SlideShare una empresa de Scribd logo
1 de 42
Prof. A. Meher Prasad Department of Civil Engineering Indian Institute of Technology Madras email: prasadam@iitm.ac.in NUMERICAL METHODS
Direct Integration of the Equations of Motion ,[object Object],[object Object],[object Object],[object Object],[object Object]
[object Object],[object Object],Direct Integration of the Equations of Motion…
For SDOF System Let  ∆t = time interval t n  = n ∆t P n  is the applied force at time t n Direct Integration of the Equations of Motion… P(t) ∆ t 0  1 …… t n   t n+1 P n  P n+1 mx + cx + kx = P(t) .. . x n , x n , x n   Displacement, velocity and acceleration    at time station ‘n’ . ..
General Expression for the time integration methods R is a remainder term representing the error given by x (m)  is the value of m th  differential of x at t= ξ   A l , B l  and C l   are constants ( some of which may be equal to zero) (n-k) ∆t  ≤  ξ   ≤ (n+1) ∆t . ..
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],x n , x n , x n  @ t n+1  to their values at the previous time  . ..
Newmark’s  β  Method ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],x n x n+1 ∆ t . .. .. . . .. ..
Then equations (1) & (2) reduce to    x n+1 = x n +  ∆t(1- γ )x n +  ∆t γ x n+1 +R   (3) x n+1 = x n +  ∆t  x n + ( ∆t) 2  (1/2 –  β ) x n + (∆t) 2  β x n+1 + R (4) Third relationship   m  x n+1 + cx n+1 + kx n+1 = P n+1   (5) Substituting eqn.(3) and (4) in eqn.(5), we get  expression for x n+1 To begin the time integration, we need to know the values of x o , x o  and x o at time t=0. . . . .. .. .. .. . .. .. . .. Newmark’s  β  Method…
Acceleration,  Time, t γ =0,  β =0  Constant Acceleration x .. ∆ t ∆ t x n ..
γ =1/2,  β =1/4  Average Acceleration Acceleration,  x .. ∆ t Time, t x n .. x n+1 .. x =  .. .. ..
γ =1/2,  β =1/6  Linear Acceleration Acceleration,  x .. ∆ t Time, t x n .. x n+1 .. x =  .. .. .. .. t
Algorithm Enter  k, m, c,  β ,  γ   and P(t) x 0  =  .. . Select  ∆t ^
x i+1 = x i +  ∆x i  ;  x i+1 = x i + ∆x i  ;  x i+1 = x i + ∆x i   ∆ x i   =  ^ ^ . .. i = 0 i = i+1 . ∆ p i  = p i  + a x i  + b x i ^ .. . .. . .. . . .. . . .. ..
Elastoplastic System x 0  =  .. ;  x t  =  ;  x c  =  Define  key = 0 (elastic) key = -1 (plastic behavior in compression key = 1 (plastic behavior in tension) Newmark’s  β  Method -- Enter  k, m, c, R t , R c  and P(t) Set  x 0  = 0,  x 0  = 0;  . Select  ∆t
Calculate x i  and  x i   . key = -1; R=R c x i  > x c x i  < x t R = R t  – (x t  – x i ) k x i  < x c x i  > x t key = 1; R=R t < 0 = (P(t i+1 ) – c i+1  – R) /m x i+1   .. x i+1   . > 0 x i   . key = 0; x t = x i ; x c = x i  – (R t  – R c )/k R = R t  – (x t  – x i ) k x i   . key = 0; x c = x i ;  x t = x i  + (R t  – R c )/k R = R t  – (x t  – x i ) k n y y n y y y n i = 0 i = i+1
Central Difference Method The method is based on finite difference approximations of the time derivatives of displacement (velocity and acceleration) at selected time intervals Displacement,  u Time, t x n+1 θ (n-1) ∆t   (n+1) ∆t x n-1
. ^ Algorithm Enter  k, m, c, and P(t) x 0  =  .. x -1  = x 0  -  ∆t x 0  + 0.5  ∆t 2   x 0   .. .
x i+1  =  ^ ^ . .. i = 0 i = i+1 p i  = p i  – a x i-1  – b x i ^
Wilson-  Method Time, t ∆ t ,[object Object],[object Object],∆ t x n .. x n+1 .. x n+ θ .. Acceleration,  x ..
. n=0 Algorithm Enter  k, m, c,  , ∆t and P(t) Specify initial conditions p n+ θ   = p n  (1-  θ ) + p n+1  θ   ^ k = a 1 m + a 3 c + k ;  a 5  = a 1 x n  + a 4 x n  + 2x n  ;  a 6  = a 3 x n  + 2x n  + a 2 x n . .. . .. A
x n+ θ = ( p n+ θ +ma 5  +ca 6  ) /k ^ . .. .. A n = n+1 x n+1   = x n + (x n+ θ  – x n )  / θ .. .. .. .. x n+1   = x n + (x n  +  x n+1 ) h /2 .. . . ..
Errors involved in the Numerical Integration ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],.
Stability of the Integration method ,[object Object],[object Object],[object Object],[object Object],. If  θ   ≥  1.37   Wilson-  θ  is  unconditionally stable . .. .. . ρ (A) > 1  Unstable
Attributes required for good Direct Integration method ,[object Object],[object Object],[object Object],[object Object],[object Object],*  For MDOF systems, scalar equations of the SDOF systems  become matrix equations.
Spectral radii for  α -methods, optimal collocation schemes and Houbolt, Newmark, Park and Wilson methods
Selection of a numerical integration method Period elongation vs.  ∆t/T Amplitude decay vs. ∆t/T  * For the numerical integration of SDOF systems, the linear acceleration method, which gives no amplitude decay and the lowest period elongation, is the most suitable of the methods presented
Selection of time step  ∆t   ,[object Object],[object Object],[object Object],[object Object]
Mass Condensation or Guyan Reduction ,[object Object],[object Object],[object Object]
[object Object]
[object Object],[object Object],[object Object],[object Object]
Subspace Iteration Method ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
[object Object],[object Object],[object Object],[object Object],[object Object],For better convergence of initial lower eigen values ,it is better if subspace is increased  to q > p such that, q = min( 2p , p+8) Smallest eigen value is best approximated than largest value in subspace q.
Starting Vectors (1)  When some masses are zero, for non zero d.o.f have one  as vector entry.  (2)  Take  ratio .The element that has minimum value will have 1 and rest zero in the starting vector.
[object Object],[object Object],Eigen value problem (1) (2) (3)
Eqn. 2 are not true. Eigen values unless P = n If [  ] satisfies (2) and (3),they cannot be said that they are true Eigen vectors. If [  ] satisfies (1),then they are true Eigen vectors. Since we have reduced the space from n to p. It is only necessary that subspace of ‘P’ as a whole converge and not individual vectors.
Algorithm: Pick starting vector X R  of size n x p For k=1,2,…..   k+1  –  { X } k+1  -     k -    static p x p p x p Smaller eigen value problem, Jacobi
Factorization  Subspace Iteration Sturm sequence check (1/2)nm 2  + (3/2)nm nq(2m+1) (nq/2)(q+1) (nq/2)(q+1) n(m+1) (1/2)nm 2  + (3/2)nm 4nm + 5n nq 2
Total for p lowest vector. @ 10 iteration with  nm 2  + nm(4+4p)+5np q = min(2p , p+8) is  20np(2m+q+3/2)  This factor increases as that iteration increases. N = 70000,b = 1000, p = 100, q = 108  Time = 17 hours
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
(2) Neq x m [ I ] k,k+1  -  with # of rows = # of attachment d.o.f. between k and k+1 = # of columns Ritz analysis: Determine  [ K r  ] = [R] T  [k] [R] [ M r  ] = [R] T  [M] [R] [k r ] {X} = [M] r  +[X] [  ]  -  Reduced Eigen value problem Eigen vector  Matrix,  [    ] = [ R ] [ X ]
Use the subspace Iteration to calculate the eigen pairs (  1 ,  1 ) and (  2 ,  2 ) of the problem K   =   M   ,where Example
 

Más contenido relacionado

La actualidad más candente

Partial differential equations
Partial differential equationsPartial differential equations
Partial differential equationsaman1894
 
Matrix stiffness method 0910
Matrix stiffness method 0910Matrix stiffness method 0910
Matrix stiffness method 0910mullerasmare
 
Lec3 principle virtual_work_method
Lec3 principle virtual_work_methodLec3 principle virtual_work_method
Lec3 principle virtual_work_methodMahdi Damghani
 
Finite difference method
Finite difference methodFinite difference method
Finite difference methodDivyansh Verma
 
Engineering Mathematics-IV_B.Tech_Semester-IV_Unit-V
Engineering Mathematics-IV_B.Tech_Semester-IV_Unit-VEngineering Mathematics-IV_B.Tech_Semester-IV_Unit-V
Engineering Mathematics-IV_B.Tech_Semester-IV_Unit-VRai University
 
Complimentary Energy Method in structural analysis
Complimentary Energy Method in structural analysisComplimentary Energy Method in structural analysis
Complimentary Energy Method in structural analysisMahdi Damghani
 
Principle stresses and planes
Principle stresses and planesPrinciple stresses and planes
Principle stresses and planesPRAJWAL SHRIRAO
 
Chapter 11: Stability of Equilibrium: Columns
Chapter 11: Stability of Equilibrium: ColumnsChapter 11: Stability of Equilibrium: Columns
Chapter 11: Stability of Equilibrium: ColumnsMonark Sutariya
 
Basics of finite element method 19.04.2018
Basics of finite element method 19.04.2018Basics of finite element method 19.04.2018
Basics of finite element method 19.04.2018Dr. Mohd Zameeruddin
 
Theory of Plates and Shells
Theory of Plates and ShellsTheory of Plates and Shells
Theory of Plates and ShellsDrASSayyad
 
Structural Mechanics: Deflections of Beams in Bending
Structural Mechanics: Deflections of Beams in BendingStructural Mechanics: Deflections of Beams in Bending
Structural Mechanics: Deflections of Beams in BendingAlessandro Palmeri
 
Engineering Numerical Analysis Lecture-1
Engineering Numerical Analysis Lecture-1Engineering Numerical Analysis Lecture-1
Engineering Numerical Analysis Lecture-1Muhammad Waqas
 
Pin joint frames
Pin joint framesPin joint frames
Pin joint framesManjulaR16
 
Uni and bi axial column and design
Uni and bi axial column and design Uni and bi axial column and design
Uni and bi axial column and design Vikas Mehta
 
Unsymmetrical bending and shear centre
Unsymmetrical bending and shear centreUnsymmetrical bending and shear centre
Unsymmetrical bending and shear centreYatin Singh
 
Ductile detailing IS 13920
Ductile detailing IS 13920Ductile detailing IS 13920
Ductile detailing IS 13920INTEZAAR ALAM
 
Matrix Methods of Structural Analysis
Matrix Methods of Structural AnalysisMatrix Methods of Structural Analysis
Matrix Methods of Structural AnalysisDrASSayyad
 
Minimum potential energy
Minimum potential energyMinimum potential energy
Minimum potential energyddkundaliya
 

La actualidad más candente (20)

Partial differential equations
Partial differential equationsPartial differential equations
Partial differential equations
 
Matrix stiffness method 0910
Matrix stiffness method 0910Matrix stiffness method 0910
Matrix stiffness method 0910
 
Lec3 principle virtual_work_method
Lec3 principle virtual_work_methodLec3 principle virtual_work_method
Lec3 principle virtual_work_method
 
Finite difference method
Finite difference methodFinite difference method
Finite difference method
 
Engineering Mathematics-IV_B.Tech_Semester-IV_Unit-V
Engineering Mathematics-IV_B.Tech_Semester-IV_Unit-VEngineering Mathematics-IV_B.Tech_Semester-IV_Unit-V
Engineering Mathematics-IV_B.Tech_Semester-IV_Unit-V
 
Complimentary Energy Method in structural analysis
Complimentary Energy Method in structural analysisComplimentary Energy Method in structural analysis
Complimentary Energy Method in structural analysis
 
Principle stresses and planes
Principle stresses and planesPrinciple stresses and planes
Principle stresses and planes
 
Chapter 11: Stability of Equilibrium: Columns
Chapter 11: Stability of Equilibrium: ColumnsChapter 11: Stability of Equilibrium: Columns
Chapter 11: Stability of Equilibrium: Columns
 
Basics of finite element method 19.04.2018
Basics of finite element method 19.04.2018Basics of finite element method 19.04.2018
Basics of finite element method 19.04.2018
 
Stiffness Matrix
Stiffness MatrixStiffness Matrix
Stiffness Matrix
 
Theory of Plates and Shells
Theory of Plates and ShellsTheory of Plates and Shells
Theory of Plates and Shells
 
5. stress function
5.  stress function5.  stress function
5. stress function
 
Structural Mechanics: Deflections of Beams in Bending
Structural Mechanics: Deflections of Beams in BendingStructural Mechanics: Deflections of Beams in Bending
Structural Mechanics: Deflections of Beams in Bending
 
Engineering Numerical Analysis Lecture-1
Engineering Numerical Analysis Lecture-1Engineering Numerical Analysis Lecture-1
Engineering Numerical Analysis Lecture-1
 
Pin joint frames
Pin joint framesPin joint frames
Pin joint frames
 
Uni and bi axial column and design
Uni and bi axial column and design Uni and bi axial column and design
Uni and bi axial column and design
 
Unsymmetrical bending and shear centre
Unsymmetrical bending and shear centreUnsymmetrical bending and shear centre
Unsymmetrical bending and shear centre
 
Ductile detailing IS 13920
Ductile detailing IS 13920Ductile detailing IS 13920
Ductile detailing IS 13920
 
Matrix Methods of Structural Analysis
Matrix Methods of Structural AnalysisMatrix Methods of Structural Analysis
Matrix Methods of Structural Analysis
 
Minimum potential energy
Minimum potential energyMinimum potential energy
Minimum potential energy
 

Destacado

NUMERICAL METHODS -Iterative methods(indirect method)
NUMERICAL METHODS -Iterative methods(indirect method)NUMERICAL METHODS -Iterative methods(indirect method)
NUMERICAL METHODS -Iterative methods(indirect method)krishnapriya R
 
Crout s method for solving system of linear equations
Crout s method for solving system of linear equationsCrout s method for solving system of linear equations
Crout s method for solving system of linear equationsSugathan Velloth
 
Ground Excited Systems
Ground Excited SystemsGround Excited Systems
Ground Excited SystemsTeja Ande
 
Base Excited Systems
Base Excited SystemsBase Excited Systems
Base Excited SystemsTeja Ande
 
Lesson14 Exmpl
Lesson14 ExmplLesson14 Exmpl
Lesson14 ExmplTeja Ande
 
Approximate Methods
Approximate MethodsApproximate Methods
Approximate MethodsTeja Ande
 
Response Spectrum
Response SpectrumResponse Spectrum
Response SpectrumTeja Ande
 
Applications of numerical methods
Applications of numerical methodsApplications of numerical methods
Applications of numerical methodsTarun Gehlot
 
Lesson9 2nd Part
Lesson9 2nd PartLesson9 2nd Part
Lesson9 2nd PartTeja Ande
 

Destacado (20)

NUMERICAL METHODS -Iterative methods(indirect method)
NUMERICAL METHODS -Iterative methods(indirect method)NUMERICAL METHODS -Iterative methods(indirect method)
NUMERICAL METHODS -Iterative methods(indirect method)
 
APPLICATION OF NUMERICAL METHODS IN SMALL SIZE
APPLICATION OF NUMERICAL METHODS IN SMALL SIZEAPPLICATION OF NUMERICAL METHODS IN SMALL SIZE
APPLICATION OF NUMERICAL METHODS IN SMALL SIZE
 
bisection method
bisection methodbisection method
bisection method
 
Numerical method
Numerical methodNumerical method
Numerical method
 
Sam Session
Sam SessionSam Session
Sam Session
 
Crout s method for solving system of linear equations
Crout s method for solving system of linear equationsCrout s method for solving system of linear equations
Crout s method for solving system of linear equations
 
Ground Excited Systems
Ground Excited SystemsGround Excited Systems
Ground Excited Systems
 
Base Excited Systems
Base Excited SystemsBase Excited Systems
Base Excited Systems
 
Lesson14 Exmpl
Lesson14 ExmplLesson14 Exmpl
Lesson14 Exmpl
 
Bisection method
Bisection methodBisection method
Bisection method
 
Approximate Methods
Approximate MethodsApproximate Methods
Approximate Methods
 
Mdof
MdofMdof
Mdof
 
Sdof
SdofSdof
Sdof
 
Response Spectrum
Response SpectrumResponse Spectrum
Response Spectrum
 
Applications of numerical methods
Applications of numerical methodsApplications of numerical methods
Applications of numerical methods
 
Lesson8
Lesson8Lesson8
Lesson8
 
Lesson10
Lesson10Lesson10
Lesson10
 
Lesson9 2nd Part
Lesson9 2nd PartLesson9 2nd Part
Lesson9 2nd Part
 
Unit4
Unit4Unit4
Unit4
 
Lesson14
Lesson14Lesson14
Lesson14
 

Similar a Numerical Methods

SURF 2012 Final Report(1)
SURF 2012 Final Report(1)SURF 2012 Final Report(1)
SURF 2012 Final Report(1)Eric Zhang
 
Computational Method to Solve the Partial Differential Equations (PDEs)
Computational Method to Solve the Partial Differential  Equations (PDEs)Computational Method to Solve the Partial Differential  Equations (PDEs)
Computational Method to Solve the Partial Differential Equations (PDEs)Dr. Khurram Mehboob
 
Chapter_09_ParameterEstimation.pptx
Chapter_09_ParameterEstimation.pptxChapter_09_ParameterEstimation.pptx
Chapter_09_ParameterEstimation.pptxVimalMehta19
 
X01 Supervised learning problem linear regression one feature theorie
X01 Supervised learning problem linear regression one feature theorieX01 Supervised learning problem linear regression one feature theorie
X01 Supervised learning problem linear regression one feature theorieMarco Moldenhauer
 
A numerical method to solve fractional Fredholm-Volterra integro-differential...
A numerical method to solve fractional Fredholm-Volterra integro-differential...A numerical method to solve fractional Fredholm-Volterra integro-differential...
A numerical method to solve fractional Fredholm-Volterra integro-differential...OctavianPostavaru
 
Ray : modeling dynamic systems
Ray : modeling dynamic systemsRay : modeling dynamic systems
Ray : modeling dynamic systemsHouw Liong The
 
Time series Modelling Basics
Time series Modelling BasicsTime series Modelling Basics
Time series Modelling BasicsAshutosh Kumar
 
Research internship on optimal stochastic theory with financial application u...
Research internship on optimal stochastic theory with financial application u...Research internship on optimal stochastic theory with financial application u...
Research internship on optimal stochastic theory with financial application u...Asma Ben Slimene
 
Presentation on stochastic control problem with financial applications (Merto...
Presentation on stochastic control problem with financial applications (Merto...Presentation on stochastic control problem with financial applications (Merto...
Presentation on stochastic control problem with financial applications (Merto...Asma Ben Slimene
 

Similar a Numerical Methods (20)

KAUST_talk_short.pdf
KAUST_talk_short.pdfKAUST_talk_short.pdf
KAUST_talk_short.pdf
 
SURF 2012 Final Report(1)
SURF 2012 Final Report(1)SURF 2012 Final Report(1)
SURF 2012 Final Report(1)
 
Computational Method to Solve the Partial Differential Equations (PDEs)
Computational Method to Solve the Partial Differential  Equations (PDEs)Computational Method to Solve the Partial Differential  Equations (PDEs)
Computational Method to Solve the Partial Differential Equations (PDEs)
 
05_AJMS_332_21.pdf
05_AJMS_332_21.pdf05_AJMS_332_21.pdf
05_AJMS_332_21.pdf
 
App8
App8App8
App8
 
Optimization tutorial
Optimization tutorialOptimization tutorial
Optimization tutorial
 
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
 
Chapter_09_ParameterEstimation.pptx
Chapter_09_ParameterEstimation.pptxChapter_09_ParameterEstimation.pptx
Chapter_09_ParameterEstimation.pptx
 
X01 Supervised learning problem linear regression one feature theorie
X01 Supervised learning problem linear regression one feature theorieX01 Supervised learning problem linear regression one feature theorie
X01 Supervised learning problem linear regression one feature theorie
 
A numerical method to solve fractional Fredholm-Volterra integro-differential...
A numerical method to solve fractional Fredholm-Volterra integro-differential...A numerical method to solve fractional Fredholm-Volterra integro-differential...
A numerical method to solve fractional Fredholm-Volterra integro-differential...
 
S3-3.pdf
S3-3.pdfS3-3.pdf
S3-3.pdf
 
Ray : modeling dynamic systems
Ray : modeling dynamic systemsRay : modeling dynamic systems
Ray : modeling dynamic systems
 
002 ray modeling dynamic systems
002 ray modeling dynamic systems002 ray modeling dynamic systems
002 ray modeling dynamic systems
 
002 ray modeling dynamic systems
002 ray modeling dynamic systems002 ray modeling dynamic systems
002 ray modeling dynamic systems
 
lecture6.ppt
lecture6.pptlecture6.ppt
lecture6.ppt
 
02 Notes Divide and Conquer
02 Notes Divide and Conquer02 Notes Divide and Conquer
02 Notes Divide and Conquer
 
Statistical Physics Assignment Help
Statistical Physics Assignment HelpStatistical Physics Assignment Help
Statistical Physics Assignment Help
 
Time series Modelling Basics
Time series Modelling BasicsTime series Modelling Basics
Time series Modelling Basics
 
Research internship on optimal stochastic theory with financial application u...
Research internship on optimal stochastic theory with financial application u...Research internship on optimal stochastic theory with financial application u...
Research internship on optimal stochastic theory with financial application u...
 
Presentation on stochastic control problem with financial applications (Merto...
Presentation on stochastic control problem with financial applications (Merto...Presentation on stochastic control problem with financial applications (Merto...
Presentation on stochastic control problem with financial applications (Merto...
 

Más de Teja Ande

Lecture 13 Building Populations
Lecture 13 Building PopulationsLecture 13 Building Populations
Lecture 13 Building PopulationsTeja Ande
 
Lecture 11 Performance Based Evaluation
Lecture 11 Performance Based EvaluationLecture 11 Performance Based Evaluation
Lecture 11 Performance Based EvaluationTeja Ande
 
Lecture 6 7 Rm Shear Walls
Lecture 6 7 Rm Shear WallsLecture 6 7 Rm Shear Walls
Lecture 6 7 Rm Shear WallsTeja Ande
 
Lecture 10 Urm Out Of Plane Walls Part 2
Lecture 10 Urm Out Of Plane Walls Part 2Lecture 10 Urm Out Of Plane Walls Part 2
Lecture 10 Urm Out Of Plane Walls Part 2Teja Ande
 
Lecture 6 7 Rm Shear Walls
Lecture 6 7 Rm Shear WallsLecture 6 7 Rm Shear Walls
Lecture 6 7 Rm Shear WallsTeja Ande
 
Lecture 4 5 Urm Shear Walls
Lecture 4 5 Urm Shear WallsLecture 4 5 Urm Shear Walls
Lecture 4 5 Urm Shear WallsTeja Ande
 
Lecture 2 3 Compression, Condition Assess
Lecture 2 3 Compression, Condition AssessLecture 2 3 Compression, Condition Assess
Lecture 2 3 Compression, Condition AssessTeja Ande
 
Lecture 4 5 Urm Shear Walls
Lecture 4 5 Urm Shear WallsLecture 4 5 Urm Shear Walls
Lecture 4 5 Urm Shear WallsTeja Ande
 
Lecture 2 3 Compression, Condition Assess
Lecture 2 3 Compression, Condition AssessLecture 2 3 Compression, Condition Assess
Lecture 2 3 Compression, Condition AssessTeja Ande
 
Masonry Code Of Practice Amp
Masonry Code Of Practice   AmpMasonry Code Of Practice   Amp
Masonry Code Of Practice AmpTeja Ande
 
Masonry Retrofit
Masonry RetrofitMasonry Retrofit
Masonry RetrofitTeja Ande
 
Chapter11 Masonry
Chapter11 MasonryChapter11 Masonry
Chapter11 MasonryTeja Ande
 
Chapter12 Masonry
Chapter12 MasonryChapter12 Masonry
Chapter12 MasonryTeja Ande
 
Failures In Masonry Structures Lec 1
Failures In Masonry Structures Lec 1Failures In Masonry Structures Lec 1
Failures In Masonry Structures Lec 1Teja Ande
 
Design of Reinforced Masonry
Design of Reinforced MasonryDesign of Reinforced Masonry
Design of Reinforced MasonryTeja Ande
 

Más de Teja Ande (17)

Lesson9
Lesson9Lesson9
Lesson9
 
Lecture 13 Building Populations
Lecture 13 Building PopulationsLecture 13 Building Populations
Lecture 13 Building Populations
 
Lesson1
Lesson1Lesson1
Lesson1
 
Lecture 11 Performance Based Evaluation
Lecture 11 Performance Based EvaluationLecture 11 Performance Based Evaluation
Lecture 11 Performance Based Evaluation
 
Lecture 6 7 Rm Shear Walls
Lecture 6 7 Rm Shear WallsLecture 6 7 Rm Shear Walls
Lecture 6 7 Rm Shear Walls
 
Lecture 10 Urm Out Of Plane Walls Part 2
Lecture 10 Urm Out Of Plane Walls Part 2Lecture 10 Urm Out Of Plane Walls Part 2
Lecture 10 Urm Out Of Plane Walls Part 2
 
Lecture 6 7 Rm Shear Walls
Lecture 6 7 Rm Shear WallsLecture 6 7 Rm Shear Walls
Lecture 6 7 Rm Shear Walls
 
Lecture 4 5 Urm Shear Walls
Lecture 4 5 Urm Shear WallsLecture 4 5 Urm Shear Walls
Lecture 4 5 Urm Shear Walls
 
Lecture 2 3 Compression, Condition Assess
Lecture 2 3 Compression, Condition AssessLecture 2 3 Compression, Condition Assess
Lecture 2 3 Compression, Condition Assess
 
Lecture 4 5 Urm Shear Walls
Lecture 4 5 Urm Shear WallsLecture 4 5 Urm Shear Walls
Lecture 4 5 Urm Shear Walls
 
Lecture 2 3 Compression, Condition Assess
Lecture 2 3 Compression, Condition AssessLecture 2 3 Compression, Condition Assess
Lecture 2 3 Compression, Condition Assess
 
Masonry Code Of Practice Amp
Masonry Code Of Practice   AmpMasonry Code Of Practice   Amp
Masonry Code Of Practice Amp
 
Masonry Retrofit
Masonry RetrofitMasonry Retrofit
Masonry Retrofit
 
Chapter11 Masonry
Chapter11 MasonryChapter11 Masonry
Chapter11 Masonry
 
Chapter12 Masonry
Chapter12 MasonryChapter12 Masonry
Chapter12 Masonry
 
Failures In Masonry Structures Lec 1
Failures In Masonry Structures Lec 1Failures In Masonry Structures Lec 1
Failures In Masonry Structures Lec 1
 
Design of Reinforced Masonry
Design of Reinforced MasonryDesign of Reinforced Masonry
Design of Reinforced Masonry
 

Último

08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking MenDelhi Call girls
 
WhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure service
WhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure serviceWhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure service
WhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure servicePooja Nehwal
 
Presentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreterPresentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreternaman860154
 
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking MenDelhi Call girls
 
Developing An App To Navigate The Roads of Brazil
Developing An App To Navigate The Roads of BrazilDeveloping An App To Navigate The Roads of Brazil
Developing An App To Navigate The Roads of BrazilV3cube
 
2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...Martijn de Jong
 
08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking MenDelhi Call girls
 
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...apidays
 
[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdfhans926745
 
A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)Gabriella Davis
 
Breaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path MountBreaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path MountPuma Security, LLC
 
Salesforce Community Group Quito, Salesforce 101
Salesforce Community Group Quito, Salesforce 101Salesforce Community Group Quito, Salesforce 101
Salesforce Community Group Quito, Salesforce 101Paola De la Torre
 
Data Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonData Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonAnna Loughnan Colquhoun
 
CNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of ServiceCNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of Servicegiselly40
 
A Call to Action for Generative AI in 2024
A Call to Action for Generative AI in 2024A Call to Action for Generative AI in 2024
A Call to Action for Generative AI in 2024Results
 
Exploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone ProcessorsExploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone Processorsdebabhi2
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerThousandEyes
 
Kalyanpur ) Call Girls in Lucknow Finest Escorts Service 🍸 8923113531 🎰 Avail...
Kalyanpur ) Call Girls in Lucknow Finest Escorts Service 🍸 8923113531 🎰 Avail...Kalyanpur ) Call Girls in Lucknow Finest Escorts Service 🍸 8923113531 🎰 Avail...
Kalyanpur ) Call Girls in Lucknow Finest Escorts Service 🍸 8923113531 🎰 Avail...gurkirankumar98700
 
Driving Behavioral Change for Information Management through Data-Driven Gree...
Driving Behavioral Change for Information Management through Data-Driven Gree...Driving Behavioral Change for Information Management through Data-Driven Gree...
Driving Behavioral Change for Information Management through Data-Driven Gree...Enterprise Knowledge
 
Factors to Consider When Choosing Accounts Payable Services Providers.pptx
Factors to Consider When Choosing Accounts Payable Services Providers.pptxFactors to Consider When Choosing Accounts Payable Services Providers.pptx
Factors to Consider When Choosing Accounts Payable Services Providers.pptxKatpro Technologies
 

Último (20)

08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
 
WhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure service
WhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure serviceWhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure service
WhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure service
 
Presentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreterPresentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreter
 
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
 
Developing An App To Navigate The Roads of Brazil
Developing An App To Navigate The Roads of BrazilDeveloping An App To Navigate The Roads of Brazil
Developing An App To Navigate The Roads of Brazil
 
2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...
 
08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men
 
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
 
[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf
 
A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)
 
Breaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path MountBreaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path Mount
 
Salesforce Community Group Quito, Salesforce 101
Salesforce Community Group Quito, Salesforce 101Salesforce Community Group Quito, Salesforce 101
Salesforce Community Group Quito, Salesforce 101
 
Data Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonData Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt Robison
 
CNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of ServiceCNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of Service
 
A Call to Action for Generative AI in 2024
A Call to Action for Generative AI in 2024A Call to Action for Generative AI in 2024
A Call to Action for Generative AI in 2024
 
Exploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone ProcessorsExploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone Processors
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 
Kalyanpur ) Call Girls in Lucknow Finest Escorts Service 🍸 8923113531 🎰 Avail...
Kalyanpur ) Call Girls in Lucknow Finest Escorts Service 🍸 8923113531 🎰 Avail...Kalyanpur ) Call Girls in Lucknow Finest Escorts Service 🍸 8923113531 🎰 Avail...
Kalyanpur ) Call Girls in Lucknow Finest Escorts Service 🍸 8923113531 🎰 Avail...
 
Driving Behavioral Change for Information Management through Data-Driven Gree...
Driving Behavioral Change for Information Management through Data-Driven Gree...Driving Behavioral Change for Information Management through Data-Driven Gree...
Driving Behavioral Change for Information Management through Data-Driven Gree...
 
Factors to Consider When Choosing Accounts Payable Services Providers.pptx
Factors to Consider When Choosing Accounts Payable Services Providers.pptxFactors to Consider When Choosing Accounts Payable Services Providers.pptx
Factors to Consider When Choosing Accounts Payable Services Providers.pptx
 

Numerical Methods

  • 1. Prof. A. Meher Prasad Department of Civil Engineering Indian Institute of Technology Madras email: prasadam@iitm.ac.in NUMERICAL METHODS
  • 2.
  • 3.
  • 4. For SDOF System Let ∆t = time interval t n = n ∆t P n is the applied force at time t n Direct Integration of the Equations of Motion… P(t) ∆ t 0 1 …… t n t n+1 P n P n+1 mx + cx + kx = P(t) .. . x n , x n , x n Displacement, velocity and acceleration at time station ‘n’ . ..
  • 5. General Expression for the time integration methods R is a remainder term representing the error given by x (m) is the value of m th differential of x at t= ξ A l , B l and C l are constants ( some of which may be equal to zero) (n-k) ∆t ≤ ξ ≤ (n+1) ∆t . ..
  • 6.
  • 7.
  • 8. Then equations (1) & (2) reduce to x n+1 = x n + ∆t(1- γ )x n + ∆t γ x n+1 +R (3) x n+1 = x n + ∆t x n + ( ∆t) 2 (1/2 – β ) x n + (∆t) 2 β x n+1 + R (4) Third relationship m x n+1 + cx n+1 + kx n+1 = P n+1 (5) Substituting eqn.(3) and (4) in eqn.(5), we get expression for x n+1 To begin the time integration, we need to know the values of x o , x o and x o at time t=0. . . . .. .. .. .. . .. .. . .. Newmark’s β Method…
  • 9. Acceleration, Time, t γ =0, β =0 Constant Acceleration x .. ∆ t ∆ t x n ..
  • 10. γ =1/2, β =1/4 Average Acceleration Acceleration, x .. ∆ t Time, t x n .. x n+1 .. x = .. .. ..
  • 11. γ =1/2, β =1/6 Linear Acceleration Acceleration, x .. ∆ t Time, t x n .. x n+1 .. x = .. .. .. .. t
  • 12. Algorithm Enter k, m, c, β , γ and P(t) x 0 = .. . Select ∆t ^
  • 13. x i+1 = x i + ∆x i ; x i+1 = x i + ∆x i ; x i+1 = x i + ∆x i ∆ x i = ^ ^ . .. i = 0 i = i+1 . ∆ p i = p i + a x i + b x i ^ .. . .. . .. . . .. . . .. ..
  • 14. Elastoplastic System x 0 = .. ; x t = ; x c = Define key = 0 (elastic) key = -1 (plastic behavior in compression key = 1 (plastic behavior in tension) Newmark’s β Method -- Enter k, m, c, R t , R c and P(t) Set x 0 = 0, x 0 = 0; . Select ∆t
  • 15. Calculate x i and x i . key = -1; R=R c x i > x c x i < x t R = R t – (x t – x i ) k x i < x c x i > x t key = 1; R=R t < 0 = (P(t i+1 ) – c i+1 – R) /m x i+1 .. x i+1 . > 0 x i . key = 0; x t = x i ; x c = x i – (R t – R c )/k R = R t – (x t – x i ) k x i . key = 0; x c = x i ; x t = x i + (R t – R c )/k R = R t – (x t – x i ) k n y y n y y y n i = 0 i = i+1
  • 16. Central Difference Method The method is based on finite difference approximations of the time derivatives of displacement (velocity and acceleration) at selected time intervals Displacement, u Time, t x n+1 θ (n-1) ∆t (n+1) ∆t x n-1
  • 17. . ^ Algorithm Enter k, m, c, and P(t) x 0 = .. x -1 = x 0 - ∆t x 0 + 0.5 ∆t 2 x 0 .. .
  • 18. x i+1 = ^ ^ . .. i = 0 i = i+1 p i = p i – a x i-1 – b x i ^
  • 19.
  • 20. . n=0 Algorithm Enter k, m, c, , ∆t and P(t) Specify initial conditions p n+ θ = p n (1- θ ) + p n+1 θ ^ k = a 1 m + a 3 c + k ; a 5 = a 1 x n + a 4 x n + 2x n ; a 6 = a 3 x n + 2x n + a 2 x n . .. . .. A
  • 21. x n+ θ = ( p n+ θ +ma 5 +ca 6 ) /k ^ . .. .. A n = n+1 x n+1 = x n + (x n+ θ – x n ) / θ .. .. .. .. x n+1 = x n + (x n + x n+1 ) h /2 .. . . ..
  • 22.
  • 23.
  • 24.
  • 25. Spectral radii for α -methods, optimal collocation schemes and Houbolt, Newmark, Park and Wilson methods
  • 26. Selection of a numerical integration method Period elongation vs. ∆t/T Amplitude decay vs. ∆t/T * For the numerical integration of SDOF systems, the linear acceleration method, which gives no amplitude decay and the lowest period elongation, is the most suitable of the methods presented
  • 27.
  • 28.
  • 29.
  • 30.
  • 31.
  • 32.
  • 33. Starting Vectors (1) When some masses are zero, for non zero d.o.f have one as vector entry. (2) Take ratio .The element that has minimum value will have 1 and rest zero in the starting vector.
  • 34.
  • 35. Eqn. 2 are not true. Eigen values unless P = n If [  ] satisfies (2) and (3),they cannot be said that they are true Eigen vectors. If [  ] satisfies (1),then they are true Eigen vectors. Since we have reduced the space from n to p. It is only necessary that subspace of ‘P’ as a whole converge and not individual vectors.
  • 36. Algorithm: Pick starting vector X R of size n x p For k=1,2,…..   k+1 – { X } k+1 -  k -   static p x p p x p Smaller eigen value problem, Jacobi
  • 37. Factorization Subspace Iteration Sturm sequence check (1/2)nm 2 + (3/2)nm nq(2m+1) (nq/2)(q+1) (nq/2)(q+1) n(m+1) (1/2)nm 2 + (3/2)nm 4nm + 5n nq 2
  • 38. Total for p lowest vector. @ 10 iteration with nm 2 + nm(4+4p)+5np q = min(2p , p+8) is 20np(2m+q+3/2) This factor increases as that iteration increases. N = 70000,b = 1000, p = 100, q = 108 Time = 17 hours
  • 39.
  • 40. (2) Neq x m [ I ] k,k+1 - with # of rows = # of attachment d.o.f. between k and k+1 = # of columns Ritz analysis: Determine [ K r ] = [R] T [k] [R] [ M r ] = [R] T [M] [R] [k r ] {X} = [M] r +[X] [ ] - Reduced Eigen value problem Eigen vector Matrix, [  ] = [ R ] [ X ]
  • 41. Use the subspace Iteration to calculate the eigen pairs (  1 ,  1 ) and (  2 ,  2 ) of the problem K  =  M  ,where Example
  • 42.