SlideShare una empresa de Scribd logo
1 de 47
ĐẠI HỌC QUỐC GIA HÀ NỘI
TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN
NGUYỄN THỊ THANH TÂM
TÍNH ỔN ĐỊNH CỦA MỘT SỐ LỚP
PHƯƠNG TRÌNH HÀM VỚI CẶP BIẾN TỰ DO
Chuyên ngành: Giải tích
Mã số: 60460102
LUẬN VĂN THẠC SỸ KHOA HỌC
NGƯỜI HƯỚNG DẪN KHOA HỌC:
GS.TSKH NGUYỄN VĂN MẬU
HÀ NỘI- 2014
Mục lục
Lời nói đầu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1 Tính ổn định của các phương trình hàm dạng Cauchy 4
1.1 Tính ổn định của các phương trình hàm cộng tính . . . . . . 5
1.2 Tính ổn định của các phương trình hàm nhân tính . . . . . . 11
1.3 Tính ổn định của các hàm logarit . . . . . . . . . . . . . . . 13
1.4 Tính ổn định của các hàm lũy thừa . . . . . . . . . . . . . . 18
2 Tính ổn định của các phương trình hàm chuyển tiếp các đại
lượng trung bình cơ bản 25
2.1 Tính ổn định của phương trình hàm chuyển tiếp đại lượng
trung bình cộng vào trung bình cộng . . . . . . . . . . . . . . 25
2.2 Tính ổn định của phương trình hàm chuyển tiếp đại lượng
trung bình cộng vào trung bình nhân . . . . . . . . . . . . . 27
2.3 Tính ổn định của phương trình hàm chuyển tiếp đại lượng
trung bình cộng vào trung bình điều hòa . . . . . . . . . . . . 29
2.4 Tính ổn định của phương trình hàm chuyển tiếp đại lượng
trung bình cộng vào trung bình bậc hai . . . . . . . . . . . . 31
3 Tính ổn định của một số dạng phương trình hàm khác 33
3.1 Tính ổn định của phương trình sóng . . . . . . . . . . . . . . 33
3.2 Tính ổn định của phương trình đa thức . . . . . . . . . . . . 37
3.3 Tính ổn định của phương trình dạng toàn phương . . . . . . 40
Kết luận . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Tài liệu tham khảo . . . . . . . . . . . . . . . . . . . . . . . . . 45
1
LỜI NÓI ĐẦU
Lý thuyết phương trình hàm là một trong những chủ đề lâu đời nhất của
toán học phân tích. Nó được ra đời từ rất sớm và có mặt ở hầu hết mọi nơi
và có ứng dụng trong mọi lĩnh vực của đời sống và kỹ thuật. Đã có rất nhiều
nhà toán học lớn nghiên cứu lĩnh vực này như: Cauchy, D’Alembert, Banach,
Gauss, . . . và họ đã có rất nhiều đóng góp to lớn. Trong một bài giảng nổi
tiếng của S.M.Ulam tại câu lạc bộ toán của trường đại học Wisconsin vào
năm 1940 đã đưa ra một số vấn đề chưa được giải quyết. Một trong số các
vấn đề đó đã dẫn đến một hướng nghiên cứu mới mà ngày nay đã biết đến
đó là nghiên cứu tính ổn định của phương trình hàm. Thông thường khái
niệm ổn định trong toán học đã nghiên cứu thường có một điểm khá chung
là ta thường giải quyết bài toán: Khi nào điều này còn đúng nếu thay đổi
"một chút" giả thiết của định lý mà vẫn khẳng định được các kết quả của
định lý vẫn còn đúng hoặc "xấp xỉ" đúng.Như vậy câu hỏi đặt ra là tính ổn
định của phương trình hàm là gì, có điểm chung giống như trên không và
nếu trong phương trình hàm tìm được nghiệm thì tính ổn định nghiệm của
phương trình hàm là gì? Để lý giải một phần các vấn đề trên và giới thiệu
quá trình xây dựng các công thức, giải quyết các vấn đề tôi đã thực hiện
luận văn với đề tài "Tính ổn định của một số lớp phương trình hàm với cặp
biến tự do".
Bố cục luận văn gồm 3 chương.
Chương 1. Tính ổn định của các phương trình hàm dạng Cauchy.
Mục đích của chương này là đưa ra các định nghĩa và điều kiện ổn định của
phương trình hàm Cauchy cộng tính, phương trình hàm Cauchy nhân tính,
phương trình hàm logarit và phương trình hàm lũy thừa cùng một số ví dụ
minh họa.
Chương 2. Tính ổn định của các phương trình hàm chuyển tiếp
các đại lượng trung bình cơ bản.
Chương này đưa ra các bài toán tìm nghiệm và xét tính ổn định nghiệm của
các phương trình chuyển tiếp các đại lượng trung bình cơ bản.
2
Chương 3. Tính ổn định của một số phương trình hàm dạng khác
Các kết quả chính trong luận văn được trình bày dựa trên tài liệu tham
khảo [1]-[12].
Luận văn này được thực hiện dưới sự hướng dẫn tận tình và nghiêm khắc
của GS.TSKH Nguyễn Văn Mậu.Thầy đã dành rất nhiều thời gian quý báu
của mình để hướng dẫn, giải đáp những thắc mắc của tôi. Qua đây tôi xin
gửi lời cảm ơn chân thành và sâu sắc nhất đến thầy cùng toàn thể ban lãnh
đạo và các thầy cô trong khoa Toán - Cơ - Tin học, trường Đại học Khoa
học Tự nhiên - Đại học Quốc Gia Hà Nội đã giúp tôi có thêm nhiều kiến
thức để có thể hoàn thành luận văn và khóa học một cách tốt đẹp. Các thầy
cô phòng Sau Đại học đã tạo những điều kiện thuận lợi giúp tôi hoàn thành
các thủ tục bảo vệ luận văn cũng như học tập. Các thầy và các bạn trong
seminar Toán Giải Tích về những góp ý để tôi có thể hoàn thành luận văn
này.
Tôi xin chân thành cảm ơn tất cả những sự giúp đỡ và đóng góp quý giá
ấy.
Cuối cùng do bản thân kiến thức còn có nhiều hạn chế nên luận văn không
tránh khỏi những thiếu sót.Rất mong nhận được những ý kiến đóng góp của
quý thầy cô và các bạn.
Hà Nội, tháng 12 năm 2014
Nguyễn Thị Thanh Tâm
3
Chương 1
Tính ổn định của các phương trình
hàm dạng Cauchy
Định nghĩa 1.1. Phương trình hàm là các phương trình mà hai vế của
phương trình là các biểu thức được xây dựng từ một số hữu hạn các hàm
chưa biết và từ một số hữu hạn các biến độc lập.
Thông thường một phương trình hàm tổng quát đã cho thường không kèm
theo các giả thiết có đặc trưng giải tích lên các hàm như tính đo được, tính
bị chặn, khả tích, khả vi, liên tục,. . .
Như ta đã biết, phương trình hàm là một phương trình thông thường mà
nghiệm của nó là các hàm. Để giải quyết tốt vấn đề này, cần phân biệt tính
chất hàm với đặc trưng hàm. Sau đây là đặc trưng hàm của một số hàm sơ
cấp.
i) Hàm bậc nhất f(x) = ax + b; a = 0; b = 0 có tính chất
f
x + y
2
=
1
2
f(x) + f(y) , en∀x, y ∈ R.
ii) Hàm tuyến tính: f(x) = ax; a = 0 có tính chất:
f(x + y) = f(x) + f(y), ∀x, y ∈ R.
iii) Hàm mũ: f(x) = ax
, a > 0, a = 1 có tính chất:
f(x + y) = f(x)f(y), ∀x, y ∈ R.
iv) Hàm logarit: f(x) = loga |x| ; a > 0, a = 1 có tính chất:
f(xy) = f(x) + f(y), ∀x, y = 0 x, y ∈ R.
4
v) Hàm lũy thừa: f(x) = |x|a
có tính chất:
f(xy) = f(x)f(y) ∀x, y = 0 x, y ∈ R.
vi) Các hàm lượng giác:
+) Hàm f(x) = sin x có tính chất
f(3x) = 3f(x) − 4f3
(x), ∀x ∈ R.
+) Hàm f(x) = cos x có tính chất:
f(2x) = 2f2
(x) − 1, ∀x ∈ R.
Tiếp theo, ta đề cập đến tính ổn định của phương trình hàm Cauchy cộng
tính và một số phương trình hàm dạng Cauchy.
1.1 Tính ổn định của các phương trình hàm cộng tính
Trước hết ta nhắc lại phương trình hàm Cauchy cộng tính:
Giả sử hàm f : R → R là hàm thỏa mãn tính chất
f(x + y) = f(x) + f(y), ∀x, y ∈ R, (∗)
thì f được gọi là hàm cộng tính.
Định nghĩa 1.2. Giả sử f : R → R sao cho với mọi ε > 0 cho trước nếu
tồn tại số δ > 0 sao cho
|f(x + y) − f(x) − f(y)| < δ, ∀x, y ∈ R
và một hàm cộng tính M : R → R để
|f(x) − M(x)| < ε, ∀x ∈ R.
thì phương trình hàm Cauchy (*) được gọi là ổn định.
Định lý 1.1. Giả sử hàm số f : R → R thỏa mãn điều kiện: Với mọi ε > 0
cho trước ta có
|f(x + y) − f(x) − f(y)| ≤ ε với ∀x, y ∈ R. (1.1)
5
Khi đó với mỗi x ∈ R, giới hạn sau tồn tại :
A(x) = lim
n→∞
2−n
f(2n
x)
và xác định duy nhất một hàm cộng tính A : R → R thỏa mãn điều kiện
|f(x) − A(x)| ≤ ε, ∀x ∈ R.
Chứng minh. Thay x = y vào (1.1) ta được
1
2
f(2x) − f(x) ≤
1
2
ε. (1.2)
Sử dụng phương pháp quy nạp ta được
|2−n
f(2n
x) − f(x)| ≤ (1 − 2−n
)ε. (1.3)
Trong (1.3) thay x bởi 2x ta được
1
2
f(22
x) − f(2x) ≤
1
2
ε.
Khi đó
1
2
f(22
x) − 2f(x) − f(2x) − 2f(x) =
1
2
f(22
x) − f(2x) ≤
1
2
ε.
Hay
1
22
f(22
x) − f(x) −
1
2
f(2x) − f(x) ≤
1
22
ε.
Nên
1
22
f(22
x) − f(x) ≤ ε
1
2
+
1
22
.
Do đó
1
2n
f(2n
x) − f(x) ≤ ε
1
2
+
1
22
+ · · · +
1
2n
= ε 1 −
1
2n
.
Bây giờ ta sẽ chứng minh dãy
1
2n
f(2n
x) là dãy Cauchy với mỗi x ∈ R.
Chọn m > n khi đó
1
2n
f(2n
x) −
1
2m
f(2m
x) =
1
2n
|
1
2m−n
f(2m−n
.2n
x) − f(2n
x)|
≤
1
2n
ε 1 −
1
2m−n
6
= ε
1
2n
−
1
2m
).
Do đó dãy {
1
2n
f(2n
x)} là dãy Cauchy với mỗi x ∈ R và do R là không gian
Banach nên tồn tại A : R → R sao cho
A(x) = lim
n→∞
2−n
f(2n
x),
với mỗi x ∈ R hay
A(x) −
1
2n
f(2n
x) ≤
1
2n
ε.
Tiếp theo ta chứng minh A là hàm cộng tính.
Thay x, y bởi 2n
x và 2n
y ta được
1
2n
f(2n
(x + y)) −
1
2n
f(2n
x) −
1
2n
f(2n
y) ≤
1
2n
ε
với mỗi n ∈ Z∗
+, x, y ∈ R.
Cho n → ∞ ta được
|A(x + y) − A(x) − A(y)| ≤ ε.
Với mỗi x ∈ R ta có
|f(x) − A(x)| = |[f(x) −
1
2n
f(2n
x)] + [
1
2n
f(2n
x − A(x))]|
≤ |f(x) −
1
2n
}f(2n
x)| + |
1
2n
f(2n
x) − A(x)|
≤ ε(1 −
1
2n
) + ε
1
2n
= ε.
Cuối cùng ta cần chứng minh hàm A là duy nhất.
Thật vậy giả sử tồn tại hàm cộng tính A1 : R → R. Khi đó với mỗi x ∈ R
|A(x) − A1(x)| =
1
n
|[A(nx) − f(nx)] + [A1(nx) − f(nx)]| ≤
2ε
n
.
Vậy A1 = A.
Như vậy định lý này cho ta một kết quả là mọi phương trình Cauchy cộng
tính đều ổn định.
7
Ví dụ 1.1. Tìm tất cả các hàm f, g, h : R → R thỏa mãn phương trình sau
f(x + y) = g(x) + h(y), ∀x, y ∈ R. (1.4)
Thay y = 0 vào ta được
f(x) = g(x) + h(0), ∀x ∈ R,
hay f(x) = g(x) + α, với α = h(0).
Do đó g(x) = f(x) − α với mọi x ∈ R.
Thay x = 0 vào , ta được
f(y) = h(x) + β, với β = g(0),
hay h(x) = f(x) − β, với mọi x ∈ R.
Phương trình trở thành
f(x + y) = f(x) + f(y) − α − β, ∀x, y ∈ R. (1.5)
Đặt
f(x) = A(x) + α + β.
Thay vào (1.5) được
A(x + y) + α + β = A(x) + α + β + A(y) + α + β − α − β,
hay
A(x + y) = A(x) + A(y), ∀x, y ∈ R.
Vậy A là một hàm cộng tính trên R nên



f(x) = A(x) + α + β
g(x) = A(x) + β
h(x) = A(x) + α
Nhận xét 1.1. Nếu bài toán có thêm giả thiết: hàm f, g, h liên tục thì
nghiệm tìm được sẽ là



f(x) = ax + α + β
g(x) = ax + β
h(x) = ax + α
với a, α, β là các hằng số tùy ý.
Tiếp theo ta xét tính ổn định của phương trình (1.5).
8
Mệnh đề 1.1. Giả sử hàm f, g, h : R → R thỏa mãn điều kiện
|f(x + y) − g(x) − h(y)| ≤ ε (1.6)
với ε là số dương tùy ý cho trước và với mọi x, y ∈ R. Khi đó tồn tại duy
nhất một hàm cộng tính A : R → R sao cho



|f(x) − A(x) − f(0)| ≤ 6ε
|g(x) − A(x) − g(0)| ≤ 4ε
|h(x) − A(x) − h(0)| ≤ 6ε
với mọi x ∈ R.
Chứng minh. Thay y = 0 vào (1.6), ta được
|f(x) − g(x) − h(0)| ≤ ε, ∀x ∈ R, (1.7)
suy ra
|f(0) − g(0) − h(0)| ≤ ε. (1.8)
Thay y = 0 vào (1.6), ta được
|f(y) − h(y) − g(0)| ≤ ε, ∀t ∈ R. (1.9)
Từ (1.7) và (1.9)
|h(x) − g(x) − h(0) + g(0)| = |f(x) − g(x) − h(0) + h(x) + g(0) − f(x)|
≤ |f(x) − g(x) − h(0)| + |f(x) − h(x) − h(0)|
hay
|h(x) − g(x) − h(0) + g(0)| ≤ 2ε, ∀x ∈ R. (1.10)
Sử dụng (1.7), ta được
|f(x + y) − g(x + y) − h(0)| ≤ ε, ∀x, y ∈ R. (1.11)
Ta có
|f(x+y)−g(x+y)−h(0)| = |f(x+y)−g(x)−h(y)−g(x+y)+g(x)+h(y)−h(0)|.
Kết hợp (1.6) và (1.11) thu được
|g(x + y) − g(x) − h(y) + h(0)| ≤ |f(x + y) − g(x + y) − h(0)|
9
+ |f(x + y) − g(x) − h(y)|
≤ 2ε.
Mặt khác
|g(x + y) − g(x) − h(y) + h(0)| = |g(x + y) − g(x) − g(y) + g(0)
− h(y) + g(y) − g(0) + h(0)|.
Từ (1.10) có
|g(x + y) − g(x) − g(y) + g(0)| ≤ |g(x + y) − g(x) − h(y) − h(0)|
+ |h(y) − g(y) + g(0) − h(0)| ≤ 4ε.
Hay
|[g(x + y) − g(0)] − [g(x) − g(0)] − [g(y) − g(0)]| ≤ 4ε, (1.12)
với x, y ∈ R.
Đặt
G(x) = g(x) − g(0), ∀x, y ∈ R. (1.13)
Thế vào (1.12) được
|G(x + y) − G(x) − G(y)| ≤ 4ε, ∀x ∈ R.
Theo định lý về tính ổn định của hàm cộng tính, tồn tại duy nhất một hàm
cộng tính A : R → R sao cho
|G(x) − A(x)| ≤ 4ε, ∀x ∈ R. (1.14)
Từ (1.13) và (1.14) ta được
|g(x) − A(x) − g(0)| ≤ 4ε, ∀x ∈ R. (1.15)
Từ (1.7), (1.8) và (1.15) ta được
|f(x)−A(x) − f(0)|
= |f(x) − g(x) − h(0) + g(x) − A(x) − g(0) + g(0) + h(0) − f(0)|
≤ |f(x) − g(x) − h(0)| + |g(x) − A(x) − g(0)| + |g(0) + h(0) − f(0)|
≤ ε + 4ε + ε = 6ε.
10
Từ (1.10) và (1.15) ta được
|h(x) − A(x) − h(0)| = |h(x) − g(x) − h(0) + g(0) + g(x) − A(x) − g(0)|
≤ |h(x) − g(x) − h(0) + g(0)| + |g(x) − A(x) − g(0)|
≤ 2ε + 4ε = 6ε.
1.2 Tính ổn định của các phương trình hàm nhân
tính
Trong phần này ta nghiên cứu phương trình
f(xy) = f(x)f(y) (1.16)
Giả sử hàm f : R → R thỏa mãn điều kiện (1.16). Khi đó f được gọi là hàm
nhân tính.
Định nghĩa 1.3. Giả sử f : R → R thỏa mãn điều kiện: Với mọi ε > 0 cho
trước, tồn tại số δ > 0 sao cho
|f(xy) − f(x)f(y)| < δ, ∀x, y ∈ R
. Khi đó nếu tồn tại một hàm nhân tính M : R → R để
|f(x) − M(x)| < ε, ∀x ∈ R.
thì phương trình hàm Cauchy (1.16) được gọi là ổn định.
Định lý 1.2. Giả sử δ > 0, và f : R → C sao cho
|f(xy) − f(x)f(y)| ≤ δ x, y ∈ R. (1.17)
Khi đó
Hoặc
|f(x)| ≤
1 +
√
1 + 4δ
2
:= ε, ∀x ∈ R. (1.18)
Hoặc f là hàm nhân tính với mọi x, y ∈ R.
Chứng minh. Trong ta có
1 +
√
1 + 4δ
2
= ε hay ε2
− ε = δ và ε > 1
Giả sử không xảy ra tức là tồn tại a ∈ S sao cho
|f(a)| > ε,
11
hay
|f(a)| = ε + ρ,
với ρ > 0 nào đó.
Từ chọn x = y = a ta được
|f(a2
) − (f(a))2
| ≤ δ. (1.19)
Khi đó
|f(a2
)| = |(f(a))2
− (f(a)2
− f(a2
))|
≥ |f(a)2
| − |f(a)2
− f(a2
)| ≥ |f(a)|2
− δ
= (ε + ρ)2
− δ = (ε + ρ) + (2ε − 1) + ρ2
(do ε2
− ε = δ)
> ε + 2ρ, với ε > 1.
Bằng phép chứng minh quy nạp ta có
|f(a2n
)| > ε + (n + 1)ρ, với mọi n = 1, 2, . . .
Với mọi x, y, z ∈ S
|f(xyz) − f(xy)f(z)| ≤ δ,
|f(xyz) − f(x)f(yz)| ≤ δ.
Ta có
|f(xy)f(z) − f(x)f(yz)| ≤ |f(xyz) − f(xy)f(z)|
+ |f(xyz) − f(x)f(yz)| ≤ 2δ.
Và
|f(xy)f(z) − f(x)f(y)f(z)| ≤ |f(xy)f(z) − f(x)f(yz)|
+ |f(x)f(yz) − f(x)f(y)f(z)|
≤ 2δ + |f(x)|δ
Suy ra
|f(xy) − f(x)f(y)| · |f(z)| ≤ 2δ + |f(x)|δ.
Chọn z = a2n
ta được
|f(xy) − f(x)f(y)| ≤
2δ + |f(x)δ|
|f(a2n
)|
, ∀x, y ∈ R, n = 1, 2, . . .
Cho n → ∞ ta được f(xy) = f(x)f(y), ∀x, y ∈ R.
Vậy f là một hàm nhân tính.
12
1.3 Tính ổn định của các hàm logarit
Trước hết ta nhắc lại hàm logarit (L)
f(xy) − f(x) − f(y) = 0, ∀x, y ∈ R+
. (L)
Giả sử hàm
f : R+
→ R
thỏa mãn điều kiện (L). Khi đó f được gọi là hàm logarit.
Định lý 1.3. Giả sử f : R+
→ R, với ε > 0 cho trước thỏa mãn
|f(xy) − f(x) − f(y)| ≤ ε (1.20)
với mọi x, y > 0. Khi đó tồn tại một hàm logarit L : R+
→ R sao cho
|f(x) − L(x)| ≤ ε (1.21)
với mọi x > 0.
Để chứng minh định lý này, ta dựa trên bổ đề sau
Bổ đề 1.1. Cho ε, d > 0, k, s ∈ R, với k = 0 và s = 0. Giả sử rằng hàm
f : R+
→ B thỏa mãn điều kiện
|f(xy) − f(x) − f(y)| ≤ ε (1.22)
với mọi x, y > 0 và xk
ys
≥ d. Khi đó tồn tại duy nhất hàm logarit L : R+
→
B thỏa mãn điều kiện
|f(x) − L(x)| ≤ 3ε (1.23)
với mọi x ∈ R+
.
Chứng minh. Từ tính đối xứng của bất đẳng thức, ta đã có s = 0.
Với x, y ∈ R+
, chọn z > 0 sao cho xk
yk
zs
≥ d, xk
ys
zs
≥ d, và yk
zs
≥ d, khi
đó ta có
|f(xy) − f(x) − f(y)| ≤ | − f(xyz) + f(x) + f(z)|
+ |f(xyz) − f(x) − f(yz)|
+ |f(yz) − f(y) − f(z)|
≤ 3ε.
Bổ đề được chứng minh.
13
Định lý 1.4. Giả sử ε, d > 0, k, s, p, q, P, Q ∈ R, k/p = s/q, pqPQ = 0, giả
sử rằng f : R+
→ B thỏa mãn điều kiện
|f(xp
yq
) − Pf(x) − Qf(y)| ≤ ε (1.24)
với mọi x, y > 0 và xk
ys
≥ d. Khi đó tồn tại duy nhất một hàm logarit
L : R+
→ B sao cho
|f(x) − L(x) − f(1)| ≤ 4ε (1.25)
với mọi x ∈ R+
.
Chứng minh. Thay x bởi x
1
p và y bởi y
1
q trong (1.24) ta được
f(xy) − Pf


x
1
p


 − Qf


y
1
q


 ≤ ε, (1.26)
với mọi x, y > 0, với x
k
p y
s
q ≥ d.
Cho x, y ∈ R+
, chọn z > 0 sao cho
x
k
p y
s
q z
s
q
−
k
p ≥ d, x
k
p z
s
q
−
k
p ≥ d,
y
s
q z
s
q
−
k
p ≥ d, z
s
q
−
k
p ≥ d.
Lần lượt thay x bởi xz−1
, y bởi yz; x bởi xz−1
, y bởi z; x bởi z−1
, y bởi yz;
x bởi z−1
, y bởi z trong (1.26) ta có
|f(xy) − f(x) − f(y) + f(1)| ≤ f(xy) − Pf x
1
p − z
−1
p − Qf (yz)
1
q
+ − f(x) + Pf x
1
p z
−1
p + Qf z
1
q
+ − f(y) + Pf z
−1
p + Qf (yz)
1
q
+ f(1) − Pf z
−1
p − Qf z
1
q
≤ 4ε.
Theo Định lý 1.2, tồn tại duy nhất một hàm logarit L : R+
→ B sao cho
|f(x) − L(x) − f(1)| ≤ 4ε ∀x ∈ R+
. (1.27)
Định lý được chứng minh.
14
Hệ quả 1.1. Giả sử ε > 0, d, k, s, p, q, P, Q ∈ R với
k
p
=
s
q
, pqPQ = 0. Giả
sử rằng g : R → B thỏa mãn điều kiện
|g(px + qy) − Pg(x) − Qg(y)| ≤ ε, ∀x, y ∈ R, với kx + sy ≥ d. (1.28)
Khi đó tồn tại duy nhất hàm cộng tính A : R → B sao cho
|g(x) − A(x) − g(0)| ≤ 4ε ∀x ∈ R. (1.29)
Chứng minh. Thay x bởi ln u, y bởi ln v vào (1.28) và đặt f(x) = g(ln x)
ta được
|f(up
vq
) − Pf(u) − Qf(v)| ≤ ε,
với mọi u, v ∈ R, với uk
vs
≥ ed
. Mà
|f(x) − L(x) − f(1)| ≤ 4ε,
với mọi x ∈ R+
, hay
|g(x) − L(ex
) − g(0)le4ε,
với mọi x ∈ R.
Đặt A(x) = L(ex
) ta được
|g(x) − A(x) − g(0)| ≤ 4ε,
với mọi x ∈ R. Hệ quả được chứng minh.
Định lý 1.5. Giả sử ε, d > 0, k, s, p, q, P, Q ∈ R với k = 0 hoặc s = 0. Giả
sử rằng f : R+
→ B thỏa mãn điều kiện
|f(xp
yq
) − Pf(x) − Qf(y)| ≤ ε, (1.30)
với mọi x, y > 0 và với xk
ys
≥ d. Khi đó tồn tại duy nhất một hàm logarit
L : R+
→ B sao cho
|f(x) − L(x) − f(1)| ≤
4ε
|P|
với mọi x ∈ R nếu s = 0 và
|f(x) − L(x) − f(1)| ≤
4ε
|Q|
15
với mọi x ∈ R nếu k = 0.
Chứng minh. + Trường hợp s = 0.
Với x, y ∈ R, chọn một số z > 0 sao cho
xk
yk
zs
≥ d; xk
y
ps
q zs
≥ d; y
ps
q zs
≥ d.
Thay x bởi xy, y bởi z; x bởi x, y bởi y
p
q z; x bởi y, y bởi z; x bởi 1, y bởi
y
p
q z vào (1.30) ta được
|Pf(xy) − Pf(x) − Pf(y) + Pf(1)| ≤ | − f((xy)p
zq
) + Pf(xy) + Qf(z)|
+ f((xy)p
zq
) − Pf(x) − Qf y
p
q z
+ |f(yp
zq
) − Pf(y) − Qf(z)|
+ − f(xp
zq
) + Pf(1) + Qf y
p
q z
≤ 4ε.
Chia bất đẳng thức trên cho |P| và áp dụng Định lý 1.2, ta sẽ thấy rằng tồn
tại duy nhất một hàm logarit L : R+
→ B sao cho
|f(x) − L(x) − f(1)| ≤
4ε
|P|
, với mọi x ∈ R+
.
+ Trường hợp k = 0. Với x, y ∈ R+
, chọn một số z > 0 sao cho
xs
ys
zk
≥ d, x
qk
p ys
zk
≥ d, xs
zk
≥ d, x
qk
p zk
≥ d.
Thay y bởi xy, x bởi z; y bởi y, x bởi x
q
p z; y bởi x, x bởi z; y bởi 1, x bởi
x
q
p z vào (1.30) ta được
|Qf(xy) − Qf(x) − Qf(y) + Qf(1)| ≤ | − f((xy)q
zp
) + Qf(xy) + Pf(z)|
+ f((xy)q
zp
) − Qf(y) − Pf x
q
p z
+ |f(xq
zp
) − Pf(z) − Qf(x)|
+ − f(xq
zp
) + Qf(1) + Pf x
q
p z
≤ 4ε.
Chia bất đẳng thức này cho |Q| và áp dụng Định lý 1.2, ta sẽ thấy rằng tồn
tại duy nhất một hàm logarit L : R+
→ B sao cho
|f(x) − L(x) − f(1)| ≤
4ε
|Q|
16
với mọi x ∈ R+
.
Định lý được chứng minh.
Hệ quả 1.2. Giả sử ε, d, k, s ∈ R với k = 0 hoặc s = 0. Giả sử rằng
g : R → B thỏa mãn điều kiện
|g(px + qy) − Pg(x) − Qg(y)| ≤ ε
với mọi x, y ∈ R, với kx + sy ≥ d. Khi đó tồn tại duy nhất hàm cộng tính
A : R → B sao cho
|g(x) − A(x) − g(0)| ≤
4ε
|P|
với mọi x ∈ R nếu s = 0, và
|g(x) − A(x) − g(0)| ≤
4ε
|Q|
với mọi x ∈ R nếu k = 0.
Ví dụ 1.2. Xác định tất cả các hàm f, g, h liên tục trên R+
thỏa mãn điều
kiện
f(xy) = g(x) + h(y), ∀x, y ∈ R+
. (1.31)
Giải. Cho x = 1, ta có
f(y) = g(1) + h(y)
⇔ h(y) = f(y) − a với a = g(1).
Cho y = 1, ta có
f(x) = g(x) + h(1)
⇔ g(x) = f(x) − b với b = h(1).
Khi đó phương trình (1.31) trở thành
f(xy) = f(x) + f(y) − a − b, ∀x, y ∈ R. (1.32)
Đặt
f(xy) = f(x) + f(y) − a − b.
Phương trình (1.32) trở thành
ϕ(xy) + a + b = (ϕ(x) + a + b) + (ϕ(y) + a + b) − a − b
17
⇔ ϕ(x + y) = ϕ(x) + ϕ(y), ∀x, y ∈ R+
.
Do x, y ∈ R+
nên đặt
x = eu
y = ev với u, v ∈ R.
Ta có
ϕ(eu+v
) = ϕ(eu
) + ϕ(ev
), ∀u, v ∈ R
⇔ ψ(u + v) = ψ(u) + ψ(v) với ψ(u) = ϕ(eu
).
Đây là phương trình hàm Cauchy nên có nghiệm
ψ(u) = mu
⇔ ϕ(x) = m ln x
⇔ f(x) = m ln x + a + b
g(x) = m ln x + a
h(x) = m ln x + b.
Thử lại ta thấy các hàm số f, g, h thỏa mãn bài toán.
Vậy nghiệm của phương trình là



f(x) = m ln x + a + b
g(x) = m ln x + a
h(x) = m ln x + b.
1.4 Tính ổn định của các hàm lũy thừa
Giả sử (S, +) là nửa nhóm giao hoán, E là không gian Banach phức, X
là đại số phức với phần tử đơn vị là 1X và C là trường số phức.
Cho f : S → X và g : S → C.
Trong phần này ta xét hàm lũy thừa
f(x + y) = g(x)f(y).
Định nghĩa 1.4. Giả sử f : S → C, khi đó ta định nghĩa tập hợp Nf như
sau
Nf = {a ∈ S : f(a) ∈ S  {0, 1}; |f(a)| > 1}.
18
Định nghĩa 1.5. Giả sử f : S → X, khi đó ta định nghĩa tập hợp Mf như
sau
Mf = {a ∈ S : f(a) ∈ C  {0, 1} × {1X}}.
Định nghĩa 1.6. Xét hàm Scf : Mf → C với f(a) = Scf(a)×1X, ∀a ∈ Mf .
Ta định nghĩa hàm số Mf = {a ∈ Mf : |Scf(a)| > 1}.
Ta có các định lý sau.
Định lý 1.6. Giả sử hai hàm số f : S → E, g : S → C thỏa mãn bất đẳng
thức sau:
|f(x + y) − g(x)f(y)| ≤ ψ(x, y), ∀x, y ∈ S. (1.33)
Nếu Ng = ∅ và ψ(x, y + a) ≤ ϕ(x, y) với mọi x, y ∈ S và a ∈ Ng, khi đó tồn
tại duy nhất một hàm T : S → E mà
T(x + y) = g(x)T(y),
(g(x + y) − g(x)g(y))T(z) = 0
và
|f(y) − T(y)| ≤ inf
a∈Ng
ψ(a, y)
|g(a)| − 1
với mọi x, y, z ∈ S.
Chứng minh. Ta có a ∈ Ng và trong (1.33) thay x = a ta được
|f(a + y) − g(a)f(y)| ≤ ψ(a, y), (1.34)
với mọi y ∈ S.
Ta gọi tập hợp
A = {g : S → E},
và cho một metric trên A như sau
d(g, h) = sup
y∈S
|g(y) − h(y)|
ψ(a, y)
.
Suy ra (A, d) là một không gian metric đủ.
Tiếp theo, ta định nghĩa hàm Ja : A → A với
Ja(h)(y) =
1
g(a)
h(y + a)
19
với mọi h ∈ A và y ∈ S. Vì vậy
d(Ja(u), Ja(h)) = sup
y∈S
|u(y + a) − h(y + a)|
|g(a)|ψ(a, y)
≤ sup
y∈S
|u(y + a) − h(y + a)|
|g(a)|ψ(a, y + a)
=
1
g(a)
d(u, h)
với mọi u, h ∈ A.
Do đó h là ánh xạ co của A với hằng số L =
1
|g(a)|
.
Từ (1.34) ta được
f(y + a)
g(a)
− f(y) ≤
ψ(a, y)
|g(y)|
với mọi y ∈ S, vậy ta được d(J(f), f) ≤ L < ∞.
Suy ra tồn tại một ánh xạ Ta : S → C sao cho
1. Ta là điểm cố định của J, nghĩa là
Ta(y + a) = g(a)Ta (1.35)
với mọi y ∈ S. Ánh xạ Ta là điểm cố định duy nhất của J trong tập
hợp
A = {h ∈ A : d(f, h) < ∞}.
2. d(Jn
(f), Ta) → 0 khi n → ∞, có nghĩa là
Ta(y) = lim
n→∞
f(y + na)
g(a)n
với mọi x ∈ S.
3. d(f, Ta) ≤
1
1 − L
d(J(f), f), có nghĩa là
d(f, Ta) ≤
1
|g(a)| − 1
.
Từ (1.34) ta suy ra
|f(y + na) − g(a)n
f(y)| ≤
n−1
i=0
ψ(a, y + ia)|g(a)|n−1−i
(1.36)
20
với mọi y ∈ S và n ∈ N.
Từ ψ(a, y + a) ≤ ψ(a, y) với mọi y ∈ S ta suy ra
ψ(a, y + ma) ≤ ψ(a, y)
với mọi x ∈ S và m ∈ N, vì vậy từ (1.36) ta thu được
|f(y + na) − g(a)n
f(y)| ≤ ψ(a, y)
|g(a)n
| − 1
|g(a)| − 1
(1.37)
với mọi y ∈ S.
Từ (1.37), với mỗi a, b ∈ Ng, ta chứng minh Ta = Tb.
Thật vậy, từ (1.37) ta có
|f(y + na) − g(a)n
f(y)| ≤ ψ(a, y)
|g(a)n
| − 1
|g(a)| − 1
(1.38)
|f(y + nb) − g(b)n
f(y)| ≤ ψ(b, y)
|g(b)n
| − 1
|g(b)| − 1
(1.39)
với mọi y ∈ S.
Trong (1.38) ta thay y bởi y + nb, trong (1.39) ta thay y bởi y + na ta được
|f(y + n(a + b)) − g(a)n
f(y + nb)| ≤ ψ(a, y)
|g(a)n
| − 1
|g(a)| − 1
|f(y + n(a + b)) − g(b)n
f(y + na)| ≤ ψ(b, y)
|g(b)n
| − 1
|g(b)| − 1
Do đó
|g(a)n
f(y + nb) − g(b)n
f(y + na)| ≤ ψ(a, y)
|g(a)n
| − 1
|g(a)| − 1
+ ψ(b, y)
|g(b)n
| − 1
|g(b)| − 1
.
Ta chia cho |g(a)n
g(b)n
| ta được
f(y + na)
g(a)n
−
f(y + nb)
g(b)n
≤
ψ(a, y)
(|g(b)| − 1)|g(a)n|
(1 −
1
|g(b)n|
)
+
ψ(b, y)
(|g(a)| − 1)|g(b)n|
(1 −
1
|g(a)n|
)
Cho n → ∞ ta được Ta(y) = T(y) với mọi y ∈ S.
Vì vậy mà tồn tại duy nhất mọi hàm T sao cho T = Ta, với mọi a ∈ Ng và
|f(y) − T(y)| ≤
ψ(a, y)
|g(a)| − 1
21
với mọi y ∈ S và a ∈ Ng. Vì a ∈ Na là phần tử tùy ý nên
|f(y) − T(y)| ≤ inf
a∈Ng
ψ(a, y)
|g(a)| − 1
với mọi y ∈ S.
Ta có x, y ∈ S và a ∈ Ng là ba phần tử cố định tùy ý nên từ (1.33) ta suy ra
|f(x + y + na) − g(x)f(y + na)| ≤ ψ(x, y + na).
Ta chia bất đẳng thức này cho |g(a)n
| được
f(x + y + na)
g(a)n
− g(y)
f(x + na)
g(a)n
≤
ψ(x, y + na)
|g(a)n|
≤
ψ(x, y)
|g(a)n|
.
Cho n → ∞ được T(x + y) = g(x)T(y).
Vì x, y, z ∈ S tùy ý nên
T(x + y + z) = g(x + y)T(z)
và
T(x + y + z) = g(x)T(y + z) = g(x)g(y)T(z),
hoặc
(g(x + y) − g(x)g(y))T(z) = 0
với mọi x, y, z ∈ S. Định lý được chứng minh.
Từ định lý ta có các hệ quả sau.
Hệ quả 1.3. Giả sử f : S → C thỏa mãn điều kiện
|f(x + y) − f(x)f(y)| ≤ ψ(x, y)
với mọi x, y ∈ S.
Nếu ψ(a, y + a) ≤ ψ(x, y) với mọi x, y ∈ S và a ∈ Nf , khi đó f hoặc là bị
chặn, hoặc là hàm lũy thừa.
Hệ quả 1.4. Giả sử f, g : S → C, S có phần từ đơn vị, f là hàm khác không
và thỏa mãn điều kiện
|f(x + y) − g(x)f(y)| ≤ ψ(x, y)
22
với mọi x, y ∈ S.
Nếu ψ(x, y + a) ≤ ψ(x, y) với mọi x, y ∈ S và a ∈ Ng thì g hoặc là bị chặn,
hoặc là hàm lũy thừa và
|f(x + y) − g(x)f(y)| ≤ ψ(x, y)
với mọi x ∈ G.
Ví dụ 1.3. Tìm tất cả các hàm f, g, h : R → R thỏa mãn điều kiện
f(x + y) = g(x).h(y), ∀x, y ∈ R. (1.40)
Cho x = 0, ta có
f(y) = ah(y) với a = g(0).
Cho y = 0, ta có
f(x) = bg(x) với b = h(0).
Nếu g(0) = 0, h(0) = 0, phương trình (1.40) trở thành
f(x + y) =
f(x)f(y)
ab
⇔
f(x + y)
ab
=
f(x)
ab
·
f(y)
ab
, ∀x, y ∈ R. (1.41)
Đặt
f(x)
ab
= ϕ(x), với x ∈ R, ta có f liên tục trên R.
Phương trình (1.41) trở thành
ϕ(x + y) = ϕ(x)ϕ(y), ∀x, y ∈ R.
Phương trình này có nghiệm
ϕ(x) = 0 hoặc ϕ(x) = ec
x.
Với ϕ(x) = 0 ta có nghiệm của phương trình



f(x) ≡ 0
g(x) ≡ 0
h(x) là hàm tùy ý liên tục trên R.
Hoặc 


f(x) ≡ 0
h(x) ≡ 0
g(x) là hàm tùy ý liên tục trên R.
23
Với ϕ(x) = ec
x, ta có 


f(x) = abec
x
g(x) = aec
x
h(x) = bec
x.
Nếu g(0) = a = 0 thì f(x) = 0 với mọi x ∈ R.
Nếu g(x) ≡ 0 thì h(x) là hàm số tùy ý.
Nếu tồn tại x0 ∈ R sao cho g(x0) = 0 thì
0 = f(x0 + y) = g(x0)h(y) ⇔ h(y) = 0, ∀y ∈ R.
Thử lại ta thấy các hàm số trên thỏa mãn phương trình đã cho.
Nếu h(0) = b = 0 thì ta có f(x) = 0 với mọi x ∈ R.
Nếu h(x) ≡ 0 thì g(x) là hàm số tùy ý.
Nếu tồn tại x0 ∈ R sao cho h(x0) = 0 thì
0 = f(x0 + y) = h(x0)g(y) ⇔ g(y) = 0, ∀y ∈ R.
Thử lại, các hàm trên cũng thỏa mãn phương trình đã cho.
Vậy nghiệm của phương trình là



f(x) = abec
x
g(x) = aec
x
h(x) = bec
x.
Hoặc 


f(x) ≡ 0
g(x) ≡ 0
h(x) là hàm tùy ý liên tục trên R.
Hoặc 


f(x) ≡ 0
h(x) ≡ 0
g(x) là hàm tùy ý liên tục trên R.
24
Chương 2
Tính ổn định của các phương trình
hàm chuyển tiếp các đại lượng trung
bình cơ bản
2.1 Tính ổn định của phương trình hàm chuyển tiếp
đại lượng trung bình cộng vào trung bình cộng
Bài toán 2.1. Tìm hàm f : R → R thỏa mãn phương trình
f
x + y
2
=
f(x) + f(y)
2
x, y ∈ R. (2.1)
Giải. Thay y = 0 vào (2.1) ta được
f
x
2
=
f(x) + f(0)
2
, ∀x, y ∈ R. (2.2)
Khi đó áp dụng (2.1) và (2.2) ta được
f(x) + f(y)
2
= f
x + y
2
=
f(x + y) + f(0)
2
Hay f(x) + f(y) = f(x + y) + f(0) x, y ∈ R
Đặt
A(x) = f(x) − f(0),
ta có
A(x) + A(y) = A(x + y) ∀x, y ∈ R.
Vậy A là một hàm cộng tính trên R nên f(x) = A(x)+α trong đó α = f(0).
Tiếp theo ta xét tính ổn định nghiệm của phương trình (2.1).
25
Mệnh đề 2.1. Giả sử hàm f thỏa mãn điều kiện
f
x + y
2
−
f(x) + f(y)
2
≤ ε, (2.3)
với ε là số dương tùy ý cho trước và ∀x, y ∈ R.
Khi đó tồn tại duy nhất một hàm cộng tính A : R → R sao cho
|f(x) − A(x) − f(0)| ≤ 4ε, ∀x ∈ R..
Chứng minh. Thay y = 0 vào (2.3) ta được
f
x
2
−
f(x) + f(0)
2
≤ ε, ∀x ∈ R.
Do đó
f
x + y
2
−
f(x + y) + f(0)
2
≤ ε, ∀x, y ∈ R.
Ta có
f(x) + f(y)
2
−
f(x + y) + f(0)
2
≤
f(x) + f(y)
2
−
f(x + y)
2
+
f(x + y)
2
−
f(x + y) + f(0)
2
≤ 2ε.
Hay
|f(x + y) + f(0) − f(x) − f(y)| ≤ 4ε. (2.4)
Đặt g(x) = f(x) − f(0).
Thay vào (2.4) ta được
|g(x + y) − g(x) − g(y)| ≤ 4ε.
Theo tính ổn định của hàm cộng tính tồn tại duy nhất hàm cộng tính A sao
cho |g(x) − A(x)| ≤ 4ε.
Vậy
|f(x) − A(x) − f(0)| = |g(x) − A(x)| ≤ 4ε.
26
2.2 Tính ổn định của phương trình hàm chuyển tiếp
đại lượng trung bình cộng vào trung bình nhân
Bài toán 2.2. Tìm tất cả các hàm liên tục f : R → R thỏa mãn phương
trình
f
x + y
2
= f(x)f(y), ∀x, y ∈ R. (2.5)
Giải. Từ (2.5) ta có
f(x) ≥ 0 ∀x ∈ R.
Giả sử ∃x0 ∈ R sao cho f(x0) = 0 khi đó
f
x0 + y
2
= f(x0)f(y) = 0, ∀y ∈ R.
Hay f(x) = 0 với ∀x ∈ R..
Xét f(x) > 0 với x ∈ R. Lấy logarit hai vế của phương trình (2.5) ta được
ln f
x + y
2
=
ln f(x) + ln f(y)
2
, ∀x, y ∈ R
Đặt g(x) = ln f(x)), ta có
g
x + y
2
=
g(x) + g(y)
2
∀x, y ∈ R.
Hay g là một nghiệm của phương trình Jensen, tức là g(x) = ax + b.
Suy ra nghiệm của phương trình (2.5) là f(x) = eax+b
với a, b ∈ R.
Tiếp theo ta xét tính ổn định nghiệm của phương trình (2.5).
Mệnh đề 2.2. Giả sử hàm f : R → R+
thỏa mãn điều kiện
|f
x + y
2
− f(x)f(y)| ≤ ε, ∀x, y ∈ R (2.6)
và
|f(x) − f(−x)| ≤ δ, (2.7)
với ε, δ là các số dương tùy ý cho trước.
Giả sử tồn tại f(a)−1
khi đó tồn tại hàm E : R → R+
sao cho
|E(x + y) − E(x) − E(y)| ≤ α, ∀x, y ∈ R, (2.8)
27
và
|f(x) −
1
2
E(x) − E(−x) | ≤ β, ∀x ∈ R, (2.9)
với α, β là các hằng số nào đó.
Chứng minh. Đặt
m = sup
x∈R
f(x)f(a).
Từ điều kiện (2.7) thì m là hữu hạn, khi đó ta có
f(x)f(−a) ≤ f(−x)f(a) + | f(x)f(−a) + f(−x)f(a)|
≤ m + |f(
x − a
2
) − f(x)f(−a)| + |f(
−x + a
2
) − f(−x)f(a)|
+ |f(
x − a
2
) − f(
−x + a
2
)|
≤ m + 2ε + δ.
Đặt h : R → R+
thỏa mãn điều kiện
h(x) = f(x)f(−x), ∀x ∈ R.
Khi đó h là một hàm chẵn và
|h(x) − f(x)| = f(x) · | f(x) − f(−x)| ≤ 2
m2
f(a)
, ∀x ∈ R,
|h(x) f(a)| ≤ m. (2.10)
Đặt E : R → R+
thỏa mãn điều kiện: E(x) = h(x) + f(a) ∀x ∈ R.
Áp dụng (2.10) ta có
|E(x + y) − E(x)E(y)| = |h(x + y) + f(a) − h(x)h(y)
− (h(x) + h(y)) f(a) − f(a)|
≤ |h(x + y)| + |h(x)h(y)| + |(h(x) + h(y)) f(a)| + |f(a)|
≤ |h(x + y) − f(x + y)| + |f(x + y)| + |h(x)h(y)f(a)f−1
(a)| + |h(x) f(a)|
+ |h(y) f(a)| + f(a) + |f(a)|
≤ 2
m2
f(a)
+
m
f(a)
+
m2
f(a)
+ 2m + f(a) + |f(a)|
28
= α.
Và
|f(x)−
1
2
(E(x) − E(−x))|
= |f(x) − h(x) + h(x) −
1
2
(h(x) + h(−x)) − f(a)|
≤ 2
m2
f(a)
+ f(a) = β.
2.3 Tính ổn định của phương trình hàm chuyển tiếp
đại lượng trung bình cộng vào trung bình điều
hòa
Bài toán 2.3. Tìm tất cả các hàm f : R+
→ R+
thỏa mãn phương trình
f
x + y
2
=
2f(x)f(y)
f(x) + f(y)
, ∀x, y ∈ R+
. (2.11)
Giải. Ta có
f
x + y
2
=
1
1
f(x)
+
1
f(y)
2
, ∀x, y ∈ R+
.
Hay
f
x + y
2
=
2
1
f(x)
+
1
f(y)
, ∀x, y ∈ R+
.
Hay
1
f
x + y
2
=
1
f(x)
+
1
f(y)
2
, ∀x, y ∈ R+
.
Đặt g(x) =
1
f(x)
và g(x) là hàm số dương liên tục trên R+
. Do trên ta có
g
x + y
2
=
g(x) + g(y)
2
, ∀x, y ∈ R+
29
Hay g chính là nghiệm của phương trình Jensen tức là g(x) = ax + b
Vậy f(x) =
1
ax + b
trong đó a = 0; b > 0 hoặc a > 0; b ≥ 0
Tiếp theo ta xét tính ổn định nghiệm của phương trình (2.11).
Mệnh đề 2.3. Giả sử hàm f thỏa mãn điều kiện
1
f
x + y
2
−
1
f(x)
+
1
f(y)
2
≤ ε (2.12)
với ε > 0 tùy ý cho trước và với mọi x, y ∈ R.
Khi đó tồn tại duy nhất một hàm cộng tính A : R → R sao cho
1
f(x)
− A(x) −
1
f(0)
≤ 4ε, ∀x ∈ R.
Chứng minh. Thay y = 0 vào (2.12) ta được
1
f
x
2
−
1
f(x)
+
1
f(y)
2
≤ ε, ∀x ∈ R.
Do đó
1
f
x + y
2
−
1
f(x + y)
+
1
f(0)
2
≤ ε, ∀x, y ∈ R.
Ta có
1
f(x)
+
1
f(y)
2
−
1
f(x + y)
+
1
f(0)
2
≤
1
f(x)
+
1
f(y)
2
−
1
f(x + y)
2
+
1
f(x + y)
2
−
1
f(x + y)
+
1
f(0)
2
≤ 2ε.
hay
1
f(x + y)
+
1
f(0)
−
1
f(x)
−
1
f(y)
≤ 4ε. (2.13)
30
Đặt
g(x) =
1
f(x)
−
1
f(0)
.
Thay vào (2.13) được
|g(x + y) − g(x) − g(y)| ≤ 4ε.
Theo tính ổn định của hàm cộng tính sẽ tồn tại duy nhất hàm cộng tính A
sao cho
|g(x) − A(x)| ≤ 4ε.
Vậy
1
f(x)
− A(x) −
1
f(0)
= |g(x) − A(x)| ≤ 4ε.
2.4 Tính ổn định của phương trình hàm chuyển tiếp
đại lượng trung bình cộng vào trung bình bậc hai
Bài toán 2.4. Tìm tất cả các hàm f : R → R liên tục sao cho
f
x + y
2
=
(f(x))2
+ (f(y))2
2
, ∀x, y ∈ R. (2.14)
Giải. Từ công thức trên ta có f(x) ≥ 0 với mọi x, y ∈ R.
Do đó (2.14) tương đương với
f
x + y
c
2
=
(f(x))2
+ (f(y))2
2
, ∀x, y ∈ R.
Đặt F(x) = (f(x))2
≥ 0 với mọi x ∈ R.
Phương trình trên trở thành
F
x + y
2
=
F(x) + F(y)
2
∀x, y ∈ R.
Theo Bài toán 3.1.1 ta có F(x) là nghiệm của phương trình Jensen, tức là
F(x) = ax + b.
Vậy f(x) =
√
ax + b, trong đó
a = 0
b > 0
hoặc
a > 0
b ≥ 0.
Tiếp theo ta xét tính ổn định nghiệm của phương trình (2.14).
31
Mệnh đề 2.4. Giả sử hàm f thỏa mãn điều kiện
f
x + y
2
−
(f(x))2
+ (f(y))2
2
≤ ε, ∀x, y ∈ R
với ε > 0 tùy ý cho trước. Khi đó, tồn tại duy nhất một hàm cộng tính
A : R → R sao cho
|(f(x))2
− A(x) − (f(0))2
| ≤ 4ε, ∀x ∈ R. (2.15)
32
Chương 3
Tính ổn định của một số dạng
phương trình hàm khác
3.1 Tính ổn định của phương trình sóng
Trước hết ta tìm hiểu về phương trình sóng. Giả sử f : R2
→ R sao cho
f(x+h, y)+f(x−h, y)−f(x, y+h)−f(x, y−h) = 0, ∀x, y, h ∈ R. (3.1)
Ta định nghĩa các toán tử
1,h
và
2,h
với h ∈ R như sau:
1,h
ϕ(x, y) = ϕ x +
h
2
, y − ϕ x −
h
2
, y ;
2,h
ϕ(x, y) = ϕ x, y +
h
2
− ϕ x, y −
h
2
.
Với ∀x, y ∈ R và ϕ : R2
→ R khi đó (3.1) có thể viết lại thành
2
1,h
f(x, y)− 2
2,h
f(x, y) = 0.
Ta nhận thấy phương trình này là phương trình sóng. Haruki đã chỉ ra rằng
f : R2
→ R liên tục và thỏa mãn điều kiện (3.1) với x, y, h ∈ R nếu và chỉ
nếu tồn tại các hàm α; β : R → R sao cho
f(x + y) = α(x + y) + β(x − y), ∀x, y ∈ R.
Nếu α, β : R → R là những hàm tùy ý và A : R2
→ R là hàm song cộng tính
và phản đối xứng nghĩa là
A(x + y, z) = A(x, z) + A(y, z);
33
A(y, x) = −A(x, y),
với ∀x, y, z ∈ R và f : R2
→ R được định nghĩa bởi
f(x, y) = α(x + y) + β(x − y) + A(x, y), ∀x, y ∈ R.
Khi đó (3.1) được thỏa mãn.
Đặc biệt với f : R2
→ R xác định g : R2
→ R với
g(x, y) = f(x + y, x − y)., ∀x, y ∈ R.
Khi đó f thỏa mãn điều kiện (3.1) nếu và chỉ nếu g thỏa mãn điều kiện
g(x + h, y + h) − g(x + h, y) − g(x, y + h) + g(x, y) = 0, ∀x, y, h ∈ R.
Từ kết quả trên ta có định lý dưới đây.
Định lý 3.1 (xem [1],[12]). Giả sử (G, +) là nhóm Abel, X là không gian
Banach, với δ > 0 và f : G × G → X sao cho:
|f(x + h, y + h) − f(x + h, y) − f(x, y + h) + f(x, y)| ≤ δ, ∀x, y, h ∈ G.
Khi đó tồn tại các hàm α, β : G → X và A : R2
→ R là hàm song cộng tính
và phản đối xứng sao cho
|f(x, y) − [α(x) + β(y) + A(x, y)]| ≤ 20δ, ∀x, y ∈ G.
Định lý 3.2. Giả sử f : R2
→ R, δ > 0 và thỏa mãn điều kiện:
|f(x + h, y + h) − f(x + h, y) − f(x, y + h) + f(x, y)| ≤ δ, ∀x, y, h ∈ R.
Khi đó tồn tại các hàm ϕ, ψ : R → R sao cho
|f(x, y) − ϕ(x) + ψ(y)| ≤ 60δ, ∀x, y ∈ R.
Chứng minh. Theo Định lý 3.1 tồn tại các hàm α, β : R → R và hàm
song cộng tính và phản đối xứng A : R2
→ R sao cho
|f(x, y) − [α(x) + β(y) + A(x, y)]| ≤ 20δ, ∀x, y ∈ G.
Với y ∈ R; x → f(x, y) đo được trên R. Ta kí hiệu S là tập tất cả các phần
tử y sao cho RS có độ đo không.
Giả sử chọn y1; y2 ∈ S khi đó
|f(x, y1) − [α(x) + β(y1) + A(x, y1)]| ≤ 20δ, ∀x ∈ R.
34
Và
|f(x, y2) − [α(x) + β(y2) + A(x, y2)]| ≤ 20δ, ∀x ∈ R.
Vì A là cộng tính với biến thứ 2 nên có thể viết
|f(x, y1) − f(x, y2) − β(y1) + β(y2) − A(x, y1 − y2)| ≤ 40δ, ∀x ∈ R.
Vì x → f(x, y1) − f(x, y2) đo đươc trên R nên A có thể bị chặn trên tập con
(ta gọi là T) của R đo được Lebesgue.
Như vậy x → A(x, y1 − y2) là cộng tính trên R và bị chặn trên T.
Suy ra tồn tại số thực c(y1 − y2) sao cho
A(x, y1 − y2) = c(y1 − y2), ∀x ∈ R.
Đặt
U = {y1 − y2 : y1, y2 ∈ S}.
Với z ∈ U tồn tại c(z) ∈ R sao cho
A(x, z) = c(z)x, ∀x ∈ R.
Vì S đo được nên U chứa lân cận của 0 đặt là V .
Lấy y ∈ R, chọn z ∈ V và một số tự nhiên n sao cho y = nz khi đó
A(x, y) = nA(x, z) = nc(z)x, ∀x ∈ R.
Vì vậy với y ∈ R tồn tại một số c(y) ∈ R sao cho
A(x, y) = c(y)x, ∀x ∈ R.
Vì A là phản đối xứng nên
c(y)x = A(x, y) = −A(y, x) = −c(x)y, ∀x, y ∈ R.
Đặc biệt vì
c(x)x = −c(x)x, ∀x ∈ R
nên c(x) = 0 với mọi x = 0, x ∈ R.
Rõ ràng c(0) = 0 do đó A(x, y) = 0 với mọi x, y ∈ R. Vậy
|f(x, y) − [α(x) + β(y)]| leq20δ, ∀x, y ∈ R.
35
Tiếp theo chọn x0, y0 ∈ R sao cho: x → f(x, y0) và y → f(x0, y) đo được
trên R.
Đặt
ϕ(x) = f(x, y0) − β(y0)
ψ(y) = f(x0, y) − α(x0), ∀x, y ∈ R.
Khi đó ϕ và ψ là đo được trên R.
Hơn thế nữa ta có
|f(x, y0) − (α(x) − β(y0))| ≤ 20δ,
và
|f(x0, y) − (α(x0) + β(y))| ≤ 20δ, ∀x, y ∈ R.
Vì vậy
|ϕ(x) − α(x)| ≤ 20δ, ∀x ∈ R.
Và
|ψ(y) − β(y)| ≤ 20δ, ∀y ∈ R.
Do đó
|f(x, y) − (ϕ(x) + ψ(y))| ≤ 60δ, ∀x, y ∈ R.
Hệ quả 3.1. Giả sử f : R2
→ R và số δ > 0 thỏa mãn điều kiện
|f(x + h, y + h) − f(x + h, y) − f(x, y + h) + f(x, y)| ≤ δ, ∀x, y, h ∈ R.
Giả sử tồn tại x0, y0 ∈ G sao cho x → f(x, y0) và y → f(x0, y) liên tục trên
R.
Khi đó tồn tại các hàm a, b : R → R liên tục sao cho
|f(x, y) − (a(x) + b(y))| ≤ 180δ, ∀x, y ∈ R.
Chứng minh. Áp dụng Định lý 3.2 sẽ tồn tại những hàm ϕ, ψ : R → R
sao cho
|f(x, y) − ϕ(x) + ψ(y)| ≤ 60δ, ∀x, y ∈ R.
Vì thế
|f(x, y0) − (ϕ(x) − ψ(y0))| ≤ 60δ.
36
Và
|f(x0, y) − (ϕ(x0) + ψ(y))| ≤ 60δ, ∀x, y ∈ R.
Đặt
a(x) = f(x, y0) − ψ(y0);
b(y) = f(x0, y) − ϕ(x0),
với x, y ∈ R.
Khi đó a, b liên tục trên R và
|a(x) − ϕ(x)| ≤ 60δ, ∀x ∈ R;
|b(y) − ψ(y)| ≤ 60δ, ∀y ∈ R.
Vì vậy ta kết luận được sẽ tồn tại các hàm a, b : R → R liên tục sao cho
|f(x, y) − (a(x) + b(y))| ≤ 180δ, ∀x, y ∈ R.
3.2 Tính ổn định của phương trình đa thức
Ta đã biết phương trình đa thức là phương trình có dạng
anxn
+ an−1xn−1
+ · · · + a1x + a0 = 0. (3.2)
Trước hết ta xét tính ổn định nghiệm của phương trình đa thức
xn
+ αx + β = 0. (3.3)
Với x ∈ [−1; 1] ta có định nghĩa sau
Định nghĩa 3.1. Phương trình (3.3) được gọi là ổn định nếu tồn tại một
hằng số K > 0 sao cho với mỗi ε > 0, y ∈ [−1, 1] thỏa mãn điều kiện
|yn
+ αy + β| ≤ ε,
đều tồn tại z ∈ [−1, 1] để
zn
+ αz + β = 0,
thỏa mãn điều kiện |y − z| ≤ Kε.
Với định nghĩa này ta có định lý sau.
37
Định lý 3.3. Giả sử |α| > n, |β| < |α| − 1 và y ∈ [−1, 1] thỏa mãn bất
đẳng thức sau
|yn
+ αy + β| ≤ ε. (3.4)
Khi đó tồn tại nghiệm v ∈ [−1, 1] của (3.3) sao cho
|y − v| ≤ Kε,
với K > 0 là một hằng số.
Chứng minh. Với ε > 0 và y ∈ [−1, 1] mà |yn
+ αy + β| ≤ ε. Ta sẽ chỉ ra
rằng có một hằng số K theo ε và v sao cho
|y − v| < Kε,
với ∀v ∈ [−1, 1], thỏa mãn điều kiện
|xn
+ αx + β| = 0.
Ta đặt
g(x) =
1
α
(−β − xn
), ∀x ∈ [−1, 1].
Khi đó
|g(x)| =
1
α
(−β − xn
) ≤ 1.
Ta đặt X = [−1, 1] , d(x, y) = |x − y| khi đó (X, d) là không gian metric
đủ và g là ánh xạ đi từ X vào X.
Với mỗi x, y ∈ X ta có
d(g(x), g(y)) =
1
α
(−β − xn
) −
1
α
(−β − yn
) ≤
1
|α|
|xn
− yn
|
=
1
|α|
|x − y||xn−1
+ xn−2
y + · · · + xyn−2
+ yn−1
|.
Từ |α| ≥ n, x, y ∈ [−1, 1]; x = y ta được
d(g(x), g(y)) ≤ γd(x, y)
Với γ =
n
|α|
∈ (0, 1)
Vì vậy g là ánh xạ co từ X vào X ta đặt là S. Suy ra tồn tại duy nhất một
v ∈ X để mà g(v) = v.
38
Vì vậy phương trình đa thức trên có một nghiệm thuộc [−1, 1].
Tiếp theo ta chọn K =
1
|α|(1 − γ)
, khi đó
|y − v| = |y − g(y) + g(y) − g(v)| ≤ |y − g(y)| + |g(y) − g(v)|
≤ y −
1
α
(−β − yn
) + γ|y − v|
=
1
|α|
|yn
+ αy + β| + γ|y − v|.
Suy ra
|y − v| ≤
1
|α(1 − γ)|
|yn
+ αy + β|.
Định lý được chứng minh.
Bây giờ ta xét tính ổn định của phương trình đa thức
anxn
+ an−1xn−1
+ · · · + a1x + a0 = 0. (3.5)
Tương tự như trên ta có định nghĩa sau Phương trình (3.5) gọi là ổn định
nếu tồn tại một hằng số K > 0, với mỗi ε > 0 y ∈ [−1, 1] nếu
|anxn
+ an−1xn−1
+ · · · + a1x + a0| ≤ ε.
Khi đó tồn tại z ∈ [−1, 1] thỏa mãn điều kiện
anzn
+ an−1zn−1
+ · · · + a1z + a0 = 0,
sao cho |y − z| ≤ Kε.
Từ đó ta có các định lý về tính ổn định.
Định lý 3.4. Cho phương trình
anxn
+ an−1xn−1
+ · · · + a1x + a0 = 0.
Nếu
|a0| < |a1| − (|a2| + |a3| + · · · + |an|)
|a1| > 2|a2| + 3|a3| + · · · + (n − 1)|an−1| + n|an|.
Khi đó phương trình này tồn tại đúng một nghiệm v ∈ [−1, 1].
39
Định lý 3.5. Nếu những điều kiện của Định lý 3.5 đúng và hơn nữa y ∈
[−1, 1] và thỏa mãn bất đẳng thức
|anyn
+ an−1yn−1
+ · · · + a1y + a0| ≤ ε.
Khi đó phương trình 3.5 là ổn định.
Chứng minh. Xem [11].
3.3 Tính ổn định của phương trình dạng toàn phương
Trước hết ta nhắc lại định nghĩa phương trình dạng toàn phương.
Hàm bậc hai f(x) = cx2
thỏa mãn phương trình hàm
f(x + y) + f(x − y) = 2f(x) + 2f(y). (3.6)
Vì thế phương trình (3.6) gọi là phương trình hàm dạng toàn phương.
Định lý 3.6. Giả sử G là một nhóm Abel, X là không gian Banach và hàm
f : G → X là hàm toàn phương với x, y ∈ G và f bị chặn. Khi đó nếu
|f(x + y) + f(x − y) − 2f(x) − 2f(y)| ≤ δ, ∀x, y ∈ G (3.7)
với mỗi δ > 0, đều tồn tại duy nhất một ánh xạ toàn phương q : G → X để
|f(x) − q(x)| ≤
δ
2
, ∀x ∈ G. (3.8)
Ngoài ra hàm q được cho bởi
q(x) = lim
x→∞
f(2n
x)
4n
, ∀x ∈ G.
Chứng minh. Trong (3.7) chọn x = 0 = y ta được: |f(0)| ≤
δ
2
.
Cũng từ (3.7) lấy x = y ta được:
|f(2x) − 4f(x) − f(0)| ≤ δ.
Khi đó
|f(2x) − 4f(x) − f(0)| ≤ δ.
Hoặc
1
4
f(2x) − f(x) ≤
3
8
δ ≤
δ
2
. (3.9)
40
Thay x bởi 2x thì từ (3.9) ta được
1
4
f(22
x) − f(2x) ≤
3
8
δ.
Khi đó
1
42
f(22
x) − f(x) + f(x) −
1
4
f(2x) ≤
3
32
δ.
Hoặc ta có
1
42
f(22
x) − f(x) ≤
3
32
δ +
3
8
δ
=
3
8
δ(1 +
1
4
) <
δ
2
.
Bằng phương pháp quy nạp toán học ta được
1
4n
f(2n
x) − f(x) ≤
3
8
δ(1 +
1
4
+ · · · +
1
4n
) =
1
2
δ(1 −
1
4n
) <
δ
2
.
Tiếp theo ta cần chứng minh {
f(2n
x)
4n
} là dãy Cauchy với mỗi x ∈ G
Chọn m > n khi đó
1
4n
f(2n
x) −
1
4m
f(2m
x) =
1
4n
1
4m−n
f(2m−n
2n
x) − f(2n
x)
≤
1
4n
δ
2
(1 −
1
4m−n
) =
δ
2
(
1
4n
−
1
4m
).
Vậy {
f(2n
x)
4n
} là dãy Cauchy với mỗi x ∈ G.
Từ X là không gian Banach hội tụ đến hàm giới hạn ta gọi là q : G → X
Ta có
|q(x + y) + q(x − y) − 2q(x) − 2q(y)|
= lim
n→∞
1
4n
|f(2n
x + 2n
y) + f(2n
x − 2n
y) − 2f(2n
x) − 2f(2n
y)|
≤ lim
n→∞
δ
4n
→ 0.
Suy ra q là hàm toàn phương.
Tiếp theo ta chứng minh (3.8) đúng. Ta có
|q(x) − f(x)| = lim
n→∞
f(2n
x)
4n
− f(x)
41
= lim
n→∞
f(2n
x)
4n
− f(x)
≤ lim
n→∞
δ
2
=
δ
2
.
Vậy (3.8) là đúng.
Cuối cùng ta chứng minh tính duy nhất của q
Chứng minh bằng phản chứng. Giả sử q : G → X không duy nhất, nghĩa là
tồn tại một hàm toàn phương t : G → X mà:
|t(x) − f(x)| ≤
δ
2
, ∀x ∈ G.
Ta có:
|t(x) − q(x)| ≤ |t(x) − f(x)| + |f(x) − q(x)| ≤
δ
2
+
δ
2
= δ.
Bởi vậy ta được
|t(x) − q(x)| ≤ δ.
Vì hàm toàn phương là hàm thuần nhất bậc hai nên ta có
|t(x) − q(x)| = |
n2
t(x)
n2
−
n2
q(x)
n2
|
=
t(nx)
n2
−
q(nx)
n2
=
1
n2
|t(nx) − q(nx)| ≤
δ
n2
→ ∞.
Do đó t(x) = q(x) với mọi x ∈ G .
Vì vậy q là duy nhất. Định lý được chứng minh.
Định lý 3.7 (xem [1],[12]). Giả sử có một ánh xạ f : X → Y thỏa mãn bất
đẳng thức
|f(x + y + z) + f(x − y) + f(y − z) + f(z − x) − 3f(x) − 3f(y) − 3f(z)| ≤ δ.
(3.10)
Khi đó tồn tại duy nhất một ánh xạ toàn phương g : X → Y thỏa mãn điều
kiện
f(x + y + z) + f(x − y) + f(y − z) + f(z − x) = 3f(x) + 3f(y) + 3f(z)
42
và bất đẳng thức
|g(x) − f(x)| ≤
δ
5
, ∀x ∈ X
được thỏa mãn.
43
KẾT LUẬN
Như vậy nội dung chính của luận văn là:
- Tổng kết lại các kết quả đã có về tính ổn định của phương trình hàm Cauchy
cộng tính, phương trình hàm Cauchy nhân tính, phương trình hàm logarit
và phương trình hàm lũy thừa.
- Đưa ra một số ví dụ cho các phương trình trên.
- Tổng kết lại các kết quả ổn định nghiệm của các phương trình chuyển tiếp
các đại lượng trung bình cơ bản.
- Đưa ra các ví dụ minh họa
- Tổng kết lại các kết quả ổn định của phương trình sóng, phương trình đa
thức, và phương trình hàm dạng toàn phương.
Tài liệu tham khảo
[1] Nguyễn Văn Mậu, 1997, Phương trình hàm, NXBGD.
[2] T. Acze’l 1966, Lectures on functional equations and their applications,
Academic Press, New York/San Francisco/London.
[3] J.Acz’el and J.Dhombres, 1989, Functional Equations in Several Vari-
ables, Academic Press, New York/San Francisco/London.
[4] M. Alimohammady and A. Sadeghi, July 2012, On the Superstability
and Stability of the Pexiderized Exponential Equation Article 2, Volume
1, Number 2, Page 61-74.
[5] Baker, J.A., 1980 The stability of the cosine Equation. Proceeding of the
American Mathematical Society, 80 (3), 411-416.
[6] M. Bean and J.A. Baker, 1990, The stability of a functional analogue of
the wave equation, Can. Math. Bull., 33, 376
[7] Christopher G. Small, 2000, Functinal equations and how to solve them,
Springer.
[8] P.W. Cholewa, 1983 The stability of the sine Equation. Proceeding of the
American Mathematical Society, 88 (4), 631-634.
[9] Chung, 2010, Stability of a Jensen type logarithmic functional equation
on restricted domains and its asymptotic behaviors. Adv Diff Equ 2010.
[10] S.Czerwik, 1992, On the stability of the quadratic mappings in normed
spaces, Abh. Math. Semin. Univ. Hamb, 59-
[11] Z. Daroczy and A. Jarai, On the measurable solution of a functional
equation of the information theory, Acta Math. Acad Sci. Hungaricae,
vol.34, 105-116, 1979.
[12] D.H. Hyers, 1983, The stability of homomorphisms and ralated topics, in
Global Analysis- Analysis on Manifolds, (ed. Th.M. Rassias), Band 57,
Teste zur Mathematik, Teubner, Leipzig, 140 -153.
[13] Pl.Kannappan, 2000, Functional Equations and Inequalities with Appli-
cations, Springer Monogaphs in Mathematics, 2000.
[14] M. Kuczma, B. Choczewski, R. Ger, 1990, Interative hàm al Equations,
Cambridge University Press, Cambridge/New York/Port Chester/Mel-
bourne/Sydney.
[15] P.K. Sahoo, T. Riedel, 1998, Mean Value Theorems and Func-
tional Equations, World Scientific, Singapore/New Jersey/Lon-
don/HongKong. -385pp, v64.
[16] B.J.Venkatachala, 2002, Functional Equations - A problem Solving Ap-
proach, PRISM.
46

Más contenido relacionado

La actualidad más candente

19 phương phap chứng minh bất đẳng thức
19 phương phap chứng minh bất đẳng thức19 phương phap chứng minh bất đẳng thức
19 phương phap chứng minh bất đẳng thức
Thế Giới Tinh Hoa
 
KTMT Số Nguyên - Số Chấm Động
KTMT Số Nguyên - Số Chấm ĐộngKTMT Số Nguyên - Số Chấm Động
KTMT Số Nguyên - Số Chấm Động
David Nguyen
 
Tuyen tap-400-bai-bat-dang-thuc-co-giai-chi-tiet
Tuyen tap-400-bai-bat-dang-thuc-co-giai-chi-tietTuyen tap-400-bai-bat-dang-thuc-co-giai-chi-tiet
Tuyen tap-400-bai-bat-dang-thuc-co-giai-chi-tiet
Toán THCS
 
Bộ đề thi xác suất thống kê
Bộ đề thi xác suất thống kêBộ đề thi xác suất thống kê
Bộ đề thi xác suất thống kê
Thế Giới Tinh Hoa
 

La actualidad más candente (20)

kỹ thuật giải phương trình hàm
kỹ thuật giải phương trình hàmkỹ thuật giải phương trình hàm
kỹ thuật giải phương trình hàm
 
Diophantine equations Phương trình diophant
Diophantine equations Phương trình diophantDiophantine equations Phương trình diophant
Diophantine equations Phương trình diophant
 
Bài toán liên quan về Phân số tối giản trong Toán lớp 6
Bài toán liên quan về Phân số tối giản trong Toán lớp 6Bài toán liên quan về Phân số tối giản trong Toán lớp 6
Bài toán liên quan về Phân số tối giản trong Toán lớp 6
 
[Vnmath.com] phuong-trinh-bpt-trong-de-thi-thu-2014
[Vnmath.com] phuong-trinh-bpt-trong-de-thi-thu-2014[Vnmath.com] phuong-trinh-bpt-trong-de-thi-thu-2014
[Vnmath.com] phuong-trinh-bpt-trong-de-thi-thu-2014
 
72 hệ phương trình
72 hệ phương trình72 hệ phương trình
72 hệ phương trình
 
Hướng dẫn giải bài tập Đại Số Tuyến Tính
Hướng dẫn giải bài tập Đại Số Tuyến TínhHướng dẫn giải bài tập Đại Số Tuyến Tính
Hướng dẫn giải bài tập Đại Số Tuyến Tính
 
Ứng dụng đồng dư vào giải toán chia hết lớp 9
Ứng dụng đồng dư vào giải toán chia hết lớp 9Ứng dụng đồng dư vào giải toán chia hết lớp 9
Ứng dụng đồng dư vào giải toán chia hết lớp 9
 
Giải bài tập Phương pháp tính
Giải bài tập Phương pháp tínhGiải bài tập Phương pháp tính
Giải bài tập Phương pháp tính
 
Graph Theory - (Lý thuyết đồ thị) ĐHKHTN
Graph Theory - (Lý thuyết đồ thị) ĐHKHTNGraph Theory - (Lý thuyết đồ thị) ĐHKHTN
Graph Theory - (Lý thuyết đồ thị) ĐHKHTN
 
Bài tập tích phân suy rộng.
Bài tập tích phân suy rộng.Bài tập tích phân suy rộng.
Bài tập tích phân suy rộng.
 
19 phương phap chứng minh bất đẳng thức
19 phương phap chứng minh bất đẳng thức19 phương phap chứng minh bất đẳng thức
19 phương phap chứng minh bất đẳng thức
 
KTMT Số Nguyên - Số Chấm Động
KTMT Số Nguyên - Số Chấm ĐộngKTMT Số Nguyên - Số Chấm Động
KTMT Số Nguyên - Số Chấm Động
 
Ứng dụng tam thức bậc 2 để chứng minh bất đẳng thức
Ứng dụng tam thức bậc 2 để chứng minh bất đẳng thứcỨng dụng tam thức bậc 2 để chứng minh bất đẳng thức
Ứng dụng tam thức bậc 2 để chứng minh bất đẳng thức
 
13 ki-thuat-giai-phuong-trinh-ham (1)
13 ki-thuat-giai-phuong-trinh-ham (1)13 ki-thuat-giai-phuong-trinh-ham (1)
13 ki-thuat-giai-phuong-trinh-ham (1)
 
Tuyen tap-400-bai-bat-dang-thuc-co-giai-chi-tiet
Tuyen tap-400-bai-bat-dang-thuc-co-giai-chi-tietTuyen tap-400-bai-bat-dang-thuc-co-giai-chi-tiet
Tuyen tap-400-bai-bat-dang-thuc-co-giai-chi-tiet
 
Tích phân-3-Phương pháp biến đổi số-pages-30-43
Tích phân-3-Phương pháp biến đổi số-pages-30-43Tích phân-3-Phương pháp biến đổi số-pages-30-43
Tích phân-3-Phương pháp biến đổi số-pages-30-43
 
Dạy học định lí toán học ở trường trung học phổ thông theo hướng tăng cường r...
Dạy học định lí toán học ở trường trung học phổ thông theo hướng tăng cường r...Dạy học định lí toán học ở trường trung học phổ thông theo hướng tăng cường r...
Dạy học định lí toán học ở trường trung học phổ thông theo hướng tăng cường r...
 
Bộ đề thi xác suất thống kê
Bộ đề thi xác suất thống kêBộ đề thi xác suất thống kê
Bộ đề thi xác suất thống kê
 
Nhị thức newton và Phương pháp giải các bài tập về Nhị thức newton
Nhị thức newton và Phương pháp giải các bài tập về Nhị thức newtonNhị thức newton và Phương pháp giải các bài tập về Nhị thức newton
Nhị thức newton và Phương pháp giải các bài tập về Nhị thức newton
 
BÀI THU HOẠCH THĂM QUAN THỰC TẾ BẢO TÀNG
BÀI THU HOẠCH THĂM QUAN THỰC TẾ BẢO TÀNGBÀI THU HOẠCH THĂM QUAN THỰC TẾ BẢO TÀNG
BÀI THU HOẠCH THĂM QUAN THỰC TẾ BẢO TÀNG
 

Similar a Đề tài: Tính ổn định của lớp phương trình hàm với cặp biến tự do

Similar a Đề tài: Tính ổn định của lớp phương trình hàm với cặp biến tự do (20)

Luận văn: Một số lớp bài toán về loại phương trình hàm, HAY - Gửi miễn phí qu...
Luận văn: Một số lớp bài toán về loại phương trình hàm, HAY - Gửi miễn phí qu...Luận văn: Một số lớp bài toán về loại phương trình hàm, HAY - Gửi miễn phí qu...
Luận văn: Một số lớp bài toán về loại phương trình hàm, HAY - Gửi miễn phí qu...
 
Luận văn: Một số lớp bài toán về phương trình hàm, HAY, 9đ
Luận văn: Một số lớp bài toán về phương trình hàm, HAY, 9đLuận văn: Một số lớp bài toán về phương trình hàm, HAY, 9đ
Luận văn: Một số lớp bài toán về phương trình hàm, HAY, 9đ
 
Luận văn: Một số phương pháp giải phương trình hàm, HOT, 9đ
Luận văn: Một số phương pháp giải phương trình hàm, HOT, 9đLuận văn: Một số phương pháp giải phương trình hàm, HOT, 9đ
Luận văn: Một số phương pháp giải phương trình hàm, HOT, 9đ
 
Luận văn: Một số phương pháp giải phương trình hàm, HOT, 9đ
Luận văn: Một số phương pháp giải phương trình hàm, HOT, 9đLuận văn: Một số phương pháp giải phương trình hàm, HOT, 9đ
Luận văn: Một số phương pháp giải phương trình hàm, HOT, 9đ
 
Luận văn: Giải một số phương trình tích phân kỳ dị, HAY, 9đ
Luận văn: Giải một số phương trình tích phân kỳ dị, HAY, 9đLuận văn: Giải một số phương trình tích phân kỳ dị, HAY, 9đ
Luận văn: Giải một số phương trình tích phân kỳ dị, HAY, 9đ
 
Một số dạng toán về đa thức qua các kỳ thi Olympic 6732069.pdf
Một số dạng toán về đa thức qua các kỳ thi Olympic 6732069.pdfMột số dạng toán về đa thức qua các kỳ thi Olympic 6732069.pdf
Một số dạng toán về đa thức qua các kỳ thi Olympic 6732069.pdf
 
Luận văn: Phép biến đổi phân tuyến tính, HAY, 9đ
Luận văn: Phép biến đổi phân tuyến tính, HAY, 9đLuận văn: Phép biến đổi phân tuyến tính, HAY, 9đ
Luận văn: Phép biến đổi phân tuyến tính, HAY, 9đ
 
Luận văn: Giải hình thức các phương trình tích phân Volterra, HAY
Luận văn: Giải hình thức các phương trình tích phân Volterra, HAYLuận văn: Giải hình thức các phương trình tích phân Volterra, HAY
Luận văn: Giải hình thức các phương trình tích phân Volterra, HAY
 
Luận văn: Giải số phương trình vi phân đại số bằng đa bước, 9đ
Luận văn: Giải số phương trình vi phân đại số bằng đa bước, 9đLuận văn: Giải số phương trình vi phân đại số bằng đa bước, 9đ
Luận văn: Giải số phương trình vi phân đại số bằng đa bước, 9đ
 
Luận văn: Bài toán ổn định hóa hệ phương trình điều khiển phi tuyến
Luận văn: Bài toán ổn định hóa hệ phương trình điều khiển phi tuyếnLuận văn: Bài toán ổn định hóa hệ phương trình điều khiển phi tuyến
Luận văn: Bài toán ổn định hóa hệ phương trình điều khiển phi tuyến
 
Luận văn: Lớp bài toán tìm giá trị lớn nhất giá trị nhỏ nhất, HOT
Luận văn: Lớp bài toán tìm giá trị lớn nhất giá trị nhỏ nhất, HOTLuận văn: Lớp bài toán tìm giá trị lớn nhất giá trị nhỏ nhất, HOT
Luận văn: Lớp bài toán tìm giá trị lớn nhất giá trị nhỏ nhất, HOT
 
Luận văn: Bất đẳng thức trong lớp hàm siêu việt, HAY, 9đ
Luận văn: Bất đẳng thức trong lớp hàm siêu việt, HAY, 9đLuận văn: Bất đẳng thức trong lớp hàm siêu việt, HAY, 9đ
Luận văn: Bất đẳng thức trong lớp hàm siêu việt, HAY, 9đ
 
Đề tài: Một số phương pháp giải bài toán phương trình đạo hàm riêng biên trị
Đề tài: Một số phương pháp giải bài toán phương trình đạo hàm riêng biên trịĐề tài: Một số phương pháp giải bài toán phương trình đạo hàm riêng biên trị
Đề tài: Một số phương pháp giải bài toán phương trình đạo hàm riêng biên trị
 
Đề tài: Bài toán phương trình đạo hàm riêng dạng elliptic, HAY
Đề tài: Bài toán phương trình đạo hàm riêng dạng elliptic, HAYĐề tài: Bài toán phương trình đạo hàm riêng dạng elliptic, HAY
Đề tài: Bài toán phương trình đạo hàm riêng dạng elliptic, HAY
 
Luận văn: Đa tạp tâm của hệ tam phân mũ không đều, HOT
Luận văn: Đa tạp tâm của hệ tam phân mũ không đều, HOTLuận văn: Đa tạp tâm của hệ tam phân mũ không đều, HOT
Luận văn: Đa tạp tâm của hệ tam phân mũ không đều, HOT
 
Luận văn: Đa tạp tâm của hệ tam phân mũ không đều, HAY, 9đ
Luận văn: Đa tạp tâm của hệ tam phân mũ không đều, HAY, 9đLuận văn: Đa tạp tâm của hệ tam phân mũ không đều, HAY, 9đ
Luận văn: Đa tạp tâm của hệ tam phân mũ không đều, HAY, 9đ
 
Đề tài: Phương pháp Lyapunov và phương pháp nửa nhóm, HAY
Đề tài: Phương pháp Lyapunov và phương pháp nửa nhóm, HAYĐề tài: Phương pháp Lyapunov và phương pháp nửa nhóm, HAY
Đề tài: Phương pháp Lyapunov và phương pháp nửa nhóm, HAY
 
Phương Trình Hàm Một Biến Và Tính Ổn Định.doc
Phương Trình Hàm Một Biến Và Tính Ổn Định.docPhương Trình Hàm Một Biến Và Tính Ổn Định.doc
Phương Trình Hàm Một Biến Và Tính Ổn Định.doc
 
Luận văn: Phương trình tích phân kỳ dị với dịch chuyển và phản xạ
Luận văn: Phương trình tích phân kỳ dị với dịch chuyển và phản xạLuận văn: Phương trình tích phân kỳ dị với dịch chuyển và phản xạ
Luận văn: Phương trình tích phân kỳ dị với dịch chuyển và phản xạ
 
Hệ Động Lực Học Dạng Phương Trình Sai Phân Bậc Nhất.doc
Hệ Động Lực Học Dạng Phương Trình Sai Phân Bậc Nhất.docHệ Động Lực Học Dạng Phương Trình Sai Phân Bậc Nhất.doc
Hệ Động Lực Học Dạng Phương Trình Sai Phân Bậc Nhất.doc
 

Más de Dịch vụ viết bài trọn gói ZALO 0917193864

Más de Dịch vụ viết bài trọn gói ZALO 0917193864 (20)

200 de tai khoa luạn tot nghiep nganh tam ly hoc
200 de tai khoa luạn tot nghiep nganh tam ly hoc200 de tai khoa luạn tot nghiep nganh tam ly hoc
200 de tai khoa luạn tot nghiep nganh tam ly hoc
 
Danh sách 200 đề tài luận văn tốt nghiệp ngành khách sạn,10 điểm
Danh sách 200 đề tài luận văn tốt nghiệp ngành khách sạn,10 điểmDanh sách 200 đề tài luận văn tốt nghiệp ngành khách sạn,10 điểm
Danh sách 200 đề tài luận văn tốt nghiệp ngành khách sạn,10 điểm
 
Danh sách 200 đề tài luận văn thạc sĩ ngân hàng, hay nhất
Danh sách 200 đề tài luận văn thạc sĩ ngân hàng, hay nhấtDanh sách 200 đề tài luận văn thạc sĩ ngân hàng, hay nhất
Danh sách 200 đề tài luận văn thạc sĩ ngân hàng, hay nhất
 
Danh sách 200 đề tài luận văn thạc sĩ ngữ văn, hay nhất
Danh sách 200 đề tài luận văn thạc sĩ ngữ văn, hay nhấtDanh sách 200 đề tài luận văn thạc sĩ ngữ văn, hay nhất
Danh sách 200 đề tài luận văn thạc sĩ ngữ văn, hay nhất
 
Danh sách 200 đề tài luận văn thạc sĩ ô tô, 10 điểm
Danh sách 200 đề tài luận văn thạc sĩ ô tô, 10 điểmDanh sách 200 đề tài luận văn thạc sĩ ô tô, 10 điểm
Danh sách 200 đề tài luận văn thạc sĩ ô tô, 10 điểm
 
Danh sách 200 đề tài luận văn thạc sĩ quản lý giáo dục mầm non, mới nhất
Danh sách 200 đề tài luận văn thạc sĩ quản lý giáo dục mầm non, mới nhấtDanh sách 200 đề tài luận văn thạc sĩ quản lý giáo dục mầm non, mới nhất
Danh sách 200 đề tài luận văn thạc sĩ quản lý giáo dục mầm non, mới nhất
 
Danh sách 200 đề tài luận văn thạc sĩ quản trị rủi ro, hay nhất
Danh sách 200 đề tài luận văn thạc sĩ quản trị rủi ro, hay nhấtDanh sách 200 đề tài luận văn thạc sĩ quản trị rủi ro, hay nhất
Danh sách 200 đề tài luận văn thạc sĩ quản trị rủi ro, hay nhất
 
Danh sách 200 đề tài luận văn thạc sĩ tài chính ngân hàng, từ sinh viên giỏi
Danh sách 200 đề tài luận văn thạc sĩ tài chính ngân hàng, từ sinh viên giỏiDanh sách 200 đề tài luận văn thạc sĩ tài chính ngân hàng, từ sinh viên giỏi
Danh sách 200 đề tài luận văn thạc sĩ tài chính ngân hàng, từ sinh viên giỏi
 
Danh sách 200 đề tài luận văn thạc sĩ tiêm chủng mở rộng, 10 điểm
Danh sách 200 đề tài luận văn thạc sĩ tiêm chủng mở rộng, 10 điểmDanh sách 200 đề tài luận văn thạc sĩ tiêm chủng mở rộng, 10 điểm
Danh sách 200 đề tài luận văn thạc sĩ tiêm chủng mở rộng, 10 điểm
 
danh sach 200 de tai luan van thac si ve rac nhua
danh sach 200 de tai luan van thac si ve rac nhuadanh sach 200 de tai luan van thac si ve rac nhua
danh sach 200 de tai luan van thac si ve rac nhua
 
Kinh Nghiệm Chọn 200 Đề Tài Tiểu Luận Chuyên Viên Chính Trị Hay Nhất
Kinh Nghiệm Chọn 200 Đề Tài Tiểu Luận Chuyên Viên Chính Trị Hay NhấtKinh Nghiệm Chọn 200 Đề Tài Tiểu Luận Chuyên Viên Chính Trị Hay Nhất
Kinh Nghiệm Chọn 200 Đề Tài Tiểu Luận Chuyên Viên Chính Trị Hay Nhất
 
Kho 200 Đề Tài Bài Luận Văn Tốt Nghiệp Ngành Kế Toán, 9 điểm
Kho 200 Đề Tài Bài Luận Văn Tốt Nghiệp Ngành Kế Toán, 9 điểmKho 200 Đề Tài Bài Luận Văn Tốt Nghiệp Ngành Kế Toán, 9 điểm
Kho 200 Đề Tài Bài Luận Văn Tốt Nghiệp Ngành Kế Toán, 9 điểm
 
Kho 200 Đề Tài Luận Văn Ngành Thủy Sản, từ các trường đại học
Kho 200 Đề Tài Luận Văn Ngành Thủy Sản, từ các trường đại họcKho 200 Đề Tài Luận Văn Ngành Thủy Sản, từ các trường đại học
Kho 200 Đề Tài Luận Văn Ngành Thủy Sản, từ các trường đại học
 
Kho 200 đề tài luận văn ngành thương mại điện tử
Kho 200 đề tài luận văn ngành thương mại điện tửKho 200 đề tài luận văn ngành thương mại điện tử
Kho 200 đề tài luận văn ngành thương mại điện tử
 
Kho 200 đề tài luận văn tốt nghiệp ngành điện tử viễn thông, 9 điểm
Kho 200 đề tài luận văn tốt nghiệp ngành điện tử viễn thông, 9 điểmKho 200 đề tài luận văn tốt nghiệp ngành điện tử viễn thông, 9 điểm
Kho 200 đề tài luận văn tốt nghiệp ngành điện tử viễn thông, 9 điểm
 
Kho 200 Đề Tài Luận Văn Tốt Nghiệp Ngành Giáo Dục Tiểu Học
Kho 200 Đề Tài Luận Văn Tốt Nghiệp Ngành Giáo Dục Tiểu HọcKho 200 Đề Tài Luận Văn Tốt Nghiệp Ngành Giáo Dục Tiểu Học
Kho 200 Đề Tài Luận Văn Tốt Nghiệp Ngành Giáo Dục Tiểu Học
 
Kho 200 đề tài luận văn tốt nghiệp ngành luật, hay nhất
Kho 200 đề tài luận văn tốt nghiệp ngành luật, hay nhấtKho 200 đề tài luận văn tốt nghiệp ngành luật, hay nhất
Kho 200 đề tài luận văn tốt nghiệp ngành luật, hay nhất
 
Kho 200 đề tài luận văn tốt nghiệp ngành quản trị văn phòng, 9 điểm
Kho 200 đề tài luận văn tốt nghiệp ngành quản trị văn phòng, 9 điểmKho 200 đề tài luận văn tốt nghiệp ngành quản trị văn phòng, 9 điểm
Kho 200 đề tài luận văn tốt nghiệp ngành quản trị văn phòng, 9 điểm
 
Kho 200 Đề Tài Luận Văn Tốt Nghiệp Ngành Sư Phạm Tin Học
Kho 200 Đề Tài Luận Văn Tốt Nghiệp Ngành Sư Phạm Tin HọcKho 200 Đề Tài Luận Văn Tốt Nghiệp Ngành Sư Phạm Tin Học
Kho 200 Đề Tài Luận Văn Tốt Nghiệp Ngành Sư Phạm Tin Học
 
Kho 200 Đề Tài Luận Văn Tốt Nghiệp Ngành Xuất Nhập Khẩu
Kho 200 Đề Tài Luận Văn Tốt Nghiệp Ngành Xuất Nhập KhẩuKho 200 Đề Tài Luận Văn Tốt Nghiệp Ngành Xuất Nhập Khẩu
Kho 200 Đề Tài Luận Văn Tốt Nghiệp Ngành Xuất Nhập Khẩu
 

Último

bài tập lớn môn kiến trúc máy tính và hệ điều hành
bài tập lớn môn kiến trúc máy tính và hệ điều hànhbài tập lớn môn kiến trúc máy tính và hệ điều hành
bài tập lớn môn kiến trúc máy tính và hệ điều hành
dangdinhkien2k4
 
xemsomenh.com-Vòng Tràng Sinh - Cách An 12 Sao Và Ý Nghĩa Từng Sao.pdf
xemsomenh.com-Vòng Tràng Sinh - Cách An 12 Sao Và Ý Nghĩa Từng Sao.pdfxemsomenh.com-Vòng Tràng Sinh - Cách An 12 Sao Và Ý Nghĩa Từng Sao.pdf
xemsomenh.com-Vòng Tràng Sinh - Cách An 12 Sao Và Ý Nghĩa Từng Sao.pdf
Xem Số Mệnh
 
26 Truyện Ngắn Sơn Nam (Sơn Nam) thuviensach.vn.pdf
26 Truyện Ngắn Sơn Nam (Sơn Nam) thuviensach.vn.pdf26 Truyện Ngắn Sơn Nam (Sơn Nam) thuviensach.vn.pdf
26 Truyện Ngắn Sơn Nam (Sơn Nam) thuviensach.vn.pdf
ltbdieu
 
C6. Van de dan toc va ton giao ....pdf . Chu nghia xa hoi
C6. Van de dan toc va ton giao ....pdf . Chu nghia xa hoiC6. Van de dan toc va ton giao ....pdf . Chu nghia xa hoi
C6. Van de dan toc va ton giao ....pdf . Chu nghia xa hoi
dnghia2002
 
Tử Vi Là Gì Học Luận Giải Tử Vi Và Luận Đoán Vận Hạn
Tử Vi Là Gì Học Luận Giải Tử Vi Và Luận Đoán Vận HạnTử Vi Là Gì Học Luận Giải Tử Vi Và Luận Đoán Vận Hạn
Tử Vi Là Gì Học Luận Giải Tử Vi Và Luận Đoán Vận Hạn
Kabala
 

Último (20)

TUYỂN TẬP 50 ĐỀ LUYỆN THI TUYỂN SINH LỚP 10 THPT MÔN TOÁN NĂM 2024 CÓ LỜI GIẢ...
TUYỂN TẬP 50 ĐỀ LUYỆN THI TUYỂN SINH LỚP 10 THPT MÔN TOÁN NĂM 2024 CÓ LỜI GIẢ...TUYỂN TẬP 50 ĐỀ LUYỆN THI TUYỂN SINH LỚP 10 THPT MÔN TOÁN NĂM 2024 CÓ LỜI GIẢ...
TUYỂN TẬP 50 ĐỀ LUYỆN THI TUYỂN SINH LỚP 10 THPT MÔN TOÁN NĂM 2024 CÓ LỜI GIẢ...
 
30 ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...
30 ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...30 ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...
30 ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...
 
Trắc nghiệm CHƯƠNG 5 môn Chủ nghĩa xã hội
Trắc nghiệm CHƯƠNG 5 môn Chủ nghĩa xã hộiTrắc nghiệm CHƯƠNG 5 môn Chủ nghĩa xã hội
Trắc nghiệm CHƯƠNG 5 môn Chủ nghĩa xã hội
 
ĐỀ KIỂM TRA CUỐI KÌ 2 BIÊN SOẠN THEO ĐỊNH HƯỚNG ĐỀ BGD 2025 MÔN TOÁN 10 - CÁN...
ĐỀ KIỂM TRA CUỐI KÌ 2 BIÊN SOẠN THEO ĐỊNH HƯỚNG ĐỀ BGD 2025 MÔN TOÁN 10 - CÁN...ĐỀ KIỂM TRA CUỐI KÌ 2 BIÊN SOẠN THEO ĐỊNH HƯỚNG ĐỀ BGD 2025 MÔN TOÁN 10 - CÁN...
ĐỀ KIỂM TRA CUỐI KÌ 2 BIÊN SOẠN THEO ĐỊNH HƯỚNG ĐỀ BGD 2025 MÔN TOÁN 10 - CÁN...
 
bài tập lớn môn kiến trúc máy tính và hệ điều hành
bài tập lớn môn kiến trúc máy tính và hệ điều hànhbài tập lớn môn kiến trúc máy tính và hệ điều hành
bài tập lớn môn kiến trúc máy tính và hệ điều hành
 
22 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÁI BÌNH NĂM HỌC 2023-2...
22 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÁI BÌNH NĂM HỌC 2023-2...22 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÁI BÌNH NĂM HỌC 2023-2...
22 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÁI BÌNH NĂM HỌC 2023-2...
 
Giới Thiệu Về Kabala | Hành Trình Thấu Hiểu Bản Thân | Kabala.vn
Giới Thiệu Về Kabala | Hành Trình Thấu Hiểu Bản Thân | Kabala.vnGiới Thiệu Về Kabala | Hành Trình Thấu Hiểu Bản Thân | Kabala.vn
Giới Thiệu Về Kabala | Hành Trình Thấu Hiểu Bản Thân | Kabala.vn
 
xemsomenh.com-Vòng Tràng Sinh - Cách An 12 Sao Và Ý Nghĩa Từng Sao.pdf
xemsomenh.com-Vòng Tràng Sinh - Cách An 12 Sao Và Ý Nghĩa Từng Sao.pdfxemsomenh.com-Vòng Tràng Sinh - Cách An 12 Sao Và Ý Nghĩa Từng Sao.pdf
xemsomenh.com-Vòng Tràng Sinh - Cách An 12 Sao Và Ý Nghĩa Từng Sao.pdf
 
các nội dung phòng chống xâm hại tình dục ở trẻ em
các nội dung phòng chống xâm hại tình dục ở trẻ emcác nội dung phòng chống xâm hại tình dục ở trẻ em
các nội dung phòng chống xâm hại tình dục ở trẻ em
 
26 Truyện Ngắn Sơn Nam (Sơn Nam) thuviensach.vn.pdf
26 Truyện Ngắn Sơn Nam (Sơn Nam) thuviensach.vn.pdf26 Truyện Ngắn Sơn Nam (Sơn Nam) thuviensach.vn.pdf
26 Truyện Ngắn Sơn Nam (Sơn Nam) thuviensach.vn.pdf
 
C6. Van de dan toc va ton giao ....pdf . Chu nghia xa hoi
C6. Van de dan toc va ton giao ....pdf . Chu nghia xa hoiC6. Van de dan toc va ton giao ....pdf . Chu nghia xa hoi
C6. Van de dan toc va ton giao ....pdf . Chu nghia xa hoi
 
Xem sim phong thủy luận Hung - Cát số điện thoại chính xác nhất.pdf
Xem sim phong thủy luận Hung - Cát số điện thoại chính xác nhất.pdfXem sim phong thủy luận Hung - Cát số điện thoại chính xác nhất.pdf
Xem sim phong thủy luận Hung - Cát số điện thoại chính xác nhất.pdf
 
30 ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...
30 ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...30 ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...
30 ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...
 
Tử Vi Là Gì Học Luận Giải Tử Vi Và Luận Đoán Vận Hạn
Tử Vi Là Gì Học Luận Giải Tử Vi Và Luận Đoán Vận HạnTử Vi Là Gì Học Luận Giải Tử Vi Và Luận Đoán Vận Hạn
Tử Vi Là Gì Học Luận Giải Tử Vi Và Luận Đoán Vận Hạn
 
Đề thi tin học HK2 lớp 3 Chân Trời Sáng Tạo
Đề thi tin học HK2 lớp 3 Chân Trời Sáng TạoĐề thi tin học HK2 lớp 3 Chân Trời Sáng Tạo
Đề thi tin học HK2 lớp 3 Chân Trời Sáng Tạo
 
[123doc] - ao-dai-truyen-thong-viet-nam-va-xuong-xam-trung-quoc-trong-nen-van...
[123doc] - ao-dai-truyen-thong-viet-nam-va-xuong-xam-trung-quoc-trong-nen-van...[123doc] - ao-dai-truyen-thong-viet-nam-va-xuong-xam-trung-quoc-trong-nen-van...
[123doc] - ao-dai-truyen-thong-viet-nam-va-xuong-xam-trung-quoc-trong-nen-van...
 
60 CÂU HỎI ÔN TẬP LÝ LUẬN CHÍNH TRỊ NĂM 2024.docx
60 CÂU HỎI ÔN TẬP LÝ LUẬN CHÍNH TRỊ NĂM 2024.docx60 CÂU HỎI ÔN TẬP LÝ LUẬN CHÍNH TRỊ NĂM 2024.docx
60 CÂU HỎI ÔN TẬP LÝ LUẬN CHÍNH TRỊ NĂM 2024.docx
 
xemsomenh.com-Vòng Lộc Tồn - Vòng Bác Sĩ và Cách An Trong Vòng Lộc Tồn.pdf
xemsomenh.com-Vòng Lộc Tồn - Vòng Bác Sĩ và Cách An Trong Vòng Lộc Tồn.pdfxemsomenh.com-Vòng Lộc Tồn - Vòng Bác Sĩ và Cách An Trong Vòng Lộc Tồn.pdf
xemsomenh.com-Vòng Lộc Tồn - Vòng Bác Sĩ và Cách An Trong Vòng Lộc Tồn.pdf
 
ĐỀ KIỂM TRA CUỐI KÌ 2 BIÊN SOẠN THEO ĐỊNH HƯỚNG ĐỀ BGD 2025 MÔN TOÁN 11 - CÁN...
ĐỀ KIỂM TRA CUỐI KÌ 2 BIÊN SOẠN THEO ĐỊNH HƯỚNG ĐỀ BGD 2025 MÔN TOÁN 11 - CÁN...ĐỀ KIỂM TRA CUỐI KÌ 2 BIÊN SOẠN THEO ĐỊNH HƯỚNG ĐỀ BGD 2025 MÔN TOÁN 11 - CÁN...
ĐỀ KIỂM TRA CUỐI KÌ 2 BIÊN SOẠN THEO ĐỊNH HƯỚNG ĐỀ BGD 2025 MÔN TOÁN 11 - CÁN...
 
20 ĐỀ DỰ ĐOÁN - PHÁT TRIỂN ĐỀ MINH HỌA BGD KỲ THI TỐT NGHIỆP THPT NĂM 2024 MÔ...
20 ĐỀ DỰ ĐOÁN - PHÁT TRIỂN ĐỀ MINH HỌA BGD KỲ THI TỐT NGHIỆP THPT NĂM 2024 MÔ...20 ĐỀ DỰ ĐOÁN - PHÁT TRIỂN ĐỀ MINH HỌA BGD KỲ THI TỐT NGHIỆP THPT NĂM 2024 MÔ...
20 ĐỀ DỰ ĐOÁN - PHÁT TRIỂN ĐỀ MINH HỌA BGD KỲ THI TỐT NGHIỆP THPT NĂM 2024 MÔ...
 

Đề tài: Tính ổn định của lớp phương trình hàm với cặp biến tự do

  • 1. ĐẠI HỌC QUỐC GIA HÀ NỘI TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN NGUYỄN THỊ THANH TÂM TÍNH ỔN ĐỊNH CỦA MỘT SỐ LỚP PHƯƠNG TRÌNH HÀM VỚI CẶP BIẾN TỰ DO Chuyên ngành: Giải tích Mã số: 60460102 LUẬN VĂN THẠC SỸ KHOA HỌC NGƯỜI HƯỚNG DẪN KHOA HỌC: GS.TSKH NGUYỄN VĂN MẬU HÀ NỘI- 2014
  • 2. Mục lục Lời nói đầu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1 Tính ổn định của các phương trình hàm dạng Cauchy 4 1.1 Tính ổn định của các phương trình hàm cộng tính . . . . . . 5 1.2 Tính ổn định của các phương trình hàm nhân tính . . . . . . 11 1.3 Tính ổn định của các hàm logarit . . . . . . . . . . . . . . . 13 1.4 Tính ổn định của các hàm lũy thừa . . . . . . . . . . . . . . 18 2 Tính ổn định của các phương trình hàm chuyển tiếp các đại lượng trung bình cơ bản 25 2.1 Tính ổn định của phương trình hàm chuyển tiếp đại lượng trung bình cộng vào trung bình cộng . . . . . . . . . . . . . . 25 2.2 Tính ổn định của phương trình hàm chuyển tiếp đại lượng trung bình cộng vào trung bình nhân . . . . . . . . . . . . . 27 2.3 Tính ổn định của phương trình hàm chuyển tiếp đại lượng trung bình cộng vào trung bình điều hòa . . . . . . . . . . . . 29 2.4 Tính ổn định của phương trình hàm chuyển tiếp đại lượng trung bình cộng vào trung bình bậc hai . . . . . . . . . . . . 31 3 Tính ổn định của một số dạng phương trình hàm khác 33 3.1 Tính ổn định của phương trình sóng . . . . . . . . . . . . . . 33 3.2 Tính ổn định của phương trình đa thức . . . . . . . . . . . . 37 3.3 Tính ổn định của phương trình dạng toàn phương . . . . . . 40 Kết luận . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Tài liệu tham khảo . . . . . . . . . . . . . . . . . . . . . . . . . 45 1
  • 3. LỜI NÓI ĐẦU Lý thuyết phương trình hàm là một trong những chủ đề lâu đời nhất của toán học phân tích. Nó được ra đời từ rất sớm và có mặt ở hầu hết mọi nơi và có ứng dụng trong mọi lĩnh vực của đời sống và kỹ thuật. Đã có rất nhiều nhà toán học lớn nghiên cứu lĩnh vực này như: Cauchy, D’Alembert, Banach, Gauss, . . . và họ đã có rất nhiều đóng góp to lớn. Trong một bài giảng nổi tiếng của S.M.Ulam tại câu lạc bộ toán của trường đại học Wisconsin vào năm 1940 đã đưa ra một số vấn đề chưa được giải quyết. Một trong số các vấn đề đó đã dẫn đến một hướng nghiên cứu mới mà ngày nay đã biết đến đó là nghiên cứu tính ổn định của phương trình hàm. Thông thường khái niệm ổn định trong toán học đã nghiên cứu thường có một điểm khá chung là ta thường giải quyết bài toán: Khi nào điều này còn đúng nếu thay đổi "một chút" giả thiết của định lý mà vẫn khẳng định được các kết quả của định lý vẫn còn đúng hoặc "xấp xỉ" đúng.Như vậy câu hỏi đặt ra là tính ổn định của phương trình hàm là gì, có điểm chung giống như trên không và nếu trong phương trình hàm tìm được nghiệm thì tính ổn định nghiệm của phương trình hàm là gì? Để lý giải một phần các vấn đề trên và giới thiệu quá trình xây dựng các công thức, giải quyết các vấn đề tôi đã thực hiện luận văn với đề tài "Tính ổn định của một số lớp phương trình hàm với cặp biến tự do". Bố cục luận văn gồm 3 chương. Chương 1. Tính ổn định của các phương trình hàm dạng Cauchy. Mục đích của chương này là đưa ra các định nghĩa và điều kiện ổn định của phương trình hàm Cauchy cộng tính, phương trình hàm Cauchy nhân tính, phương trình hàm logarit và phương trình hàm lũy thừa cùng một số ví dụ minh họa. Chương 2. Tính ổn định của các phương trình hàm chuyển tiếp các đại lượng trung bình cơ bản. Chương này đưa ra các bài toán tìm nghiệm và xét tính ổn định nghiệm của các phương trình chuyển tiếp các đại lượng trung bình cơ bản. 2
  • 4. Chương 3. Tính ổn định của một số phương trình hàm dạng khác Các kết quả chính trong luận văn được trình bày dựa trên tài liệu tham khảo [1]-[12]. Luận văn này được thực hiện dưới sự hướng dẫn tận tình và nghiêm khắc của GS.TSKH Nguyễn Văn Mậu.Thầy đã dành rất nhiều thời gian quý báu của mình để hướng dẫn, giải đáp những thắc mắc của tôi. Qua đây tôi xin gửi lời cảm ơn chân thành và sâu sắc nhất đến thầy cùng toàn thể ban lãnh đạo và các thầy cô trong khoa Toán - Cơ - Tin học, trường Đại học Khoa học Tự nhiên - Đại học Quốc Gia Hà Nội đã giúp tôi có thêm nhiều kiến thức để có thể hoàn thành luận văn và khóa học một cách tốt đẹp. Các thầy cô phòng Sau Đại học đã tạo những điều kiện thuận lợi giúp tôi hoàn thành các thủ tục bảo vệ luận văn cũng như học tập. Các thầy và các bạn trong seminar Toán Giải Tích về những góp ý để tôi có thể hoàn thành luận văn này. Tôi xin chân thành cảm ơn tất cả những sự giúp đỡ và đóng góp quý giá ấy. Cuối cùng do bản thân kiến thức còn có nhiều hạn chế nên luận văn không tránh khỏi những thiếu sót.Rất mong nhận được những ý kiến đóng góp của quý thầy cô và các bạn. Hà Nội, tháng 12 năm 2014 Nguyễn Thị Thanh Tâm 3
  • 5. Chương 1 Tính ổn định của các phương trình hàm dạng Cauchy Định nghĩa 1.1. Phương trình hàm là các phương trình mà hai vế của phương trình là các biểu thức được xây dựng từ một số hữu hạn các hàm chưa biết và từ một số hữu hạn các biến độc lập. Thông thường một phương trình hàm tổng quát đã cho thường không kèm theo các giả thiết có đặc trưng giải tích lên các hàm như tính đo được, tính bị chặn, khả tích, khả vi, liên tục,. . . Như ta đã biết, phương trình hàm là một phương trình thông thường mà nghiệm của nó là các hàm. Để giải quyết tốt vấn đề này, cần phân biệt tính chất hàm với đặc trưng hàm. Sau đây là đặc trưng hàm của một số hàm sơ cấp. i) Hàm bậc nhất f(x) = ax + b; a = 0; b = 0 có tính chất f x + y 2 = 1 2 f(x) + f(y) , en∀x, y ∈ R. ii) Hàm tuyến tính: f(x) = ax; a = 0 có tính chất: f(x + y) = f(x) + f(y), ∀x, y ∈ R. iii) Hàm mũ: f(x) = ax , a > 0, a = 1 có tính chất: f(x + y) = f(x)f(y), ∀x, y ∈ R. iv) Hàm logarit: f(x) = loga |x| ; a > 0, a = 1 có tính chất: f(xy) = f(x) + f(y), ∀x, y = 0 x, y ∈ R. 4
  • 6. v) Hàm lũy thừa: f(x) = |x|a có tính chất: f(xy) = f(x)f(y) ∀x, y = 0 x, y ∈ R. vi) Các hàm lượng giác: +) Hàm f(x) = sin x có tính chất f(3x) = 3f(x) − 4f3 (x), ∀x ∈ R. +) Hàm f(x) = cos x có tính chất: f(2x) = 2f2 (x) − 1, ∀x ∈ R. Tiếp theo, ta đề cập đến tính ổn định của phương trình hàm Cauchy cộng tính và một số phương trình hàm dạng Cauchy. 1.1 Tính ổn định của các phương trình hàm cộng tính Trước hết ta nhắc lại phương trình hàm Cauchy cộng tính: Giả sử hàm f : R → R là hàm thỏa mãn tính chất f(x + y) = f(x) + f(y), ∀x, y ∈ R, (∗) thì f được gọi là hàm cộng tính. Định nghĩa 1.2. Giả sử f : R → R sao cho với mọi ε > 0 cho trước nếu tồn tại số δ > 0 sao cho |f(x + y) − f(x) − f(y)| < δ, ∀x, y ∈ R và một hàm cộng tính M : R → R để |f(x) − M(x)| < ε, ∀x ∈ R. thì phương trình hàm Cauchy (*) được gọi là ổn định. Định lý 1.1. Giả sử hàm số f : R → R thỏa mãn điều kiện: Với mọi ε > 0 cho trước ta có |f(x + y) − f(x) − f(y)| ≤ ε với ∀x, y ∈ R. (1.1) 5
  • 7. Khi đó với mỗi x ∈ R, giới hạn sau tồn tại : A(x) = lim n→∞ 2−n f(2n x) và xác định duy nhất một hàm cộng tính A : R → R thỏa mãn điều kiện |f(x) − A(x)| ≤ ε, ∀x ∈ R. Chứng minh. Thay x = y vào (1.1) ta được 1 2 f(2x) − f(x) ≤ 1 2 ε. (1.2) Sử dụng phương pháp quy nạp ta được |2−n f(2n x) − f(x)| ≤ (1 − 2−n )ε. (1.3) Trong (1.3) thay x bởi 2x ta được 1 2 f(22 x) − f(2x) ≤ 1 2 ε. Khi đó 1 2 f(22 x) − 2f(x) − f(2x) − 2f(x) = 1 2 f(22 x) − f(2x) ≤ 1 2 ε. Hay 1 22 f(22 x) − f(x) − 1 2 f(2x) − f(x) ≤ 1 22 ε. Nên 1 22 f(22 x) − f(x) ≤ ε 1 2 + 1 22 . Do đó 1 2n f(2n x) − f(x) ≤ ε 1 2 + 1 22 + · · · + 1 2n = ε 1 − 1 2n . Bây giờ ta sẽ chứng minh dãy 1 2n f(2n x) là dãy Cauchy với mỗi x ∈ R. Chọn m > n khi đó 1 2n f(2n x) − 1 2m f(2m x) = 1 2n | 1 2m−n f(2m−n .2n x) − f(2n x)| ≤ 1 2n ε 1 − 1 2m−n 6
  • 8. = ε 1 2n − 1 2m ). Do đó dãy { 1 2n f(2n x)} là dãy Cauchy với mỗi x ∈ R và do R là không gian Banach nên tồn tại A : R → R sao cho A(x) = lim n→∞ 2−n f(2n x), với mỗi x ∈ R hay A(x) − 1 2n f(2n x) ≤ 1 2n ε. Tiếp theo ta chứng minh A là hàm cộng tính. Thay x, y bởi 2n x và 2n y ta được 1 2n f(2n (x + y)) − 1 2n f(2n x) − 1 2n f(2n y) ≤ 1 2n ε với mỗi n ∈ Z∗ +, x, y ∈ R. Cho n → ∞ ta được |A(x + y) − A(x) − A(y)| ≤ ε. Với mỗi x ∈ R ta có |f(x) − A(x)| = |[f(x) − 1 2n f(2n x)] + [ 1 2n f(2n x − A(x))]| ≤ |f(x) − 1 2n }f(2n x)| + | 1 2n f(2n x) − A(x)| ≤ ε(1 − 1 2n ) + ε 1 2n = ε. Cuối cùng ta cần chứng minh hàm A là duy nhất. Thật vậy giả sử tồn tại hàm cộng tính A1 : R → R. Khi đó với mỗi x ∈ R |A(x) − A1(x)| = 1 n |[A(nx) − f(nx)] + [A1(nx) − f(nx)]| ≤ 2ε n . Vậy A1 = A. Như vậy định lý này cho ta một kết quả là mọi phương trình Cauchy cộng tính đều ổn định. 7
  • 9. Ví dụ 1.1. Tìm tất cả các hàm f, g, h : R → R thỏa mãn phương trình sau f(x + y) = g(x) + h(y), ∀x, y ∈ R. (1.4) Thay y = 0 vào ta được f(x) = g(x) + h(0), ∀x ∈ R, hay f(x) = g(x) + α, với α = h(0). Do đó g(x) = f(x) − α với mọi x ∈ R. Thay x = 0 vào , ta được f(y) = h(x) + β, với β = g(0), hay h(x) = f(x) − β, với mọi x ∈ R. Phương trình trở thành f(x + y) = f(x) + f(y) − α − β, ∀x, y ∈ R. (1.5) Đặt f(x) = A(x) + α + β. Thay vào (1.5) được A(x + y) + α + β = A(x) + α + β + A(y) + α + β − α − β, hay A(x + y) = A(x) + A(y), ∀x, y ∈ R. Vậy A là một hàm cộng tính trên R nên    f(x) = A(x) + α + β g(x) = A(x) + β h(x) = A(x) + α Nhận xét 1.1. Nếu bài toán có thêm giả thiết: hàm f, g, h liên tục thì nghiệm tìm được sẽ là    f(x) = ax + α + β g(x) = ax + β h(x) = ax + α với a, α, β là các hằng số tùy ý. Tiếp theo ta xét tính ổn định của phương trình (1.5). 8
  • 10. Mệnh đề 1.1. Giả sử hàm f, g, h : R → R thỏa mãn điều kiện |f(x + y) − g(x) − h(y)| ≤ ε (1.6) với ε là số dương tùy ý cho trước và với mọi x, y ∈ R. Khi đó tồn tại duy nhất một hàm cộng tính A : R → R sao cho    |f(x) − A(x) − f(0)| ≤ 6ε |g(x) − A(x) − g(0)| ≤ 4ε |h(x) − A(x) − h(0)| ≤ 6ε với mọi x ∈ R. Chứng minh. Thay y = 0 vào (1.6), ta được |f(x) − g(x) − h(0)| ≤ ε, ∀x ∈ R, (1.7) suy ra |f(0) − g(0) − h(0)| ≤ ε. (1.8) Thay y = 0 vào (1.6), ta được |f(y) − h(y) − g(0)| ≤ ε, ∀t ∈ R. (1.9) Từ (1.7) và (1.9) |h(x) − g(x) − h(0) + g(0)| = |f(x) − g(x) − h(0) + h(x) + g(0) − f(x)| ≤ |f(x) − g(x) − h(0)| + |f(x) − h(x) − h(0)| hay |h(x) − g(x) − h(0) + g(0)| ≤ 2ε, ∀x ∈ R. (1.10) Sử dụng (1.7), ta được |f(x + y) − g(x + y) − h(0)| ≤ ε, ∀x, y ∈ R. (1.11) Ta có |f(x+y)−g(x+y)−h(0)| = |f(x+y)−g(x)−h(y)−g(x+y)+g(x)+h(y)−h(0)|. Kết hợp (1.6) và (1.11) thu được |g(x + y) − g(x) − h(y) + h(0)| ≤ |f(x + y) − g(x + y) − h(0)| 9
  • 11. + |f(x + y) − g(x) − h(y)| ≤ 2ε. Mặt khác |g(x + y) − g(x) − h(y) + h(0)| = |g(x + y) − g(x) − g(y) + g(0) − h(y) + g(y) − g(0) + h(0)|. Từ (1.10) có |g(x + y) − g(x) − g(y) + g(0)| ≤ |g(x + y) − g(x) − h(y) − h(0)| + |h(y) − g(y) + g(0) − h(0)| ≤ 4ε. Hay |[g(x + y) − g(0)] − [g(x) − g(0)] − [g(y) − g(0)]| ≤ 4ε, (1.12) với x, y ∈ R. Đặt G(x) = g(x) − g(0), ∀x, y ∈ R. (1.13) Thế vào (1.12) được |G(x + y) − G(x) − G(y)| ≤ 4ε, ∀x ∈ R. Theo định lý về tính ổn định của hàm cộng tính, tồn tại duy nhất một hàm cộng tính A : R → R sao cho |G(x) − A(x)| ≤ 4ε, ∀x ∈ R. (1.14) Từ (1.13) và (1.14) ta được |g(x) − A(x) − g(0)| ≤ 4ε, ∀x ∈ R. (1.15) Từ (1.7), (1.8) và (1.15) ta được |f(x)−A(x) − f(0)| = |f(x) − g(x) − h(0) + g(x) − A(x) − g(0) + g(0) + h(0) − f(0)| ≤ |f(x) − g(x) − h(0)| + |g(x) − A(x) − g(0)| + |g(0) + h(0) − f(0)| ≤ ε + 4ε + ε = 6ε. 10
  • 12. Từ (1.10) và (1.15) ta được |h(x) − A(x) − h(0)| = |h(x) − g(x) − h(0) + g(0) + g(x) − A(x) − g(0)| ≤ |h(x) − g(x) − h(0) + g(0)| + |g(x) − A(x) − g(0)| ≤ 2ε + 4ε = 6ε. 1.2 Tính ổn định của các phương trình hàm nhân tính Trong phần này ta nghiên cứu phương trình f(xy) = f(x)f(y) (1.16) Giả sử hàm f : R → R thỏa mãn điều kiện (1.16). Khi đó f được gọi là hàm nhân tính. Định nghĩa 1.3. Giả sử f : R → R thỏa mãn điều kiện: Với mọi ε > 0 cho trước, tồn tại số δ > 0 sao cho |f(xy) − f(x)f(y)| < δ, ∀x, y ∈ R . Khi đó nếu tồn tại một hàm nhân tính M : R → R để |f(x) − M(x)| < ε, ∀x ∈ R. thì phương trình hàm Cauchy (1.16) được gọi là ổn định. Định lý 1.2. Giả sử δ > 0, và f : R → C sao cho |f(xy) − f(x)f(y)| ≤ δ x, y ∈ R. (1.17) Khi đó Hoặc |f(x)| ≤ 1 + √ 1 + 4δ 2 := ε, ∀x ∈ R. (1.18) Hoặc f là hàm nhân tính với mọi x, y ∈ R. Chứng minh. Trong ta có 1 + √ 1 + 4δ 2 = ε hay ε2 − ε = δ và ε > 1 Giả sử không xảy ra tức là tồn tại a ∈ S sao cho |f(a)| > ε, 11
  • 13. hay |f(a)| = ε + ρ, với ρ > 0 nào đó. Từ chọn x = y = a ta được |f(a2 ) − (f(a))2 | ≤ δ. (1.19) Khi đó |f(a2 )| = |(f(a))2 − (f(a)2 − f(a2 ))| ≥ |f(a)2 | − |f(a)2 − f(a2 )| ≥ |f(a)|2 − δ = (ε + ρ)2 − δ = (ε + ρ) + (2ε − 1) + ρ2 (do ε2 − ε = δ) > ε + 2ρ, với ε > 1. Bằng phép chứng minh quy nạp ta có |f(a2n )| > ε + (n + 1)ρ, với mọi n = 1, 2, . . . Với mọi x, y, z ∈ S |f(xyz) − f(xy)f(z)| ≤ δ, |f(xyz) − f(x)f(yz)| ≤ δ. Ta có |f(xy)f(z) − f(x)f(yz)| ≤ |f(xyz) − f(xy)f(z)| + |f(xyz) − f(x)f(yz)| ≤ 2δ. Và |f(xy)f(z) − f(x)f(y)f(z)| ≤ |f(xy)f(z) − f(x)f(yz)| + |f(x)f(yz) − f(x)f(y)f(z)| ≤ 2δ + |f(x)|δ Suy ra |f(xy) − f(x)f(y)| · |f(z)| ≤ 2δ + |f(x)|δ. Chọn z = a2n ta được |f(xy) − f(x)f(y)| ≤ 2δ + |f(x)δ| |f(a2n )| , ∀x, y ∈ R, n = 1, 2, . . . Cho n → ∞ ta được f(xy) = f(x)f(y), ∀x, y ∈ R. Vậy f là một hàm nhân tính. 12
  • 14. 1.3 Tính ổn định của các hàm logarit Trước hết ta nhắc lại hàm logarit (L) f(xy) − f(x) − f(y) = 0, ∀x, y ∈ R+ . (L) Giả sử hàm f : R+ → R thỏa mãn điều kiện (L). Khi đó f được gọi là hàm logarit. Định lý 1.3. Giả sử f : R+ → R, với ε > 0 cho trước thỏa mãn |f(xy) − f(x) − f(y)| ≤ ε (1.20) với mọi x, y > 0. Khi đó tồn tại một hàm logarit L : R+ → R sao cho |f(x) − L(x)| ≤ ε (1.21) với mọi x > 0. Để chứng minh định lý này, ta dựa trên bổ đề sau Bổ đề 1.1. Cho ε, d > 0, k, s ∈ R, với k = 0 và s = 0. Giả sử rằng hàm f : R+ → B thỏa mãn điều kiện |f(xy) − f(x) − f(y)| ≤ ε (1.22) với mọi x, y > 0 và xk ys ≥ d. Khi đó tồn tại duy nhất hàm logarit L : R+ → B thỏa mãn điều kiện |f(x) − L(x)| ≤ 3ε (1.23) với mọi x ∈ R+ . Chứng minh. Từ tính đối xứng của bất đẳng thức, ta đã có s = 0. Với x, y ∈ R+ , chọn z > 0 sao cho xk yk zs ≥ d, xk ys zs ≥ d, và yk zs ≥ d, khi đó ta có |f(xy) − f(x) − f(y)| ≤ | − f(xyz) + f(x) + f(z)| + |f(xyz) − f(x) − f(yz)| + |f(yz) − f(y) − f(z)| ≤ 3ε. Bổ đề được chứng minh. 13
  • 15. Định lý 1.4. Giả sử ε, d > 0, k, s, p, q, P, Q ∈ R, k/p = s/q, pqPQ = 0, giả sử rằng f : R+ → B thỏa mãn điều kiện |f(xp yq ) − Pf(x) − Qf(y)| ≤ ε (1.24) với mọi x, y > 0 và xk ys ≥ d. Khi đó tồn tại duy nhất một hàm logarit L : R+ → B sao cho |f(x) − L(x) − f(1)| ≤ 4ε (1.25) với mọi x ∈ R+ . Chứng minh. Thay x bởi x 1 p và y bởi y 1 q trong (1.24) ta được f(xy) − Pf   x 1 p    − Qf   y 1 q    ≤ ε, (1.26) với mọi x, y > 0, với x k p y s q ≥ d. Cho x, y ∈ R+ , chọn z > 0 sao cho x k p y s q z s q − k p ≥ d, x k p z s q − k p ≥ d, y s q z s q − k p ≥ d, z s q − k p ≥ d. Lần lượt thay x bởi xz−1 , y bởi yz; x bởi xz−1 , y bởi z; x bởi z−1 , y bởi yz; x bởi z−1 , y bởi z trong (1.26) ta có |f(xy) − f(x) − f(y) + f(1)| ≤ f(xy) − Pf x 1 p − z −1 p − Qf (yz) 1 q + − f(x) + Pf x 1 p z −1 p + Qf z 1 q + − f(y) + Pf z −1 p + Qf (yz) 1 q + f(1) − Pf z −1 p − Qf z 1 q ≤ 4ε. Theo Định lý 1.2, tồn tại duy nhất một hàm logarit L : R+ → B sao cho |f(x) − L(x) − f(1)| ≤ 4ε ∀x ∈ R+ . (1.27) Định lý được chứng minh. 14
  • 16. Hệ quả 1.1. Giả sử ε > 0, d, k, s, p, q, P, Q ∈ R với k p = s q , pqPQ = 0. Giả sử rằng g : R → B thỏa mãn điều kiện |g(px + qy) − Pg(x) − Qg(y)| ≤ ε, ∀x, y ∈ R, với kx + sy ≥ d. (1.28) Khi đó tồn tại duy nhất hàm cộng tính A : R → B sao cho |g(x) − A(x) − g(0)| ≤ 4ε ∀x ∈ R. (1.29) Chứng minh. Thay x bởi ln u, y bởi ln v vào (1.28) và đặt f(x) = g(ln x) ta được |f(up vq ) − Pf(u) − Qf(v)| ≤ ε, với mọi u, v ∈ R, với uk vs ≥ ed . Mà |f(x) − L(x) − f(1)| ≤ 4ε, với mọi x ∈ R+ , hay |g(x) − L(ex ) − g(0)le4ε, với mọi x ∈ R. Đặt A(x) = L(ex ) ta được |g(x) − A(x) − g(0)| ≤ 4ε, với mọi x ∈ R. Hệ quả được chứng minh. Định lý 1.5. Giả sử ε, d > 0, k, s, p, q, P, Q ∈ R với k = 0 hoặc s = 0. Giả sử rằng f : R+ → B thỏa mãn điều kiện |f(xp yq ) − Pf(x) − Qf(y)| ≤ ε, (1.30) với mọi x, y > 0 và với xk ys ≥ d. Khi đó tồn tại duy nhất một hàm logarit L : R+ → B sao cho |f(x) − L(x) − f(1)| ≤ 4ε |P| với mọi x ∈ R nếu s = 0 và |f(x) − L(x) − f(1)| ≤ 4ε |Q| 15
  • 17. với mọi x ∈ R nếu k = 0. Chứng minh. + Trường hợp s = 0. Với x, y ∈ R, chọn một số z > 0 sao cho xk yk zs ≥ d; xk y ps q zs ≥ d; y ps q zs ≥ d. Thay x bởi xy, y bởi z; x bởi x, y bởi y p q z; x bởi y, y bởi z; x bởi 1, y bởi y p q z vào (1.30) ta được |Pf(xy) − Pf(x) − Pf(y) + Pf(1)| ≤ | − f((xy)p zq ) + Pf(xy) + Qf(z)| + f((xy)p zq ) − Pf(x) − Qf y p q z + |f(yp zq ) − Pf(y) − Qf(z)| + − f(xp zq ) + Pf(1) + Qf y p q z ≤ 4ε. Chia bất đẳng thức trên cho |P| và áp dụng Định lý 1.2, ta sẽ thấy rằng tồn tại duy nhất một hàm logarit L : R+ → B sao cho |f(x) − L(x) − f(1)| ≤ 4ε |P| , với mọi x ∈ R+ . + Trường hợp k = 0. Với x, y ∈ R+ , chọn một số z > 0 sao cho xs ys zk ≥ d, x qk p ys zk ≥ d, xs zk ≥ d, x qk p zk ≥ d. Thay y bởi xy, x bởi z; y bởi y, x bởi x q p z; y bởi x, x bởi z; y bởi 1, x bởi x q p z vào (1.30) ta được |Qf(xy) − Qf(x) − Qf(y) + Qf(1)| ≤ | − f((xy)q zp ) + Qf(xy) + Pf(z)| + f((xy)q zp ) − Qf(y) − Pf x q p z + |f(xq zp ) − Pf(z) − Qf(x)| + − f(xq zp ) + Qf(1) + Pf x q p z ≤ 4ε. Chia bất đẳng thức này cho |Q| và áp dụng Định lý 1.2, ta sẽ thấy rằng tồn tại duy nhất một hàm logarit L : R+ → B sao cho |f(x) − L(x) − f(1)| ≤ 4ε |Q| 16
  • 18. với mọi x ∈ R+ . Định lý được chứng minh. Hệ quả 1.2. Giả sử ε, d, k, s ∈ R với k = 0 hoặc s = 0. Giả sử rằng g : R → B thỏa mãn điều kiện |g(px + qy) − Pg(x) − Qg(y)| ≤ ε với mọi x, y ∈ R, với kx + sy ≥ d. Khi đó tồn tại duy nhất hàm cộng tính A : R → B sao cho |g(x) − A(x) − g(0)| ≤ 4ε |P| với mọi x ∈ R nếu s = 0, và |g(x) − A(x) − g(0)| ≤ 4ε |Q| với mọi x ∈ R nếu k = 0. Ví dụ 1.2. Xác định tất cả các hàm f, g, h liên tục trên R+ thỏa mãn điều kiện f(xy) = g(x) + h(y), ∀x, y ∈ R+ . (1.31) Giải. Cho x = 1, ta có f(y) = g(1) + h(y) ⇔ h(y) = f(y) − a với a = g(1). Cho y = 1, ta có f(x) = g(x) + h(1) ⇔ g(x) = f(x) − b với b = h(1). Khi đó phương trình (1.31) trở thành f(xy) = f(x) + f(y) − a − b, ∀x, y ∈ R. (1.32) Đặt f(xy) = f(x) + f(y) − a − b. Phương trình (1.32) trở thành ϕ(xy) + a + b = (ϕ(x) + a + b) + (ϕ(y) + a + b) − a − b 17
  • 19. ⇔ ϕ(x + y) = ϕ(x) + ϕ(y), ∀x, y ∈ R+ . Do x, y ∈ R+ nên đặt x = eu y = ev với u, v ∈ R. Ta có ϕ(eu+v ) = ϕ(eu ) + ϕ(ev ), ∀u, v ∈ R ⇔ ψ(u + v) = ψ(u) + ψ(v) với ψ(u) = ϕ(eu ). Đây là phương trình hàm Cauchy nên có nghiệm ψ(u) = mu ⇔ ϕ(x) = m ln x ⇔ f(x) = m ln x + a + b g(x) = m ln x + a h(x) = m ln x + b. Thử lại ta thấy các hàm số f, g, h thỏa mãn bài toán. Vậy nghiệm của phương trình là    f(x) = m ln x + a + b g(x) = m ln x + a h(x) = m ln x + b. 1.4 Tính ổn định của các hàm lũy thừa Giả sử (S, +) là nửa nhóm giao hoán, E là không gian Banach phức, X là đại số phức với phần tử đơn vị là 1X và C là trường số phức. Cho f : S → X và g : S → C. Trong phần này ta xét hàm lũy thừa f(x + y) = g(x)f(y). Định nghĩa 1.4. Giả sử f : S → C, khi đó ta định nghĩa tập hợp Nf như sau Nf = {a ∈ S : f(a) ∈ S {0, 1}; |f(a)| > 1}. 18
  • 20. Định nghĩa 1.5. Giả sử f : S → X, khi đó ta định nghĩa tập hợp Mf như sau Mf = {a ∈ S : f(a) ∈ C {0, 1} × {1X}}. Định nghĩa 1.6. Xét hàm Scf : Mf → C với f(a) = Scf(a)×1X, ∀a ∈ Mf . Ta định nghĩa hàm số Mf = {a ∈ Mf : |Scf(a)| > 1}. Ta có các định lý sau. Định lý 1.6. Giả sử hai hàm số f : S → E, g : S → C thỏa mãn bất đẳng thức sau: |f(x + y) − g(x)f(y)| ≤ ψ(x, y), ∀x, y ∈ S. (1.33) Nếu Ng = ∅ và ψ(x, y + a) ≤ ϕ(x, y) với mọi x, y ∈ S và a ∈ Ng, khi đó tồn tại duy nhất một hàm T : S → E mà T(x + y) = g(x)T(y), (g(x + y) − g(x)g(y))T(z) = 0 và |f(y) − T(y)| ≤ inf a∈Ng ψ(a, y) |g(a)| − 1 với mọi x, y, z ∈ S. Chứng minh. Ta có a ∈ Ng và trong (1.33) thay x = a ta được |f(a + y) − g(a)f(y)| ≤ ψ(a, y), (1.34) với mọi y ∈ S. Ta gọi tập hợp A = {g : S → E}, và cho một metric trên A như sau d(g, h) = sup y∈S |g(y) − h(y)| ψ(a, y) . Suy ra (A, d) là một không gian metric đủ. Tiếp theo, ta định nghĩa hàm Ja : A → A với Ja(h)(y) = 1 g(a) h(y + a) 19
  • 21. với mọi h ∈ A và y ∈ S. Vì vậy d(Ja(u), Ja(h)) = sup y∈S |u(y + a) − h(y + a)| |g(a)|ψ(a, y) ≤ sup y∈S |u(y + a) − h(y + a)| |g(a)|ψ(a, y + a) = 1 g(a) d(u, h) với mọi u, h ∈ A. Do đó h là ánh xạ co của A với hằng số L = 1 |g(a)| . Từ (1.34) ta được f(y + a) g(a) − f(y) ≤ ψ(a, y) |g(y)| với mọi y ∈ S, vậy ta được d(J(f), f) ≤ L < ∞. Suy ra tồn tại một ánh xạ Ta : S → C sao cho 1. Ta là điểm cố định của J, nghĩa là Ta(y + a) = g(a)Ta (1.35) với mọi y ∈ S. Ánh xạ Ta là điểm cố định duy nhất của J trong tập hợp A = {h ∈ A : d(f, h) < ∞}. 2. d(Jn (f), Ta) → 0 khi n → ∞, có nghĩa là Ta(y) = lim n→∞ f(y + na) g(a)n với mọi x ∈ S. 3. d(f, Ta) ≤ 1 1 − L d(J(f), f), có nghĩa là d(f, Ta) ≤ 1 |g(a)| − 1 . Từ (1.34) ta suy ra |f(y + na) − g(a)n f(y)| ≤ n−1 i=0 ψ(a, y + ia)|g(a)|n−1−i (1.36) 20
  • 22. với mọi y ∈ S và n ∈ N. Từ ψ(a, y + a) ≤ ψ(a, y) với mọi y ∈ S ta suy ra ψ(a, y + ma) ≤ ψ(a, y) với mọi x ∈ S và m ∈ N, vì vậy từ (1.36) ta thu được |f(y + na) − g(a)n f(y)| ≤ ψ(a, y) |g(a)n | − 1 |g(a)| − 1 (1.37) với mọi y ∈ S. Từ (1.37), với mỗi a, b ∈ Ng, ta chứng minh Ta = Tb. Thật vậy, từ (1.37) ta có |f(y + na) − g(a)n f(y)| ≤ ψ(a, y) |g(a)n | − 1 |g(a)| − 1 (1.38) |f(y + nb) − g(b)n f(y)| ≤ ψ(b, y) |g(b)n | − 1 |g(b)| − 1 (1.39) với mọi y ∈ S. Trong (1.38) ta thay y bởi y + nb, trong (1.39) ta thay y bởi y + na ta được |f(y + n(a + b)) − g(a)n f(y + nb)| ≤ ψ(a, y) |g(a)n | − 1 |g(a)| − 1 |f(y + n(a + b)) − g(b)n f(y + na)| ≤ ψ(b, y) |g(b)n | − 1 |g(b)| − 1 Do đó |g(a)n f(y + nb) − g(b)n f(y + na)| ≤ ψ(a, y) |g(a)n | − 1 |g(a)| − 1 + ψ(b, y) |g(b)n | − 1 |g(b)| − 1 . Ta chia cho |g(a)n g(b)n | ta được f(y + na) g(a)n − f(y + nb) g(b)n ≤ ψ(a, y) (|g(b)| − 1)|g(a)n| (1 − 1 |g(b)n| ) + ψ(b, y) (|g(a)| − 1)|g(b)n| (1 − 1 |g(a)n| ) Cho n → ∞ ta được Ta(y) = T(y) với mọi y ∈ S. Vì vậy mà tồn tại duy nhất mọi hàm T sao cho T = Ta, với mọi a ∈ Ng và |f(y) − T(y)| ≤ ψ(a, y) |g(a)| − 1 21
  • 23. với mọi y ∈ S và a ∈ Ng. Vì a ∈ Na là phần tử tùy ý nên |f(y) − T(y)| ≤ inf a∈Ng ψ(a, y) |g(a)| − 1 với mọi y ∈ S. Ta có x, y ∈ S và a ∈ Ng là ba phần tử cố định tùy ý nên từ (1.33) ta suy ra |f(x + y + na) − g(x)f(y + na)| ≤ ψ(x, y + na). Ta chia bất đẳng thức này cho |g(a)n | được f(x + y + na) g(a)n − g(y) f(x + na) g(a)n ≤ ψ(x, y + na) |g(a)n| ≤ ψ(x, y) |g(a)n| . Cho n → ∞ được T(x + y) = g(x)T(y). Vì x, y, z ∈ S tùy ý nên T(x + y + z) = g(x + y)T(z) và T(x + y + z) = g(x)T(y + z) = g(x)g(y)T(z), hoặc (g(x + y) − g(x)g(y))T(z) = 0 với mọi x, y, z ∈ S. Định lý được chứng minh. Từ định lý ta có các hệ quả sau. Hệ quả 1.3. Giả sử f : S → C thỏa mãn điều kiện |f(x + y) − f(x)f(y)| ≤ ψ(x, y) với mọi x, y ∈ S. Nếu ψ(a, y + a) ≤ ψ(x, y) với mọi x, y ∈ S và a ∈ Nf , khi đó f hoặc là bị chặn, hoặc là hàm lũy thừa. Hệ quả 1.4. Giả sử f, g : S → C, S có phần từ đơn vị, f là hàm khác không và thỏa mãn điều kiện |f(x + y) − g(x)f(y)| ≤ ψ(x, y) 22
  • 24. với mọi x, y ∈ S. Nếu ψ(x, y + a) ≤ ψ(x, y) với mọi x, y ∈ S và a ∈ Ng thì g hoặc là bị chặn, hoặc là hàm lũy thừa và |f(x + y) − g(x)f(y)| ≤ ψ(x, y) với mọi x ∈ G. Ví dụ 1.3. Tìm tất cả các hàm f, g, h : R → R thỏa mãn điều kiện f(x + y) = g(x).h(y), ∀x, y ∈ R. (1.40) Cho x = 0, ta có f(y) = ah(y) với a = g(0). Cho y = 0, ta có f(x) = bg(x) với b = h(0). Nếu g(0) = 0, h(0) = 0, phương trình (1.40) trở thành f(x + y) = f(x)f(y) ab ⇔ f(x + y) ab = f(x) ab · f(y) ab , ∀x, y ∈ R. (1.41) Đặt f(x) ab = ϕ(x), với x ∈ R, ta có f liên tục trên R. Phương trình (1.41) trở thành ϕ(x + y) = ϕ(x)ϕ(y), ∀x, y ∈ R. Phương trình này có nghiệm ϕ(x) = 0 hoặc ϕ(x) = ec x. Với ϕ(x) = 0 ta có nghiệm của phương trình    f(x) ≡ 0 g(x) ≡ 0 h(x) là hàm tùy ý liên tục trên R. Hoặc    f(x) ≡ 0 h(x) ≡ 0 g(x) là hàm tùy ý liên tục trên R. 23
  • 25. Với ϕ(x) = ec x, ta có    f(x) = abec x g(x) = aec x h(x) = bec x. Nếu g(0) = a = 0 thì f(x) = 0 với mọi x ∈ R. Nếu g(x) ≡ 0 thì h(x) là hàm số tùy ý. Nếu tồn tại x0 ∈ R sao cho g(x0) = 0 thì 0 = f(x0 + y) = g(x0)h(y) ⇔ h(y) = 0, ∀y ∈ R. Thử lại ta thấy các hàm số trên thỏa mãn phương trình đã cho. Nếu h(0) = b = 0 thì ta có f(x) = 0 với mọi x ∈ R. Nếu h(x) ≡ 0 thì g(x) là hàm số tùy ý. Nếu tồn tại x0 ∈ R sao cho h(x0) = 0 thì 0 = f(x0 + y) = h(x0)g(y) ⇔ g(y) = 0, ∀y ∈ R. Thử lại, các hàm trên cũng thỏa mãn phương trình đã cho. Vậy nghiệm của phương trình là    f(x) = abec x g(x) = aec x h(x) = bec x. Hoặc    f(x) ≡ 0 g(x) ≡ 0 h(x) là hàm tùy ý liên tục trên R. Hoặc    f(x) ≡ 0 h(x) ≡ 0 g(x) là hàm tùy ý liên tục trên R. 24
  • 26. Chương 2 Tính ổn định của các phương trình hàm chuyển tiếp các đại lượng trung bình cơ bản 2.1 Tính ổn định của phương trình hàm chuyển tiếp đại lượng trung bình cộng vào trung bình cộng Bài toán 2.1. Tìm hàm f : R → R thỏa mãn phương trình f x + y 2 = f(x) + f(y) 2 x, y ∈ R. (2.1) Giải. Thay y = 0 vào (2.1) ta được f x 2 = f(x) + f(0) 2 , ∀x, y ∈ R. (2.2) Khi đó áp dụng (2.1) và (2.2) ta được f(x) + f(y) 2 = f x + y 2 = f(x + y) + f(0) 2 Hay f(x) + f(y) = f(x + y) + f(0) x, y ∈ R Đặt A(x) = f(x) − f(0), ta có A(x) + A(y) = A(x + y) ∀x, y ∈ R. Vậy A là một hàm cộng tính trên R nên f(x) = A(x)+α trong đó α = f(0). Tiếp theo ta xét tính ổn định nghiệm của phương trình (2.1). 25
  • 27. Mệnh đề 2.1. Giả sử hàm f thỏa mãn điều kiện f x + y 2 − f(x) + f(y) 2 ≤ ε, (2.3) với ε là số dương tùy ý cho trước và ∀x, y ∈ R. Khi đó tồn tại duy nhất một hàm cộng tính A : R → R sao cho |f(x) − A(x) − f(0)| ≤ 4ε, ∀x ∈ R.. Chứng minh. Thay y = 0 vào (2.3) ta được f x 2 − f(x) + f(0) 2 ≤ ε, ∀x ∈ R. Do đó f x + y 2 − f(x + y) + f(0) 2 ≤ ε, ∀x, y ∈ R. Ta có f(x) + f(y) 2 − f(x + y) + f(0) 2 ≤ f(x) + f(y) 2 − f(x + y) 2 + f(x + y) 2 − f(x + y) + f(0) 2 ≤ 2ε. Hay |f(x + y) + f(0) − f(x) − f(y)| ≤ 4ε. (2.4) Đặt g(x) = f(x) − f(0). Thay vào (2.4) ta được |g(x + y) − g(x) − g(y)| ≤ 4ε. Theo tính ổn định của hàm cộng tính tồn tại duy nhất hàm cộng tính A sao cho |g(x) − A(x)| ≤ 4ε. Vậy |f(x) − A(x) − f(0)| = |g(x) − A(x)| ≤ 4ε. 26
  • 28. 2.2 Tính ổn định của phương trình hàm chuyển tiếp đại lượng trung bình cộng vào trung bình nhân Bài toán 2.2. Tìm tất cả các hàm liên tục f : R → R thỏa mãn phương trình f x + y 2 = f(x)f(y), ∀x, y ∈ R. (2.5) Giải. Từ (2.5) ta có f(x) ≥ 0 ∀x ∈ R. Giả sử ∃x0 ∈ R sao cho f(x0) = 0 khi đó f x0 + y 2 = f(x0)f(y) = 0, ∀y ∈ R. Hay f(x) = 0 với ∀x ∈ R.. Xét f(x) > 0 với x ∈ R. Lấy logarit hai vế của phương trình (2.5) ta được ln f x + y 2 = ln f(x) + ln f(y) 2 , ∀x, y ∈ R Đặt g(x) = ln f(x)), ta có g x + y 2 = g(x) + g(y) 2 ∀x, y ∈ R. Hay g là một nghiệm của phương trình Jensen, tức là g(x) = ax + b. Suy ra nghiệm của phương trình (2.5) là f(x) = eax+b với a, b ∈ R. Tiếp theo ta xét tính ổn định nghiệm của phương trình (2.5). Mệnh đề 2.2. Giả sử hàm f : R → R+ thỏa mãn điều kiện |f x + y 2 − f(x)f(y)| ≤ ε, ∀x, y ∈ R (2.6) và |f(x) − f(−x)| ≤ δ, (2.7) với ε, δ là các số dương tùy ý cho trước. Giả sử tồn tại f(a)−1 khi đó tồn tại hàm E : R → R+ sao cho |E(x + y) − E(x) − E(y)| ≤ α, ∀x, y ∈ R, (2.8) 27
  • 29. và |f(x) − 1 2 E(x) − E(−x) | ≤ β, ∀x ∈ R, (2.9) với α, β là các hằng số nào đó. Chứng minh. Đặt m = sup x∈R f(x)f(a). Từ điều kiện (2.7) thì m là hữu hạn, khi đó ta có f(x)f(−a) ≤ f(−x)f(a) + | f(x)f(−a) + f(−x)f(a)| ≤ m + |f( x − a 2 ) − f(x)f(−a)| + |f( −x + a 2 ) − f(−x)f(a)| + |f( x − a 2 ) − f( −x + a 2 )| ≤ m + 2ε + δ. Đặt h : R → R+ thỏa mãn điều kiện h(x) = f(x)f(−x), ∀x ∈ R. Khi đó h là một hàm chẵn và |h(x) − f(x)| = f(x) · | f(x) − f(−x)| ≤ 2 m2 f(a) , ∀x ∈ R, |h(x) f(a)| ≤ m. (2.10) Đặt E : R → R+ thỏa mãn điều kiện: E(x) = h(x) + f(a) ∀x ∈ R. Áp dụng (2.10) ta có |E(x + y) − E(x)E(y)| = |h(x + y) + f(a) − h(x)h(y) − (h(x) + h(y)) f(a) − f(a)| ≤ |h(x + y)| + |h(x)h(y)| + |(h(x) + h(y)) f(a)| + |f(a)| ≤ |h(x + y) − f(x + y)| + |f(x + y)| + |h(x)h(y)f(a)f−1 (a)| + |h(x) f(a)| + |h(y) f(a)| + f(a) + |f(a)| ≤ 2 m2 f(a) + m f(a) + m2 f(a) + 2m + f(a) + |f(a)| 28
  • 30. = α. Và |f(x)− 1 2 (E(x) − E(−x))| = |f(x) − h(x) + h(x) − 1 2 (h(x) + h(−x)) − f(a)| ≤ 2 m2 f(a) + f(a) = β. 2.3 Tính ổn định của phương trình hàm chuyển tiếp đại lượng trung bình cộng vào trung bình điều hòa Bài toán 2.3. Tìm tất cả các hàm f : R+ → R+ thỏa mãn phương trình f x + y 2 = 2f(x)f(y) f(x) + f(y) , ∀x, y ∈ R+ . (2.11) Giải. Ta có f x + y 2 = 1 1 f(x) + 1 f(y) 2 , ∀x, y ∈ R+ . Hay f x + y 2 = 2 1 f(x) + 1 f(y) , ∀x, y ∈ R+ . Hay 1 f x + y 2 = 1 f(x) + 1 f(y) 2 , ∀x, y ∈ R+ . Đặt g(x) = 1 f(x) và g(x) là hàm số dương liên tục trên R+ . Do trên ta có g x + y 2 = g(x) + g(y) 2 , ∀x, y ∈ R+ 29
  • 31. Hay g chính là nghiệm của phương trình Jensen tức là g(x) = ax + b Vậy f(x) = 1 ax + b trong đó a = 0; b > 0 hoặc a > 0; b ≥ 0 Tiếp theo ta xét tính ổn định nghiệm của phương trình (2.11). Mệnh đề 2.3. Giả sử hàm f thỏa mãn điều kiện 1 f x + y 2 − 1 f(x) + 1 f(y) 2 ≤ ε (2.12) với ε > 0 tùy ý cho trước và với mọi x, y ∈ R. Khi đó tồn tại duy nhất một hàm cộng tính A : R → R sao cho 1 f(x) − A(x) − 1 f(0) ≤ 4ε, ∀x ∈ R. Chứng minh. Thay y = 0 vào (2.12) ta được 1 f x 2 − 1 f(x) + 1 f(y) 2 ≤ ε, ∀x ∈ R. Do đó 1 f x + y 2 − 1 f(x + y) + 1 f(0) 2 ≤ ε, ∀x, y ∈ R. Ta có 1 f(x) + 1 f(y) 2 − 1 f(x + y) + 1 f(0) 2 ≤ 1 f(x) + 1 f(y) 2 − 1 f(x + y) 2 + 1 f(x + y) 2 − 1 f(x + y) + 1 f(0) 2 ≤ 2ε. hay 1 f(x + y) + 1 f(0) − 1 f(x) − 1 f(y) ≤ 4ε. (2.13) 30
  • 32. Đặt g(x) = 1 f(x) − 1 f(0) . Thay vào (2.13) được |g(x + y) − g(x) − g(y)| ≤ 4ε. Theo tính ổn định của hàm cộng tính sẽ tồn tại duy nhất hàm cộng tính A sao cho |g(x) − A(x)| ≤ 4ε. Vậy 1 f(x) − A(x) − 1 f(0) = |g(x) − A(x)| ≤ 4ε. 2.4 Tính ổn định của phương trình hàm chuyển tiếp đại lượng trung bình cộng vào trung bình bậc hai Bài toán 2.4. Tìm tất cả các hàm f : R → R liên tục sao cho f x + y 2 = (f(x))2 + (f(y))2 2 , ∀x, y ∈ R. (2.14) Giải. Từ công thức trên ta có f(x) ≥ 0 với mọi x, y ∈ R. Do đó (2.14) tương đương với f x + y c 2 = (f(x))2 + (f(y))2 2 , ∀x, y ∈ R. Đặt F(x) = (f(x))2 ≥ 0 với mọi x ∈ R. Phương trình trên trở thành F x + y 2 = F(x) + F(y) 2 ∀x, y ∈ R. Theo Bài toán 3.1.1 ta có F(x) là nghiệm của phương trình Jensen, tức là F(x) = ax + b. Vậy f(x) = √ ax + b, trong đó a = 0 b > 0 hoặc a > 0 b ≥ 0. Tiếp theo ta xét tính ổn định nghiệm của phương trình (2.14). 31
  • 33. Mệnh đề 2.4. Giả sử hàm f thỏa mãn điều kiện f x + y 2 − (f(x))2 + (f(y))2 2 ≤ ε, ∀x, y ∈ R với ε > 0 tùy ý cho trước. Khi đó, tồn tại duy nhất một hàm cộng tính A : R → R sao cho |(f(x))2 − A(x) − (f(0))2 | ≤ 4ε, ∀x ∈ R. (2.15) 32
  • 34. Chương 3 Tính ổn định của một số dạng phương trình hàm khác 3.1 Tính ổn định của phương trình sóng Trước hết ta tìm hiểu về phương trình sóng. Giả sử f : R2 → R sao cho f(x+h, y)+f(x−h, y)−f(x, y+h)−f(x, y−h) = 0, ∀x, y, h ∈ R. (3.1) Ta định nghĩa các toán tử 1,h và 2,h với h ∈ R như sau: 1,h ϕ(x, y) = ϕ x + h 2 , y − ϕ x − h 2 , y ; 2,h ϕ(x, y) = ϕ x, y + h 2 − ϕ x, y − h 2 . Với ∀x, y ∈ R và ϕ : R2 → R khi đó (3.1) có thể viết lại thành 2 1,h f(x, y)− 2 2,h f(x, y) = 0. Ta nhận thấy phương trình này là phương trình sóng. Haruki đã chỉ ra rằng f : R2 → R liên tục và thỏa mãn điều kiện (3.1) với x, y, h ∈ R nếu và chỉ nếu tồn tại các hàm α; β : R → R sao cho f(x + y) = α(x + y) + β(x − y), ∀x, y ∈ R. Nếu α, β : R → R là những hàm tùy ý và A : R2 → R là hàm song cộng tính và phản đối xứng nghĩa là A(x + y, z) = A(x, z) + A(y, z); 33
  • 35. A(y, x) = −A(x, y), với ∀x, y, z ∈ R và f : R2 → R được định nghĩa bởi f(x, y) = α(x + y) + β(x − y) + A(x, y), ∀x, y ∈ R. Khi đó (3.1) được thỏa mãn. Đặc biệt với f : R2 → R xác định g : R2 → R với g(x, y) = f(x + y, x − y)., ∀x, y ∈ R. Khi đó f thỏa mãn điều kiện (3.1) nếu và chỉ nếu g thỏa mãn điều kiện g(x + h, y + h) − g(x + h, y) − g(x, y + h) + g(x, y) = 0, ∀x, y, h ∈ R. Từ kết quả trên ta có định lý dưới đây. Định lý 3.1 (xem [1],[12]). Giả sử (G, +) là nhóm Abel, X là không gian Banach, với δ > 0 và f : G × G → X sao cho: |f(x + h, y + h) − f(x + h, y) − f(x, y + h) + f(x, y)| ≤ δ, ∀x, y, h ∈ G. Khi đó tồn tại các hàm α, β : G → X và A : R2 → R là hàm song cộng tính và phản đối xứng sao cho |f(x, y) − [α(x) + β(y) + A(x, y)]| ≤ 20δ, ∀x, y ∈ G. Định lý 3.2. Giả sử f : R2 → R, δ > 0 và thỏa mãn điều kiện: |f(x + h, y + h) − f(x + h, y) − f(x, y + h) + f(x, y)| ≤ δ, ∀x, y, h ∈ R. Khi đó tồn tại các hàm ϕ, ψ : R → R sao cho |f(x, y) − ϕ(x) + ψ(y)| ≤ 60δ, ∀x, y ∈ R. Chứng minh. Theo Định lý 3.1 tồn tại các hàm α, β : R → R và hàm song cộng tính và phản đối xứng A : R2 → R sao cho |f(x, y) − [α(x) + β(y) + A(x, y)]| ≤ 20δ, ∀x, y ∈ G. Với y ∈ R; x → f(x, y) đo được trên R. Ta kí hiệu S là tập tất cả các phần tử y sao cho RS có độ đo không. Giả sử chọn y1; y2 ∈ S khi đó |f(x, y1) − [α(x) + β(y1) + A(x, y1)]| ≤ 20δ, ∀x ∈ R. 34
  • 36. Và |f(x, y2) − [α(x) + β(y2) + A(x, y2)]| ≤ 20δ, ∀x ∈ R. Vì A là cộng tính với biến thứ 2 nên có thể viết |f(x, y1) − f(x, y2) − β(y1) + β(y2) − A(x, y1 − y2)| ≤ 40δ, ∀x ∈ R. Vì x → f(x, y1) − f(x, y2) đo đươc trên R nên A có thể bị chặn trên tập con (ta gọi là T) của R đo được Lebesgue. Như vậy x → A(x, y1 − y2) là cộng tính trên R và bị chặn trên T. Suy ra tồn tại số thực c(y1 − y2) sao cho A(x, y1 − y2) = c(y1 − y2), ∀x ∈ R. Đặt U = {y1 − y2 : y1, y2 ∈ S}. Với z ∈ U tồn tại c(z) ∈ R sao cho A(x, z) = c(z)x, ∀x ∈ R. Vì S đo được nên U chứa lân cận của 0 đặt là V . Lấy y ∈ R, chọn z ∈ V và một số tự nhiên n sao cho y = nz khi đó A(x, y) = nA(x, z) = nc(z)x, ∀x ∈ R. Vì vậy với y ∈ R tồn tại một số c(y) ∈ R sao cho A(x, y) = c(y)x, ∀x ∈ R. Vì A là phản đối xứng nên c(y)x = A(x, y) = −A(y, x) = −c(x)y, ∀x, y ∈ R. Đặc biệt vì c(x)x = −c(x)x, ∀x ∈ R nên c(x) = 0 với mọi x = 0, x ∈ R. Rõ ràng c(0) = 0 do đó A(x, y) = 0 với mọi x, y ∈ R. Vậy |f(x, y) − [α(x) + β(y)]| leq20δ, ∀x, y ∈ R. 35
  • 37. Tiếp theo chọn x0, y0 ∈ R sao cho: x → f(x, y0) và y → f(x0, y) đo được trên R. Đặt ϕ(x) = f(x, y0) − β(y0) ψ(y) = f(x0, y) − α(x0), ∀x, y ∈ R. Khi đó ϕ và ψ là đo được trên R. Hơn thế nữa ta có |f(x, y0) − (α(x) − β(y0))| ≤ 20δ, và |f(x0, y) − (α(x0) + β(y))| ≤ 20δ, ∀x, y ∈ R. Vì vậy |ϕ(x) − α(x)| ≤ 20δ, ∀x ∈ R. Và |ψ(y) − β(y)| ≤ 20δ, ∀y ∈ R. Do đó |f(x, y) − (ϕ(x) + ψ(y))| ≤ 60δ, ∀x, y ∈ R. Hệ quả 3.1. Giả sử f : R2 → R và số δ > 0 thỏa mãn điều kiện |f(x + h, y + h) − f(x + h, y) − f(x, y + h) + f(x, y)| ≤ δ, ∀x, y, h ∈ R. Giả sử tồn tại x0, y0 ∈ G sao cho x → f(x, y0) và y → f(x0, y) liên tục trên R. Khi đó tồn tại các hàm a, b : R → R liên tục sao cho |f(x, y) − (a(x) + b(y))| ≤ 180δ, ∀x, y ∈ R. Chứng minh. Áp dụng Định lý 3.2 sẽ tồn tại những hàm ϕ, ψ : R → R sao cho |f(x, y) − ϕ(x) + ψ(y)| ≤ 60δ, ∀x, y ∈ R. Vì thế |f(x, y0) − (ϕ(x) − ψ(y0))| ≤ 60δ. 36
  • 38. Và |f(x0, y) − (ϕ(x0) + ψ(y))| ≤ 60δ, ∀x, y ∈ R. Đặt a(x) = f(x, y0) − ψ(y0); b(y) = f(x0, y) − ϕ(x0), với x, y ∈ R. Khi đó a, b liên tục trên R và |a(x) − ϕ(x)| ≤ 60δ, ∀x ∈ R; |b(y) − ψ(y)| ≤ 60δ, ∀y ∈ R. Vì vậy ta kết luận được sẽ tồn tại các hàm a, b : R → R liên tục sao cho |f(x, y) − (a(x) + b(y))| ≤ 180δ, ∀x, y ∈ R. 3.2 Tính ổn định của phương trình đa thức Ta đã biết phương trình đa thức là phương trình có dạng anxn + an−1xn−1 + · · · + a1x + a0 = 0. (3.2) Trước hết ta xét tính ổn định nghiệm của phương trình đa thức xn + αx + β = 0. (3.3) Với x ∈ [−1; 1] ta có định nghĩa sau Định nghĩa 3.1. Phương trình (3.3) được gọi là ổn định nếu tồn tại một hằng số K > 0 sao cho với mỗi ε > 0, y ∈ [−1, 1] thỏa mãn điều kiện |yn + αy + β| ≤ ε, đều tồn tại z ∈ [−1, 1] để zn + αz + β = 0, thỏa mãn điều kiện |y − z| ≤ Kε. Với định nghĩa này ta có định lý sau. 37
  • 39. Định lý 3.3. Giả sử |α| > n, |β| < |α| − 1 và y ∈ [−1, 1] thỏa mãn bất đẳng thức sau |yn + αy + β| ≤ ε. (3.4) Khi đó tồn tại nghiệm v ∈ [−1, 1] của (3.3) sao cho |y − v| ≤ Kε, với K > 0 là một hằng số. Chứng minh. Với ε > 0 và y ∈ [−1, 1] mà |yn + αy + β| ≤ ε. Ta sẽ chỉ ra rằng có một hằng số K theo ε và v sao cho |y − v| < Kε, với ∀v ∈ [−1, 1], thỏa mãn điều kiện |xn + αx + β| = 0. Ta đặt g(x) = 1 α (−β − xn ), ∀x ∈ [−1, 1]. Khi đó |g(x)| = 1 α (−β − xn ) ≤ 1. Ta đặt X = [−1, 1] , d(x, y) = |x − y| khi đó (X, d) là không gian metric đủ và g là ánh xạ đi từ X vào X. Với mỗi x, y ∈ X ta có d(g(x), g(y)) = 1 α (−β − xn ) − 1 α (−β − yn ) ≤ 1 |α| |xn − yn | = 1 |α| |x − y||xn−1 + xn−2 y + · · · + xyn−2 + yn−1 |. Từ |α| ≥ n, x, y ∈ [−1, 1]; x = y ta được d(g(x), g(y)) ≤ γd(x, y) Với γ = n |α| ∈ (0, 1) Vì vậy g là ánh xạ co từ X vào X ta đặt là S. Suy ra tồn tại duy nhất một v ∈ X để mà g(v) = v. 38
  • 40. Vì vậy phương trình đa thức trên có một nghiệm thuộc [−1, 1]. Tiếp theo ta chọn K = 1 |α|(1 − γ) , khi đó |y − v| = |y − g(y) + g(y) − g(v)| ≤ |y − g(y)| + |g(y) − g(v)| ≤ y − 1 α (−β − yn ) + γ|y − v| = 1 |α| |yn + αy + β| + γ|y − v|. Suy ra |y − v| ≤ 1 |α(1 − γ)| |yn + αy + β|. Định lý được chứng minh. Bây giờ ta xét tính ổn định của phương trình đa thức anxn + an−1xn−1 + · · · + a1x + a0 = 0. (3.5) Tương tự như trên ta có định nghĩa sau Phương trình (3.5) gọi là ổn định nếu tồn tại một hằng số K > 0, với mỗi ε > 0 y ∈ [−1, 1] nếu |anxn + an−1xn−1 + · · · + a1x + a0| ≤ ε. Khi đó tồn tại z ∈ [−1, 1] thỏa mãn điều kiện anzn + an−1zn−1 + · · · + a1z + a0 = 0, sao cho |y − z| ≤ Kε. Từ đó ta có các định lý về tính ổn định. Định lý 3.4. Cho phương trình anxn + an−1xn−1 + · · · + a1x + a0 = 0. Nếu |a0| < |a1| − (|a2| + |a3| + · · · + |an|) |a1| > 2|a2| + 3|a3| + · · · + (n − 1)|an−1| + n|an|. Khi đó phương trình này tồn tại đúng một nghiệm v ∈ [−1, 1]. 39
  • 41. Định lý 3.5. Nếu những điều kiện của Định lý 3.5 đúng và hơn nữa y ∈ [−1, 1] và thỏa mãn bất đẳng thức |anyn + an−1yn−1 + · · · + a1y + a0| ≤ ε. Khi đó phương trình 3.5 là ổn định. Chứng minh. Xem [11]. 3.3 Tính ổn định của phương trình dạng toàn phương Trước hết ta nhắc lại định nghĩa phương trình dạng toàn phương. Hàm bậc hai f(x) = cx2 thỏa mãn phương trình hàm f(x + y) + f(x − y) = 2f(x) + 2f(y). (3.6) Vì thế phương trình (3.6) gọi là phương trình hàm dạng toàn phương. Định lý 3.6. Giả sử G là một nhóm Abel, X là không gian Banach và hàm f : G → X là hàm toàn phương với x, y ∈ G và f bị chặn. Khi đó nếu |f(x + y) + f(x − y) − 2f(x) − 2f(y)| ≤ δ, ∀x, y ∈ G (3.7) với mỗi δ > 0, đều tồn tại duy nhất một ánh xạ toàn phương q : G → X để |f(x) − q(x)| ≤ δ 2 , ∀x ∈ G. (3.8) Ngoài ra hàm q được cho bởi q(x) = lim x→∞ f(2n x) 4n , ∀x ∈ G. Chứng minh. Trong (3.7) chọn x = 0 = y ta được: |f(0)| ≤ δ 2 . Cũng từ (3.7) lấy x = y ta được: |f(2x) − 4f(x) − f(0)| ≤ δ. Khi đó |f(2x) − 4f(x) − f(0)| ≤ δ. Hoặc 1 4 f(2x) − f(x) ≤ 3 8 δ ≤ δ 2 . (3.9) 40
  • 42. Thay x bởi 2x thì từ (3.9) ta được 1 4 f(22 x) − f(2x) ≤ 3 8 δ. Khi đó 1 42 f(22 x) − f(x) + f(x) − 1 4 f(2x) ≤ 3 32 δ. Hoặc ta có 1 42 f(22 x) − f(x) ≤ 3 32 δ + 3 8 δ = 3 8 δ(1 + 1 4 ) < δ 2 . Bằng phương pháp quy nạp toán học ta được 1 4n f(2n x) − f(x) ≤ 3 8 δ(1 + 1 4 + · · · + 1 4n ) = 1 2 δ(1 − 1 4n ) < δ 2 . Tiếp theo ta cần chứng minh { f(2n x) 4n } là dãy Cauchy với mỗi x ∈ G Chọn m > n khi đó 1 4n f(2n x) − 1 4m f(2m x) = 1 4n 1 4m−n f(2m−n 2n x) − f(2n x) ≤ 1 4n δ 2 (1 − 1 4m−n ) = δ 2 ( 1 4n − 1 4m ). Vậy { f(2n x) 4n } là dãy Cauchy với mỗi x ∈ G. Từ X là không gian Banach hội tụ đến hàm giới hạn ta gọi là q : G → X Ta có |q(x + y) + q(x − y) − 2q(x) − 2q(y)| = lim n→∞ 1 4n |f(2n x + 2n y) + f(2n x − 2n y) − 2f(2n x) − 2f(2n y)| ≤ lim n→∞ δ 4n → 0. Suy ra q là hàm toàn phương. Tiếp theo ta chứng minh (3.8) đúng. Ta có |q(x) − f(x)| = lim n→∞ f(2n x) 4n − f(x) 41
  • 43. = lim n→∞ f(2n x) 4n − f(x) ≤ lim n→∞ δ 2 = δ 2 . Vậy (3.8) là đúng. Cuối cùng ta chứng minh tính duy nhất của q Chứng minh bằng phản chứng. Giả sử q : G → X không duy nhất, nghĩa là tồn tại một hàm toàn phương t : G → X mà: |t(x) − f(x)| ≤ δ 2 , ∀x ∈ G. Ta có: |t(x) − q(x)| ≤ |t(x) − f(x)| + |f(x) − q(x)| ≤ δ 2 + δ 2 = δ. Bởi vậy ta được |t(x) − q(x)| ≤ δ. Vì hàm toàn phương là hàm thuần nhất bậc hai nên ta có |t(x) − q(x)| = | n2 t(x) n2 − n2 q(x) n2 | = t(nx) n2 − q(nx) n2 = 1 n2 |t(nx) − q(nx)| ≤ δ n2 → ∞. Do đó t(x) = q(x) với mọi x ∈ G . Vì vậy q là duy nhất. Định lý được chứng minh. Định lý 3.7 (xem [1],[12]). Giả sử có một ánh xạ f : X → Y thỏa mãn bất đẳng thức |f(x + y + z) + f(x − y) + f(y − z) + f(z − x) − 3f(x) − 3f(y) − 3f(z)| ≤ δ. (3.10) Khi đó tồn tại duy nhất một ánh xạ toàn phương g : X → Y thỏa mãn điều kiện f(x + y + z) + f(x − y) + f(y − z) + f(z − x) = 3f(x) + 3f(y) + 3f(z) 42
  • 44. và bất đẳng thức |g(x) − f(x)| ≤ δ 5 , ∀x ∈ X được thỏa mãn. 43
  • 45. KẾT LUẬN Như vậy nội dung chính của luận văn là: - Tổng kết lại các kết quả đã có về tính ổn định của phương trình hàm Cauchy cộng tính, phương trình hàm Cauchy nhân tính, phương trình hàm logarit và phương trình hàm lũy thừa. - Đưa ra một số ví dụ cho các phương trình trên. - Tổng kết lại các kết quả ổn định nghiệm của các phương trình chuyển tiếp các đại lượng trung bình cơ bản. - Đưa ra các ví dụ minh họa - Tổng kết lại các kết quả ổn định của phương trình sóng, phương trình đa thức, và phương trình hàm dạng toàn phương.
  • 46. Tài liệu tham khảo [1] Nguyễn Văn Mậu, 1997, Phương trình hàm, NXBGD. [2] T. Acze’l 1966, Lectures on functional equations and their applications, Academic Press, New York/San Francisco/London. [3] J.Acz’el and J.Dhombres, 1989, Functional Equations in Several Vari- ables, Academic Press, New York/San Francisco/London. [4] M. Alimohammady and A. Sadeghi, July 2012, On the Superstability and Stability of the Pexiderized Exponential Equation Article 2, Volume 1, Number 2, Page 61-74. [5] Baker, J.A., 1980 The stability of the cosine Equation. Proceeding of the American Mathematical Society, 80 (3), 411-416. [6] M. Bean and J.A. Baker, 1990, The stability of a functional analogue of the wave equation, Can. Math. Bull., 33, 376 [7] Christopher G. Small, 2000, Functinal equations and how to solve them, Springer. [8] P.W. Cholewa, 1983 The stability of the sine Equation. Proceeding of the American Mathematical Society, 88 (4), 631-634. [9] Chung, 2010, Stability of a Jensen type logarithmic functional equation on restricted domains and its asymptotic behaviors. Adv Diff Equ 2010. [10] S.Czerwik, 1992, On the stability of the quadratic mappings in normed spaces, Abh. Math. Semin. Univ. Hamb, 59- [11] Z. Daroczy and A. Jarai, On the measurable solution of a functional equation of the information theory, Acta Math. Acad Sci. Hungaricae, vol.34, 105-116, 1979.
  • 47. [12] D.H. Hyers, 1983, The stability of homomorphisms and ralated topics, in Global Analysis- Analysis on Manifolds, (ed. Th.M. Rassias), Band 57, Teste zur Mathematik, Teubner, Leipzig, 140 -153. [13] Pl.Kannappan, 2000, Functional Equations and Inequalities with Appli- cations, Springer Monogaphs in Mathematics, 2000. [14] M. Kuczma, B. Choczewski, R. Ger, 1990, Interative hàm al Equations, Cambridge University Press, Cambridge/New York/Port Chester/Mel- bourne/Sydney. [15] P.K. Sahoo, T. Riedel, 1998, Mean Value Theorems and Func- tional Equations, World Scientific, Singapore/New Jersey/Lon- don/HongKong. -385pp, v64. [16] B.J.Venkatachala, 2002, Functional Equations - A problem Solving Ap- proach, PRISM. 46