMENTALS OF COMPRESSIBLE FLOW
• Energy and momentum equations for compressible
fluid flows, various regions of flows, reference
velocities, stagnation state, velocity of sound,
critical states, Mach number, critical Mach number,
types of waves, Mach cone, Mach angle, effect of
Mach number on compressibility.
•
PART – B
• Flow through variable area duct
• Isentropic flow through variable area ducts, T-s
and h-s diagrams for nozzle and diffuser flows,
area ratio as a function of Mach number, mass
flow rate through nozzles and diffusers, effect
of friction in flow through nozzles
FLOW THROUGH VARIABLE AREA DUCTS
FLOW THROUGH VARIABLE
AREA DUCTS
• As a gas is forced through a tube, the gas molecules are deflected by
the walls of the tube. If the speed of the gas is much less than the
speed of sound of the gas, the density of the gas remains constant
and the velocity of the flow increases. However, as the speed of the
flow approaches the speed of sound we must
consider compressibility effects on the gas. The density of the gas
varies from one location to the next. Considering flow through a
tube, as shown in the figure, if the flow is very gradually
compressed (area decreases) and then gradually expanded (area
increases), the flow conditions return to their original values. We say
that such a process is reversible. From a consideration of the second
law of thermodynamics, a reversible flow maintains a constant value
of entropy. Engineers call this type of flow an isentropicflow; a
combination of the Greek word "iso" (same) and entropy.
FLOW THROUGH VARIABLE
AREA DUCTS
FLOW THROUGH VARIABLE
AREA DUCTS
• The conservation of mass is a fundamental concept of
physics. Within some problem domain, the amount of
mass remains constant; mass is neither created or
destroyed. The mass of any object is simply the volume
that the object occupies times the density of the
object. For a fluid (a liquid or a gas) the density,
volume, and shape of the object can all change within
the domain with time and mass can move through the
domain.
• The conservation of mass (continuity) tells us that the
mass flow rate mdot through a tube is a constant and
equal to the product of the density r, velocity V, and
flow area A:
Conservation of mass
Conservation of mass
• Solid Mechanics
• The conservation of mass is a fundamental concept of physics along with the conservation of energy and
theconservation of momentum. Within some problem domain, the amount of mass remains constant--mass
is neither created nor destroyed. This seems quite obvious, as long as we are not talking about black holes
or very exotic physics problems. The mass of any object can be determined by multiplying the volume of
the object by the density of the object. When we move a solid object, as shown at the top of the slide, the
object retains its shape, density, and volume. The mass of the object, therefore, remains a constant between
state "a" and state "b."
• Fluid Statics
• In the center of the figure, we consider an amount of a static fluid , liquid or gas. If we change the fluid
from some state "a" to another state "b" and allow it to come to rest, we find that, unlike a solid, a fluid may
change its shape. The amount of fluid, however, remains the same. We can calculate the amount of fluid by
multiplying the density times the volume. Since the mass remains constant, the product of the density and
volume also remains constant. (If the density remains constant, the volume also remains constant.) The
shape can change, but the mass remains the same.
• Fluid Dynamics
• Finally, at the bottom of the slide, we consider the changes for a fluid that is moving through our domain.
There is no accumulation or depletion of mass, so mass is conserved within the domain. Since the fluid is
moving, defining the amount of mass gets a little tricky. Let's consider an amount of fluid that passes
through point "a" of our domain in some amount of time t. If the fluid passes through an area A at
velocity V, we can define the volume Vol to be:
• Vol = A * V * t
Conservation Laws for a Real Fluid
  0. 


V
t



    wqVe
t
e







.
    gVV
t
V
ij
ˆ.. 



 

iiij pij
 '

    gpVV
t
V
ij ˆ.. '




 

Conservation of Mass Applied to 1 D Steady Flow
  0. 


V
t



Conservation of Mass:
Conservation of Mass for Stead Flow:
  0.  V


Integrate from inlet to exit :
  onstant. CVdV
V



One Dimensional Stead Flow
A,
V

A+dA,
V+dV d
dl
  onstant.. CdxdAV
V



  onstant. Cdx
dx
VAd


  0VAd 
0
A
dA
V
dVd


Conservation of Momentum For A Real Fluid Flow
  pVV ij
 '
.. 

  VdpVdVdVV
VVV
ij   '
.. 

No body forces
One Dimensional Steady flow
A,
V

A+dA,
V+dV d
dl
  dAdxpdxdAdAdxVV
V
w
VV
ij   '
. 

     dx
dx
pAd
dx
dx
Ad
dx
dx
AVd ww
 
 2
     pAdAdAVd ww   2
Conservation of Energy Applied to 1 D Steady Flow
    wqVe
t
e







.
Steady flow with negligible Body Forces and no heat transfer is
adiabatic real flow
  wVe 

 .
For a real fluid the rate of work transfer is due to viscous stress and
pressure. Neglecting the the effect of viscous dissipation.
  VdAnpVe

.ˆ.  
For a total change from inlet to exit :
   
AV
VdAnpVdVe

.ˆ. 
Using gauss divergence theorem:
One dimensional flow
   
VV
VdVpVdVe

.. 
   
VV
dAdxVpdAdxVe

.. 
   
  dx
dx
pAVd
dx
dx
eVAd 
   pAVdeVAd 
2
2
V
ue 




























 AV
p
d
V
uVAd


2
2
0
2
2























Vp
uVAd

 0
2
2















V
hVAd 
Summary of Real Fluid Analysis
0
A
dA
V
dVd


     pAdAdAVd ww   2
0
2
2















V
hVAd 
Further Analysis of Momentum equation
     pAdAdVAdVVAVd ww  
   pAdAdVAdV ww  
   pAdPxddVm w  
   pAdAddVm ww  
pdAAdpPdxxdPPxddVm www  
Frictional Flow in A Constant Area Duct
0
V
dVd


AdpPdxPxddVm ww  
0
2
2















V
hVd 
Frictional Flow in A Constant Area Duct
AdpPdxdVm w  
w
The shear stress is defined as and average
viscous stress which is always opposite to the
direction of flow for the entire length dx.
AdpPdxPxddVm ww  
AdpPdxAVdV w  
AdpPdxAVdV w  
Divide by AV2
22
V
dp
dx
A
P
VV
dV w



0
V
dVd


00
2
2






 VdVdTC
V
hd p
One dimensional Frictional Flow of A Perfect Gas
0
V
dVd


0VdVdTCp
2
V
dp
dx
A
P
f
V
dV


T
dT
V
dV
p
dp
T
dTd
p
dp



Sonic Equation
2
22
2
2
2 2
2
RT
dTV
RT
VdV
MdM
RT
V
c
V
M


Differential form of above equation:
T
dT
V
dV
M
dM
2

T
dT
V
dV
p
dp

T
dT
M
dM
p
dp
2

 
  M
dM
M
M
T
dT














2
2
2
1
1
1


Energy equation can be modified as:
T
dT
M
dM
p
dp
2

 
  M
dM
M
M
M
dM
p
dp














2
2
2
1
1
1
2
1


1D steady real flow through constant area duct : momentum equation
022

V
dp
dx
A
P
VV
dV w


022

p
dp
V
p
dx
A
P
VV
dV w


022

p
dp
V
p
dx
A
P
VV
dV w


022

p
dp
V
p
dx
A
P
VV
dV w




022

p
dp
V
p
dx
A
P
VV
dV w




0
1
22

p
dp
M
dx
A
P
VV
dV w


0
1
22

p
dp
M
dx
A
P
VV
dV w


 
  M
dM
M
M
T
dT














2
2
2
1
1
1


 
  M
dM
M
M
M
dM
p
dp














2
2
2
1
1
1
2
1


T
dT
V
dV
M
dM
2

Differential Equations for Frictional Flow Through
Constant Area Duct
T
dT
M
dM
p
dp
2

0
1
22

p
dp
M
dx
A
P
VT
dT
M
dM w


 
 
 
  0
2
1
1
1
2
11
2
1
1
1
2
2
22
2
2









































M
dM
M
M
M
dM
M
dx
A
P
VM
dM
M
M
M
dM w
















 

 dx
A
P
VM
MM
M
dM w
22
22
1
2
1
1




  








 dx
A
P
VM
M
T
dT w
22
4
1
1


  








 dx
A
P
VM
MM
p
dp w
22
22
1
11












 

 dx
A
P
VM
MM
M
dM w
22
22
1
2
1
1




Second Law Analysis
vdpdTCTds p 
dp
T
v
T
dT
Cds p 
p
dp
R
T
dT
Cds p 
p
dp
R
T
dT
Cds p 
p
dp
T
dT
C
ds
p 
 1









 2
1
1
V
TC
T
dT
T
dT
C
ds p
p 

 









TT
T
T
dT
T
dT
C
ds
p 02
1
1


TT
dT
T
dT
C
ds
p 


02
11



 


T
T
T
T
s
s p iii
TT
dT
T
dT
C
ds
02
11

































2
1
0
0
/1
ln
iip
i
TT
TT
T
T
C
ss
  








 dx
A
P
VM
M
T
dT w
22
4
1
1


Fanno Line
Adiabatic flow in a constant area with friction is termed as Fanno flow.
Isentropic Nozzle and Adiabatic Duct
C Nozzle Discharge Curve
CD Nozzle + Discharge Curve
Nature of Real Flow
Entropy of an irreversible adiabatic system should always increase!
 






 dx
A
P
V
MCds w
p 2
2
1













 

 dx
A
P
VM
MM
M
dM w
22
22
1
2
1
1




  








 dx
A
P
VM
M
T
dT w
22
4
1
1


  








 dx
A
P
VM
MM
p
dp w
22
22
1
11


M dM dp dT dV
<1 +ve -ve -ve +ve
>1 -ve +ve +ve -ve
Compressible Real Flow
),(Re, M
d
k
functionf 
Effect of Mach number is negligible….
)(Re,
d
k
functionf 

1
Re 
n
T
T







2
1
2
1


Pressure drop in Compressible Flow
Laminar Flow
Turbulent Flows



 









22
2
2
1
1
1
MM
M
M
dM
dx
A
P
f


Re
16
f
2
9.0
Re
74.5
7.3
log
0625.0














hD
k
f
Moody Chart
Compressible Flow Through Finite Length Duct
Integrate over a length l



 









22
2
2
1
1
14
MM
M
M
dM
D
fdx
h


M
dM
MM
M
D
fdx e
i
M
M
l
h




 



22
2
0
2
1
1
14





 









22
2
2
1
1
14
MM
M
M
dM
D
fdx
h



















 






 









22
22
22
2
1
1
2
1
1
ln
2
11114
ie
ei
eih
MM
MM
MM
l
D
f





is a Mean friction factor over a length l .
f
Maximum Allowable Length
• The length of the duct required to give a Mach number of
1 with an initial Mach number Mi
Similarly

















 






 









2
2
2max
2
1
1
1
2
1
1
ln
2
1
1
114
i
i
ih
M
M
M
l
D
f





 
 
















1
2
2
*
2
1
1
2
1
1
*
iM
p
p
M
dM
M
M
p
dp
p
p


 
 














1
2
2
2
1
1
1
*
ii M
T
T
M
dM
M
M
T
dT


2/1
2
*
2
1
1
2
1
1














i
i MMp
p
















2
*
2
1
1
2
1
iMT
T


2
5.1
5 .
111
1.384
293
103.3
m
sN
T
T






 

 1/
2
2
1
1






 



i
o
M
p
p
*
0
*
0
*
0
0
p
p
p
p
p
p

  1
2
**
0
0
2
1
2
1
1



















iM
p
p
p
p
   12
2
*
0
0
2
1
2
1
1
1



















i
i
M
Mp
p
Compressible Frictional Flow through
Constant Area Duct
HD
fL *4
0
*
0
p
p
p
p*
T
T*
V
V *
M
Frictional Flow in A Variable Area Duct
0
A
dA
V
dVd


A,
V

A+dA,
V+dV d
0
4
2
2
2

V
dV
Mdx
D
fM
p
dp
h


T
dTd
p
dp



0
A
dA
V
dVd


A
dA
V
dV
T
dT
p
dp

0
4
2
2
2

V
dV
Mdx
D
fM
A
dA
V
dV
T
dT
h


T
dT
M
dM
V
dV
T
dT
V
dV
M
dM
22

0
2
4
22
2
2















T
dT
M
dM
Mdx
D
fM
A
dA
T
dT
M
dM
T
dT
h


 
  M
dM
M
M
T
dT














2
2
2
1
1
1


0
4
2
2
1
1
1 2
2
2




 dx
D
fM
M
dM
M
M
A
dA
h


dx
D
fM
M
M
A
dA
M
M
M
dM
h
4
21
2
1
1
1
2
1
1 2
2
2
2
2






























Constant Mach number frictional flow
hD
fM
dx
dA 2
2

  dx
D
fM
M
A
dA
M
M
dM
M
h
4
22
1
1
2
1
11
2
222 





 






 

Sonic Point : M=1
0
4
22
1
1
2
1
1 





 






 
 dx
D
f
A
dA
h

0
4
22
1
2
1






 






 
 dx
D
f
A
dA
h

dx
D
f
A
dA
h
4
2


54
Stagnation Properties
Consider a fluid flowing into a diffuser at a velocity , temperature T, pressure P, and
enthalpy h, etc. Here the ordinary properties T, P, h, etc. are called the static properties; that
is, they are measured relative to the flow at the flow velocity. The diffuser is sufficiently
long and the exit area is sufficiently large that the fluid is brought to rest (zero velocity) at the
diffuser exit while no work or heat transfer is done. The resulting state is called the
stagnation state.

V
We apply the first law per unit mass for one entrance, one exit, and neglect the potential
energies. Let the inlet state be unsubscripted and the exit or stagnation state have the
subscript o.
q h
V
w h
V
net net o
o
    
 2 2
2 2
55
Since the exit velocity, work, and heat transfer are zero,
h h
V
o  
2
2
The term ho is called the stagnation enthalpy (some authors call this the total enthalpy). It is
the enthalpy the fluid attains when brought to rest adiabatically while no work is done.
If, in addition, the process is also reversible, the process is isentropic, and the inlet and exit
entropies are equal.
s so 
The stagnation enthalpy and entropy define the stagnation state and the isentropic
stagnation pressure, Po. The actual stagnation pressure for irreversible flows will be
somewhat less than the isentropic stagnation pressure as shown below.
56

Más contenido relacionado

La actualidad más candente

Basics of IC engine
Basics of IC engineBasics of IC engine
Basics of IC engine
SLA1987
 

La actualidad más candente (20)

Classification of Turbines
Classification of TurbinesClassification of Turbines
Classification of Turbines
 
Pelton Wheel Turbine Part 2
Pelton Wheel Turbine Part 2Pelton Wheel Turbine Part 2
Pelton Wheel Turbine Part 2
 
valve timing diagram of two stroke & four stroke engine
valve timing diagram of two stroke & four stroke enginevalve timing diagram of two stroke & four stroke engine
valve timing diagram of two stroke & four stroke engine
 
Kinematic Inversions
Kinematic InversionsKinematic Inversions
Kinematic Inversions
 
Proulsion I - SOLVED QUESTION BANK - RAMJET ENGINE
Proulsion  I - SOLVED QUESTION BANK - RAMJET ENGINEProulsion  I - SOLVED QUESTION BANK - RAMJET ENGINE
Proulsion I - SOLVED QUESTION BANK - RAMJET ENGINE
 
Compressible flow
Compressible flowCompressible flow
Compressible flow
 
Velocity Triangle for Moving Blade of an impulse Turbine
Velocity Triangle for Moving Blade of an impulse TurbineVelocity Triangle for Moving Blade of an impulse Turbine
Velocity Triangle for Moving Blade of an impulse Turbine
 
Brayton cycle
Brayton cycleBrayton cycle
Brayton cycle
 
Basics of IC engine
Basics of IC engineBasics of IC engine
Basics of IC engine
 
Regenerative rankine cycle - Complete Overview
Regenerative rankine cycle - Complete OverviewRegenerative rankine cycle - Complete Overview
Regenerative rankine cycle - Complete Overview
 
Centrifugal compressor
Centrifugal compressor Centrifugal compressor
Centrifugal compressor
 
Bending and Torsion A.Vinoth Jebaraj
Bending and Torsion A.Vinoth JebarajBending and Torsion A.Vinoth Jebaraj
Bending and Torsion A.Vinoth Jebaraj
 
Centrifugal pump
Centrifugal pumpCentrifugal pump
Centrifugal pump
 
Air standard cycles
Air standard cyclesAir standard cycles
Air standard cycles
 
Steam Turbines
Steam TurbinesSteam Turbines
Steam Turbines
 
Air compressor
Air compressorAir compressor
Air compressor
 
Hydraulic Turbines
Hydraulic TurbinesHydraulic Turbines
Hydraulic Turbines
 
Gas turbine 2 - regeneration and intercooling
Gas turbine   2 - regeneration and intercoolingGas turbine   2 - regeneration and intercooling
Gas turbine 2 - regeneration and intercooling
 
centrifugal compressors overview
centrifugal compressors overviewcentrifugal compressors overview
centrifugal compressors overview
 
Ic engine
Ic engineIc engine
Ic engine
 

Destacado

Gas dynamics and_jet_propulsion- questions & answes
Gas dynamics and_jet_propulsion- questions & answesGas dynamics and_jet_propulsion- questions & answes
Gas dynamics and_jet_propulsion- questions & answes
Manoj Kumar
 
Gas dynamics relations
Gas dynamics relationsGas dynamics relations
Gas dynamics relations
Uma Maheshwar
 

Destacado (8)

Compressible Flow
Compressible FlowCompressible Flow
Compressible Flow
 
Nozzle and compressible flow
Nozzle and compressible flow Nozzle and compressible flow
Nozzle and compressible flow
 
Compressible flow basics
Compressible flow basicsCompressible flow basics
Compressible flow basics
 
Gas dynamics and_jet_propulsion- questions & answes
Gas dynamics and_jet_propulsion- questions & answesGas dynamics and_jet_propulsion- questions & answes
Gas dynamics and_jet_propulsion- questions & answes
 
Gas dynamics relations
Gas dynamics relationsGas dynamics relations
Gas dynamics relations
 
Me2351 gas dynamics and jet propulsion-qb
Me2351 gas dynamics and jet propulsion-qbMe2351 gas dynamics and jet propulsion-qb
Me2351 gas dynamics and jet propulsion-qb
 
FLUID MECHANICS
FLUID MECHANICSFLUID MECHANICS
FLUID MECHANICS
 
Types of fluid flow best ppt
Types of fluid flow best pptTypes of fluid flow best ppt
Types of fluid flow best ppt
 

Similar a Unit - I BASIC CONCEPTS AND ISENTROPIC FLOW IN VARIABLE AREA DUCTS

T1 - Essential Fluids - 2023.pptx
T1 - Essential Fluids - 2023.pptxT1 - Essential Fluids - 2023.pptx
T1 - Essential Fluids - 2023.pptx
Keith Vaugh
 
Fluid mechanics-ppt
Fluid mechanics-pptFluid mechanics-ppt
Fluid mechanics-ppt
Anil Rout
 
modeling of turbulent flows : prandtl mixing length theory
modeling of turbulent flows : prandtl mixing length theorymodeling of turbulent flows : prandtl mixing length theory
modeling of turbulent flows : prandtl mixing length theory
ShanibaHaneefa1
 

Similar a Unit - I BASIC CONCEPTS AND ISENTROPIC FLOW IN VARIABLE AREA DUCTS (20)

Review of basic Aerodynamics.pdf
Review of basic Aerodynamics.pdfReview of basic Aerodynamics.pdf
Review of basic Aerodynamics.pdf
 
Nozzles - Lecture A
Nozzles - Lecture ANozzles - Lecture A
Nozzles - Lecture A
 
Flow Measurement
Flow MeasurementFlow Measurement
Flow Measurement
 
Fluid mechanics - Motion of Fluid Particles and Stream
Fluid mechanics - Motion of Fluid Particles and StreamFluid mechanics - Motion of Fluid Particles and Stream
Fluid mechanics - Motion of Fluid Particles and Stream
 
T1 - Essential Fluids - 2023.pptx
T1 - Essential Fluids - 2023.pptxT1 - Essential Fluids - 2023.pptx
T1 - Essential Fluids - 2023.pptx
 
Ostwald
OstwaldOstwald
Ostwald
 
Ostwald
OstwaldOstwald
Ostwald
 
Fluid kinematics
Fluid kinematicsFluid kinematics
Fluid kinematics
 
Chapter 3.pptx
Chapter 3.pptxChapter 3.pptx
Chapter 3.pptx
 
sheet of pipe flow
sheet of pipe flowsheet of pipe flow
sheet of pipe flow
 
Fluid mechanics-ppt
Fluid mechanics-pptFluid mechanics-ppt
Fluid mechanics-ppt
 
modeling of turbulent flows : prandtl mixing length theory
modeling of turbulent flows : prandtl mixing length theorymodeling of turbulent flows : prandtl mixing length theory
modeling of turbulent flows : prandtl mixing length theory
 
Mechanics of fluids note
Mechanics of fluids noteMechanics of fluids note
Mechanics of fluids note
 
Basic equation of fluid flow mechan.pptx
Basic equation of fluid flow mechan.pptxBasic equation of fluid flow mechan.pptx
Basic equation of fluid flow mechan.pptx
 
FluidMechanics wren 201 Lecture 1.pptx
FluidMechanics wren 201 Lecture 1.pptxFluidMechanics wren 201 Lecture 1.pptx
FluidMechanics wren 201 Lecture 1.pptx
 
Heat and mass transfer equation; continuity equation; momentum equation;
Heat and mass transfer equation; continuity equation; momentum equation;Heat and mass transfer equation; continuity equation; momentum equation;
Heat and mass transfer equation; continuity equation; momentum equation;
 
Unit41.pptx
Unit41.pptxUnit41.pptx
Unit41.pptx
 
chapter05--visto.pdf
chapter05--visto.pdfchapter05--visto.pdf
chapter05--visto.pdf
 
Fluid flow Equations.pptx
Fluid flow Equations.pptxFluid flow Equations.pptx
Fluid flow Equations.pptx
 
Fluid fundamentals
Fluid  fundamentalsFluid  fundamentals
Fluid fundamentals
 

Más de sureshkcet (12)

Powerplant Engg Unit - II
Powerplant Engg Unit - IIPowerplant Engg Unit - II
Powerplant Engg Unit - II
 
powerplant Engg Unit 1
powerplant Engg Unit 1powerplant Engg Unit 1
powerplant Engg Unit 1
 
Unit v rocket propulsion
Unit   v rocket propulsionUnit   v rocket propulsion
Unit v rocket propulsion
 
Unit iii normal &amp; oblique shocks
Unit   iii normal &amp; oblique shocksUnit   iii normal &amp; oblique shocks
Unit iii normal &amp; oblique shocks
 
Unit i basic concept of isentropic flow
Unit   i basic concept of isentropic flowUnit   i basic concept of isentropic flow
Unit i basic concept of isentropic flow
 
THERMODYNAMICS - UNIT - V
 THERMODYNAMICS - UNIT - V THERMODYNAMICS - UNIT - V
THERMODYNAMICS - UNIT - V
 
THERMODYNAMICS UNIT - I
THERMODYNAMICS UNIT - ITHERMODYNAMICS UNIT - I
THERMODYNAMICS UNIT - I
 
Thermodynamics - Unit - II
Thermodynamics - Unit - II Thermodynamics - Unit - II
Thermodynamics - Unit - II
 
THERMODYNAMICS UNIT - IV
THERMODYNAMICS UNIT - IVTHERMODYNAMICS UNIT - IV
THERMODYNAMICS UNIT - IV
 
THERMODYNAMICS Unit III
THERMODYNAMICS Unit  III THERMODYNAMICS Unit  III
THERMODYNAMICS Unit III
 
UNIT - V ROCKET PROPULSION
UNIT - V ROCKET PROPULSIONUNIT - V ROCKET PROPULSION
UNIT - V ROCKET PROPULSION
 
UNIT - IV JET ENGINE PROPULSION
UNIT - IV JET ENGINE PROPULSIONUNIT - IV JET ENGINE PROPULSION
UNIT - IV JET ENGINE PROPULSION
 

Último

Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Christo Ananth
 
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
dollysharma2066
 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Dr.Costas Sachpazis
 
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar ≼🔝 Delhi door step de...
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar  ≼🔝 Delhi door step de...Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar  ≼🔝 Delhi door step de...
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar ≼🔝 Delhi door step de...
9953056974 Low Rate Call Girls In Saket, Delhi NCR
 

Último (20)

PVC VS. FIBERGLASS (FRP) GRAVITY SEWER - UNI BELL
PVC VS. FIBERGLASS (FRP) GRAVITY SEWER - UNI BELLPVC VS. FIBERGLASS (FRP) GRAVITY SEWER - UNI BELL
PVC VS. FIBERGLASS (FRP) GRAVITY SEWER - UNI BELL
 
Water Industry Process Automation & Control Monthly - April 2024
Water Industry Process Automation & Control Monthly - April 2024Water Industry Process Automation & Control Monthly - April 2024
Water Industry Process Automation & Control Monthly - April 2024
 
Intze Overhead Water Tank Design by Working Stress - IS Method.pdf
Intze Overhead Water Tank  Design by Working Stress - IS Method.pdfIntze Overhead Water Tank  Design by Working Stress - IS Method.pdf
Intze Overhead Water Tank Design by Working Stress - IS Method.pdf
 
Vivazz, Mieres Social Housing Design Spain
Vivazz, Mieres Social Housing Design SpainVivazz, Mieres Social Housing Design Spain
Vivazz, Mieres Social Housing Design Spain
 
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
 
University management System project report..pdf
University management System project report..pdfUniversity management System project report..pdf
University management System project report..pdf
 
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
 
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar ≼🔝 Delhi door step de...
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar  ≼🔝 Delhi door step de...Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar  ≼🔝 Delhi door step de...
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar ≼🔝 Delhi door step de...
 
KubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlyKubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghly
 
Generative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPTGenerative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPT
 
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
 
Double rodded leveling 1 pdf activity 01
Double rodded leveling 1 pdf activity 01Double rodded leveling 1 pdf activity 01
Double rodded leveling 1 pdf activity 01
 
Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)
 
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
 
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
 
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete RecordCCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
 
UNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular ConduitsUNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular Conduits
 
Thermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.pptThermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.ppt
 
UNIT-IFLUID PROPERTIES & FLOW CHARACTERISTICS
UNIT-IFLUID PROPERTIES & FLOW CHARACTERISTICSUNIT-IFLUID PROPERTIES & FLOW CHARACTERISTICS
UNIT-IFLUID PROPERTIES & FLOW CHARACTERISTICS
 

Unit - I BASIC CONCEPTS AND ISENTROPIC FLOW IN VARIABLE AREA DUCTS

  • 1. ME 6604 - GAS DYNAMICS AND JET PROPULSION UNIT – I BASIC CONCEPTS AND FUNDAMENTALS OF COMPRESSIBLE FLOW T.SURESH ASSISTANT PROFESSOR DEPT OF MECHANICAL ENGG KAMARAJ COLLEGE OF ENGINEERING
  • 2. PART - A • FUNDAMENTALS OF COMPRESSIBLE FLOW • Energy and momentum equations for compressible fluid flows, various regions of flows, reference velocities, stagnation state, velocity of sound, critical states, Mach number, critical Mach number, types of waves, Mach cone, Mach angle, effect of Mach number on compressibility.
  • 3. • PART – B • Flow through variable area duct • Isentropic flow through variable area ducts, T-s and h-s diagrams for nozzle and diffuser flows, area ratio as a function of Mach number, mass flow rate through nozzles and diffusers, effect of friction in flow through nozzles
  • 5. FLOW THROUGH VARIABLE AREA DUCTS • As a gas is forced through a tube, the gas molecules are deflected by the walls of the tube. If the speed of the gas is much less than the speed of sound of the gas, the density of the gas remains constant and the velocity of the flow increases. However, as the speed of the flow approaches the speed of sound we must consider compressibility effects on the gas. The density of the gas varies from one location to the next. Considering flow through a tube, as shown in the figure, if the flow is very gradually compressed (area decreases) and then gradually expanded (area increases), the flow conditions return to their original values. We say that such a process is reversible. From a consideration of the second law of thermodynamics, a reversible flow maintains a constant value of entropy. Engineers call this type of flow an isentropicflow; a combination of the Greek word "iso" (same) and entropy.
  • 7. FLOW THROUGH VARIABLE AREA DUCTS • The conservation of mass is a fundamental concept of physics. Within some problem domain, the amount of mass remains constant; mass is neither created or destroyed. The mass of any object is simply the volume that the object occupies times the density of the object. For a fluid (a liquid or a gas) the density, volume, and shape of the object can all change within the domain with time and mass can move through the domain. • The conservation of mass (continuity) tells us that the mass flow rate mdot through a tube is a constant and equal to the product of the density r, velocity V, and flow area A:
  • 9. Conservation of mass • Solid Mechanics • The conservation of mass is a fundamental concept of physics along with the conservation of energy and theconservation of momentum. Within some problem domain, the amount of mass remains constant--mass is neither created nor destroyed. This seems quite obvious, as long as we are not talking about black holes or very exotic physics problems. The mass of any object can be determined by multiplying the volume of the object by the density of the object. When we move a solid object, as shown at the top of the slide, the object retains its shape, density, and volume. The mass of the object, therefore, remains a constant between state "a" and state "b." • Fluid Statics • In the center of the figure, we consider an amount of a static fluid , liquid or gas. If we change the fluid from some state "a" to another state "b" and allow it to come to rest, we find that, unlike a solid, a fluid may change its shape. The amount of fluid, however, remains the same. We can calculate the amount of fluid by multiplying the density times the volume. Since the mass remains constant, the product of the density and volume also remains constant. (If the density remains constant, the volume also remains constant.) The shape can change, but the mass remains the same. • Fluid Dynamics • Finally, at the bottom of the slide, we consider the changes for a fluid that is moving through our domain. There is no accumulation or depletion of mass, so mass is conserved within the domain. Since the fluid is moving, defining the amount of mass gets a little tricky. Let's consider an amount of fluid that passes through point "a" of our domain in some amount of time t. If the fluid passes through an area A at velocity V, we can define the volume Vol to be: • Vol = A * V * t
  • 10. Conservation Laws for a Real Fluid   0.    V t        wqVe t e        .     gVV t V ij ˆ..        iiij pij  '      gpVV t V ij ˆ.. '       
  • 11. Conservation of Mass Applied to 1 D Steady Flow   0.    V t    Conservation of Mass: Conservation of Mass for Stead Flow:   0.  V   Integrate from inlet to exit :   onstant. CVdV V   
  • 12. One Dimensional Stead Flow A, V  A+dA, V+dV d dl   onstant.. CdxdAV V      onstant. Cdx dx VAd     0VAd  0 A dA V dVd  
  • 13. Conservation of Momentum For A Real Fluid Flow   pVV ij  ' ..     VdpVdVdVV VVV ij   ' ..   No body forces One Dimensional Steady flow A, V  A+dA, V+dV d dl
  • 14.   dAdxpdxdAdAdxVV V w VV ij   ' .        dx dx pAd dx dx Ad dx dx AVd ww    2      pAdAdAVd ww   2
  • 15. Conservation of Energy Applied to 1 D Steady Flow     wqVe t e        . Steady flow with negligible Body Forces and no heat transfer is adiabatic real flow   wVe    . For a real fluid the rate of work transfer is due to viscous stress and pressure. Neglecting the the effect of viscous dissipation.   VdAnpVe  .ˆ.  
  • 16. For a total change from inlet to exit :     AV VdAnpVdVe  .ˆ.  Using gauss divergence theorem: One dimensional flow     VV VdVpVdVe  ..      VV dAdxVpdAdxVe  .. 
  • 17.       dx dx pAVd dx dx eVAd     pAVdeVAd  2 2 V ue                               AV p d V uVAd   2 2 0 2 2                        Vp uVAd   0 2 2                V hVAd 
  • 18. Summary of Real Fluid Analysis 0 A dA V dVd        pAdAdAVd ww   2 0 2 2                V hVAd 
  • 19. Further Analysis of Momentum equation      pAdAdVAdVVAVd ww      pAdAdVAdV ww      pAdPxddVm w      pAdAddVm ww   pdAAdpPdxxdPPxddVm www  
  • 20. Frictional Flow in A Constant Area Duct 0 V dVd   AdpPdxPxddVm ww   0 2 2                V hVd 
  • 21. Frictional Flow in A Constant Area Duct AdpPdxdVm w   w The shear stress is defined as and average viscous stress which is always opposite to the direction of flow for the entire length dx. AdpPdxPxddVm ww   AdpPdxAVdV w  
  • 22. AdpPdxAVdV w   Divide by AV2 22 V dp dx A P VV dV w    0 V dVd   00 2 2        VdVdTC V hd p
  • 23. One dimensional Frictional Flow of A Perfect Gas 0 V dVd   0VdVdTCp 2 V dp dx A P f V dV   T dT V dV p dp T dTd p dp   
  • 24. Sonic Equation 2 22 2 2 2 2 2 RT dTV RT VdV MdM RT V c V M   Differential form of above equation: T dT V dV M dM 2  T dT V dV p dp  T dT M dM p dp 2 
  • 25.     M dM M M T dT               2 2 2 1 1 1   Energy equation can be modified as: T dT M dM p dp 2      M dM M M M dM p dp               2 2 2 1 1 1 2 1  
  • 26. 1D steady real flow through constant area duct : momentum equation 022  V dp dx A P VV dV w   022  p dp V p dx A P VV dV w   022  p dp V p dx A P VV dV w  
  • 28. 0 1 22  p dp M dx A P VV dV w       M dM M M T dT               2 2 2 1 1 1       M dM M M M dM p dp               2 2 2 1 1 1 2 1   T dT V dV M dM 2  Differential Equations for Frictional Flow Through Constant Area Duct T dT M dM p dp 2 
  • 29. 0 1 22  p dp M dx A P VT dT M dM w           0 2 1 1 1 2 11 2 1 1 1 2 2 22 2 2                                          M dM M M M dM M dx A P VM dM M M M dM w                     dx A P VM MM M dM w 22 22 1 2 1 1    
  • 30.             dx A P VM M T dT w 22 4 1 1               dx A P VM MM p dp w 22 22 1 11                 dx A P VM MM M dM w 22 22 1 2 1 1    
  • 31. Second Law Analysis vdpdTCTds p  dp T v T dT Cds p  p dp R T dT Cds p 
  • 32. p dp R T dT Cds p  p dp T dT C ds p   1           2 1 1 V TC T dT T dT C ds p p              TT T T dT T dT C ds p 02 1 1  
  • 33. TT dT T dT C ds p    02 11        T T T T s s p iii TT dT T dT C ds 02 11                                  2 1 0 0 /1 ln iip i TT TT T T C ss             dx A P VM M T dT w 22 4 1 1  
  • 34. Fanno Line Adiabatic flow in a constant area with friction is termed as Fanno flow.
  • 35. Isentropic Nozzle and Adiabatic Duct
  • 37. CD Nozzle + Discharge Curve
  • 38. Nature of Real Flow Entropy of an irreversible adiabatic system should always increase!          dx A P V MCds w p 2 2 1                  dx A P VM MM M dM w 22 22 1 2 1 1                 dx A P VM M T dT w 22 4 1 1               dx A P VM MM p dp w 22 22 1 11  
  • 39. M dM dp dT dV <1 +ve -ve -ve +ve >1 -ve +ve +ve -ve
  • 40. Compressible Real Flow ),(Re, M d k functionf  Effect of Mach number is negligible…. )(Re, d k functionf   1 Re  n T T        2 1 2 1  
  • 41. Pressure drop in Compressible Flow Laminar Flow Turbulent Flows               22 2 2 1 1 1 MM M M dM dx A P f   Re 16 f 2 9.0 Re 74.5 7.3 log 0625.0               hD k f
  • 43. Compressible Flow Through Finite Length Duct Integrate over a length l               22 2 2 1 1 14 MM M M dM D fdx h   M dM MM M D fdx e i M M l h          22 2 0 2 1 1 14  
  • 44.               22 2 2 1 1 14 MM M M dM D fdx h                                       22 22 22 2 1 1 2 1 1 ln 2 11114 ie ei eih MM MM MM l D f      is a Mean friction factor over a length l . f
  • 45. Maximum Allowable Length • The length of the duct required to give a Mach number of 1 with an initial Mach number Mi Similarly                                     2 2 2max 2 1 1 1 2 1 1 ln 2 1 1 114 i i ih M M M l D f                          1 2 2 * 2 1 1 2 1 1 * iM p p M dM M M p dp p p  
  • 46.                   1 2 2 2 1 1 1 * ii M T T M dM M M T dT   2/1 2 * 2 1 1 2 1 1               i i MMp p                 2 * 2 1 1 2 1 iMT T   2 5.1 5 . 111 1.384 293 103.3 m sN T T         
  • 47.  1/ 2 2 1 1            i o M p p * 0 * 0 * 0 0 p p p p p p    1 2 ** 0 0 2 1 2 1 1                    iM p p p p    12 2 * 0 0 2 1 2 1 1 1                    i i M Mp p
  • 48. Compressible Frictional Flow through Constant Area Duct HD fL *4 0 * 0 p p p p* T T* V V * M
  • 49. Frictional Flow in A Variable Area Duct 0 A dA V dVd   A, V  A+dA, V+dV d
  • 52. 0 4 2 2 1 1 1 2 2 2      dx D fM M dM M M A dA h   dx D fM M M A dA M M M dM h 4 21 2 1 1 1 2 1 1 2 2 2 2 2                               Constant Mach number frictional flow hD fM dx dA 2 2 
  • 53.   dx D fM M A dA M M dM M h 4 22 1 1 2 1 11 2 222                  Sonic Point : M=1 0 4 22 1 1 2 1 1                  dx D f A dA h  0 4 22 1 2 1                  dx D f A dA h  dx D f A dA h 4 2  
  • 54. 54 Stagnation Properties Consider a fluid flowing into a diffuser at a velocity , temperature T, pressure P, and enthalpy h, etc. Here the ordinary properties T, P, h, etc. are called the static properties; that is, they are measured relative to the flow at the flow velocity. The diffuser is sufficiently long and the exit area is sufficiently large that the fluid is brought to rest (zero velocity) at the diffuser exit while no work or heat transfer is done. The resulting state is called the stagnation state.  V We apply the first law per unit mass for one entrance, one exit, and neglect the potential energies. Let the inlet state be unsubscripted and the exit or stagnation state have the subscript o. q h V w h V net net o o       2 2 2 2
  • 55. 55 Since the exit velocity, work, and heat transfer are zero, h h V o   2 2 The term ho is called the stagnation enthalpy (some authors call this the total enthalpy). It is the enthalpy the fluid attains when brought to rest adiabatically while no work is done. If, in addition, the process is also reversible, the process is isentropic, and the inlet and exit entropies are equal. s so  The stagnation enthalpy and entropy define the stagnation state and the isentropic stagnation pressure, Po. The actual stagnation pressure for irreversible flows will be somewhat less than the isentropic stagnation pressure as shown below.
  • 56. 56