SlideShare una empresa de Scribd logo
1 de 26
Descargar para leer sin conexión
Reconstruction (of micro-objects) based on focus-sets using blind deconvolution



   Reconstruction (of micro-objects) based on
      focus-sets using blind deconvolution

                             Jan Wedekind

                        November 19th, 2001
               Jan.Wedekind@stud.uni-karlsruhe.de
              http://www.uni-karlsruhe.de/~unoh




 University of Karlsruhe (TH)         -1-         Sheffield Hallam University
Reconstruction (of micro-objects) based on focus-sets using blind deconvolution



                         MINIMAN-project
                     Esprit Project No. 33915
            Miniaturised Robot for Micro Manipulation
              http://www.miniman-project.com/




                                Miniman III




 University of Karlsruhe (TH)         -2-         Sheffield Hallam University
Reconstruction (of micro-objects) based on focus-sets using blind deconvolution



                          people: SHU staff


                                            Sheffield Hallam University
                                  microsystems & machine vision lab
                                             http://www.shu.ac.uk/mmvl/




Prof. J. Travis                 B. Amavasai                 F. Caparrelli
                                 no picture
                                 A. Selvan


 University of Karlsruhe (TH)         -3-         Sheffield Hallam University
Reconstruction (of micro-objects) based on focus-sets using blind deconvolution



                           people: UKA staff


Universit¨t Karlsruhe (TH)
         a
Institute f¨ r Prozeßrechentechnik,
           u
Automation und Robotik
http://wwwipr.ira.uka.de/microrobots/




                                 J. Wedekind




  University of Karlsruhe (TH)         -4-         Sheffield Hallam University
Reconstruction (of micro-objects) based on focus-sets using blind deconvolution




  overview: environment
• Leica DM RXA microscope
   – 2 channel illumination
   – motorized z-table
     (piezo-driven 0.1 µm)
   – filter-module
• motorized xy-table
• Dual Pentium III with 1GHz
  processors
   – Linux OS
   – C++ and KDE/QT
• CCD camera 768 × 576                   Leica DM RXA microscope
                                 µm
  ⇒ resolution up to 0.74       pixel




 University of Karlsruhe (TH)           -5-       Sheffield Hallam University
Reconstruction (of micro-objects) based on focus-sets using blind deconvolution



                          overview: objective




• reconstruct from focus-set:
   – surface
   – luminosity and coloring
• identify model-parameters and quality of assembly



  University of Karlsruhe (TH)         -6-         Sheffield Hallam University
Reconstruction (of micro-objects) based on focus-sets using blind deconvolution



                basics: discrete fourier transform

• 1D DFT
                          N −1
                                              2πxki
                                          −
   definition      Fk :=            fx e        N                   where i2 = −1
                           x=0

                               N −1
                                                   2πxki
                           1                  +
            ⇔      fx =               Fk e          N
                          N
                                k=0

• 2D DFT
                               N −1
                                                   2πxki           2πyli
                                               −               −
   analogous      Fkl :=              fxy e         N      e        N              , i2 = −1
                           x,y=0

                                   N −1
                                                        2πxki              2πyli
                               1                    +                  +
            ⇔      fxy =                   Fkl e         N         e        N
                           N2
                                   k,l=0




 University of Karlsruhe (TH)                 -7-            Sheffield Hallam University
Reconstruction (of micro-objects) based on focus-sets using blind deconvolution



             basics: 1D discrete fourier transform
                                  image domain


                             *                              =
                         x                              x                       x




                                 frequency domain

                             ⊗                              =
                         ω                          x                           ω



                                   ∞            ∞
         ∀x ∈ R : f (x) =              f (x)                δ(x − T n) dx
                                 −∞            n=−∞
                                                            ∞
                                   2π                                     2π
   ⇔     ∀ω ∈ C : F (ω) = (F ⊗ λω.                              δ(ω − n      ) )(ω)
                                   T                n=−∞
                                                                          T




 University of Karlsruhe (TH)           -8-                 Sheffield Hallam University
Reconstruction (of micro-objects) based on focus-sets using blind deconvolution



             basics: 1D discrete fourier transform
                                            image domain


                             *                                                        =
                         x                                                        x                       x




                                       frequency domain
                                  1
                                                                        sinc(x)




                                 0.8




                                                                                      =
                                 0.6




                         ω
                             ⊗   0.4
                                                                                                          ω

                                 0.2




                                  0
                                       -8    -6   -4   -2   0   2   4   6         8
                                                            w




                                            t
               ∀x ∈ R : f (x) = f (x) rect( )
                                           2T
                                              sin(ωT )
         ⇔     ∀ω ∈ C : F (ω) = (F ⊗ λω. 2T            )(ω)
                                                 ωT




 University of Karlsruhe (TH)                          -9-                            Sheffield Hallam University
Reconstruction (of micro-objects) based on focus-sets using blind deconvolution



           sparse matrices and vectors: images
                                                  
                        x00    ···     x0(N −1)
                         .                  .
                                                  
                                ..
conservative: x =       .                  .       ∈ RN ×N
                                                  
                         .         .        .
                                                  
                      x(N −1)0 · · · x(N −1)(N −1)
                                                
                                         x00
                                              
                          x0
                                    
                                        x01     
                                                 
                                       .
                                          .
                                                 
                       x1  
                                              
                                          .      
 vector repr.: x =            =                 ∈ RN N
                       .  
                      
                       .              x10
                                                 
                       .  
                                                 
                                          .
                                                 
                        xN −1
                                    
                                         .
                                          .
                                                 
                                                 
                                                
                                                x(N −1)(N −1)




University of Karlsruhe (TH)         - 10 -        Sheffield Hallam University
Reconstruction (of micro-objects) based on focus-sets using blind deconvolution



         sparse matrices and vectors: convolution (i)
          matrix repr. of convolution          with a 1D-LSI-filters
                                                       
                            h0     0            ··· 0
                                                    . 
                                                        
                                              ..    .
                                                                  
             g0          h1      h0               .  .      f
                     .                                  0 
                                  ..            ..
         
          g1   .
                                                         
                                     .             . 0   f1 
                                                                
                             .
                   =                                  ∗ . 
                                                         
              .
         
             .
              .
                    
                    hK−1                           h0   . 
                                                                  
         
                                                       . 
                                 ..                    
           gK+N −1      
                           0        .               h1 
                                                           fN −1
                         .                           .
                             .    ..                  .
          ∈R(K+N −1)         .       .                .      ∈RN


                                   ∈R(K+N −1)×N
• vectors of different size ⇒ not feasible
• matrix is clumsy and baffles mathematical approaches


 University of Karlsruhe (TH)         - 11 -        Sheffield Hallam University
Reconstruction (of micro-objects) based on focus-sets using blind deconvolution



       sparse matrices and vectors: circulant matrices
                                                 
                  a(0)   a(N − 1) · · ·     a(1)
              
                            ..       ..       .
                                              .
                                                  
                               .        .
                                                 
               a(1)                          .   
          A= 
                    .
                                                  
                    .       ..                    
              
                   .          .          a(N − 1)
                                                  
               a(N − 1)     ···     a(1)    a(0)


                                                     N −1
                                                                         2πkji
without                                                              −
                  • eigenvalues of A: λ(k) =                a(j) e        N
proof:                                               j=0

                  • A = FQA F −1 with
                      – QA = diag(λ1 , λ2 , . . . , λN ) and
                      – fourier-kernel F −1


   University of Karlsruhe (TH)        - 12 -        Sheffield Hallam University
Reconstruction (of micro-objects) based on focus-sets using blind deconvolution



           sparse matrices and vectors: fourier kernel

                                                2πukl i
definition of fourier-kernel: F −1     := e N
                                            
                        0 0 0          ···
                                            
                      0 1 2           · · ·
                                            
          with U :=                          and i2 = −1
                      0 2 4
                                      · · ·
                      . . .
                                       ..
                                             
                        . . .
                        . . .              .


note:        • X = DFT{x} = X = F −1 x
             • x = DFT−1 {X} = x = FX where F =                  1
                                                                 N (F −1 )∗
             • F =F




   University of Karlsruhe (TH)        - 13 -         Sheffield Hallam University
Reconstruction (of micro-objects) based on focus-sets using blind deconvolution



       sparse matrices and vectors: convolution (ii)

                     approximated 1D convolution
                                                                 
           g0            h0      hN −1     ···      h1       f
                                                           0 
                                                     .  
                                  ..       ..
                
      
          g1   h1
                 
                                     .        .      .   f1 
                                                     .            
            . ≈ .
                                                         ∗
                                                           . 
                                                               
           .   .               ..                          .
      
           .   .                  .             hN −1   . 
                                                                
          gN −1    hN −1           ···        h1    h0      fN −1

       =:g∈RN                    =:H∈RN ×N                    =:f ∈RN



                                  g = Hf




University of Karlsruhe (TH)         - 14 -         Sheffield Hallam University
Reconstruction (of micro-objects) based on focus-sets using blind deconvolution



         sparse matrices and vectors: convolution (iii)
                                 N −1
                          gk =          H(k−l) mod N fl
                                  l=0
                                                                   
           g0       H0            HN −1      ···     H1       f
                                                            0 
                                                      .  
                                   ..        ..
                
      
          g1   H1
                 
                                      .         .     .   f1 
                                                      .            
            . ≈ .
                                                          ∗
                                                            . 
                                                                
           .   .                ..                          .
      
           .   .                   .             HN −1   . 
                                                                 
          gN −1    HN −1            ···      H1      H0      fN −1

       =:g∈RN 2                   =:H∈RN 2 ×N 2                 =:f ∈RN 2



⇒ g = H f is 2D convolution!
⇒ H is (block) circulant



  University of Karlsruhe (TH)          - 15 -       Sheffield Hallam University
Reconstruction (of micro-objects) based on focus-sets using blind deconvolution



                    EM-algorithm: description
                           • “incomplete” data-set y
                           • many-to-one transform
  given:
                             y = g(z1 , z2 , . . . , zM ) = g(z)
                           • pdf pz (z; θ) and cond. pdf p(z|y; θ)
                          1. expectation: Determine expected
                             log-likelihood of complete data
                               U (θ, θp ) :=Ez {ln pz (z; θ)|y; θp }

   EM-algorithm:                          =        ln pz (z; θ) p(z|y; θp )dz

                          2. maximisation: Maximize
                             θp+1 = argmax U (θ, θp )
                                               θ
                          3. goto step 1 until θ converges



University of Karlsruhe (TH)          - 16 -           Sheffield Hallam University
Reconstruction (of micro-objects) based on focus-sets using blind deconvolution



          EM-algorithm: overview of representations

meaning                 conversative                     sparse matrices
                      real          fourier            real              fourier
                        N ×N            N ×N         N 2 ,N 2 ×N 2       N 2 ,N 2 ×N 2
sets                R               C            R                   C
image                   x               X                x                  X
PSF                     h               ∆               D                  QD
cov. image              Cx              Sx              Λx                  Qx
                       2               2
cov. noise            σv I           (σv )              Λv                  Qv
convolution          x⊗h            X        ∆          Dx                QD X
DFT                     -          DFT{x}                -                F −1 x
inv. DFT         DFT−1 {X}               -             FX                    -



  University of Karlsruhe (TH)          - 17 -       Sheffield Hallam University
Reconstruction (of micro-objects) based on focus-sets using blind deconvolution



                      EM-Algorithm: derivation (i)

• incomplete/complete data-set: y ∈ RN / (x , y ) ∈ R2N
                                 
                                  x
• many-to-one transform: y =: g( ) ∀y
                                  y

• pdf of z is zero-mean normal distr.: pz (z, θ = {D, Λx , Λv }) =

                                                                −1              
                                            
                                          1x       Λ             Λx D
                                        −         x                          x
                                                                                    
                                          2 y
                                           
                                                    DΛx       DΛx D + Λv
                                                                                    
                                                                                    y
                  1
                                      e                         =:C


             Λx          Λx D
(2π)2N 2
           DΛx        DΛx D + Λv



 University of Karlsruhe (TH)         - 18 -        Sheffield Hallam University
Reconstruction (of micro-objects) based on focus-sets using blind deconvolution



                   EM-Algorithm: derivation (ii)

• conditional pdf p(z|y, θ) = p(x|y, θ) is (conditional) normal distr.:
     – with mean Mx|y = Λx D (DΛx D + Λv )−1 y and
     – covariance Sx|y = Λx − Λx D (DΛx D + Λv )−1 DΛx


                            derivation of                
                       2
                                 1        1              x
                                                     −1  
      ln pz (z; θ) = −N ln(2π) − ln |C| − (x , y ) C       :
                                 2        2              y

Λx         Λx D
                        = det(Λx (DΛx D + Λv ) − DΛx Λx D )
DΛx    DΛx D + Λv
                        = det(Λx Λv ) = |Λx ||Λv |, because Λx and Λv
                        are symmetric and positive definite.


 University of Karlsruhe (TH)         - 19 -        Sheffield Hallam University
Reconstruction (of micro-objects) based on focus-sets using blind deconvolution



                   EM-Algorithm: derivation (iii)

                              2 N2
 • observe that |Λv | =     (σv ) .

 • |Λx | = |FQx F −1 | = |Qx | =           Sx (k, l)
                                      kl
                     
            A     A12
using A =   11       =
            A21 A22
                                                               
      (A11 − A12 A−1 A21 )−1
                   22            A−1 A12 (A21 A−1 A12 − A22 )−1
                                  11           11
                                                               
  (A21 A−1 A12 − A22 )−1 A21 A−1
        11                    11     (A22 − A21 A−1 A12 )−1
                                                  11
                                 −1
                 Λ         Λx D
         −1
we get C =     x                  =
                DΛx DΛx D + Λv




   University of Karlsruhe (TH)        - 20 -          Sheffield Hallam University
Reconstruction (of micro-objects) based on focus-sets using blind deconvolution



                      EM-Algorithm: derivation (iv)
                                                                                  
           (I − D (DΛx D + Λv )−1 DΛx )−1 Λ−1
                                           x                          −D Λ−1
                                                                          v
C −1 =                                                                            .
                                  −Λ−1 D
                                    v                                     Λ−1
                                                                           v


With u Av= u∗ FQA F −1 v = (F ∗ u)∗ QA F −1 v
             1 −1 ∗         −1
                                     1 ∗
         = ( 2 F u) QA F v = 2 U QA V we obtain
            N                       N
                                   N2                 1                    1
                  2
ln pz (z; θ) =−N ln(2π) −                   2
                                        ln(σv )   −            ln Skl −        2
                                                                                 Y ∗ Q−1 Y
                                                                                      v
                                    2                 2                   2N
                                                          kl
                 1                                    1
             +       2
                       Re{Y   ∗
                                  QD Q−1 X}
                                      v       −                Qx (QD Q∗ Q−1 + Q−1 )
                                                                       D v      x
                 N                                    2
                                                          kl
                  1
             −        2
                        X ∗ (QD Q∗ Q−1 + Q−1 )X
                                 D v      x
                 2N


   University of Karlsruhe (TH)             - 21 -              Sheffield Hallam University
Reconstruction (of micro-objects) based on focus-sets using blind deconvolution



                      EM-Algorithm: derivation (v)
Replacing the remaining diagonal matrices with DFT-arrays yields:
                                N2                  1                      1
                  2
ln pz (z; θ) =−N ln(2π) −                 2
                                      ln(σv )   −            ln Skl −          2
                                                                                 Y∗ Y(σv )−1
                                                                                       2
                                  2                 2                   2N
                                                        kl
                 1         ∗
                                                    1
             +    2
                    Re{Y       ∆(σv )−1 X}
                                  2
                                                − Sx (∆∆∗ (σv )−1 + Sx )
                                                            2        −1
                 N                               2
                  1
             −        2
                        X∗ (∆∆∗ (σv )−1 + Sx )X
                                  2        −1
                 2N
                                The last steps are:
 • substitute X and X∗            ...     X with their expected values.
   ⇒ U (θ, θk )
                                                             δU (θ, θk )
 • determine argmax by setting derivative                                  to zero.
                      θ                                          δθ


   University of Karlsruhe (TH)           - 22 -             Sheffield Hallam University
Reconstruction (of micro-objects) based on focus-sets using blind deconvolution



                     EM-Algorithm: implementation

The resulting iteration step:

      (p+1)                (p)                1
 •   Sx     (k, l)   =    Sx|y (k, l)    +        2
                                                    |Mx|y (k, l)|2
                                             N
                                                  ∗
                            1            Y (k, l)Mx|y (k, l)
 • ∆(p+1) (k, l) =
                          N2     (p)                   1
                                Sx|y (k, l)   +           2
                                                            |Mx|y (k, l)|2
                                                      N

      2
               1                (p+1)            2     (p)              1
 •   σv    =         kl    |∆           (k, l)|       Sx|y (k, l)   +         |Mx|y (k, l)|2 +
               N2                                                       N   2

       1
           |Y (k, l)|2 − 2Re Y ∗ (k, l)∆(p+1) (k, l)Mx|y (k, l)
      N2




     University of Karlsruhe (TH)                    - 23 -         Sheffield Hallam University
Reconstruction (of micro-objects) based on focus-sets using blind deconvolution



                       results: deblur picture




                 conditional mean after 10. iteration


University of Karlsruhe (TH)         - 24 -        Sheffield Hallam University
Reconstruction (of micro-objects) based on focus-sets using blind deconvolution



                      results: statistic and psf




                                  log-DFT


University of Karlsruhe (TH)         - 25 -        Sheffield Hallam University
Reconstruction (of micro-objects) based on focus-sets using blind deconvolution



                                result: comparison




                                  Jan Wedekind
address: . . . . . . . . . . . . . . . . . . . . . . . . . . Scheffelstr. 65, D-76135 Karlsruhe
email: . . . . . . . . . . . . . . . . . . . . . . . . . . jan.wedekind@stud.uni-karlsruhe.de
www: . . . . . . . . . . . . . . . . . . . . . . . http://www.uni-karlsruhe.de/~unoh
pgp: . . . . . . . . . . . . . . . . . EE FA AF 15 D8 ED 11 4A 5A 76 35 5F 2D 20 C4 E8


    University of Karlsruhe (TH)             - 26 -        Sheffield Hallam University

Más contenido relacionado

La actualidad más candente

03 conditional random field
03 conditional random field03 conditional random field
03 conditional random fieldzukun
 
Lesson 23: Antiderivatives
Lesson 23: AntiderivativesLesson 23: Antiderivatives
Lesson 23: AntiderivativesMatthew Leingang
 
237654933 mathematics-t-form-6
237654933 mathematics-t-form-6237654933 mathematics-t-form-6
237654933 mathematics-t-form-6homeworkping3
 
Lesson 8: Basic Differentiation Rules (Section 21 slides)
Lesson 8: Basic Differentiation Rules (Section 21 slides)Lesson 8: Basic Differentiation Rules (Section 21 slides)
Lesson 8: Basic Differentiation Rules (Section 21 slides)Matthew Leingang
 
Lesson 8: Basic Differentiation Rules (Section 41 slides)
Lesson 8: Basic Differentiation Rules (Section 41 slides)Lesson 8: Basic Differentiation Rules (Section 41 slides)
Lesson 8: Basic Differentiation Rules (Section 41 slides)Matthew Leingang
 
pres_IGARSS_2011_LFF_poltom.pdf
pres_IGARSS_2011_LFF_poltom.pdfpres_IGARSS_2011_LFF_poltom.pdf
pres_IGARSS_2011_LFF_poltom.pdfgrssieee
 
Elementary Landscape Decomposition of Combinatorial Optimization Problems
Elementary Landscape Decomposition of Combinatorial Optimization ProblemsElementary Landscape Decomposition of Combinatorial Optimization Problems
Elementary Landscape Decomposition of Combinatorial Optimization Problemsjfrchicanog
 
Quasi Lie systems and applications
Quasi Lie systems and applicationsQuasi Lie systems and applications
Quasi Lie systems and applicationsdelucasaraujo
 
Estimation of the score vector and observed information matrix in intractable...
Estimation of the score vector and observed information matrix in intractable...Estimation of the score vector and observed information matrix in intractable...
Estimation of the score vector and observed information matrix in intractable...Pierre Jacob
 
A discussion on sampling graphs to approximate network classification functions
A discussion on sampling graphs to approximate network classification functionsA discussion on sampling graphs to approximate network classification functions
A discussion on sampling graphs to approximate network classification functionsLARCA UPC
 
Quantum modes - Ion Cotaescu
Quantum modes - Ion CotaescuQuantum modes - Ion Cotaescu
Quantum modes - Ion CotaescuSEENET-MTP
 
Chapter 1 (functions).
Chapter 1 (functions).Chapter 1 (functions).
Chapter 1 (functions).Eko Wijayanto
 
Bayesian Methods for Machine Learning
Bayesian Methods for Machine LearningBayesian Methods for Machine Learning
Bayesian Methods for Machine Learningbutest
 

La actualidad más candente (15)

03 conditional random field
03 conditional random field03 conditional random field
03 conditional random field
 
Lesson 23: Antiderivatives
Lesson 23: AntiderivativesLesson 23: Antiderivatives
Lesson 23: Antiderivatives
 
237654933 mathematics-t-form-6
237654933 mathematics-t-form-6237654933 mathematics-t-form-6
237654933 mathematics-t-form-6
 
Lesson 8: Basic Differentiation Rules (Section 21 slides)
Lesson 8: Basic Differentiation Rules (Section 21 slides)Lesson 8: Basic Differentiation Rules (Section 21 slides)
Lesson 8: Basic Differentiation Rules (Section 21 slides)
 
Lesson 8: Basic Differentiation Rules (Section 41 slides)
Lesson 8: Basic Differentiation Rules (Section 41 slides)Lesson 8: Basic Differentiation Rules (Section 41 slides)
Lesson 8: Basic Differentiation Rules (Section 41 slides)
 
pres_IGARSS_2011_LFF_poltom.pdf
pres_IGARSS_2011_LFF_poltom.pdfpres_IGARSS_2011_LFF_poltom.pdf
pres_IGARSS_2011_LFF_poltom.pdf
 
ma112011id535
ma112011id535ma112011id535
ma112011id535
 
Elementary Landscape Decomposition of Combinatorial Optimization Problems
Elementary Landscape Decomposition of Combinatorial Optimization ProblemsElementary Landscape Decomposition of Combinatorial Optimization Problems
Elementary Landscape Decomposition of Combinatorial Optimization Problems
 
Quasi Lie systems and applications
Quasi Lie systems and applicationsQuasi Lie systems and applications
Quasi Lie systems and applications
 
Estimation of the score vector and observed information matrix in intractable...
Estimation of the score vector and observed information matrix in intractable...Estimation of the score vector and observed information matrix in intractable...
Estimation of the score vector and observed information matrix in intractable...
 
A discussion on sampling graphs to approximate network classification functions
A discussion on sampling graphs to approximate network classification functionsA discussion on sampling graphs to approximate network classification functions
A discussion on sampling graphs to approximate network classification functions
 
Quantum modes - Ion Cotaescu
Quantum modes - Ion CotaescuQuantum modes - Ion Cotaescu
Quantum modes - Ion Cotaescu
 
Em
EmEm
Em
 
Chapter 1 (functions).
Chapter 1 (functions).Chapter 1 (functions).
Chapter 1 (functions).
 
Bayesian Methods for Machine Learning
Bayesian Methods for Machine LearningBayesian Methods for Machine Learning
Bayesian Methods for Machine Learning
 

Similar a Reconstruction (of micro-objects) based on focus-sets using blind deconvolution (2001)

NIPS2010: optimization algorithms in machine learning
NIPS2010: optimization algorithms in machine learningNIPS2010: optimization algorithms in machine learning
NIPS2010: optimization algorithms in machine learningzukun
 
IVR - Chapter 1 - Introduction
IVR - Chapter 1 - IntroductionIVR - Chapter 1 - Introduction
IVR - Chapter 1 - IntroductionCharles Deledalle
 
Basics of probability in statistical simulation and stochastic programming
Basics of probability in statistical simulation and stochastic programmingBasics of probability in statistical simulation and stochastic programming
Basics of probability in statistical simulation and stochastic programmingSSA KPI
 
Deformation 1
Deformation 1Deformation 1
Deformation 1anashalim
 
Introduction to nanophotonics
Introduction to nanophotonicsIntroduction to nanophotonics
Introduction to nanophotonicsajayrampelli
 
Intro probability 4
Intro probability 4Intro probability 4
Intro probability 4Phong Vo
 
Least squares support Vector Machine Classifier
Least squares support Vector Machine ClassifierLeast squares support Vector Machine Classifier
Least squares support Vector Machine ClassifierRaj Sikarwar
 
Matrix Models of 2D String Theory in Non-trivial Backgrounds
Matrix Models of 2D String Theory in Non-trivial BackgroundsMatrix Models of 2D String Theory in Non-trivial Backgrounds
Matrix Models of 2D String Theory in Non-trivial BackgroundsUtrecht University
 
Two dimensional Pool Boiling
Two dimensional Pool BoilingTwo dimensional Pool Boiling
Two dimensional Pool BoilingRobvanGils
 
FiniteElementNotes
FiniteElementNotesFiniteElementNotes
FiniteElementNotesMartin Jones
 
Nature-Inspired Metaheuristic Algorithms for Optimization and Computational I...
Nature-Inspired Metaheuristic Algorithms for Optimization and Computational I...Nature-Inspired Metaheuristic Algorithms for Optimization and Computational I...
Nature-Inspired Metaheuristic Algorithms for Optimization and Computational I...Xin-She Yang
 
Hierarchical matrices for approximating large covariance matries and computin...
Hierarchical matrices for approximating large covariance matries and computin...Hierarchical matrices for approximating large covariance matries and computin...
Hierarchical matrices for approximating large covariance matries and computin...Alexander Litvinenko
 
Optimal multi-configuration approximation of an N-fermion wave function
 Optimal multi-configuration approximation of an N-fermion wave function Optimal multi-configuration approximation of an N-fermion wave function
Optimal multi-configuration approximation of an N-fermion wave functionjiang-min zhang
 
Solar Cells Lecture 3: Modeling and Simulation of Photovoltaic Devices and Sy...
Solar Cells Lecture 3: Modeling and Simulation of Photovoltaic Devices and Sy...Solar Cells Lecture 3: Modeling and Simulation of Photovoltaic Devices and Sy...
Solar Cells Lecture 3: Modeling and Simulation of Photovoltaic Devices and Sy...Tuong Do
 

Similar a Reconstruction (of micro-objects) based on focus-sets using blind deconvolution (2001) (20)

Pres metabief2020jmm
Pres metabief2020jmmPres metabief2020jmm
Pres metabief2020jmm
 
NIPS2010: optimization algorithms in machine learning
NIPS2010: optimization algorithms in machine learningNIPS2010: optimization algorithms in machine learning
NIPS2010: optimization algorithms in machine learning
 
IVR - Chapter 1 - Introduction
IVR - Chapter 1 - IntroductionIVR - Chapter 1 - Introduction
IVR - Chapter 1 - Introduction
 
Nanotechnology
NanotechnologyNanotechnology
Nanotechnology
 
Basics of probability in statistical simulation and stochastic programming
Basics of probability in statistical simulation and stochastic programmingBasics of probability in statistical simulation and stochastic programming
Basics of probability in statistical simulation and stochastic programming
 
Deformation 1
Deformation 1Deformation 1
Deformation 1
 
Cd Simon
Cd SimonCd Simon
Cd Simon
 
Introduction to nanophotonics
Introduction to nanophotonicsIntroduction to nanophotonics
Introduction to nanophotonics
 
Intro probability 4
Intro probability 4Intro probability 4
Intro probability 4
 
Least squares support Vector Machine Classifier
Least squares support Vector Machine ClassifierLeast squares support Vector Machine Classifier
Least squares support Vector Machine Classifier
 
Matrix Models of 2D String Theory in Non-trivial Backgrounds
Matrix Models of 2D String Theory in Non-trivial BackgroundsMatrix Models of 2D String Theory in Non-trivial Backgrounds
Matrix Models of 2D String Theory in Non-trivial Backgrounds
 
Two dimensional Pool Boiling
Two dimensional Pool BoilingTwo dimensional Pool Boiling
Two dimensional Pool Boiling
 
FiniteElementNotes
FiniteElementNotesFiniteElementNotes
FiniteElementNotes
 
Nature-Inspired Metaheuristic Algorithms for Optimization and Computational I...
Nature-Inspired Metaheuristic Algorithms for Optimization and Computational I...Nature-Inspired Metaheuristic Algorithms for Optimization and Computational I...
Nature-Inspired Metaheuristic Algorithms for Optimization and Computational I...
 
Jere Koskela slides
Jere Koskela slidesJere Koskela slides
Jere Koskela slides
 
Hierarchical matrices for approximating large covariance matries and computin...
Hierarchical matrices for approximating large covariance matries and computin...Hierarchical matrices for approximating large covariance matries and computin...
Hierarchical matrices for approximating large covariance matries and computin...
 
NC time seminar
NC time seminarNC time seminar
NC time seminar
 
Optimal multi-configuration approximation of an N-fermion wave function
 Optimal multi-configuration approximation of an N-fermion wave function Optimal multi-configuration approximation of an N-fermion wave function
Optimal multi-configuration approximation of an N-fermion wave function
 
Chapter 2 (maths 3)
Chapter 2 (maths 3)Chapter 2 (maths 3)
Chapter 2 (maths 3)
 
Solar Cells Lecture 3: Modeling and Simulation of Photovoltaic Devices and Sy...
Solar Cells Lecture 3: Modeling and Simulation of Photovoltaic Devices and Sy...Solar Cells Lecture 3: Modeling and Simulation of Photovoltaic Devices and Sy...
Solar Cells Lecture 3: Modeling and Simulation of Photovoltaic Devices and Sy...
 

Más de Jan Wedekind

The SOLID Principles for Software Design
The SOLID Principles for Software DesignThe SOLID Principles for Software Design
The SOLID Principles for Software DesignJan Wedekind
 
Fundamentals of Computing
Fundamentals of ComputingFundamentals of Computing
Fundamentals of ComputingJan Wedekind
 
Using Generic Image Processing Operations to Detect a Calibration Grid
Using Generic Image Processing Operations to Detect a Calibration GridUsing Generic Image Processing Operations to Detect a Calibration Grid
Using Generic Image Processing Operations to Detect a Calibration GridJan Wedekind
 
Efficient implementations of machine vision algorithms using a dynamically ty...
Efficient implementations of machine vision algorithms using a dynamically ty...Efficient implementations of machine vision algorithms using a dynamically ty...
Efficient implementations of machine vision algorithms using a dynamically ty...Jan Wedekind
 
The MiCRoN Project
The MiCRoN ProjectThe MiCRoN Project
The MiCRoN ProjectJan Wedekind
 
Computer vision for microscopes
Computer vision for microscopesComputer vision for microscopes
Computer vision for microscopesJan Wedekind
 
Focus set based reconstruction of micro-objects
Focus set based reconstruction of micro-objectsFocus set based reconstruction of micro-objects
Focus set based reconstruction of micro-objectsJan Wedekind
 
Machine vision and device integration with the Ruby programming language (2008)
Machine vision and device integration with the Ruby programming language (2008)Machine vision and device integration with the Ruby programming language (2008)
Machine vision and device integration with the Ruby programming language (2008)Jan Wedekind
 
Fokus-serien basierte Rekonstruktion von Mikroobjekten (2002)
Fokus-serien basierte Rekonstruktion von Mikroobjekten (2002)Fokus-serien basierte Rekonstruktion von Mikroobjekten (2002)
Fokus-serien basierte Rekonstruktion von Mikroobjekten (2002)Jan Wedekind
 
Play Squash with Ruby, OpenGL, and a Wiimote - ShRUG Feb 2011
Play Squash with Ruby, OpenGL, and a Wiimote - ShRUG Feb 2011Play Squash with Ruby, OpenGL, and a Wiimote - ShRUG Feb 2011
Play Squash with Ruby, OpenGL, and a Wiimote - ShRUG Feb 2011Jan Wedekind
 
Digital Imaging with Free Software - Talk at Sheffield Astronomical Society J...
Digital Imaging with Free Software - Talk at Sheffield Astronomical Society J...Digital Imaging with Free Software - Talk at Sheffield Astronomical Society J...
Digital Imaging with Free Software - Talk at Sheffield Astronomical Society J...Jan Wedekind
 
Machine Vision made easy with Ruby - ShRUG June 2010
Machine Vision made easy with Ruby - ShRUG June 2010Machine Vision made easy with Ruby - ShRUG June 2010
Machine Vision made easy with Ruby - ShRUG June 2010Jan Wedekind
 
Computer Vision using Ruby and libJIT - RubyConf 2009
Computer Vision using Ruby and libJIT - RubyConf 2009Computer Vision using Ruby and libJIT - RubyConf 2009
Computer Vision using Ruby and libJIT - RubyConf 2009Jan Wedekind
 
Real-time Computer Vision With Ruby - OSCON 2008
Real-time Computer Vision With Ruby - OSCON 2008Real-time Computer Vision With Ruby - OSCON 2008
Real-time Computer Vision With Ruby - OSCON 2008Jan Wedekind
 
Object Recognition and Real-Time Tracking in Microscope Imaging - IMVIP 2006
Object Recognition and Real-Time Tracking in Microscope Imaging - IMVIP 2006Object Recognition and Real-Time Tracking in Microscope Imaging - IMVIP 2006
Object Recognition and Real-Time Tracking in Microscope Imaging - IMVIP 2006Jan Wedekind
 
Steerable Filters generated with the Hypercomplex Dual-Tree Wavelet Transform...
Steerable Filters generated with the Hypercomplex Dual-Tree Wavelet Transform...Steerable Filters generated with the Hypercomplex Dual-Tree Wavelet Transform...
Steerable Filters generated with the Hypercomplex Dual-Tree Wavelet Transform...Jan Wedekind
 
Ruby & Machine Vision - Talk at Sheffield Hallam University Feb 2009
Ruby & Machine Vision - Talk at Sheffield Hallam University Feb 2009Ruby & Machine Vision - Talk at Sheffield Hallam University Feb 2009
Ruby & Machine Vision - Talk at Sheffield Hallam University Feb 2009Jan Wedekind
 

Más de Jan Wedekind (17)

The SOLID Principles for Software Design
The SOLID Principles for Software DesignThe SOLID Principles for Software Design
The SOLID Principles for Software Design
 
Fundamentals of Computing
Fundamentals of ComputingFundamentals of Computing
Fundamentals of Computing
 
Using Generic Image Processing Operations to Detect a Calibration Grid
Using Generic Image Processing Operations to Detect a Calibration GridUsing Generic Image Processing Operations to Detect a Calibration Grid
Using Generic Image Processing Operations to Detect a Calibration Grid
 
Efficient implementations of machine vision algorithms using a dynamically ty...
Efficient implementations of machine vision algorithms using a dynamically ty...Efficient implementations of machine vision algorithms using a dynamically ty...
Efficient implementations of machine vision algorithms using a dynamically ty...
 
The MiCRoN Project
The MiCRoN ProjectThe MiCRoN Project
The MiCRoN Project
 
Computer vision for microscopes
Computer vision for microscopesComputer vision for microscopes
Computer vision for microscopes
 
Focus set based reconstruction of micro-objects
Focus set based reconstruction of micro-objectsFocus set based reconstruction of micro-objects
Focus set based reconstruction of micro-objects
 
Machine vision and device integration with the Ruby programming language (2008)
Machine vision and device integration with the Ruby programming language (2008)Machine vision and device integration with the Ruby programming language (2008)
Machine vision and device integration with the Ruby programming language (2008)
 
Fokus-serien basierte Rekonstruktion von Mikroobjekten (2002)
Fokus-serien basierte Rekonstruktion von Mikroobjekten (2002)Fokus-serien basierte Rekonstruktion von Mikroobjekten (2002)
Fokus-serien basierte Rekonstruktion von Mikroobjekten (2002)
 
Play Squash with Ruby, OpenGL, and a Wiimote - ShRUG Feb 2011
Play Squash with Ruby, OpenGL, and a Wiimote - ShRUG Feb 2011Play Squash with Ruby, OpenGL, and a Wiimote - ShRUG Feb 2011
Play Squash with Ruby, OpenGL, and a Wiimote - ShRUG Feb 2011
 
Digital Imaging with Free Software - Talk at Sheffield Astronomical Society J...
Digital Imaging with Free Software - Talk at Sheffield Astronomical Society J...Digital Imaging with Free Software - Talk at Sheffield Astronomical Society J...
Digital Imaging with Free Software - Talk at Sheffield Astronomical Society J...
 
Machine Vision made easy with Ruby - ShRUG June 2010
Machine Vision made easy with Ruby - ShRUG June 2010Machine Vision made easy with Ruby - ShRUG June 2010
Machine Vision made easy with Ruby - ShRUG June 2010
 
Computer Vision using Ruby and libJIT - RubyConf 2009
Computer Vision using Ruby and libJIT - RubyConf 2009Computer Vision using Ruby and libJIT - RubyConf 2009
Computer Vision using Ruby and libJIT - RubyConf 2009
 
Real-time Computer Vision With Ruby - OSCON 2008
Real-time Computer Vision With Ruby - OSCON 2008Real-time Computer Vision With Ruby - OSCON 2008
Real-time Computer Vision With Ruby - OSCON 2008
 
Object Recognition and Real-Time Tracking in Microscope Imaging - IMVIP 2006
Object Recognition and Real-Time Tracking in Microscope Imaging - IMVIP 2006Object Recognition and Real-Time Tracking in Microscope Imaging - IMVIP 2006
Object Recognition and Real-Time Tracking in Microscope Imaging - IMVIP 2006
 
Steerable Filters generated with the Hypercomplex Dual-Tree Wavelet Transform...
Steerable Filters generated with the Hypercomplex Dual-Tree Wavelet Transform...Steerable Filters generated with the Hypercomplex Dual-Tree Wavelet Transform...
Steerable Filters generated with the Hypercomplex Dual-Tree Wavelet Transform...
 
Ruby & Machine Vision - Talk at Sheffield Hallam University Feb 2009
Ruby & Machine Vision - Talk at Sheffield Hallam University Feb 2009Ruby & Machine Vision - Talk at Sheffield Hallam University Feb 2009
Ruby & Machine Vision - Talk at Sheffield Hallam University Feb 2009
 

Último

Platformless Horizons for Digital Adaptability
Platformless Horizons for Digital AdaptabilityPlatformless Horizons for Digital Adaptability
Platformless Horizons for Digital AdaptabilityWSO2
 
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...apidays
 
AWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of TerraformAWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of TerraformAndrey Devyatkin
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerThousandEyes
 
[BuildWithAI] Introduction to Gemini.pdf
[BuildWithAI] Introduction to Gemini.pdf[BuildWithAI] Introduction to Gemini.pdf
[BuildWithAI] Introduction to Gemini.pdfSandro Moreira
 
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, AdobeApidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobeapidays
 
Why Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire businessWhy Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire businesspanagenda
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FMESafe Software
 
CNIC Information System with Pakdata Cf In Pakistan
CNIC Information System with Pakdata Cf In PakistanCNIC Information System with Pakdata Cf In Pakistan
CNIC Information System with Pakdata Cf In Pakistandanishmna97
 
Vector Search -An Introduction in Oracle Database 23ai.pptx
Vector Search -An Introduction in Oracle Database 23ai.pptxVector Search -An Introduction in Oracle Database 23ai.pptx
Vector Search -An Introduction in Oracle Database 23ai.pptxRemote DBA Services
 
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemkeProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemkeProduct Anonymous
 
WSO2's API Vision: Unifying Control, Empowering Developers
WSO2's API Vision: Unifying Control, Empowering DevelopersWSO2's API Vision: Unifying Control, Empowering Developers
WSO2's API Vision: Unifying Control, Empowering DevelopersWSO2
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FMESafe Software
 
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost SavingRepurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost SavingEdi Saputra
 
ICT role in 21st century education and its challenges
ICT role in 21st century education and its challengesICT role in 21st century education and its challenges
ICT role in 21st century education and its challengesrafiqahmad00786416
 
Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...
Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...
Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...apidays
 
DEV meet-up UiPath Document Understanding May 7 2024 Amsterdam
DEV meet-up UiPath Document Understanding May 7 2024 AmsterdamDEV meet-up UiPath Document Understanding May 7 2024 Amsterdam
DEV meet-up UiPath Document Understanding May 7 2024 AmsterdamUiPathCommunity
 
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...DianaGray10
 
EMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWER
EMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWEREMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWER
EMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWERMadyBayot
 
Elevate Developer Efficiency & build GenAI Application with Amazon Q​
Elevate Developer Efficiency & build GenAI Application with Amazon Q​Elevate Developer Efficiency & build GenAI Application with Amazon Q​
Elevate Developer Efficiency & build GenAI Application with Amazon Q​Bhuvaneswari Subramani
 

Último (20)

Platformless Horizons for Digital Adaptability
Platformless Horizons for Digital AdaptabilityPlatformless Horizons for Digital Adaptability
Platformless Horizons for Digital Adaptability
 
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
 
AWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of TerraformAWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of Terraform
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 
[BuildWithAI] Introduction to Gemini.pdf
[BuildWithAI] Introduction to Gemini.pdf[BuildWithAI] Introduction to Gemini.pdf
[BuildWithAI] Introduction to Gemini.pdf
 
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, AdobeApidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
 
Why Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire businessWhy Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire business
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
 
CNIC Information System with Pakdata Cf In Pakistan
CNIC Information System with Pakdata Cf In PakistanCNIC Information System with Pakdata Cf In Pakistan
CNIC Information System with Pakdata Cf In Pakistan
 
Vector Search -An Introduction in Oracle Database 23ai.pptx
Vector Search -An Introduction in Oracle Database 23ai.pptxVector Search -An Introduction in Oracle Database 23ai.pptx
Vector Search -An Introduction in Oracle Database 23ai.pptx
 
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemkeProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
 
WSO2's API Vision: Unifying Control, Empowering Developers
WSO2's API Vision: Unifying Control, Empowering DevelopersWSO2's API Vision: Unifying Control, Empowering Developers
WSO2's API Vision: Unifying Control, Empowering Developers
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
 
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost SavingRepurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
 
ICT role in 21st century education and its challenges
ICT role in 21st century education and its challengesICT role in 21st century education and its challenges
ICT role in 21st century education and its challenges
 
Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...
Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...
Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...
 
DEV meet-up UiPath Document Understanding May 7 2024 Amsterdam
DEV meet-up UiPath Document Understanding May 7 2024 AmsterdamDEV meet-up UiPath Document Understanding May 7 2024 Amsterdam
DEV meet-up UiPath Document Understanding May 7 2024 Amsterdam
 
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
 
EMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWER
EMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWEREMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWER
EMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWER
 
Elevate Developer Efficiency & build GenAI Application with Amazon Q​
Elevate Developer Efficiency & build GenAI Application with Amazon Q​Elevate Developer Efficiency & build GenAI Application with Amazon Q​
Elevate Developer Efficiency & build GenAI Application with Amazon Q​
 

Reconstruction (of micro-objects) based on focus-sets using blind deconvolution (2001)

  • 1. Reconstruction (of micro-objects) based on focus-sets using blind deconvolution Reconstruction (of micro-objects) based on focus-sets using blind deconvolution Jan Wedekind November 19th, 2001 Jan.Wedekind@stud.uni-karlsruhe.de http://www.uni-karlsruhe.de/~unoh University of Karlsruhe (TH) -1- Sheffield Hallam University
  • 2. Reconstruction (of micro-objects) based on focus-sets using blind deconvolution MINIMAN-project Esprit Project No. 33915 Miniaturised Robot for Micro Manipulation http://www.miniman-project.com/ Miniman III University of Karlsruhe (TH) -2- Sheffield Hallam University
  • 3. Reconstruction (of micro-objects) based on focus-sets using blind deconvolution people: SHU staff Sheffield Hallam University microsystems & machine vision lab http://www.shu.ac.uk/mmvl/ Prof. J. Travis B. Amavasai F. Caparrelli no picture A. Selvan University of Karlsruhe (TH) -3- Sheffield Hallam University
  • 4. Reconstruction (of micro-objects) based on focus-sets using blind deconvolution people: UKA staff Universit¨t Karlsruhe (TH) a Institute f¨ r Prozeßrechentechnik, u Automation und Robotik http://wwwipr.ira.uka.de/microrobots/ J. Wedekind University of Karlsruhe (TH) -4- Sheffield Hallam University
  • 5. Reconstruction (of micro-objects) based on focus-sets using blind deconvolution overview: environment • Leica DM RXA microscope – 2 channel illumination – motorized z-table (piezo-driven 0.1 µm) – filter-module • motorized xy-table • Dual Pentium III with 1GHz processors – Linux OS – C++ and KDE/QT • CCD camera 768 × 576 Leica DM RXA microscope µm ⇒ resolution up to 0.74 pixel University of Karlsruhe (TH) -5- Sheffield Hallam University
  • 6. Reconstruction (of micro-objects) based on focus-sets using blind deconvolution overview: objective • reconstruct from focus-set: – surface – luminosity and coloring • identify model-parameters and quality of assembly University of Karlsruhe (TH) -6- Sheffield Hallam University
  • 7. Reconstruction (of micro-objects) based on focus-sets using blind deconvolution basics: discrete fourier transform • 1D DFT N −1 2πxki − definition Fk := fx e N where i2 = −1 x=0 N −1 2πxki 1 + ⇔ fx = Fk e N N k=0 • 2D DFT N −1 2πxki 2πyli − − analogous Fkl := fxy e N e N , i2 = −1 x,y=0 N −1 2πxki 2πyli 1 + + ⇔ fxy = Fkl e N e N N2 k,l=0 University of Karlsruhe (TH) -7- Sheffield Hallam University
  • 8. Reconstruction (of micro-objects) based on focus-sets using blind deconvolution basics: 1D discrete fourier transform image domain * = x x x frequency domain ⊗ = ω x ω ∞ ∞ ∀x ∈ R : f (x) = f (x) δ(x − T n) dx −∞ n=−∞ ∞ 2π 2π ⇔ ∀ω ∈ C : F (ω) = (F ⊗ λω. δ(ω − n ) )(ω) T n=−∞ T University of Karlsruhe (TH) -8- Sheffield Hallam University
  • 9. Reconstruction (of micro-objects) based on focus-sets using blind deconvolution basics: 1D discrete fourier transform image domain * = x x x frequency domain 1 sinc(x) 0.8 = 0.6 ω ⊗ 0.4 ω 0.2 0 -8 -6 -4 -2 0 2 4 6 8 w t ∀x ∈ R : f (x) = f (x) rect( ) 2T sin(ωT ) ⇔ ∀ω ∈ C : F (ω) = (F ⊗ λω. 2T )(ω) ωT University of Karlsruhe (TH) -9- Sheffield Hallam University
  • 10. Reconstruction (of micro-objects) based on focus-sets using blind deconvolution sparse matrices and vectors: images   x00 ··· x0(N −1) . .   .. conservative: x =  . .  ∈ RN ×N   . . .   x(N −1)0 · · · x(N −1)(N −1)   x00     x0   x01      . .   x1       .  vector repr.: x = =  ∈ RN N  .     .   x10   .    .  xN −1   . .     x(N −1)(N −1) University of Karlsruhe (TH) - 10 - Sheffield Hallam University
  • 11. Reconstruction (of micro-objects) based on focus-sets using blind deconvolution sparse matrices and vectors: convolution (i) matrix repr. of convolution with a 1D-LSI-filters   h0 0 ··· 0   .     .. .  g0  h1 h0 . . f   .  0  .. ..   g1   .   . . 0   f1     . = ∗ .    .   . .    hK−1 h0   .         .   ..  gK+N −1   0 . h1   fN −1  . . . .. . ∈R(K+N −1) . . . ∈RN ∈R(K+N −1)×N • vectors of different size ⇒ not feasible • matrix is clumsy and baffles mathematical approaches University of Karlsruhe (TH) - 11 - Sheffield Hallam University
  • 12. Reconstruction (of micro-objects) based on focus-sets using blind deconvolution sparse matrices and vectors: circulant matrices   a(0) a(N − 1) · · · a(1)  .. .. . .  . .    a(1) .  A=  .  . ..    . . a(N − 1)  a(N − 1) ··· a(1) a(0) N −1 2πkji without − • eigenvalues of A: λ(k) = a(j) e N proof: j=0 • A = FQA F −1 with – QA = diag(λ1 , λ2 , . . . , λN ) and – fourier-kernel F −1 University of Karlsruhe (TH) - 12 - Sheffield Hallam University
  • 13. Reconstruction (of micro-objects) based on focus-sets using blind deconvolution sparse matrices and vectors: fourier kernel 2πukl i definition of fourier-kernel: F −1 := e N   0 0 0 ···   0 1 2 · · ·   with U :=   and i2 = −1 0 2 4  · · · . . . ..  . . . . . . . note: • X = DFT{x} = X = F −1 x • x = DFT−1 {X} = x = FX where F = 1 N (F −1 )∗ • F =F University of Karlsruhe (TH) - 13 - Sheffield Hallam University
  • 14. Reconstruction (of micro-objects) based on focus-sets using blind deconvolution sparse matrices and vectors: convolution (ii) approximated 1D convolution       g0 h0 hN −1 ··· h1 f   0  .   .. ..      g1   h1   . . .   f1  .  . ≈ . ∗   .       .   . .. .   .   . . hN −1   .     gN −1 hN −1 ··· h1 h0 fN −1 =:g∈RN =:H∈RN ×N =:f ∈RN g = Hf University of Karlsruhe (TH) - 14 - Sheffield Hallam University
  • 15. Reconstruction (of micro-objects) based on focus-sets using blind deconvolution sparse matrices and vectors: convolution (iii) N −1 gk = H(k−l) mod N fl l=0       g0 H0 HN −1 ··· H1 f   0  .   .. ..      g1   H1   . . .   f1  .  . ≈ . ∗   .       .   . .. .   .   . . HN −1   .     gN −1 HN −1 ··· H1 H0 fN −1 =:g∈RN 2 =:H∈RN 2 ×N 2 =:f ∈RN 2 ⇒ g = H f is 2D convolution! ⇒ H is (block) circulant University of Karlsruhe (TH) - 15 - Sheffield Hallam University
  • 16. Reconstruction (of micro-objects) based on focus-sets using blind deconvolution EM-algorithm: description • “incomplete” data-set y • many-to-one transform given: y = g(z1 , z2 , . . . , zM ) = g(z) • pdf pz (z; θ) and cond. pdf p(z|y; θ) 1. expectation: Determine expected log-likelihood of complete data U (θ, θp ) :=Ez {ln pz (z; θ)|y; θp } EM-algorithm: = ln pz (z; θ) p(z|y; θp )dz 2. maximisation: Maximize θp+1 = argmax U (θ, θp ) θ 3. goto step 1 until θ converges University of Karlsruhe (TH) - 16 - Sheffield Hallam University
  • 17. Reconstruction (of micro-objects) based on focus-sets using blind deconvolution EM-algorithm: overview of representations meaning conversative sparse matrices real fourier real fourier N ×N N ×N N 2 ,N 2 ×N 2 N 2 ,N 2 ×N 2 sets R C R C image x X x X PSF h ∆ D QD cov. image Cx Sx Λx Qx 2 2 cov. noise σv I (σv ) Λv Qv convolution x⊗h X ∆ Dx QD X DFT - DFT{x} - F −1 x inv. DFT DFT−1 {X} - FX - University of Karlsruhe (TH) - 17 - Sheffield Hallam University
  • 18. Reconstruction (of micro-objects) based on focus-sets using blind deconvolution EM-Algorithm: derivation (i) • incomplete/complete data-set: y ∈ RN / (x , y ) ∈ R2N   x • many-to-one transform: y =: g( ) ∀y y • pdf of z is zero-mean normal distr.: pz (z, θ = {D, Λx , Λv }) =  −1     1x Λ Λx D −    x x   2 y   DΛx DΛx D + Λv   y 1 e =:C Λx Λx D (2π)2N 2 DΛx DΛx D + Λv University of Karlsruhe (TH) - 18 - Sheffield Hallam University
  • 19. Reconstruction (of micro-objects) based on focus-sets using blind deconvolution EM-Algorithm: derivation (ii) • conditional pdf p(z|y, θ) = p(x|y, θ) is (conditional) normal distr.: – with mean Mx|y = Λx D (DΛx D + Λv )−1 y and – covariance Sx|y = Λx − Λx D (DΛx D + Λv )−1 DΛx derivation of   2 1 1 x −1   ln pz (z; θ) = −N ln(2π) − ln |C| − (x , y ) C : 2 2 y Λx Λx D = det(Λx (DΛx D + Λv ) − DΛx Λx D ) DΛx DΛx D + Λv = det(Λx Λv ) = |Λx ||Λv |, because Λx and Λv are symmetric and positive definite. University of Karlsruhe (TH) - 19 - Sheffield Hallam University
  • 20. Reconstruction (of micro-objects) based on focus-sets using blind deconvolution EM-Algorithm: derivation (iii) 2 N2 • observe that |Λv | = (σv ) . • |Λx | = |FQx F −1 | = |Qx | = Sx (k, l) kl   A A12 using A =  11 = A21 A22   (A11 − A12 A−1 A21 )−1 22 A−1 A12 (A21 A−1 A12 − A22 )−1 11 11   (A21 A−1 A12 − A22 )−1 A21 A−1 11 11 (A22 − A21 A−1 A12 )−1 11  −1 Λ Λx D −1 we get C =  x  = DΛx DΛx D + Λv University of Karlsruhe (TH) - 20 - Sheffield Hallam University
  • 21. Reconstruction (of micro-objects) based on focus-sets using blind deconvolution EM-Algorithm: derivation (iv)   (I − D (DΛx D + Λv )−1 DΛx )−1 Λ−1 x −D Λ−1 v C −1 =  . −Λ−1 D v Λ−1 v With u Av= u∗ FQA F −1 v = (F ∗ u)∗ QA F −1 v 1 −1 ∗ −1 1 ∗ = ( 2 F u) QA F v = 2 U QA V we obtain N N N2 1 1 2 ln pz (z; θ) =−N ln(2π) − 2 ln(σv ) − ln Skl − 2 Y ∗ Q−1 Y v 2 2 2N kl 1 1 + 2 Re{Y ∗ QD Q−1 X} v − Qx (QD Q∗ Q−1 + Q−1 ) D v x N 2 kl 1 − 2 X ∗ (QD Q∗ Q−1 + Q−1 )X D v x 2N University of Karlsruhe (TH) - 21 - Sheffield Hallam University
  • 22. Reconstruction (of micro-objects) based on focus-sets using blind deconvolution EM-Algorithm: derivation (v) Replacing the remaining diagonal matrices with DFT-arrays yields: N2 1 1 2 ln pz (z; θ) =−N ln(2π) − 2 ln(σv ) − ln Skl − 2 Y∗ Y(σv )−1 2 2 2 2N kl 1 ∗ 1 + 2 Re{Y ∆(σv )−1 X} 2 − Sx (∆∆∗ (σv )−1 + Sx ) 2 −1 N 2 1 − 2 X∗ (∆∆∗ (σv )−1 + Sx )X 2 −1 2N The last steps are: • substitute X and X∗ ... X with their expected values. ⇒ U (θ, θk ) δU (θ, θk ) • determine argmax by setting derivative to zero. θ δθ University of Karlsruhe (TH) - 22 - Sheffield Hallam University
  • 23. Reconstruction (of micro-objects) based on focus-sets using blind deconvolution EM-Algorithm: implementation The resulting iteration step: (p+1) (p) 1 • Sx (k, l) = Sx|y (k, l) + 2 |Mx|y (k, l)|2 N ∗ 1 Y (k, l)Mx|y (k, l) • ∆(p+1) (k, l) = N2 (p) 1 Sx|y (k, l) + 2 |Mx|y (k, l)|2 N 2 1 (p+1) 2 (p) 1 • σv = kl |∆ (k, l)| Sx|y (k, l) + |Mx|y (k, l)|2 + N2 N 2 1 |Y (k, l)|2 − 2Re Y ∗ (k, l)∆(p+1) (k, l)Mx|y (k, l) N2 University of Karlsruhe (TH) - 23 - Sheffield Hallam University
  • 24. Reconstruction (of micro-objects) based on focus-sets using blind deconvolution results: deblur picture conditional mean after 10. iteration University of Karlsruhe (TH) - 24 - Sheffield Hallam University
  • 25. Reconstruction (of micro-objects) based on focus-sets using blind deconvolution results: statistic and psf log-DFT University of Karlsruhe (TH) - 25 - Sheffield Hallam University
  • 26. Reconstruction (of micro-objects) based on focus-sets using blind deconvolution result: comparison Jan Wedekind address: . . . . . . . . . . . . . . . . . . . . . . . . . . Scheffelstr. 65, D-76135 Karlsruhe email: . . . . . . . . . . . . . . . . . . . . . . . . . . jan.wedekind@stud.uni-karlsruhe.de www: . . . . . . . . . . . . . . . . . . . . . . . http://www.uni-karlsruhe.de/~unoh pgp: . . . . . . . . . . . . . . . . . EE FA AF 15 D8 ED 11 4A 5A 76 35 5F 2D 20 C4 E8 University of Karlsruhe (TH) - 26 - Sheffield Hallam University