SlideShare una empresa de Scribd logo
1 de 26
Descargar para leer sin conexión
EC533: Digital Signal Processing


Lecture 2 : Data Converters
2.1 – Sample & Hold (S&H) Circuit
2.1 – Sample & Hold (S&H) Circuit - continued




Control Signal




                 Rate of change of the output voltage when the control signal is in 
                 the hold state ‐ due to leakage current.
2.1 – Sample & Hold (S&H) Circuit - continued




Ideally =0 & it should be too small.




                                       needed for the capacitance to achieve 0.993 Vi ≈ 0.7 % error.
2.2 – Analogue-to-Digital (ADC)




         DC level
                                                             n bits O/P
         I/P               Quantizer         Encoder
         Full Scale
                                       ADC




After Sampling; the amplitude of the analogue samples is quantized & encoded using
either uniform or non-uniform quantization & encoding depending on the application
2.3 – Quantization


• The quantizing operation approximates each sample value to the
  nearest level in a finite set of discrete levels/values, known as
  quantization levels.
• This approximation introduces quantization error. Therefore, once
  quantized, the instantaneous values of the signals are lost, and can
  never be reconstructed exactly.



                 Continuous signal values             Discrete signal values
                     at discrete times                   at discrete times


                                          Quantizer
2.3 – Quantization (cont.)



 • Quantization principle is based on that any human sense
 (ear & eye) can only detect finite intensity differences.

 as an ultimate receiver




     There are 2 types of quantization:

 1. Uniform quantization: biomedicine, audio systems.
 2. Non­uniform quantization: communication systems for the need to compress
    signals.
2.3.1 – Uniform Quantization & Encoding

• The full scale range of the I/P signal is divided into 2n values; (n is the number of ADC bits).
• Each analogue sample is assigned to one of the 2n values by truncation.
• The difference between two adjacent values is called ‘Quantum’ or step size (a)
                                                                               Vmax
                               111                              3.5 a
                               110
                                                e               2.5 a
               n = 8 levels
                                                                                 Signal level
                                                                1.5 a
                                                                0.5 a           0
                                                               -0.5 a
                              010                              -1.5 a                      VFSR
                              001
                                            a                  -2.5 a
                              000
                                                               -3.5 a         -Vmax
                              Unipolar (+Vm or ‐ Vm)

                              polar (±Vm)

FSR: Vmax - Vmin                     (swing).                       Mid‐tread Quantizer.
L: number of quantization levels                       L= 2n – 1
                                                       L= 2n        Mid‐rise Quantizer.
     n increases for audio applications as the ear is more sensitive than the eye.
2.3.1 – Uniform Quantization & Encoding - Continued

 Quantization Transfer Characteristics
                                                                   Mid‐
                                                                   tread
            a=Q




 Truncation leads to quantization noise
   • Quantization noise is random & follows a zero-
   mean uniform distribution (pdf).                    a/2
                                                        0
                                                      - a/2


                                                              Quantization Noise
2.3.1 – Uniform Quantization & Encoding - Continued
2.3.1 – Uniform Quantization & Encoding - Continued




                                                      rms




                     Not detected by ADC
2.4 – Digital-to-Analogue Converter (DAC)



  •          What is a digital to analog converter (DAC)?
         – Converts digital input signal to an analog output 
           signal
                             Bn-1      B0
 1   0   0   0   1   1   1                        Va
 0   1   0   1   0   0   0
 0   0   1   1   0   1   1          DAC
 1   1   1   1   1   0   1                  Circuit Symbol
                                      B0
                                            LSB

                                      B1

                                      B2
n: word‐length
                                            MSB
2.4 – Digital-to-Analogue Converter (DAC)…Cont.



  • D/A conversion can be achieved
    using a number of different
    methods such as:
     – The Weighted-Resistor DAC
     – The Ladder Network (The R-2R Ladder DAC)
     – The Switched Current-Source DAC
     – The Switched-Capacitor DACs
2.4.1 – Weighted Resistor DAC

                                                      Rf = R

                                            ∑I    i




               R   2R       4R         8R                               Vo
Most                                                       • summing amplifier
Significant 
Bit
                                                      Least 
                                                      Significant Bit
     VREF


                        Large n    very large R
2.4.1 – Weighted Resistor DAC - continued
2.4.1 – Weighted Resistor DAC - continued

Advantage
– Easy principle (low bit DACs)

Disadvantages
– Requirement of several 
  different precise input 
  resistor values: one unique 
  value per binary input bit. 
  (High bit DACs)
– Larger resistors ~ more error.
– Precise large resistors –
  expensive.                         VREF
2.4.2 – R-2R Ladder Type DAC


  R-2R Ladder Network
2.4.2 – R-2R Ladder Type DAC (Cont.)


         D 0 × 2 0 + D1 × 21 + D 2 × 2 2 + D 3 × 2 3
    Vo =                       4
                                                     Vref
                             2

  Example: Circuit with 0110 input
2.4.2 – R-2R Ladder Type DAC - continued



    VREF
           MSB




           LSB
2.4.2 – R-2R Ladder Type DAC - continued



• The less significant the bit, the more resistors the signal must
  pass through before reaching the op‐amp
• The current is divided by a factor of 2 at each node

              LSB            MSB
2.4.2 – R-2R Ladder Type DAC - continued




                Rf ⎛ B2 B1 B0 ⎞
        VOUT = VREF⎜ + + ⎟
              R    ⎝2 4 8⎠

                                      Rf
2.4.2 – R-2R Ladder Type DAC - continued


    • Question:  
       – Input = (101)2
       – VREF = 10 V
       – R = 2 kΩ
       – Rf = 2R

           R          R         R          2R
    R            2R       2R          2R
            I0                   I0
                                           Op-Amp input
         VREF                  VREF
                                           “Ground”
          B0                   B2
2.4.2 – R-2R Ladder Type DAC - continued



• Only two resistor values‐ R and 2R
• Does not need the kind of precision as Binary 
  weighted DACs
• Easy to manufacture
• More popular
• Less errors
2.5– DAC Resolution




• Resolution: is the amount of variance in 
  output voltage for every change of the LSB in 
  the digital input.
• How closely can we approximate the desired 
  output signal(Higher Res. = finer detail=smaller 
  Voltage divisions)
• A common DAC has a 8 ‐ 12 bit Resolution
                                    VRef
              Resolution = VLSB =
                                     2n
2.5– DAC Resolution (Cont.)



  • Voltage 
                           Vref
    resolution: 
                            2n


    Voltage step example : for 10 bit resolution. So n=10
                         if Vref = 10V
                         voltage step : 10V/1024 = 10mV
2.5– DAC Resolution (Cont.)



                 Poor Resolution(1 bit)                                      Better Resolution(3 bit)
         Vout                                                  Vout
                                Desired Analog                                                               Desired Analog signal
                                signal
                                                                                                       111

                                                                                                 110          110
2 Volt. Levels




                            1




                                                      8 Volt. Levels
                                                                                           101                      101

                                                                                         100                              100

                                                                                   011                                          011

                                                                               010                                                    010

                                                                             001                                                            001

                    0                    0                             000
                                                                                                                                                  000
                                      Digital Input                                Approximate                            Digital Input
                   Approximate
                   output                                                          output

Más contenido relacionado

La actualidad más candente

M-TECH 4th SEM PRESENTATION
M-TECH 4th SEM PRESENTATIONM-TECH 4th SEM PRESENTATION
M-TECH 4th SEM PRESENTATION
Subhajit Shaw
 

La actualidad más candente (20)

ADC & DAC
ADC & DAC ADC & DAC
ADC & DAC
 
adc dac converter
adc dac converteradc dac converter
adc dac converter
 
Adc and dac
Adc and dacAdc and dac
Adc and dac
 
Data converter fundamentals
Data converter fundamentalsData converter fundamentals
Data converter fundamentals
 
Ditial to Analog Converter
Ditial to Analog ConverterDitial to Analog Converter
Ditial to Analog Converter
 
Digital to analog convertor
Digital to analog convertorDigital to analog convertor
Digital to analog convertor
 
R-2R Ladder DAC
R-2R Ladder DACR-2R Ladder DAC
R-2R Ladder DAC
 
Lica 7th chapter slides
Lica 7th chapter slidesLica 7th chapter slides
Lica 7th chapter slides
 
Adc dac converter
Adc dac converterAdc dac converter
Adc dac converter
 
Analog to digital converter
Analog to digital converterAnalog to digital converter
Analog to digital converter
 
Adc f05
Adc f05Adc f05
Adc f05
 
(D/A) and (A/D)conversion
(D/A) and (A/D)conversion(D/A) and (A/D)conversion
(D/A) and (A/D)conversion
 
ADC
ADCADC
ADC
 
M-TECH 4th SEM PRESENTATION
M-TECH 4th SEM PRESENTATIONM-TECH 4th SEM PRESENTATION
M-TECH 4th SEM PRESENTATION
 
Amvdd Data Converter Fundamentals
Amvdd Data Converter FundamentalsAmvdd Data Converter Fundamentals
Amvdd Data Converter Fundamentals
 
Analog mixed vlsi notes
Analog mixed vlsi notesAnalog mixed vlsi notes
Analog mixed vlsi notes
 
Prese000
Prese000Prese000
Prese000
 
Dac, adc architecture
Dac, adc architectureDac, adc architecture
Dac, adc architecture
 
ADC and DAC Best Ever Pers
ADC and DAC Best Ever PersADC and DAC Best Ever Pers
ADC and DAC Best Ever Pers
 
Converter specification
Converter specificationConverter specification
Converter specification
 

Destacado

Logics of the laplace transform
Logics of the laplace transformLogics of the laplace transform
Logics of the laplace transform
Tarun Gehlot
 

Destacado (20)

Dsp U Lec01 Real Time Dsp Systems
Dsp U   Lec01 Real Time Dsp SystemsDsp U   Lec01 Real Time Dsp Systems
Dsp U Lec01 Real Time Dsp Systems
 
Dsp U Lec06 The Z Transform And Its Application
Dsp U   Lec06 The Z Transform And Its ApplicationDsp U   Lec06 The Z Transform And Its Application
Dsp U Lec06 The Z Transform And Its Application
 
Dsp U Lec10 DFT And FFT
Dsp U   Lec10  DFT And  FFTDsp U   Lec10  DFT And  FFT
Dsp U Lec10 DFT And FFT
 
Dsp U Lec07 Realization Of Discrete Time Systems
Dsp U   Lec07 Realization Of Discrete Time SystemsDsp U   Lec07 Realization Of Discrete Time Systems
Dsp U Lec07 Realization Of Discrete Time Systems
 
Dsp U Lec09 Iir Filter Design
Dsp U   Lec09 Iir Filter DesignDsp U   Lec09 Iir Filter Design
Dsp U Lec09 Iir Filter Design
 
Dsp U Lec05 The Z Transform
Dsp U   Lec05 The Z TransformDsp U   Lec05 The Z Transform
Dsp U Lec05 The Z Transform
 
Dsp U Lec04 Discrete Time Signals & Systems
Dsp U   Lec04 Discrete Time Signals & SystemsDsp U   Lec04 Discrete Time Signals & Systems
Dsp U Lec04 Discrete Time Signals & Systems
 
Pulse modulation
Pulse modulationPulse modulation
Pulse modulation
 
05 weekly report (9 may 2012)
05 weekly report (9 may 2012)05 weekly report (9 may 2012)
05 weekly report (9 may 2012)
 
Btech admission in india
Btech admission in indiaBtech admission in india
Btech admission in india
 
Logics of the laplace transform
Logics of the laplace transformLogics of the laplace transform
Logics of the laplace transform
 
sampling theorem | Communication Systems
sampling theorem | Communication Systemssampling theorem | Communication Systems
sampling theorem | Communication Systems
 
Unit i-pcm-vsh
Unit i-pcm-vshUnit i-pcm-vsh
Unit i-pcm-vsh
 
Lecture10 Signal and Systems
Lecture10 Signal and SystemsLecture10 Signal and Systems
Lecture10 Signal and Systems
 
Laplace Transform of Periodic Function
Laplace Transform of Periodic FunctionLaplace Transform of Periodic Function
Laplace Transform of Periodic Function
 
Chapter3 laplace
Chapter3 laplaceChapter3 laplace
Chapter3 laplace
 
Contemporary Design of High ADC
Contemporary Design of High ADC Contemporary Design of High ADC
Contemporary Design of High ADC
 
Lecture 7
Lecture 7Lecture 7
Lecture 7
 
Chapter6 sampling
Chapter6 samplingChapter6 sampling
Chapter6 sampling
 
Dsp U Lec08 Fir Filter Design
Dsp U   Lec08 Fir Filter DesignDsp U   Lec08 Fir Filter Design
Dsp U Lec08 Fir Filter Design
 

Similar a Dsp U Lec02 Data Converters

Digital communications 1
Digital communications 1Digital communications 1
Digital communications 1
Jojie Cepeda
 
Interfacing to the analog world
Interfacing to the analog worldInterfacing to the analog world
Interfacing to the analog world
Islam Samir
 
Chap 3. signal processing elemnt part three
Chap 3. signal processing elemnt part threeChap 3. signal processing elemnt part three
Chap 3. signal processing elemnt part three
YemaneBayray
 
Lect2 up340 (100501)
Lect2 up340 (100501)Lect2 up340 (100501)
Lect2 up340 (100501)
aicdesign
 

Similar a Dsp U Lec02 Data Converters (20)

Fundamentals of the RF Transmission and Reception of Digital Signals
Fundamentals of the RF Transmission and Reception of Digital SignalsFundamentals of the RF Transmission and Reception of Digital Signals
Fundamentals of the RF Transmission and Reception of Digital Signals
 
Unit 6.pptx
Unit 6.pptxUnit 6.pptx
Unit 6.pptx
 
dac-180418111805 (1).pdf
dac-180418111805 (1).pdfdac-180418111805 (1).pdf
dac-180418111805 (1).pdf
 
adc-dac.pptx
adc-dac.pptxadc-dac.pptx
adc-dac.pptx
 
dsd.pptx
dsd.pptxdsd.pptx
dsd.pptx
 
5942709.ppt
5942709.ppt5942709.ppt
5942709.ppt
 
RF Basics & Getting Started Guide by Anaren
RF Basics & Getting Started Guide by AnarenRF Basics & Getting Started Guide by Anaren
RF Basics & Getting Started Guide by Anaren
 
ARCHITECTURE OF DAC.ppt
ARCHITECTURE OF DAC.pptARCHITECTURE OF DAC.ppt
ARCHITECTURE OF DAC.ppt
 
Noise reduction techniques
Noise reduction techniquesNoise reduction techniques
Noise reduction techniques
 
analog to digital adn digital to analog .ppt
analog to digital adn digital to analog .pptanalog to digital adn digital to analog .ppt
analog to digital adn digital to analog .ppt
 
Digital communications 1
Digital communications 1Digital communications 1
Digital communications 1
 
44
4444
44
 
Mast content
Mast contentMast content
Mast content
 
Interfacing to the analog world
Interfacing to the analog worldInterfacing to the analog world
Interfacing to the analog world
 
Chap 3. signal processing elemnt part three
Chap 3. signal processing elemnt part threeChap 3. signal processing elemnt part three
Chap 3. signal processing elemnt part three
 
Testing
TestingTesting
Testing
 
Lec08
Lec08Lec08
Lec08
 
Lect2 up340 (100501)
Lect2 up340 (100501)Lect2 up340 (100501)
Lect2 up340 (100501)
 
Lecture 2 encoding
Lecture 2 encoding Lecture 2 encoding
Lecture 2 encoding
 
Lecture 2 encoding
Lecture 2 encodingLecture 2 encoding
Lecture 2 encoding
 

Último

Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Safe Software
 
Architecting Cloud Native Applications
Architecting Cloud Native ApplicationsArchitecting Cloud Native Applications
Architecting Cloud Native Applications
WSO2
 

Último (20)

2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...
 
A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 
Polkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin WoodPolkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin Wood
 
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
 
Exploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone ProcessorsExploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone Processors
 
presentation ICT roal in 21st century education
presentation ICT roal in 21st century educationpresentation ICT roal in 21st century education
presentation ICT roal in 21st century education
 
AWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of TerraformAWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of Terraform
 
Apidays Singapore 2024 - Modernizing Securities Finance by Madhu Subbu
Apidays Singapore 2024 - Modernizing Securities Finance by Madhu SubbuApidays Singapore 2024 - Modernizing Securities Finance by Madhu Subbu
Apidays Singapore 2024 - Modernizing Securities Finance by Madhu Subbu
 
Ransomware_Q4_2023. The report. [EN].pdf
Ransomware_Q4_2023. The report. [EN].pdfRansomware_Q4_2023. The report. [EN].pdf
Ransomware_Q4_2023. The report. [EN].pdf
 
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot TakeoffStrategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
 
Real Time Object Detection Using Open CV
Real Time Object Detection Using Open CVReal Time Object Detection Using Open CV
Real Time Object Detection Using Open CV
 
Architecting Cloud Native Applications
Architecting Cloud Native ApplicationsArchitecting Cloud Native Applications
Architecting Cloud Native Applications
 
Data Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonData Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt Robison
 
Navi Mumbai Call Girls 🥰 8617370543 Service Offer VIP Hot Model
Navi Mumbai Call Girls 🥰 8617370543 Service Offer VIP Hot ModelNavi Mumbai Call Girls 🥰 8617370543 Service Offer VIP Hot Model
Navi Mumbai Call Girls 🥰 8617370543 Service Offer VIP Hot Model
 
MS Copilot expands with MS Graph connectors
MS Copilot expands with MS Graph connectorsMS Copilot expands with MS Graph connectors
MS Copilot expands with MS Graph connectors
 
Artificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : UncertaintyArtificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : Uncertainty
 
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
 
A Beginners Guide to Building a RAG App Using Open Source Milvus
A Beginners Guide to Building a RAG App Using Open Source MilvusA Beginners Guide to Building a RAG App Using Open Source Milvus
A Beginners Guide to Building a RAG App Using Open Source Milvus
 

Dsp U Lec02 Data Converters

  • 2. 2.1 – Sample & Hold (S&H) Circuit
  • 3. 2.1 – Sample & Hold (S&H) Circuit - continued Control Signal Rate of change of the output voltage when the control signal is in  the hold state ‐ due to leakage current.
  • 4. 2.1 – Sample & Hold (S&H) Circuit - continued Ideally =0 & it should be too small. needed for the capacitance to achieve 0.993 Vi ≈ 0.7 % error.
  • 5. 2.2 – Analogue-to-Digital (ADC) DC level n bits O/P I/P Quantizer Encoder Full Scale ADC After Sampling; the amplitude of the analogue samples is quantized & encoded using either uniform or non-uniform quantization & encoding depending on the application
  • 6. 2.3 – Quantization • The quantizing operation approximates each sample value to the nearest level in a finite set of discrete levels/values, known as quantization levels. • This approximation introduces quantization error. Therefore, once quantized, the instantaneous values of the signals are lost, and can never be reconstructed exactly. Continuous signal values Discrete signal values at discrete times at discrete times Quantizer
  • 7. 2.3 – Quantization (cont.) • Quantization principle is based on that any human sense (ear & eye) can only detect finite intensity differences. as an ultimate receiver There are 2 types of quantization: 1. Uniform quantization: biomedicine, audio systems. 2. Non­uniform quantization: communication systems for the need to compress signals.
  • 8. 2.3.1 – Uniform Quantization & Encoding • The full scale range of the I/P signal is divided into 2n values; (n is the number of ADC bits). • Each analogue sample is assigned to one of the 2n values by truncation. • The difference between two adjacent values is called ‘Quantum’ or step size (a) Vmax 111 3.5 a 110 e 2.5 a n = 8 levels Signal level 1.5 a 0.5 a 0 -0.5 a 010 -1.5 a VFSR 001 a -2.5 a 000 -3.5 a -Vmax Unipolar (+Vm or ‐ Vm) polar (±Vm) FSR: Vmax - Vmin (swing). Mid‐tread Quantizer. L: number of quantization levels L= 2n – 1 L= 2n Mid‐rise Quantizer. n increases for audio applications as the ear is more sensitive than the eye.
  • 9. 2.3.1 – Uniform Quantization & Encoding - Continued Quantization Transfer Characteristics Mid‐ tread a=Q Truncation leads to quantization noise • Quantization noise is random & follows a zero- mean uniform distribution (pdf). a/2 0 - a/2 Quantization Noise
  • 10. 2.3.1 – Uniform Quantization & Encoding - Continued
  • 11. 2.3.1 – Uniform Quantization & Encoding - Continued rms Not detected by ADC
  • 12. 2.4 – Digital-to-Analogue Converter (DAC) • What is a digital to analog converter (DAC)? – Converts digital input signal to an analog output  signal Bn-1 B0 1 0 0 0 1 1 1 Va 0 1 0 1 0 0 0 0 0 1 1 0 1 1 DAC 1 1 1 1 1 0 1 Circuit Symbol B0 LSB B1 B2 n: word‐length MSB
  • 13. 2.4 – Digital-to-Analogue Converter (DAC)…Cont. • D/A conversion can be achieved using a number of different methods such as: – The Weighted-Resistor DAC – The Ladder Network (The R-2R Ladder DAC) – The Switched Current-Source DAC – The Switched-Capacitor DACs
  • 14. 2.4.1 – Weighted Resistor DAC Rf = R ∑I i R 2R 4R 8R Vo Most  • summing amplifier Significant  Bit Least  Significant Bit VREF Large n  very large R
  • 15. 2.4.1 – Weighted Resistor DAC - continued
  • 16. 2.4.1 – Weighted Resistor DAC - continued Advantage – Easy principle (low bit DACs) Disadvantages – Requirement of several  different precise input  resistor values: one unique  value per binary input bit.  (High bit DACs) – Larger resistors ~ more error. – Precise large resistors – expensive. VREF
  • 17. 2.4.2 – R-2R Ladder Type DAC R-2R Ladder Network
  • 18. 2.4.2 – R-2R Ladder Type DAC (Cont.) D 0 × 2 0 + D1 × 21 + D 2 × 2 2 + D 3 × 2 3 Vo = 4 Vref 2 Example: Circuit with 0110 input
  • 19. 2.4.2 – R-2R Ladder Type DAC - continued VREF MSB LSB
  • 20. 2.4.2 – R-2R Ladder Type DAC - continued • The less significant the bit, the more resistors the signal must pass through before reaching the op‐amp • The current is divided by a factor of 2 at each node LSB MSB
  • 21. 2.4.2 – R-2R Ladder Type DAC - continued Rf ⎛ B2 B1 B0 ⎞ VOUT = VREF⎜ + + ⎟ R ⎝2 4 8⎠ Rf
  • 22. 2.4.2 – R-2R Ladder Type DAC - continued • Question:   – Input = (101)2 – VREF = 10 V – R = 2 kΩ – Rf = 2R R R R 2R R 2R 2R 2R I0 I0 Op-Amp input VREF VREF “Ground” B0 B2
  • 23. 2.4.2 – R-2R Ladder Type DAC - continued • Only two resistor values‐ R and 2R • Does not need the kind of precision as Binary  weighted DACs • Easy to manufacture • More popular • Less errors
  • 24. 2.5– DAC Resolution • Resolution: is the amount of variance in  output voltage for every change of the LSB in  the digital input. • How closely can we approximate the desired  output signal(Higher Res. = finer detail=smaller  Voltage divisions) • A common DAC has a 8 ‐ 12 bit Resolution VRef Resolution = VLSB = 2n
  • 25. 2.5– DAC Resolution (Cont.) • Voltage  Vref resolution:  2n Voltage step example : for 10 bit resolution. So n=10 if Vref = 10V voltage step : 10V/1024 = 10mV
  • 26. 2.5– DAC Resolution (Cont.) Poor Resolution(1 bit) Better Resolution(3 bit) Vout Vout Desired Analog Desired Analog signal signal 111 110 110 2 Volt. Levels 1 8 Volt. Levels 101 101 100 100 011 011 010 010 001 001 0 0 000 000 Digital Input Approximate Digital Input Approximate output output