SlideShare una empresa de Scribd logo
1 de 17
T.Chhay                                                                                          NPIC


                                          V.   viFIKNnaepSgeTot
                                         Alternative Design Methods

     1> esckþIepþIm      Introduction

       enAkñúgemeronTI3 nigTI4 karviPaK nigkarKNnaGgát;ebtugBRgwgEdkRtUv)anBnül;edayQrelIeKal
karN_Edlpþl;eGayeday ACI Code 318-05. viFIKNnad¾éTRtUv)anbgðajenAkñúg]bsm<n§½ Appendix B én
ACI Code edayeyageTAtamemKuNbnÞúkEdleGayenAkñúg]bsm<n§½ Appendix C. viFIKNnaepSgeTotenH

KWCaeKalkarN_énkarviPaK nigkarKNnaenAkñúg ACI Code 318-99. vamanlkçN³RsedogKñaxøHeTAnwg viFI
Edl)anBnül;BImun elIkElgEtvaeRbIemKuNbnÞúk nigemKuNkat;bnßyersIusþg; φ xusKña. smIkarviPaK nig
smIkarKNnaeKalEdlmanenAkñúgemeronmun nwgRtUv)aneRbIenATIenH. enAeBleKeRbI Appendix B edIm,I
KNna eKRtUvCMnYsnUvGVIEdlRtUvKñaenAkñúg Code enaH.
     2> emKuNbnÞúk         Load Factors

     RbsinebIersIusþg;tMrUvkar required strength RtUv)antageday U ehIykMlaMgxül; nigkMlaMgrBa¢ÜydI
RtUv)antageday W nig E erogKña enaHtam ACI Code, Appendix C ersIusþg;tMrUvkar U KYrEtCatMélEdl
FMCageKkñúgcMeNambnSMbnÞúkxageRkam³
     1> sMrab;krNIbnÞúkefr bnÞúkGefr nigbnÞúkxül;
          U = 1 .4 D + 1 .7 L                                                               (5-1a)
          U = 0.75(1.4 D + 1.7 L) + (1.6W      b¤ 1.0E )                                    (5-1b)

          U = 0.9 D + (1.6W  b¤ 1.0E )                                                      (5-1c)

     2> enAeBlbnÞúkxül; W minRtUv)ankat;bnßyedayemKuNTisedA directionality factor 1.3W Gac
         RtUv)aneRbICMnYs 1.6W . enAeBlEdlbnÞúkrBa¢ÜydIRtUv)anQrenAelIbnÞúkeFVIkar service forces enaH
         1.4 E GacRtUv)aneRbICMnYseGay 1.0 E .

     3> kñúgkrNIEdlbnÞúksMBaFdI H RtUv)anbBa©ÚleTAkñúgkarKNna
          U = 1 .4 D + 1 .7 L + 1 .7 H                                                      (5-2a)
          enAeBlEdlbnÞúkefr D nigbnÞúkGefr L kat;bnßyT§iBlrbs; H enaH
          U = 0 .9 D + 1 .7 H                                                               (5-2b)
          sMrab;bnSMbnÞúkén D / L b¤ H
          U = 1 .4 D + 1 .7 L
     4> RbsinebITMgn; nigbnÞúksMBaFEdl)anmkBIsarFaturav F RtUv)anbBa©ÚleTAkñúgkarKNna
viFIKNnaepSgeTot                                                                                     73
Department of Civil Engineering                                              viTüasßanCatibhubec©keTskm<úCa
        U = 1 .4 D + 1 .7 L + 1 .4 F                                                           (5-3a)
        enAeBlEdlbnÞúkefr D nigbnÞúkGefr L kat;bnßyT§iBlrbs; F enaH
         U = 0.9 D + 1.4 F                                                                     (5-3b)
        sMrab;bnSMbnÞúkén D / L b¤ F
        U = 1 .4 D + 1 .7 L
        sMBaFbBaÄrénsarFaturavKYrRtUv)anKitCabnÞúkefr.
    5> enAeBlEdlT§iBlTgÁic impact effects RtUv)anrab;bBa©Úl enaHvaRtUv)anKitbBa©ÚleTAkñúgbnÞúkGefr.
    6> enAeBlEdl structural effects T énsMrut differential settlement, creep, karrYmmaD shrinkage b¤
        bNþÚrsItuNðPaB mantMélFM vaKYrRtUv)anrab;bBa©ÚleTAkñúgbnSMbnÞúkén
        U = 0.75(1.4 D + 1.4T + 1.7 L)                                                         (5-4a)
        U = 1.4 D + 1.4T                                                                       (5-4b)
        smIkar (5-1a) RtUv)aneRbICaTUeTA. emKuNbnÞúkefresμInwg 1.4 nigemKuNbnÞúkGefresμInwg 1.7 .
        sMrab;bnÞúkefr nigbnÞúkGefrcMcMnuc PD nig PL enaHbnÞúkcMcMnucemKuN PU = PD + PL dUcKña
        M U = M D + M L Edl M D nig M L m:Um:g;bnÞúkefr nigm:Um:g;bnÞúkGefrerogKña.


    3> emKuNkat;bnßyersIusþg;          Strength-Reduction Factor φ

          ersIusþg; nominal strength énmuxkat;RtUv)ankat;bnßyedayemKuN φ edIm,IKitsMrab;kar)at;bg;
ersIusþg;enAkñúgsMPar³d¾tictYc small adverse variations in material strength karplitEdleFIVeLIgedayéd
artisanry TMhMxñat karRKb;RKg nigkMriténkarRtYtBinitü. emKuN φ CaEpñkmYyénemKuNsuvtßiPaB.

          bTdæan ACI Code, Section C.3 (Appendix C) kMNt;nUvtMélxageRkamedIm,IeRbIR)as;³
      - sMrab;muxkat;rgkarTaj                    φ = 0.90
     - sMrab;muxkat;rgkarsgát;
           k> CamYyEdkkgvNÐ                      φ = 0.70
           x> CamYyEdkkgFmμta                    φ = 0.65
     - sMrab;kMlaMgkat; nigkMlaMgrmYl            φ = 0.75
     - sMrab;RTnab;enAelIebtug                   φ = 0.65
     - sMrab;karBt;enAelIebtugsuT§ b¤enAelIebtugEdlmanbrimaNEdkGb,brma 1.4 / f y ³ φ = 0.65
         sMrab;muxkat;EdlsßitenAkñgtMbn; transition region rvagmuxkat;rgkarTaj tension-controlled
section nigmuxkat;rgkarsgát; compression-controlled section enaH φ GacnwgekIneLIgCabnÞat;rhUtdl;

0 .9 .



Alternative Design Method                                                                                74
T.Chhay                                                                                        NPIC

       eKk¾GaceRbIemKuNkat;bnßyersIusþg; φ sMrab;ssr ¬b¤muxkat;Edlman ε t < 0.005 ¦ edayvaErbRbYl
eTAtamkrNIxageRkam³
       1> enAeBlEdl Pu = φPn ≥ 0.1 f 'c Ag enaH φ = 0.7 sMrab;ssrEdkkgFmμta nig φ = 0.75 sMrab;
           EdkkgvNн. krNIekIteLIgCaTUeTAsMrab;muxkat;rgkarsgát; compression control.
            Ag Camuxkat;eBj.

       2> rvagtMél 0.1 f 'c Ag b¤ φPn ¬mYyNaEdltUcCag¦ nigsUnü ehIy Pu sßitenAkñúgtMbn;Taj
            tension control zone nig φ FMCag 0.7 ¬b¤ 0.75 ¦. ACI Code, Section C3.2 kMNt;fa sMrab;

            Ggát;Edlman f y minFMCag 400MPa CamYyEdksIuemRTI nigCamYycMgayrvagEdkrgkarsgát;
            nigkarTaj (d − d ' ) minRtUvticCag 0.7h ¬ h =kMBs;srubrbs;muxkat;¦ nig d = h − d s enaHtM
            él φ RtUv)anekIneLIgCabnÞat;eTArk 0.9 .
            sMrab;tMbn; transition region, φ RtUv)ankMNt;edayviFan linear interpolation rvag 0.7 ¬b¤
0.75 ¦ nig 0.9 . rUb 5>1 bgðajBIbMErbMrYlrbs; φ sMrab;Edk 400 MPa . smIkarbnÞat;mandUc xageRkam³

                φ = 0.57 + 67ε t        sMrab;muxkat;EdkkgFmμta                              (5-5)

                φ = 0.65 + 50ε t        sMrab;muxkat;EdkkgvNн                               (5-6)




           mü:agvijeTot φ enAkñúgtMbn; transition region GacRtUv)ankMNt;CaGnuKmn_eTAnwg (dt / c)
sMrab;Edk 400MPa dUcxageRkam³
                              ⎛d ⎞
               φ = 0.37 + 0.20⎜ t ⎟ sMrab;muxkat;EdkkgFmμta                              (5-7)
                              ⎝ c ⎠
viFIKNnaepSgeTot                                                                                   75
Department of Civil Engineering                                                            viTüasßanCatibhubec©keTskm<úCa
                                       ⎛ dt ⎞
                φ = 0.50 + 0.15⎜     sMrab;muxkat;EdkkgvNн
                                       ⎝ c ⎠
                                            ⎟                                                                   (5-8)

             Edl c CakMBs;GkS½NWtenAersIusþg; normal strength.
    4> muxkat;ctuekaNEkgCamYyEdkrgkarTaj                                  Rectangular Sections with Tension
        Reinforcement
       BIkarviPaKénmuxkat;ctuekaNEkgEdkrgkarTaj smIkarxageRkamRtUv)anbMEbk Edl                           f 'c   nig   fy

KitCa MPa ³
                     f 'c ⎛ 600 ⎞
                          ⎜           ⎟
     ρb = 0.85β1
                      f y ⎜ 600 + f y ⎟
                          ⎝           ⎠
    RbsinebIPaKryEdkGtibrmaRtUv)ankMNt; 0.75ρb enaH
                                           f 'c   ⎛ 600 ⎞
     ρ max = 0.75ρb = 0.6375β1                    ⎜           ⎟                                                 (5-9)
                                           fy     ⎜ 600 + f y ⎟
                                                  ⎝           ⎠
      enHbgðajfa ρmax = 0.75ρb FMCag ρmax = 0.634ρb Edl)aneGayenAkñúgemeronTI3 sMrab;Edk
400 MPa .

      sMrab; f ' ≤ 28MPa
                 c

                          f 'c   ⎛ 600 ⎞
        ρ max = 0.542            ⎜           ⎟                                                                  (5-10)
                           fy    ⎜ 600 + f y ⎟
                                 ⎝           ⎠
        β1 = 0.85  sMrab;ebtugEdlmanersIusþg; f ' ≤ 28MPa .       c

                           f ' −28
       β = 0.85 − 0.05(
         1
                                  c
                                   ) sMrab;ebtugEdlmanersIusþg; 28MPa < f ' ≤ 56MPa .  c
                               7
       β = 0.65 sMrab;ebtugEdlmanersIusþg; f ' > 56MPa .
         1                                                        c


       PaKryEdkénmuxkat; balanced section ρb nigPaKryEdkGtibrmaGnuBaØati ρmax GacRtUv)an
KNnasMrab;tMélepSgKñaén f 'c nig f y dUcbgðajenAkñúgtarag 5>1. PaKryEdkKNnaEdlesñIeLIgsMrab;
ρ ≤ ρ max k¾RtUv)anbgðajenAkúñgtarag 5>1.
       taragTI5>1³ PaKryEdkEdlRtUv)anesñIreLIg ρ                      s


                                       f 'c ( MPa)         f y (MPa)      %ρ s
                                      20                  235             1.4
                                                          400             1.2
                                      28                  400             1.4
                                                          500             1.2
                                      35                  400             1.4
                                                          500             1.2
       smIkarm:Um:g;KNnaRtUv)anbMEbkenAkñúgemeronmunmanTMrg;dUcxageRkam³

Alternative Design Method                                                                                                  76
T.Chhay                                                                                            NPIC

          φM n = M u = Ru bd 2                                                           (3-21)
                               ⎛    ρf y ⎞
          Edl       Ru = φρf y ⎜1 −
                               ⎜ 1.7 f ' ⎟ = φRn
                                         ⎟                                               (3-22)
                               ⎝        c⎠

          nig φ = 0.9 . sMrab;muxkat;rgkarTaj tension-controlled section / ε t ≥ 0.005
                                 ⎛       As f y ⎞
          φM n = M u = φAs f y ⎜ d −
                               ⎜                  ⎟                                      (3-19a)
                                 ⎝     1.7 f 'c b ⎟
                                                  ⎠
                                           ⎛          ρf y ⎞
          dUcKña   φM n = M u = φf y bd 2 ⎜ d −
                                          ⎜                ⎟
                                                  1.7 f 'c ⎟
                                                                                         (3-20)
                                           ⎝               ⎠
        eyIgeXIjfasMrab;eRkABI m:Um:g;emKuN M u / f 'c / f y eKmanGBaØatibIenAkñúgsmIkarenHKW b / d nig
 ρ . dUcenHeKminGacedaHRsaysmIkarenH)aneT Tal;EtGBaØatiBIrRtUv)ansnμt;. CaTUeTA eKeRcInsnμt; ρ
¬edayeRbI ρmax ¦ nig b k¾RtUv)ansnμt;Edr. edayQrelIkarBiPakSaBIxagedIm krNIxageRkamRtUv)anbegáIt
eLIgenAeBl M u / f 'c / f y RtUv)ansÁal;³
        1> RbsinebI ρ RtUv)ansnμt; enaH Ru GacRtUv)anKNnaBIsmIkar (3-22) EdleGay bd 2
            = M u / Ru . GñkKNnaGaceRbI ρ rhUtdl; ρ max EdlbegáItmuxkat;ebtugEdkrgkarTajGb,-

            brma. RbsinebIeRbI ρmin vanwgbegáItmuxkat;ebtugGtibrma. RbsinebI b RtUv)ansnμt;bEnßmBI
            elI ρ enaH d GacRtUv)anKNnadUcxageRkam³
                      Mu
              d=                                                                         (5-11)
                      Ru b

             RbsinebI d / b = 2 enaH d = 3 (2M u / Ru ) nig b = d / 2 bgçittMéleTArktMélEdlFM.
          2> RbsinebI d nig b RtUv)aneGay PaKryEdkRtUvkar ρ GacRtUv)anKNnaedaysmIkar (3-20)
             eKTTYl)an
          3> ρ = 0.85 f 'c ⎡1 − 1 − 1.7φfM ubd 2 ⎤
                           ⎢
                                       4
                                                 ⎥                                      (5-12)
                     f   y     ⎢
                               ⎣          '   c          ⎥
                                                         ⎦
                     0.85 f 'c ⎡          2 Ru ⎤
                   =           ⎢1 − 1 −           ⎥
                        fy ⎣            0.85 f 'c ⎦

           nig As = ρbd
           Ca]TahrN_/ RbsinebI M u = 275.72kN .m / b = 300mm / d = 450mm / f 'c = 20MPa nig
 f y = 400MPa enaH ρ = 0.0154 BIsmIkar (5-12) nig As = ρbd = 0.0154 × 300 × 450 = 2079mm 2 enA

eBlEdleKeGay b nig d eKKYrEtBinitüemIlfaetIeKRtUvkarEdkrgkarsgát;b¤Gt; eRBaHEt d tUc. eKGacedaH
Rsayva)andUcxageRkam³
           k> KNna ρmax nig Ru,max = φρmax f y [1 − (ρmax f y / 1.7 f 'c )]

viFIKNnaepSgeTot                                                                                     77
Department of Civil Engineering                                               viTüasßanCatibhubec©keTskm<úCa
           x> KNna φM n,max = Ru,maxbd 2 = ersIusþg;m:Um:g;Gtibrmarbs;muxkat;EdkrgkarTaj.
           K> RbsinebI M u < φM n,max enaHvaminRtUvkarEdkrgkarTajeT. KNna ρ nig As BIsmIkar (5-
               12)
           X> RbsinebIeKsÁal; ρ nig b KNna Ru ³
                      ⎛    ρf y ⎞
                      ⎜ 1 .7 f ' ⎟
           Ru = φρf y ⎜1 −       ⎟
                      ⎝         c⎠

           KNna d BIsmIkar (5-11)
           d=
               Mu
               Rb
                     nig As = ρbd
                     u

]TahrN_TI1³
kMNt;muxkat;EdkcaM)ac;sMrab;muxkat;EdlmanTTwg b = 250mm nigkMBs;srub d = 700mm ¬rUbTI5>2¦
RbsinebIvargnUvm:Um:g;emKuNxageRkA 312kN.m . eKeGay f 'c = 28MPa nig f y = 400MPa .




dMeNaHRsay
    1> snμt;eRbIEdk DB25 mYyRsTab; ¬epÞógpÞat;enAeBleRkay¦ d = 700 − 50 = 650mm .
    2> RtYtBinitüemIlfaetImuxkat;RtUvkarEdksgát;b¤Gt;. eRbobeFobersIusþg;m:Um:g;KNnaénmuxkat; ¬eday
       eRbI ρmax ¦ CamYym:Um:g;KNna. sMrab; f 'c = 28MPa nig f y = 400MPa / ρmax = 0.02276 .
                       ⎛ ρ max f y ⎞
        Ru = φρmax f y ⎜1 −
                       ⎜              ⎟ = 6.63MPa
                       ⎝    1 .7 f 'c ⎟
                                      ⎠
        ersIusþg;m:Um:g;KNnaénmuxkat;ebtugEdkrgkarTajKW
        φM n, max = Ru / maxbd 2 = 6.63 × 250 × 6502 × 10−6 = 700.3kN .m > 312kN .m
        dUcenH ρ < ρmax enaHvaCamuxkat;EdlmanEtEdkrgkarTaj.

Alternative Design Method                                                                                 78
T.Chhay                                                                                            NPIC

     3> KNna ρ BIsmIkar (5-12) edIm,ITTYl)an ρ = 0.0089 / As = ρbd = 0.0089 × 250 × 650
         = 1446mm 2 eRbIEdk 3DB 25 (As = 1472mm 2 ). muxkat;cugeRkayRtUv)anbgðajenAkñúgrUbTI 5>2.

     4> epÞógpÞat; ε t ³
                1472 × 400
          a=                  = 98.96mm
              0.85 × 28 × 250
               a
          c=       = 116.4mm
              0.85
               d −c
          εt = t     0.003 = 0.0137 > 0.005       φ = 0.9
                 c

     5> muxkat;ctuekaNCamYynwgEdkrgkarsgát;                 Rectangular Sections with
          Compression Reinforcement
         muxkat;ebtugEdkrgkarTaj singly reinforced section EdlmanersIusþg;m:Um:g;GtibrmaenAeBlEdl
 ρ max rbs;EdkRtUv)aneRbI. RbsinebIm:Um:g;emKuNFMCagersIusþg;m:Um:g;kñúg ¬krNImuxkat;RtUv)ankMNt;¦ enaHeK
RtUvkarmuxkat;EdkDub doubly reinforced section edaybEnßmEdkTaMgenAkñúgtMbn;sgát; nigtMbn;Taj. viFI
saRsþsMrab;KNnamuxkat;ctuekaNEkgCamYyEdksgát; enAeBlEdleKsÁal; M u / f 'c / b / d nig d '
Rtuv)ansegçbenAkñúgemeronTI4. karEdlxusKñamanEtmYyKW ρmax = 0.75ρb RtUv)aneRbIenAkñúgkarKNnaenH³
                             f 'c ⎛ 600 ⎞
                                  ⎜           ⎟
          ρ max = 0.6375β1                                                                    (5-9)
                              f y ⎜ 600 + f y ⎟
                                  ⎝           ⎠
       dUcKña RtUvepÞogpÞat; ε t ≥ 0.005 sMrab; φ = 0.9 .
]TahrN_TI2³ muxkat;FñwmRtUv)ankMNt;eday b = 300mm nigkMBs;srub h = 500mm ehIyrgnUvm:Um:g;emKuN
M u = 447.5kN .m . kMNt;muxkat;EdkcaM)ac;edayeRbI f 'c = 28MPa nig f y = 400MPa . ¬eyagtamrUb

5>3¦.




dMeNaHRsay³

viFIKNnaepSgeTot                                                                                      79
Department of Civil Engineering                                              viTüasßanCatibhubec©keTskm<úCa
    1> kMNt;ersIusþg;m:Um:g;KNnaénmuxkat;EdkeTal. snμt; ρ = 0.018 . dUcenH Ru = 5.5MPa . sMrab;
       EdkBIrRsTab; d = 500 − 90 = 410mm
        M u1 = Ru bd 2 = 5.5 × 300 × 410 2 × 10 −6 = 277.4kN .m
       m:Um:g;KNnaKW M u = 447.5kN .m > 277.4kN .m dUcenHeKRtUvkarEdksgát;
    2> KNna As1 / M u 2 / As2 nig As
        As1 = ρbd = 0.018 × 300 × 410 = 2214mm 2

        M u 2 = M u − M u1 = 447.5 − 277.4 = 170.1kN .m
        M u 2 = φAs 2 f y (d − d ' )           snμt; d ' = 50mm
        170.1 ⋅ 106 = 0.9 As 2 400(410 − 50)            As 2 = 1312.5mm 2
        As = As1 + As 2 = 2214 + 1312.5 = 3526.5mm 2     ¬ 6DB28 ¦
    3> epÞógpÞat;PaB yield rbs;Edkrgkarsgát;. Edkrgkarsgát; yield RbsinebI
                                   f 'c   ⎛ d ' ⎞⎛ 600       ⎞
        ρ − ρ ' ≥ K = 0.85β1              ⎜ ⎟⎜               ⎟
                                    fy    ⎝ d ⎠⎜ 600 − f y
                                                 ⎝
                                                             ⎟
                                                             ⎠
                      28 ⎛ 50 ⎞⎛ 600 ⎞
        K = (0.85) 2     ⎜     ⎟⎜           ⎟ = 0.0185
                     400 ⎝ 410 ⎠⎝ 600 − 400 ⎠
                 A       2214
        ρ − ρ ' = s1 =            = 0.018 < K
                 bd 300 × 410
       dUcenH Edkrgkarsgát;Gt; yield ³ f 's < f y
    4> KNna f 's ³ f 's = 600[(c − d ') / c] ≤ f y /
       kMNt; As1 ³ As1 = 2214mm2
                 As1 f y         2214 × 400
        a=                 =                   = 124mm
             0.85 f 'c b       0.85 × 28 × 300
              a 124
        c=      =        = 145.9mm
             β1 0.85
                   145.9 − 50
        f 's = 600             = 394.4 MPa < 400MPa
                       145.9
    5> KNna A's BI M u 2 = φA's f 's (d − d ' )
        170.1 ⋅ 106 = 0.9 A's 394.4(410 − 50)
       dUcenH A's = 1331mm2 b¤KNna A's BI A's = As 2 ( f y / f 's ) = 1331mm2 ¬ 3DB25 ¦
    6> epÞógpÞat;
             ⎛ dt − c ⎞
        εt = ⎜        ⎟0.003
             ⎝ c ⎠
        d t = h − d ' = 500 − 50 = 450mm


Alternative Design Method                                                                                80
T.Chhay                                                                                    NPIC

              ⎛ 450 − 145.9 ⎞
          εt = ⎜            ⎟0.003 = 0.006 > 0.005    φ = 0.9
              ⎝ 145.9 ⎠
          c 145.9
             =       = 0.324 < 0.375 (OK)
          dt    450
     7> epÞógpÞat; φM n cugeRkay/ As = 3694.5mm2 / A's = 1472.6mm2 /
         As1 = 2221.9mm 2 / a = 124.5mm nig c = 146.5mm
                            ⎛       124.5 ⎞
          M n = 2221.9 × 400⎜ 410 −       ⎟ + 1472.6 × 394.4(410 − 50) = 518.15kN .m
                            ⎝         2 ⎠
          epÞógpÞat; ε t / dt = 450mm
               ⎛ dt − c ⎞
          εt = ⎜        ⎟0.003 = 0.006 > 0.005
               ⎝ c ⎠
          φ = 0.9
          φM n = 0.9 × 518.15 = 466.3kN .m > 447.5kN .m

     6> karKNnamuxkat;GkSret            Design of T-Section

         kñúgkarKNnamuxkat;GkSret enAeBlEdleKsÁal;m:Um:g;emKuN M u kMras;søab T TTwg b RtUv)ankM
Nt;BIkarKNnakMralxNÐ ehIykarkMNt;rbs; ACI Code sMrab;TTwgsøabRbsiT§PaB b RtUv)aneGayenAkñúg
emeronTI3. kMras;RTnug bw GacRtUv)ansnμt;edayERbRbYlBI 200 → 500mm TMhMEdlRtUv)aneRbIKWsßitenA
cenøaH 300 → 400mm . GBaØatiBIrRtUvkarkMNt;CacaM)ac;KW d nig As . CMhanéjkarKNnaRtUv)ansegçbenA
kñúgemeronTI4.
]TahrN_TI3³ muxkat;FñwmGkSret RtUv)anbgðajenAkñúgrUbTI4 manTTwgRTnug bw = 250mm TTwgsøab b = 1m
kMras;søab t = 100mm nigkMBs;RbsiT§PaB d = 370mm . kMNt;muxkat;EdkcaM)ac;RbsinebIm:Um:g;emKuN
420kN.m . eKeGay f 'c = 28MPa nig f y = 400MPa .




dMeNaHRsay³

viFIKNnaepSgeTot                                                                              81
Department of Civil Engineering                                               viTüasßanCatibhubec©keTskm<úCa
    1> KNnaTItaMgTItaMgGkS½NWt Edlmuxkat;GacmanragctuekaN. snμt;kMBs;rbs;bøúksgát; a = 100mm
       Edl a = t = 100mm enaH
                                   ⎛       t⎞
        φM n = φ (0.85 f 'c )bt ⎜ d − ⎟ = 685.44kN .m > 420kN .m
                                   ⎝       2⎠
       m:Um:g;KNnaEdlsøabebtugGacRT)anFMCagm:Um:g;emKuNEdlmanGMeBIelIva. dUcenH muxkat;eFVIkar
       manragctuekaN.
    2> kMNt;muxkat;EdkTaj edayKitmuxkat;manragctuekaNEdl b = 1000mm
               Mu           420000000
        Ru =            =                  = 3.06 MPa
               bd   2
                            1000 × 370 2
        BIsmIkar (5-12) sMrab; Ru = 3.07MPa nig ρ = 0.0092
        As = ρbd = 0.0092 × 1000 × 370 = 3404mm 2
       eRbI 6DB28 / As = 3694.5mm2 ¬BIrRsTab;¦
    3> epÞógpÞat;fa ρ w = As / bwd ≥ ρmin / ρ w = 3404 /(250 × 375) = 0.0363 > ρ min = 0.00333
    4> epÞógpÞat; ε t = ⎛ dt c− c ⎞0.003 dt = 375mm
                        ⎜
                        ⎝
                                  ⎟
                                  ⎠
                3404 × 400                                   57.21
        a=                     = 57.21mm                c=         = 67.3mm
              0.85 × 28 × 1000                               0.85
        ε t = 0.0135 > 0.005                            φ = 0.9

    7> viFI    strut and tie Strut and Tie Method

       1> esckþIepþIm                  Introduction

           ACI Code, Appendix A      / ENnaMnUvviFImYyepSgeTot eRkABIviFIEdl)anBnül;BIxagedImenAkñúgem
eronTI 3. viFIenHeKeGayeQμaHfa strut and tie model. viFIepSgenHRtUv)anGnuvtþy:agmanRbsiT§PaBenAkñúg
tMbn;Edldac; discontinuity enAkñúgeRKOgbgÁúM dUcCatMbn;TMr tMbn;EdlbnÞúkGnuvtþ b¤tMbn;Edlmuxkat;FrNI
maRtpøas;bþÚrPøam²dUcCa brackets nig portal frames. enAkñúgtMbn;TaMgenH muxkat;rabesμIminrkSaenArabesμI
eRkayeBlrgkarBt; ¬dUcGVIEdl)ansnμt;enAkñgemeronTI3¦ ehIyvaRtUv)aneKeGayeQμaHfa tMbn; D (D-
region) ¬rUbTI5>5 a¦. tMbn;epSgeTotebs;Fñwmsþg;da RTwsþIbTFñwmmUldæan nigTMnak;TMng linear strain

relationshipRtUv)anGnuvtþ. tMbn;TaMgenHRtUv)aneKeGayeQμaHfa tMbn; B (B-region) ¬rUbTI5>5 a¦.

        edayQrelIeKalkarN_ St. Venant PaBdac;KñaenAkñúgkarEbgEckkugRtaMgenAkúñgtMbn; D ¬Edl
bNþalmkBIragFrNImaRt b¤lkçxNÐbnÞúk¦bgðajfakugRtaMgbNþalmkBIbnÞúktamGkS½ nigm:Um:g;Bt; kar
BRgaykugRtaMgesÞIrEtmanlkçN³CabnÞat;enAcMgayRbEhlnwgkMBs; h rbs;Ggát;BIcMnucdac; ¬rUbTI5>5 b nig

Alternative Design Method                                                                                 82
T.Chhay                                                                                           NPIC

c¦. RbsinebItMbn; D BIrCan;Kña b¤CYbKña BYkvaGacRtUv)anKitCatMbn; D EtmYy. pleFobrvagRbEvgGtibrma
nigkMBs;esμInwg 2 EdlbegáItmMuGb,brma 26.5o rvag strut and tie ¬b¤RbEhl 25o ¦.




        enAkñúgKMrU strut and tie ¬rUbTI5>6¦ cMnucEdlkMlaMgbICYbKñaenAtMN D RtUv)aneKeGayeQμaHfa cMnuc
node nigmaDebtugEdlenACMuvijcMnuc node RtUv)anehAfatMbn;cMnuc nodal zone. kMlaMgEdlmanGMeBIenAelI

cMnuc node GacERbRbYleTAtamkMlaMgTaj nigkMlaMgsgát;énbnSMepSg² dUcCa C − C − C / C − C − T /
C − T − T / T − T − T ¬rUbTI 5>7¦. rUbTI5>8 bgðajBIRbePTtMbn;cMnuc typical nodal zone sMrab;kar

Gnuvtþn_bnÞúkepSg² cMENkÉrUbTI 5>9 bgðajBI extended nodal zone sMrab;sésrEdkmYy b¤eRcInRsTab;.
          2> KMrU strut and tie   Strut and Tie Model

        KMrU strut and tie GacRtUv)anbgðajedayKMrU truss CamYynwgkMlaMgeFVIGMeBIenAelIcMnucepSg². LÚv
BicarNanUv truss EdkEdl)anbgðajenAkñúgrUbTI 5>10. edaysarEtvamanlkçN³sIuemRTI RbtikmμenAcMnuc
 A nig B esμIKña R A = RB = 20kN nigBIlMnwgéntMNr A nig D kMlaMgTajenAkñúg AB = 20kN enAeBlEdl

kMlaMgsgát;enAkñúg AD b¤ BD = 28.3kN . Ggát; AB RtUv)anKitCa tie cMENkÉ AD nig BD RtUv)ancat;Tuk
Ca strut. kMlaMgenAkñúgGgát;epSg²eTotesμIsUnü. edayeRbobeFob truss enHCamYyFñwmbtugenAkñúgrUbTI 5>6a
eyIgGaceXIjfaRkLaépÞPaKeRcInén ACD nig BED nigRkLaépÞEdlenABIxageRkam nodal zone D min
manRbsiT§PaB nigeFVIkarCa filler. kMlaMgenAkñúg strut sMrab;lkçxNÐbnÞúkenH FMCagkMlaMgenAkñúg tie. kñúg
krNIenH vamanRkLaépÞebtugRKb;RKan;edIm,IeFVIkarCa strut ¬rUbTI5>6a¦. eKRtUvkarCacaM)ac;nUvsésrEdk
viFIKNnaepSgeTot                                                                                     83
Department of Civil Engineering                                             viTüasßanCatibhubec©keTskm<úCa
edIm,IeFVIkarCa tie sMrab; AB . karcgP¢ab;d¾RtwmRtUvrbs; tie mansar³sMxan;Nas;sMrab;karKNnaRbkbeday
suvtßiPaB. karcgP¢ab;KYreFVIeLIgenAtMbn; nodal zone.




Alternative Design Method                                                                               84
T.Chhay                                                                                                     NPIC




          3> viFIsaRsþKNnatam ACI                   ACI Design Procedure

          edayQrelI ACI Code, Section A.2 karKNnatMbn; D-region rab;bBa©ÚlnUvCMhanxageRkam³
    -     kMNt; nigbMEbknUvtMbn;nImYy²
    -     kMNt;kMlaMgpÁÜbEdlmanGMeBIelIEdndMbn; D-region nImYy²
    -     eRCIserIsKMrU truss edIm,IbBa¢ÚnkMlaMgpÁÜbenAkñúgtMbn; D-region. GkS½én strut nig tie KYrRtYtsIuKñaCa
          mYynwgtMbn;sgát; compression field nigtMbn;Taj tension field.
    -     kMNt;TTwgRbsiT§PaBrbs; struts nig nodal zones edayQrelIersIusþg;ebtug ersIusþg;Edk nigKMrU
          truss Edl)aneRCIserIs.

viFIKNnaepSgeTot                                                                                                  85
Department of Civil Engineering                                       viTüasßanCatibhubec©keTskm<úCa
   - epÞógpÞat;lkçxNÐeFVIkar serviceability condition EdleyageTAtamtMrUvkarrbs; ACI Code.
     PaBdabrbs;Fñwmx<s; deep beam GacRtUv)anKNnaedayeRbIkarviPaKeGLasÞic elastic analysis.
     lkçxNÐRKb;RKgsñameRbHén ACI Code, Section 10.6.4 KYrRtUv)anepÞógpÞat;edaysnμt;fa tie
     RtUv)aneRsabenAkñúgRBIsebtug eyagtam RA.4.2 .




Alternative Design Method                                                                         86
T.Chhay                                                                                              NPIC

          4> tMrUvkarsMrab;karKNna                Design Requirement

          tMrUvkarKNnasMrab; struts nig tie GacRtUv)ansnμt;dUcxageRkam³
          1> KNna struts, ties nigtMbn; nodal zone
              φFn ≥ Fu                                                                          (5-13)
             Edl            Fu = kMlaMgenAkñúg struts, ties nigtMbn; nodal zone Edl)anBIbnÞúkemKuN
                          Fn = ersIusþg; nominal strength rbs; struts, ties nigtMbn; nodal zone

                         φ = 0.75 sMrab;TaMg struts nig tie
          2> ersIusþg;rbs; struts ³ ersIusþg;sgát; nominal compressive strength rbs; struts EdlKμanEdk
             beNþay Fns KYrEttUcCagtMél Fns enAcugTaMgBIrrbs; struts ³
              Fns = f ce Acs                                                                    (5-14)
             Edl            Acs =  RkLaépÞmuxkat;enAcugmçagrbs; struts
                            f ce = ersIusþg;sgát;RbsiT§PaBrbs;ebtugEdltUcCagenAkúñg struts b¤ nodal zone.
              f ce = 0.85β s f 's                                                               (5-15)
             Edl               sMrab; struts manrUbragCaRBIs
                            βs =
                         β s = sMrab; struts EdlTTwgRtg;muxkat;kNþalGgát;FMCag TTwgenAcMnuc node
                               (bottle-shaped struts) CamYybrimaNEdkRKb;;RKan;edIm,ITb;nwg kugRtaMgTaj

                               tamTTwg.
                        β s = 0.6λ dUcGVIEdl)anerobrab;xagelI edayKμanbrimaNEdkRKb;;RKan;edIm,ITb;nwg
                               kugRtaMgTajtamTTwg ¬ λ = 1.0 sMrab;ebtugTMgn;Fmμta normal-weight
                               concrete, 0.85 sMrab; ebtugxSac;TMgn;Rsal sand-lightweight concrete nig

                               0.75 sMrab;ebtug TMgn;RsalTaMgGs; lightweight concrete¦.

                         β s = 0.4 sMrab; struts enAkñgGgát;Taj b¤søab
                         β s = 0.6 sMrab;krNIepSgeTotTaMgGs;
          3> EdkExVg struts ¬rUbTI5>11¦³ sMrab; f 'c ≤ 35MPa tMél β s = 0.75 GacRtUv)aneRbIRbsinebI
             GkS½rbs; struts RtUv)anExVgedayRsTab;Edk
                   Asi
              ∑         sin γ i ≥ 0.003                                                         (5-16)
                  bs si
             Edl           Asi = RkLaépÞmuxkat;EdksrubenAKMlat si enAkñúgRsTab;TI i Edlkat; strut enAmMu
                                 α i CamYyGkS½rbs; strut.
                           si = KMlatEdkenAkñúgRsTab;TI i Edlkat; strut enAmMu α i CamYyGkS½rbs; strut .


viFIKNnaepSgeTot                                                                                           87
Department of Civil Engineering                                                  viTüasßanCatibhubec©keTskm<úCa
                         bs =TTwgGgát;
                        α1 = mMurvagGkS½rbs; strut nigr)arenAkñúgRsTab;TI i énr)arEdlkat;Kñaeday strut.




       4> Edkrgkarsgát;enAkñúg struts ³ Edkrgkarsgát;GacRtUv)aneRbIedIm,IbegáInersIusþg;rbs; strut
           Fns = f ce Acs + A's f 's                                                               (5-17)
           Edl           Fns = ersIusþg;én strut BRgwgedayEdkbeNþay
                       A's = RkLaépÞénEdksgát;enAkñúg strut

                        f 's = kugRtaMgenAkñúg A's ¬ f 's = f y sMrab; 400 → 500 MPa ¦

       5> ersIusþg;rbs; tie ³ersIusþg; nominal strength én tie, Fnt KW³
           Fnt = Ats f y + Atp ( f se + Δf p )                                                     (5-18)

           Edl           Ats =  RkLaépÞEdkminrgeRbkugRtaMgenAkñúg tie
                         Atp = RkLaépÞEdkeRbkugRtaMg

                         f se = kugRtaMgRbsiT§PaBeRkayeBl)at;bg;enAkñúgEdkrgeRbkugRtaMg

                         Δf p = karbegáInkugRtaMgeRbkugRtaMgEdlbNþalmkBIbnÞúkemKuN

                         Atp = 0 sMrab;Ggát;minrgeRbkugRtaMg
               ( f se + Δf p ) ≤ f py                                                              (5-19)

           eKGacGnuBaØatieGayyk Δf p = 400MPa sMrab; bonded prestressed reinforced b¤
       Δf p = 70MPa sMrab; unbonded prestressed reinforced . dUcKña EdnkMNt;x<s;énkarGnuvtþsMrab;

       TTwgrbs; tie GacRtUv)anykdUcxageRkam
                 wt , max = Fnt /( f cebs )                                                        (5-20)



Alternative Design Method                                                                                    88
T.Chhay                                                                                                  NPIC

          6> ersIusþg;rbs;tMbn; nodal zones³ ersIusþg; nominal compression strength éntMbn; nodal zones
              Fnn KYrEtesμI
              Fnn = f ce Anz                                                                       (5-21)
              Edl               RkLaépÞxagebs; nodal zone b¤muxkat;rbs; nodal zone EdlEkgeTAnwgkM
                            Anz =

                                 laMgpÁÜbenAelImuxkat;
          7> karbgçaMgenAkñúgtMbn; nodal zones: y:agehacNas;EdkbgçaMgRtUv)anpþl;eGayenAkñúgtMbn; nodal
             zone nigT§iBlrbs;vaRtuv)anKaMRTedaykarBiesaFn_ nigkarviPaK enaHkugRtaMgrgkarsgát;RbsiT§

             PaBKNnaenAelIépÞéntMbn; nodal zone EdlbNþalmkBIkMlaMg strut nigkMlaMg tie minKYrelIsBI
             tMélxageRkam³
               f ce = 0.85β n f 'c                                                                 (5-22)
              Edl           β n = 1.0enAkñúgtMbn; nodal zone EdlP¢ab;eday strut b¤ bearing areas b¤TaMgBIr
                                  ¬ C − C − C node¦.
                            β n = 0.8 enAkñúgtMbn; nodal zone Edlf<k;P¢ab; tie mYy ¬ C − C − T node¦.
                            β n = 0.6 enAkñúgtMbn; nodal zone Edlf<k;P¢ab; tie BIr b¤eRcIn ¬ C − T − T node¦.
          karGnuvtþn_énviFI strut and tie method sMrab;Fñwmx<s;manenAkñúgemeronTI8 ]TahrN_TI6.




viFIKNnaepSgeTot                                                                                            89

Más contenido relacionado

Más de Chhay Teng

Advance section properties_for_students
Advance section properties_for_studentsAdvance section properties_for_students
Advance section properties_for_studentsChhay Teng
 
Representative flower of asian countries
Representative flower of asian countriesRepresentative flower of asian countries
Representative flower of asian countriesChhay Teng
 
Composition of mix design
Composition of mix designComposition of mix design
Composition of mix designChhay Teng
 
2009 ncdd-csf-technical-manual-vol-i-study-design-guidelines
2009 ncdd-csf-technical-manual-vol-i-study-design-guidelines2009 ncdd-csf-technical-manual-vol-i-study-design-guidelines
2009 ncdd-csf-technical-manual-vol-i-study-design-guidelinesChhay Teng
 
Technical standard specification auto content
Technical standard specification auto contentTechnical standard specification auto content
Technical standard specification auto contentChhay Teng
 
Available steel-section-list-in-cam
Available steel-section-list-in-camAvailable steel-section-list-in-cam
Available steel-section-list-in-camChhay Teng
 
Concrete basics
Concrete basicsConcrete basics
Concrete basicsChhay Teng
 
Rebar arrangement and construction carryout
Rebar arrangement and construction carryoutRebar arrangement and construction carryout
Rebar arrangement and construction carryoutChhay Teng
 
1 dimension and properties table of w shapes
1 dimension and properties table of w shapes1 dimension and properties table of w shapes
1 dimension and properties table of w shapesChhay Teng
 
2 dimension and properties table of s shape
2 dimension and properties table of s shape2 dimension and properties table of s shape
2 dimension and properties table of s shapeChhay Teng
 
3 dimension and properties table of hp shape
3 dimension and properties table of hp shape3 dimension and properties table of hp shape
3 dimension and properties table of hp shapeChhay Teng
 
4 dimension and properties table c shape
4 dimension and properties table c shape4 dimension and properties table c shape
4 dimension and properties table c shapeChhay Teng
 
5 dimension and properties table l shape
5 dimension and properties table l shape5 dimension and properties table l shape
5 dimension and properties table l shapeChhay Teng
 
6 dimension and properties table of ipe shape
6 dimension and properties table of ipe shape6 dimension and properties table of ipe shape
6 dimension and properties table of ipe shapeChhay Teng
 
7 dimension and properties table ipn
7 dimension and properties table ipn7 dimension and properties table ipn
7 dimension and properties table ipnChhay Teng
 
8 dimension and properties table of equal leg angle
8 dimension and properties table of equal leg angle8 dimension and properties table of equal leg angle
8 dimension and properties table of equal leg angleChhay Teng
 
9 dimension and properties table of upe
9 dimension and properties table of upe9 dimension and properties table of upe
9 dimension and properties table of upeChhay Teng
 
10 dimension and properties table upn
10 dimension and properties table upn10 dimension and properties table upn
10 dimension and properties table upnChhay Teng
 

Más de Chhay Teng (20)

Advance section properties_for_students
Advance section properties_for_studentsAdvance section properties_for_students
Advance section properties_for_students
 
Representative flower of asian countries
Representative flower of asian countriesRepresentative flower of asian countries
Representative flower of asian countries
 
Composition of mix design
Composition of mix designComposition of mix design
Composition of mix design
 
2009 ncdd-csf-technical-manual-vol-i-study-design-guidelines
2009 ncdd-csf-technical-manual-vol-i-study-design-guidelines2009 ncdd-csf-technical-manual-vol-i-study-design-guidelines
2009 ncdd-csf-technical-manual-vol-i-study-design-guidelines
 
Type of road
Type of roadType of road
Type of road
 
Technical standard specification auto content
Technical standard specification auto contentTechnical standard specification auto content
Technical standard specification auto content
 
Available steel-section-list-in-cam
Available steel-section-list-in-camAvailable steel-section-list-in-cam
Available steel-section-list-in-cam
 
Concrete basics
Concrete basicsConcrete basics
Concrete basics
 
Rebar arrangement and construction carryout
Rebar arrangement and construction carryoutRebar arrangement and construction carryout
Rebar arrangement and construction carryout
 
Mix design
Mix designMix design
Mix design
 
1 dimension and properties table of w shapes
1 dimension and properties table of w shapes1 dimension and properties table of w shapes
1 dimension and properties table of w shapes
 
2 dimension and properties table of s shape
2 dimension and properties table of s shape2 dimension and properties table of s shape
2 dimension and properties table of s shape
 
3 dimension and properties table of hp shape
3 dimension and properties table of hp shape3 dimension and properties table of hp shape
3 dimension and properties table of hp shape
 
4 dimension and properties table c shape
4 dimension and properties table c shape4 dimension and properties table c shape
4 dimension and properties table c shape
 
5 dimension and properties table l shape
5 dimension and properties table l shape5 dimension and properties table l shape
5 dimension and properties table l shape
 
6 dimension and properties table of ipe shape
6 dimension and properties table of ipe shape6 dimension and properties table of ipe shape
6 dimension and properties table of ipe shape
 
7 dimension and properties table ipn
7 dimension and properties table ipn7 dimension and properties table ipn
7 dimension and properties table ipn
 
8 dimension and properties table of equal leg angle
8 dimension and properties table of equal leg angle8 dimension and properties table of equal leg angle
8 dimension and properties table of equal leg angle
 
9 dimension and properties table of upe
9 dimension and properties table of upe9 dimension and properties table of upe
9 dimension and properties table of upe
 
10 dimension and properties table upn
10 dimension and properties table upn10 dimension and properties table upn
10 dimension and properties table upn
 

V alternative design methods

  • 1. T.Chhay NPIC V. viFIKNnaepSgeTot Alternative Design Methods 1> esckþIepþIm Introduction enAkñúgemeronTI3 nigTI4 karviPaK nigkarKNnaGgát;ebtugBRgwgEdkRtUv)anBnül;edayQrelIeKal karN_Edlpþl;eGayeday ACI Code 318-05. viFIKNnad¾éTRtUv)anbgðajenAkñúg]bsm<n§½ Appendix B én ACI Code edayeyageTAtamemKuNbnÞúkEdleGayenAkñúg]bsm<n§½ Appendix C. viFIKNnaepSgeTotenH KWCaeKalkarN_énkarviPaK nigkarKNnaenAkñúg ACI Code 318-99. vamanlkçN³RsedogKñaxøHeTAnwg viFI Edl)anBnül;BImun elIkElgEtvaeRbIemKuNbnÞúk nigemKuNkat;bnßyersIusþg; φ xusKña. smIkarviPaK nig smIkarKNnaeKalEdlmanenAkñúgemeronmun nwgRtUv)aneRbIenATIenH. enAeBleKeRbI Appendix B edIm,I KNna eKRtUvCMnYsnUvGVIEdlRtUvKñaenAkñúg Code enaH. 2> emKuNbnÞúk Load Factors RbsinebIersIusþg;tMrUvkar required strength RtUv)antageday U ehIykMlaMgxül; nigkMlaMgrBa¢ÜydI RtUv)antageday W nig E erogKña enaHtam ACI Code, Appendix C ersIusþg;tMrUvkar U KYrEtCatMélEdl FMCageKkñúgcMeNambnSMbnÞúkxageRkam³ 1> sMrab;krNIbnÞúkefr bnÞúkGefr nigbnÞúkxül; U = 1 .4 D + 1 .7 L (5-1a) U = 0.75(1.4 D + 1.7 L) + (1.6W b¤ 1.0E ) (5-1b) U = 0.9 D + (1.6W b¤ 1.0E ) (5-1c) 2> enAeBlbnÞúkxül; W minRtUv)ankat;bnßyedayemKuNTisedA directionality factor 1.3W Gac RtUv)aneRbICMnYs 1.6W . enAeBlEdlbnÞúkrBa¢ÜydIRtUv)anQrenAelIbnÞúkeFVIkar service forces enaH 1.4 E GacRtUv)aneRbICMnYseGay 1.0 E . 3> kñúgkrNIEdlbnÞúksMBaFdI H RtUv)anbBa©ÚleTAkñúgkarKNna U = 1 .4 D + 1 .7 L + 1 .7 H (5-2a) enAeBlEdlbnÞúkefr D nigbnÞúkGefr L kat;bnßyT§iBlrbs; H enaH U = 0 .9 D + 1 .7 H (5-2b) sMrab;bnSMbnÞúkén D / L b¤ H U = 1 .4 D + 1 .7 L 4> RbsinebITMgn; nigbnÞúksMBaFEdl)anmkBIsarFaturav F RtUv)anbBa©ÚleTAkñúgkarKNna viFIKNnaepSgeTot 73
  • 2. Department of Civil Engineering viTüasßanCatibhubec©keTskm<úCa U = 1 .4 D + 1 .7 L + 1 .4 F (5-3a) enAeBlEdlbnÞúkefr D nigbnÞúkGefr L kat;bnßyT§iBlrbs; F enaH U = 0.9 D + 1.4 F (5-3b) sMrab;bnSMbnÞúkén D / L b¤ F U = 1 .4 D + 1 .7 L sMBaFbBaÄrénsarFaturavKYrRtUv)anKitCabnÞúkefr. 5> enAeBlEdlT§iBlTgÁic impact effects RtUv)anrab;bBa©Úl enaHvaRtUv)anKitbBa©ÚleTAkñúgbnÞúkGefr. 6> enAeBlEdl structural effects T énsMrut differential settlement, creep, karrYmmaD shrinkage b¤ bNþÚrsItuNðPaB mantMélFM vaKYrRtUv)anrab;bBa©ÚleTAkñúgbnSMbnÞúkén U = 0.75(1.4 D + 1.4T + 1.7 L) (5-4a) U = 1.4 D + 1.4T (5-4b) smIkar (5-1a) RtUv)aneRbICaTUeTA. emKuNbnÞúkefresμInwg 1.4 nigemKuNbnÞúkGefresμInwg 1.7 . sMrab;bnÞúkefr nigbnÞúkGefrcMcMnuc PD nig PL enaHbnÞúkcMcMnucemKuN PU = PD + PL dUcKña M U = M D + M L Edl M D nig M L m:Um:g;bnÞúkefr nigm:Um:g;bnÞúkGefrerogKña. 3> emKuNkat;bnßyersIusþg; Strength-Reduction Factor φ ersIusþg; nominal strength énmuxkat;RtUv)ankat;bnßyedayemKuN φ edIm,IKitsMrab;kar)at;bg; ersIusþg;enAkñúgsMPar³d¾tictYc small adverse variations in material strength karplitEdleFIVeLIgedayéd artisanry TMhMxñat karRKb;RKg nigkMriténkarRtYtBinitü. emKuN φ CaEpñkmYyénemKuNsuvtßiPaB. bTdæan ACI Code, Section C.3 (Appendix C) kMNt;nUvtMélxageRkamedIm,IeRbIR)as;³ - sMrab;muxkat;rgkarTaj φ = 0.90 - sMrab;muxkat;rgkarsgát; k> CamYyEdkkgvNÐ φ = 0.70 x> CamYyEdkkgFmμta φ = 0.65 - sMrab;kMlaMgkat; nigkMlaMgrmYl φ = 0.75 - sMrab;RTnab;enAelIebtug φ = 0.65 - sMrab;karBt;enAelIebtugsuT§ b¤enAelIebtugEdlmanbrimaNEdkGb,brma 1.4 / f y ³ φ = 0.65 sMrab;muxkat;EdlsßitenAkñgtMbn; transition region rvagmuxkat;rgkarTaj tension-controlled section nigmuxkat;rgkarsgát; compression-controlled section enaH φ GacnwgekIneLIgCabnÞat;rhUtdl; 0 .9 . Alternative Design Method 74
  • 3. T.Chhay NPIC eKk¾GaceRbIemKuNkat;bnßyersIusþg; φ sMrab;ssr ¬b¤muxkat;Edlman ε t < 0.005 ¦ edayvaErbRbYl eTAtamkrNIxageRkam³ 1> enAeBlEdl Pu = φPn ≥ 0.1 f 'c Ag enaH φ = 0.7 sMrab;ssrEdkkgFmμta nig φ = 0.75 sMrab; EdkkgvNн. krNIekIteLIgCaTUeTAsMrab;muxkat;rgkarsgát; compression control. Ag Camuxkat;eBj. 2> rvagtMél 0.1 f 'c Ag b¤ φPn ¬mYyNaEdltUcCag¦ nigsUnü ehIy Pu sßitenAkñúgtMbn;Taj tension control zone nig φ FMCag 0.7 ¬b¤ 0.75 ¦. ACI Code, Section C3.2 kMNt;fa sMrab; Ggát;Edlman f y minFMCag 400MPa CamYyEdksIuemRTI nigCamYycMgayrvagEdkrgkarsgát; nigkarTaj (d − d ' ) minRtUvticCag 0.7h ¬ h =kMBs;srubrbs;muxkat;¦ nig d = h − d s enaHtM él φ RtUv)anekIneLIgCabnÞat;eTArk 0.9 . sMrab;tMbn; transition region, φ RtUv)ankMNt;edayviFan linear interpolation rvag 0.7 ¬b¤ 0.75 ¦ nig 0.9 . rUb 5>1 bgðajBIbMErbMrYlrbs; φ sMrab;Edk 400 MPa . smIkarbnÞat;mandUc xageRkam³ φ = 0.57 + 67ε t sMrab;muxkat;EdkkgFmμta (5-5) φ = 0.65 + 50ε t sMrab;muxkat;EdkkgvNн (5-6) mü:agvijeTot φ enAkñúgtMbn; transition region GacRtUv)ankMNt;CaGnuKmn_eTAnwg (dt / c) sMrab;Edk 400MPa dUcxageRkam³ ⎛d ⎞ φ = 0.37 + 0.20⎜ t ⎟ sMrab;muxkat;EdkkgFmμta (5-7) ⎝ c ⎠ viFIKNnaepSgeTot 75
  • 4. Department of Civil Engineering viTüasßanCatibhubec©keTskm<úCa ⎛ dt ⎞ φ = 0.50 + 0.15⎜ sMrab;muxkat;EdkkgvNн ⎝ c ⎠ ⎟ (5-8) Edl c CakMBs;GkS½NWtenAersIusþg; normal strength. 4> muxkat;ctuekaNEkgCamYyEdkrgkarTaj Rectangular Sections with Tension Reinforcement BIkarviPaKénmuxkat;ctuekaNEkgEdkrgkarTaj smIkarxageRkamRtUv)anbMEbk Edl f 'c nig fy KitCa MPa ³ f 'c ⎛ 600 ⎞ ⎜ ⎟ ρb = 0.85β1 f y ⎜ 600 + f y ⎟ ⎝ ⎠ RbsinebIPaKryEdkGtibrmaRtUv)ankMNt; 0.75ρb enaH f 'c ⎛ 600 ⎞ ρ max = 0.75ρb = 0.6375β1 ⎜ ⎟ (5-9) fy ⎜ 600 + f y ⎟ ⎝ ⎠ enHbgðajfa ρmax = 0.75ρb FMCag ρmax = 0.634ρb Edl)aneGayenAkñúgemeronTI3 sMrab;Edk 400 MPa . sMrab; f ' ≤ 28MPa c f 'c ⎛ 600 ⎞ ρ max = 0.542 ⎜ ⎟ (5-10) fy ⎜ 600 + f y ⎟ ⎝ ⎠ β1 = 0.85 sMrab;ebtugEdlmanersIusþg; f ' ≤ 28MPa . c f ' −28 β = 0.85 − 0.05( 1 c ) sMrab;ebtugEdlmanersIusþg; 28MPa < f ' ≤ 56MPa . c 7 β = 0.65 sMrab;ebtugEdlmanersIusþg; f ' > 56MPa . 1 c PaKryEdkénmuxkat; balanced section ρb nigPaKryEdkGtibrmaGnuBaØati ρmax GacRtUv)an KNnasMrab;tMélepSgKñaén f 'c nig f y dUcbgðajenAkñúgtarag 5>1. PaKryEdkKNnaEdlesñIeLIgsMrab; ρ ≤ ρ max k¾RtUv)anbgðajenAkúñgtarag 5>1. taragTI5>1³ PaKryEdkEdlRtUv)anesñIreLIg ρ s f 'c ( MPa) f y (MPa) %ρ s 20 235 1.4 400 1.2 28 400 1.4 500 1.2 35 400 1.4 500 1.2 smIkarm:Um:g;KNnaRtUv)anbMEbkenAkñúgemeronmunmanTMrg;dUcxageRkam³ Alternative Design Method 76
  • 5. T.Chhay NPIC φM n = M u = Ru bd 2 (3-21) ⎛ ρf y ⎞ Edl Ru = φρf y ⎜1 − ⎜ 1.7 f ' ⎟ = φRn ⎟ (3-22) ⎝ c⎠ nig φ = 0.9 . sMrab;muxkat;rgkarTaj tension-controlled section / ε t ≥ 0.005 ⎛ As f y ⎞ φM n = M u = φAs f y ⎜ d − ⎜ ⎟ (3-19a) ⎝ 1.7 f 'c b ⎟ ⎠ ⎛ ρf y ⎞ dUcKña φM n = M u = φf y bd 2 ⎜ d − ⎜ ⎟ 1.7 f 'c ⎟ (3-20) ⎝ ⎠ eyIgeXIjfasMrab;eRkABI m:Um:g;emKuN M u / f 'c / f y eKmanGBaØatibIenAkñúgsmIkarenHKW b / d nig ρ . dUcenHeKminGacedaHRsaysmIkarenH)aneT Tal;EtGBaØatiBIrRtUv)ansnμt;. CaTUeTA eKeRcInsnμt; ρ ¬edayeRbI ρmax ¦ nig b k¾RtUv)ansnμt;Edr. edayQrelIkarBiPakSaBIxagedIm krNIxageRkamRtUv)anbegáIt eLIgenAeBl M u / f 'c / f y RtUv)ansÁal;³ 1> RbsinebI ρ RtUv)ansnμt; enaH Ru GacRtUv)anKNnaBIsmIkar (3-22) EdleGay bd 2 = M u / Ru . GñkKNnaGaceRbI ρ rhUtdl; ρ max EdlbegáItmuxkat;ebtugEdkrgkarTajGb,- brma. RbsinebIeRbI ρmin vanwgbegáItmuxkat;ebtugGtibrma. RbsinebI b RtUv)ansnμt;bEnßmBI elI ρ enaH d GacRtUv)anKNnadUcxageRkam³ Mu d= (5-11) Ru b RbsinebI d / b = 2 enaH d = 3 (2M u / Ru ) nig b = d / 2 bgçittMéleTArktMélEdlFM. 2> RbsinebI d nig b RtUv)aneGay PaKryEdkRtUvkar ρ GacRtUv)anKNnaedaysmIkar (3-20) eKTTYl)an 3> ρ = 0.85 f 'c ⎡1 − 1 − 1.7φfM ubd 2 ⎤ ⎢ 4 ⎥ (5-12) f y ⎢ ⎣ ' c ⎥ ⎦ 0.85 f 'c ⎡ 2 Ru ⎤ = ⎢1 − 1 − ⎥ fy ⎣ 0.85 f 'c ⎦ nig As = ρbd Ca]TahrN_/ RbsinebI M u = 275.72kN .m / b = 300mm / d = 450mm / f 'c = 20MPa nig f y = 400MPa enaH ρ = 0.0154 BIsmIkar (5-12) nig As = ρbd = 0.0154 × 300 × 450 = 2079mm 2 enA eBlEdleKeGay b nig d eKKYrEtBinitüemIlfaetIeKRtUvkarEdkrgkarsgát;b¤Gt; eRBaHEt d tUc. eKGacedaH Rsayva)andUcxageRkam³ k> KNna ρmax nig Ru,max = φρmax f y [1 − (ρmax f y / 1.7 f 'c )] viFIKNnaepSgeTot 77
  • 6. Department of Civil Engineering viTüasßanCatibhubec©keTskm<úCa x> KNna φM n,max = Ru,maxbd 2 = ersIusþg;m:Um:g;Gtibrmarbs;muxkat;EdkrgkarTaj. K> RbsinebI M u < φM n,max enaHvaminRtUvkarEdkrgkarTajeT. KNna ρ nig As BIsmIkar (5- 12) X> RbsinebIeKsÁal; ρ nig b KNna Ru ³ ⎛ ρf y ⎞ ⎜ 1 .7 f ' ⎟ Ru = φρf y ⎜1 − ⎟ ⎝ c⎠ KNna d BIsmIkar (5-11) d= Mu Rb nig As = ρbd u ]TahrN_TI1³ kMNt;muxkat;EdkcaM)ac;sMrab;muxkat;EdlmanTTwg b = 250mm nigkMBs;srub d = 700mm ¬rUbTI5>2¦ RbsinebIvargnUvm:Um:g;emKuNxageRkA 312kN.m . eKeGay f 'c = 28MPa nig f y = 400MPa . dMeNaHRsay 1> snμt;eRbIEdk DB25 mYyRsTab; ¬epÞógpÞat;enAeBleRkay¦ d = 700 − 50 = 650mm . 2> RtYtBinitüemIlfaetImuxkat;RtUvkarEdksgát;b¤Gt;. eRbobeFobersIusþg;m:Um:g;KNnaénmuxkat; ¬eday eRbI ρmax ¦ CamYym:Um:g;KNna. sMrab; f 'c = 28MPa nig f y = 400MPa / ρmax = 0.02276 . ⎛ ρ max f y ⎞ Ru = φρmax f y ⎜1 − ⎜ ⎟ = 6.63MPa ⎝ 1 .7 f 'c ⎟ ⎠ ersIusþg;m:Um:g;KNnaénmuxkat;ebtugEdkrgkarTajKW φM n, max = Ru / maxbd 2 = 6.63 × 250 × 6502 × 10−6 = 700.3kN .m > 312kN .m dUcenH ρ < ρmax enaHvaCamuxkat;EdlmanEtEdkrgkarTaj. Alternative Design Method 78
  • 7. T.Chhay NPIC 3> KNna ρ BIsmIkar (5-12) edIm,ITTYl)an ρ = 0.0089 / As = ρbd = 0.0089 × 250 × 650 = 1446mm 2 eRbIEdk 3DB 25 (As = 1472mm 2 ). muxkat;cugeRkayRtUv)anbgðajenAkñúgrUbTI 5>2. 4> epÞógpÞat; ε t ³ 1472 × 400 a= = 98.96mm 0.85 × 28 × 250 a c= = 116.4mm 0.85 d −c εt = t 0.003 = 0.0137 > 0.005 φ = 0.9 c 5> muxkat;ctuekaNCamYynwgEdkrgkarsgát; Rectangular Sections with Compression Reinforcement muxkat;ebtugEdkrgkarTaj singly reinforced section EdlmanersIusþg;m:Um:g;GtibrmaenAeBlEdl ρ max rbs;EdkRtUv)aneRbI. RbsinebIm:Um:g;emKuNFMCagersIusþg;m:Um:g;kñúg ¬krNImuxkat;RtUv)ankMNt;¦ enaHeK RtUvkarmuxkat;EdkDub doubly reinforced section edaybEnßmEdkTaMgenAkñúgtMbn;sgát; nigtMbn;Taj. viFI saRsþsMrab;KNnamuxkat;ctuekaNEkgCamYyEdksgát; enAeBlEdleKsÁal; M u / f 'c / b / d nig d ' Rtuv)ansegçbenAkñúgemeronTI4. karEdlxusKñamanEtmYyKW ρmax = 0.75ρb RtUv)aneRbIenAkñúgkarKNnaenH³ f 'c ⎛ 600 ⎞ ⎜ ⎟ ρ max = 0.6375β1 (5-9) f y ⎜ 600 + f y ⎟ ⎝ ⎠ dUcKña RtUvepÞogpÞat; ε t ≥ 0.005 sMrab; φ = 0.9 . ]TahrN_TI2³ muxkat;FñwmRtUv)ankMNt;eday b = 300mm nigkMBs;srub h = 500mm ehIyrgnUvm:Um:g;emKuN M u = 447.5kN .m . kMNt;muxkat;EdkcaM)ac;edayeRbI f 'c = 28MPa nig f y = 400MPa . ¬eyagtamrUb 5>3¦. dMeNaHRsay³ viFIKNnaepSgeTot 79
  • 8. Department of Civil Engineering viTüasßanCatibhubec©keTskm<úCa 1> kMNt;ersIusþg;m:Um:g;KNnaénmuxkat;EdkeTal. snμt; ρ = 0.018 . dUcenH Ru = 5.5MPa . sMrab; EdkBIrRsTab; d = 500 − 90 = 410mm M u1 = Ru bd 2 = 5.5 × 300 × 410 2 × 10 −6 = 277.4kN .m m:Um:g;KNnaKW M u = 447.5kN .m > 277.4kN .m dUcenHeKRtUvkarEdksgát; 2> KNna As1 / M u 2 / As2 nig As As1 = ρbd = 0.018 × 300 × 410 = 2214mm 2 M u 2 = M u − M u1 = 447.5 − 277.4 = 170.1kN .m M u 2 = φAs 2 f y (d − d ' ) snμt; d ' = 50mm 170.1 ⋅ 106 = 0.9 As 2 400(410 − 50) As 2 = 1312.5mm 2 As = As1 + As 2 = 2214 + 1312.5 = 3526.5mm 2 ¬ 6DB28 ¦ 3> epÞógpÞat;PaB yield rbs;Edkrgkarsgát;. Edkrgkarsgát; yield RbsinebI f 'c ⎛ d ' ⎞⎛ 600 ⎞ ρ − ρ ' ≥ K = 0.85β1 ⎜ ⎟⎜ ⎟ fy ⎝ d ⎠⎜ 600 − f y ⎝ ⎟ ⎠ 28 ⎛ 50 ⎞⎛ 600 ⎞ K = (0.85) 2 ⎜ ⎟⎜ ⎟ = 0.0185 400 ⎝ 410 ⎠⎝ 600 − 400 ⎠ A 2214 ρ − ρ ' = s1 = = 0.018 < K bd 300 × 410 dUcenH Edkrgkarsgát;Gt; yield ³ f 's < f y 4> KNna f 's ³ f 's = 600[(c − d ') / c] ≤ f y / kMNt; As1 ³ As1 = 2214mm2 As1 f y 2214 × 400 a= = = 124mm 0.85 f 'c b 0.85 × 28 × 300 a 124 c= = = 145.9mm β1 0.85 145.9 − 50 f 's = 600 = 394.4 MPa < 400MPa 145.9 5> KNna A's BI M u 2 = φA's f 's (d − d ' ) 170.1 ⋅ 106 = 0.9 A's 394.4(410 − 50) dUcenH A's = 1331mm2 b¤KNna A's BI A's = As 2 ( f y / f 's ) = 1331mm2 ¬ 3DB25 ¦ 6> epÞógpÞat; ⎛ dt − c ⎞ εt = ⎜ ⎟0.003 ⎝ c ⎠ d t = h − d ' = 500 − 50 = 450mm Alternative Design Method 80
  • 9. T.Chhay NPIC ⎛ 450 − 145.9 ⎞ εt = ⎜ ⎟0.003 = 0.006 > 0.005 φ = 0.9 ⎝ 145.9 ⎠ c 145.9 = = 0.324 < 0.375 (OK) dt 450 7> epÞógpÞat; φM n cugeRkay/ As = 3694.5mm2 / A's = 1472.6mm2 / As1 = 2221.9mm 2 / a = 124.5mm nig c = 146.5mm ⎛ 124.5 ⎞ M n = 2221.9 × 400⎜ 410 − ⎟ + 1472.6 × 394.4(410 − 50) = 518.15kN .m ⎝ 2 ⎠ epÞógpÞat; ε t / dt = 450mm ⎛ dt − c ⎞ εt = ⎜ ⎟0.003 = 0.006 > 0.005 ⎝ c ⎠ φ = 0.9 φM n = 0.9 × 518.15 = 466.3kN .m > 447.5kN .m 6> karKNnamuxkat;GkSret Design of T-Section kñúgkarKNnamuxkat;GkSret enAeBlEdleKsÁal;m:Um:g;emKuN M u kMras;søab T TTwg b RtUv)ankM Nt;BIkarKNnakMralxNÐ ehIykarkMNt;rbs; ACI Code sMrab;TTwgsøabRbsiT§PaB b RtUv)aneGayenAkñúg emeronTI3. kMras;RTnug bw GacRtUv)ansnμt;edayERbRbYlBI 200 → 500mm TMhMEdlRtUv)aneRbIKWsßitenA cenøaH 300 → 400mm . GBaØatiBIrRtUvkarkMNt;CacaM)ac;KW d nig As . CMhanéjkarKNnaRtUv)ansegçbenA kñúgemeronTI4. ]TahrN_TI3³ muxkat;FñwmGkSret RtUv)anbgðajenAkñúgrUbTI4 manTTwgRTnug bw = 250mm TTwgsøab b = 1m kMras;søab t = 100mm nigkMBs;RbsiT§PaB d = 370mm . kMNt;muxkat;EdkcaM)ac;RbsinebIm:Um:g;emKuN 420kN.m . eKeGay f 'c = 28MPa nig f y = 400MPa . dMeNaHRsay³ viFIKNnaepSgeTot 81
  • 10. Department of Civil Engineering viTüasßanCatibhubec©keTskm<úCa 1> KNnaTItaMgTItaMgGkS½NWt Edlmuxkat;GacmanragctuekaN. snμt;kMBs;rbs;bøúksgát; a = 100mm Edl a = t = 100mm enaH ⎛ t⎞ φM n = φ (0.85 f 'c )bt ⎜ d − ⎟ = 685.44kN .m > 420kN .m ⎝ 2⎠ m:Um:g;KNnaEdlsøabebtugGacRT)anFMCagm:Um:g;emKuNEdlmanGMeBIelIva. dUcenH muxkat;eFVIkar manragctuekaN. 2> kMNt;muxkat;EdkTaj edayKitmuxkat;manragctuekaNEdl b = 1000mm Mu 420000000 Ru = = = 3.06 MPa bd 2 1000 × 370 2 BIsmIkar (5-12) sMrab; Ru = 3.07MPa nig ρ = 0.0092 As = ρbd = 0.0092 × 1000 × 370 = 3404mm 2 eRbI 6DB28 / As = 3694.5mm2 ¬BIrRsTab;¦ 3> epÞógpÞat;fa ρ w = As / bwd ≥ ρmin / ρ w = 3404 /(250 × 375) = 0.0363 > ρ min = 0.00333 4> epÞógpÞat; ε t = ⎛ dt c− c ⎞0.003 dt = 375mm ⎜ ⎝ ⎟ ⎠ 3404 × 400 57.21 a= = 57.21mm c= = 67.3mm 0.85 × 28 × 1000 0.85 ε t = 0.0135 > 0.005 φ = 0.9 7> viFI strut and tie Strut and Tie Method 1> esckþIepþIm Introduction ACI Code, Appendix A / ENnaMnUvviFImYyepSgeTot eRkABIviFIEdl)anBnül;BIxagedImenAkñúgem eronTI 3. viFIenHeKeGayeQμaHfa strut and tie model. viFIepSgenHRtUv)anGnuvtþy:agmanRbsiT§PaBenAkñúg tMbn;Edldac; discontinuity enAkñúgeRKOgbgÁúM dUcCatMbn;TMr tMbn;EdlbnÞúkGnuvtþ b¤tMbn;Edlmuxkat;FrNI maRtpøas;bþÚrPøam²dUcCa brackets nig portal frames. enAkñúgtMbn;TaMgenH muxkat;rabesμIminrkSaenArabesμI eRkayeBlrgkarBt; ¬dUcGVIEdl)ansnμt;enAkñgemeronTI3¦ ehIyvaRtUv)aneKeGayeQμaHfa tMbn; D (D- region) ¬rUbTI5>5 a¦. tMbn;epSgeTotebs;Fñwmsþg;da RTwsþIbTFñwmmUldæan nigTMnak;TMng linear strain relationshipRtUv)anGnuvtþ. tMbn;TaMgenHRtUv)aneKeGayeQμaHfa tMbn; B (B-region) ¬rUbTI5>5 a¦. edayQrelIeKalkarN_ St. Venant PaBdac;KñaenAkñúgkarEbgEckkugRtaMgenAkúñgtMbn; D ¬Edl bNþalmkBIragFrNImaRt b¤lkçxNÐbnÞúk¦bgðajfakugRtaMgbNþalmkBIbnÞúktamGkS½ nigm:Um:g;Bt; kar BRgaykugRtaMgesÞIrEtmanlkçN³CabnÞat;enAcMgayRbEhlnwgkMBs; h rbs;Ggát;BIcMnucdac; ¬rUbTI5>5 b nig Alternative Design Method 82
  • 11. T.Chhay NPIC c¦. RbsinebItMbn; D BIrCan;Kña b¤CYbKña BYkvaGacRtUv)anKitCatMbn; D EtmYy. pleFobrvagRbEvgGtibrma nigkMBs;esμInwg 2 EdlbegáItmMuGb,brma 26.5o rvag strut and tie ¬b¤RbEhl 25o ¦. enAkñúgKMrU strut and tie ¬rUbTI5>6¦ cMnucEdlkMlaMgbICYbKñaenAtMN D RtUv)aneKeGayeQμaHfa cMnuc node nigmaDebtugEdlenACMuvijcMnuc node RtUv)anehAfatMbn;cMnuc nodal zone. kMlaMgEdlmanGMeBIenAelI cMnuc node GacERbRbYleTAtamkMlaMgTaj nigkMlaMgsgát;énbnSMepSg² dUcCa C − C − C / C − C − T / C − T − T / T − T − T ¬rUbTI 5>7¦. rUbTI5>8 bgðajBIRbePTtMbn;cMnuc typical nodal zone sMrab;kar Gnuvtþn_bnÞúkepSg² cMENkÉrUbTI 5>9 bgðajBI extended nodal zone sMrab;sésrEdkmYy b¤eRcInRsTab;. 2> KMrU strut and tie Strut and Tie Model KMrU strut and tie GacRtUv)anbgðajedayKMrU truss CamYynwgkMlaMgeFVIGMeBIenAelIcMnucepSg². LÚv BicarNanUv truss EdkEdl)anbgðajenAkñúgrUbTI 5>10. edaysarEtvamanlkçN³sIuemRTI RbtikmμenAcMnuc A nig B esμIKña R A = RB = 20kN nigBIlMnwgéntMNr A nig D kMlaMgTajenAkñúg AB = 20kN enAeBlEdl kMlaMgsgát;enAkñúg AD b¤ BD = 28.3kN . Ggát; AB RtUv)anKitCa tie cMENkÉ AD nig BD RtUv)ancat;Tuk Ca strut. kMlaMgenAkñúgGgát;epSg²eTotesμIsUnü. edayeRbobeFob truss enHCamYyFñwmbtugenAkñúgrUbTI 5>6a eyIgGaceXIjfaRkLaépÞPaKeRcInén ACD nig BED nigRkLaépÞEdlenABIxageRkam nodal zone D min manRbsiT§PaB nigeFVIkarCa filler. kMlaMgenAkñúg strut sMrab;lkçxNÐbnÞúkenH FMCagkMlaMgenAkñúg tie. kñúg krNIenH vamanRkLaépÞebtugRKb;RKan;edIm,IeFVIkarCa strut ¬rUbTI5>6a¦. eKRtUvkarCacaM)ac;nUvsésrEdk viFIKNnaepSgeTot 83
  • 12. Department of Civil Engineering viTüasßanCatibhubec©keTskm<úCa edIm,IeFVIkarCa tie sMrab; AB . karcgP¢ab;d¾RtwmRtUvrbs; tie mansar³sMxan;Nas;sMrab;karKNnaRbkbeday suvtßiPaB. karcgP¢ab;KYreFVIeLIgenAtMbn; nodal zone. Alternative Design Method 84
  • 13. T.Chhay NPIC 3> viFIsaRsþKNnatam ACI ACI Design Procedure edayQrelI ACI Code, Section A.2 karKNnatMbn; D-region rab;bBa©ÚlnUvCMhanxageRkam³ - kMNt; nigbMEbknUvtMbn;nImYy² - kMNt;kMlaMgpÁÜbEdlmanGMeBIelIEdndMbn; D-region nImYy² - eRCIserIsKMrU truss edIm,IbBa¢ÚnkMlaMgpÁÜbenAkñúgtMbn; D-region. GkS½én strut nig tie KYrRtYtsIuKñaCa mYynwgtMbn;sgát; compression field nigtMbn;Taj tension field. - kMNt;TTwgRbsiT§PaBrbs; struts nig nodal zones edayQrelIersIusþg;ebtug ersIusþg;Edk nigKMrU truss Edl)aneRCIserIs. viFIKNnaepSgeTot 85
  • 14. Department of Civil Engineering viTüasßanCatibhubec©keTskm<úCa - epÞógpÞat;lkçxNÐeFVIkar serviceability condition EdleyageTAtamtMrUvkarrbs; ACI Code. PaBdabrbs;Fñwmx<s; deep beam GacRtUv)anKNnaedayeRbIkarviPaKeGLasÞic elastic analysis. lkçxNÐRKb;RKgsñameRbHén ACI Code, Section 10.6.4 KYrRtUv)anepÞógpÞat;edaysnμt;fa tie RtUv)aneRsabenAkñúgRBIsebtug eyagtam RA.4.2 . Alternative Design Method 86
  • 15. T.Chhay NPIC 4> tMrUvkarsMrab;karKNna Design Requirement tMrUvkarKNnasMrab; struts nig tie GacRtUv)ansnμt;dUcxageRkam³ 1> KNna struts, ties nigtMbn; nodal zone φFn ≥ Fu (5-13) Edl Fu = kMlaMgenAkñúg struts, ties nigtMbn; nodal zone Edl)anBIbnÞúkemKuN Fn = ersIusþg; nominal strength rbs; struts, ties nigtMbn; nodal zone φ = 0.75 sMrab;TaMg struts nig tie 2> ersIusþg;rbs; struts ³ ersIusþg;sgát; nominal compressive strength rbs; struts EdlKμanEdk beNþay Fns KYrEttUcCagtMél Fns enAcugTaMgBIrrbs; struts ³ Fns = f ce Acs (5-14) Edl Acs = RkLaépÞmuxkat;enAcugmçagrbs; struts f ce = ersIusþg;sgát;RbsiT§PaBrbs;ebtugEdltUcCagenAkúñg struts b¤ nodal zone. f ce = 0.85β s f 's (5-15) Edl sMrab; struts manrUbragCaRBIs βs = β s = sMrab; struts EdlTTwgRtg;muxkat;kNþalGgát;FMCag TTwgenAcMnuc node (bottle-shaped struts) CamYybrimaNEdkRKb;;RKan;edIm,ITb;nwg kugRtaMgTaj tamTTwg. β s = 0.6λ dUcGVIEdl)anerobrab;xagelI edayKμanbrimaNEdkRKb;;RKan;edIm,ITb;nwg kugRtaMgTajtamTTwg ¬ λ = 1.0 sMrab;ebtugTMgn;Fmμta normal-weight concrete, 0.85 sMrab; ebtugxSac;TMgn;Rsal sand-lightweight concrete nig 0.75 sMrab;ebtug TMgn;RsalTaMgGs; lightweight concrete¦. β s = 0.4 sMrab; struts enAkñgGgát;Taj b¤søab β s = 0.6 sMrab;krNIepSgeTotTaMgGs; 3> EdkExVg struts ¬rUbTI5>11¦³ sMrab; f 'c ≤ 35MPa tMél β s = 0.75 GacRtUv)aneRbIRbsinebI GkS½rbs; struts RtUv)anExVgedayRsTab;Edk Asi ∑ sin γ i ≥ 0.003 (5-16) bs si Edl Asi = RkLaépÞmuxkat;EdksrubenAKMlat si enAkñúgRsTab;TI i Edlkat; strut enAmMu α i CamYyGkS½rbs; strut. si = KMlatEdkenAkñúgRsTab;TI i Edlkat; strut enAmMu α i CamYyGkS½rbs; strut . viFIKNnaepSgeTot 87
  • 16. Department of Civil Engineering viTüasßanCatibhubec©keTskm<úCa bs =TTwgGgát; α1 = mMurvagGkS½rbs; strut nigr)arenAkñúgRsTab;TI i énr)arEdlkat;Kñaeday strut. 4> Edkrgkarsgát;enAkñúg struts ³ Edkrgkarsgát;GacRtUv)aneRbIedIm,IbegáInersIusþg;rbs; strut Fns = f ce Acs + A's f 's (5-17) Edl Fns = ersIusþg;én strut BRgwgedayEdkbeNþay A's = RkLaépÞénEdksgát;enAkñúg strut f 's = kugRtaMgenAkñúg A's ¬ f 's = f y sMrab; 400 → 500 MPa ¦ 5> ersIusþg;rbs; tie ³ersIusþg; nominal strength én tie, Fnt KW³ Fnt = Ats f y + Atp ( f se + Δf p ) (5-18) Edl Ats = RkLaépÞEdkminrgeRbkugRtaMgenAkñúg tie Atp = RkLaépÞEdkeRbkugRtaMg f se = kugRtaMgRbsiT§PaBeRkayeBl)at;bg;enAkñúgEdkrgeRbkugRtaMg Δf p = karbegáInkugRtaMgeRbkugRtaMgEdlbNþalmkBIbnÞúkemKuN Atp = 0 sMrab;Ggát;minrgeRbkugRtaMg ( f se + Δf p ) ≤ f py (5-19) eKGacGnuBaØatieGayyk Δf p = 400MPa sMrab; bonded prestressed reinforced b¤ Δf p = 70MPa sMrab; unbonded prestressed reinforced . dUcKña EdnkMNt;x<s;énkarGnuvtþsMrab; TTwgrbs; tie GacRtUv)anykdUcxageRkam wt , max = Fnt /( f cebs ) (5-20) Alternative Design Method 88
  • 17. T.Chhay NPIC 6> ersIusþg;rbs;tMbn; nodal zones³ ersIusþg; nominal compression strength éntMbn; nodal zones Fnn KYrEtesμI Fnn = f ce Anz (5-21) Edl RkLaépÞxagebs; nodal zone b¤muxkat;rbs; nodal zone EdlEkgeTAnwgkM Anz = laMgpÁÜbenAelImuxkat; 7> karbgçaMgenAkñúgtMbn; nodal zones: y:agehacNas;EdkbgçaMgRtUv)anpþl;eGayenAkñúgtMbn; nodal zone nigT§iBlrbs;vaRtuv)anKaMRTedaykarBiesaFn_ nigkarviPaK enaHkugRtaMgrgkarsgát;RbsiT§ PaBKNnaenAelIépÞéntMbn; nodal zone EdlbNþalmkBIkMlaMg strut nigkMlaMg tie minKYrelIsBI tMélxageRkam³ f ce = 0.85β n f 'c (5-22) Edl β n = 1.0enAkñúgtMbn; nodal zone EdlP¢ab;eday strut b¤ bearing areas b¤TaMgBIr ¬ C − C − C node¦. β n = 0.8 enAkñúgtMbn; nodal zone Edlf<k;P¢ab; tie mYy ¬ C − C − T node¦. β n = 0.6 enAkñúgtMbn; nodal zone Edlf<k;P¢ab; tie BIr b¤eRcIn ¬ C − T − T node¦. karGnuvtþn_énviFI strut and tie method sMrab;Fñwmx<s;manenAkñúgemeronTI8 ]TahrN_TI6. viFIKNnaepSgeTot 89