SlideShare una empresa de Scribd logo
1 de 18
Descargar para leer sin conexión
CO(g)
∆H2
∆H2
∆H1 = -394
CO2(g)
C(s) + ½ O2(g)
CO(g) + ½ O2
C(s) + O2(g)
CO2(g)
A E
B
C D
∆H6∆H5
∆H4∆H2
Hess’s Law
C(s) + O2(g) CO2(g)
Overall ∆H rxn is independent ofits pathway
∆H rxn in series steps = sum of enthalpychangesfor individualsteps
∆H1
∆H2 ∆H4
∆H1
∆H3
EnergyLevel or Cycle Diagram to find ΔH
State function- propertyof system whose magnitude
dependon initial and final state
∆H3
A → D
A → B → C → D
∆H1 = H2 + H3 + H4
∆H A → E is same regardlessof its path
Final state
A → E
A → C→ D → E
∆H1 = H2 + H3 + H4
A → E
A → B → E
∆H1 = H5 + H6
Initial stateInitial state
Final state
∆H3 = -283
∆H1 = ∆H2 + ∆H3
EnergyLevel Diagram
2
2
1
O
∆H2 = H1 - H3 = -394 +283 = -111 kJ mol-1
∆H3 = -283
2
2
1
O
EnergyCycle Diagram
∆H1 = -394
∆H2 = H1 - H3 = -394 +283
= -111 kJ mol-1
Path not impt !!!!
∆H1 = ∆H2 + ∆H3
C(s) + O2 → CO2 (g) ∆H1 = -394
C (s) + ½ O2 → CO(g) ∆H2 = ???
CO(g) + ½ O2 → CO2 (g) ∆H3 = -283+
Hess’s Law
Find ∆H cannot be measured
directly/experimentally
C(s) + 1/2O2 → CO(g) ∆H2 ????
SO2(g)
∆H2
∆H2
∆H1 = -395
SO3(g)
S(s) + O2(g)
SO2(g) + ½O2
S(s) + 3/2O2(g)
SO3(g)
A E
B
C D
∆H6∆H5
∆H4∆H2
Hess’s Law
S(s) + 3/2O2(g) SO3(g)
Overall ∆H rxn is independent ofits pathway
∆H rxn in series steps = sum of enthalpychangesfor individualsteps
∆H1
∆H2 ∆H4
∆H1
∆H3
EnergyLevel or Cycle Diagram to find ΔH
State function- propertyof system whose magnitude
dependon initial and final state
∆H3
A → D
A → B → C → D
∆H1 = H2 + H3 + H4
∆H A → E is same regardlessof its path
Final state
A → E
A → C→ D → E
∆H1 = H2 + H3 + H4
A → E
A → B → E
∆H1 = H5 + H6
Initial stateInitial state
Final state
∆H3 = -98
∆H1 = ∆H2 + ∆H3
EnergyLevel Diagram
Find ∆H cannot be measured
directly/experimentally
∆H2 = H1 - H3 = -395 + 98 = - 297 kJ mol-1
∆H3 = - 98
2
2
1
O
EnergyCycle Diagram
∆H1 = -395
∆H2 = H1 - H3 = - 395 + 98
= - 297 kJ mol-1
Path not impt !!!!
Hess’s Law
∆H1 = ∆H2 + ∆H3
S(s) + 3/2O2 → SO3 (g) ∆H1 = -395
S(s) + O2 → SO2(g) ∆H2 = ???
SO2(g) + ½O2 → SO3 (g) ∆H3 = -98+
O2
S(s) + O2 → SO2(g) ∆H2 ?????
N2(g) + 2O2(g)N2(g) + 2O2(g)
N2O4(g)
2NO2(g)
∆H1
N2O4(g)
∆H1
∆H2 = + 33
2NO2(g)
A E
B
C D
∆H6∆H5
∆H4∆H2
Hess’s Law
N2(g) + 2O2(g) 2NO2(g)
Overall ∆H rxn is independent ofits pathway
∆H rxn in series steps = sum of enthalpychangesfor individualsteps
∆H1
∆H2 ∆H4
∆H1
∆H3
EnergyLevel or Cycle Diagram to find ΔH
State function- propertyof system whose magnitude
dependon initial and final state
∆H3
A → D
A → B → C → D
∆H1 = H2 + H3 + H4
∆H A → E is same regardlessof its path
Final state
A → E
A → C→ D → E
∆H1 = H2 + H3 + H4
A → E
A → B → E
∆H1 = H5 + H6
Initial stateInitial state
Final state
∆H3 = + 9
EnergyLevel Diagram
Find ∆H cannot be measured
directly/experimentally
∆H3 = + 9
EnergyCycle Diagram
∆H2 = + 33
∆H1 = H2 + H3 = -33 + 9
= - 24 kJ mol-1
Path not impt !!!!
Hess’s Law
∆H1 = ∆H2 + ∆H3
N2(g)+ 2O2 → 2NO2(g) ∆H2 = +33
2NO2 → N2+ 2O2 ∆H2 = - 33
N2(g) + 2O2 → N2O4(g) ∆H3 = + 9+
2NO2(g) → N2O4(g) ∆H1 = ?
∆H1 = ∆H2 + ∆H3
∆H1 = H2 + H3 = -33 + 9 = - 24 kJ mol-1
inverse
2NO2(g) → N2O4(g) ∆H = -24
∆Hf
θ (reactant) ∆Hf
θ (product)
Using Std ∆Hf
θ formationto find ∆H rxn
∆H when 1 mol form from its element under std condition
Na(s) + ½ CI2(g) → NaCI (s) ∆Hf
θ = - 411 kJ mol -1
Std Enthalpy Changes ∆Hθ
Std condition
Pressure
100kPa
Temp
298K
Conc 1M All substance
at std states
Hess’s Law
Std ∆Hf
θ formation
Mg(s) + ½ O2(g) → MgO(s) ∆Hf
θ =- 602 kJ mol -1
Reactants Products
O2(g) → O2 (g) ∆Hf
θ = 0 kJ mol -1
∆Hrxn
θ = ∑∆Hf
θ
(products) - ∑∆Hf
θ
(reactants)
∆Hf
θ (products)∆Hf
θ (reactants)
∆Hrxn
θ
Elements
Std state solid gas
2C(s) + 3H2(g)+ ½O2(g) → C2H5OH(I) ∆Hf
θ =- 275 kJ mol -1
1 mole formed
H2(g) + ½O2(g) → H2O(I) ∆Hf
θ =- 286 kJ mol -1
Std state solid gas 1 mol liquid
For element Std ∆Hf
θ formation= 0
Mg(s)→ Mg(s) ∆Hf
θ = 0 kJ mol -1
No product form
Using Std ∆Hf
θ formationto find ∆H of a rxn
Click here chem database
(std formation enthalpy)
Click here chem database
(std formation enthalpy)
C2H4 + H2 C2H6
Find ΔHθ rxn using std ∆H formation
Reactants Products
2C + 3H2
Elements
C2H4 + H2 → C2H6
∆Hrxn
θ
∆Hrxn
θ = ∑∆Hf
θ
(pro) - ∑∆Hf
θ
(react)
∆Hrxn
θ = Hf
θ C2H6 - ∆Hf
θ C2H4+ H2
= - 84.6 – ( + 52.3 + 0 ) = - 136.9 kJ mol -1
2CH4(g) + 4O2(g) → 4H2O + 2CO2(s) ∆Hc
θ = - 890 x 2
= - 1780 kJ mol -1
Std ∆Hf
θ formationto find ∆H rxn
∆H when 1 mol form from its element under std condition
Na(s) + ½ CI2(g) → NaCI (s) ∆Hf
θ = - 411 kJ mol -1
Hess’s Law
Std ∆Hf
θ formation
Mg(s) + ½ O2(g) → MgO(s) ∆Hf
θ =- 602 kJ mol -1
Reactants Products
∆Hrxn
θ = ∑∆Hf
θ
(products) - ∑∆Hf
θ
(reactants)
∆Hf
θ (products)∆Hf
θ (reactants)
∆Hrxn
θ
Elements
Std state solid gas 1 mole formed
Total amt energyreleased/absorbed α mol reactants
CH4(g) + 2O2(g) → 2H2O + CO2(s) ∆Hc
θ = - 890 kJ mol -1
ΔH reverse EQUAL in magnitude but opposite sign to ΔH forward
Na+
(g) + CI_
(g) → NaCI(s) ∆Hlatt
θ = - 770 kJ mol -1
NaCI(s) → Na+
(g) + CI_
(g) ∆Hlatt
θ = + 770 kJ mol -1
H2(g) + ½O2(g) → H2O(I) ∆Hf
θ =- 286 kJ mol -1
H2(g) + ½O2(g) → H2O(I) ∆Hc
θ =- 286 kJ mol -1
Compound NaF NaCI NaBr NaI
Hf
θ(kJ mol-1) -573 -414 -361 -288
More ↑ – ve formation
↓
More ↑heat releasedto surrounding
↓
More ↑ energetically stable (lower in energy)
↓
Do not decomposeeasily
Subs Na2O MgO AI2O3
Hf
θ -416 -602 -1670
Subs P4O10 SO3 CI2O7
Hf
θ
-3030 -390 +250
1 mole formed
2 mole formedx 2
О
О
∆Hf
θ formationvs ∆Hc
θ combustion
∆H Form - std state liquid
∆H Comb - std state liquid
More –ve – more stable
Across Period3
↓
∆H – more ↑ –ve
↓
Lower in energy
↓
Oxides more stable
Across Period3
↓
∆H – more ↑ +ve
↓
Higherin energy
↓
Oxides less stable – decomposeeasily
∆Hf = ∆Hc
∆Hrxn
C2H4 + H2 C2H6
C2H6 + 3.5 O2 2CO2 + 3 H2O
∆Hf
θ (reactant) ∆Hf
θ (product)
Hess’s Law
Std ∆Hf
θ formationto find ∆H rxn
Reactants Products
∆Hrxn
θ
∆Hf
θ (product)∆Hf
θ (reactant)
Elements
∆Hf
θ - 85 0 - 393 - 286
Reactants Products
∆Hrxn
θ = ∑∆Hf
θ
(pro) - ∑∆Hf
θ
(react)
∆Hrxn
θ = - 1644 - ( - 85 )
= - 1559 kJ mol -1
- 85 0 - 858 - 786
x 2 x 3
C2H4 + H2 C2H6
∆Hrxn
θReactants Products
2C + 3H2
∆Hf
θ + 52 o - 85
Reactants Products
∆Hrxn
θ = ∑∆Hf
θ
(pro) - ∑∆Hf
θ
(react)
∆Hrxn
θ = - 85 - ( + 52 )
= - 137 kJ mol -1
C2H6 + 3.5 O2 2CO2 + 3 H2O
2C + 3H2 + 3.5O2
EnergyLevel Diagram
2CO2 + 3H2O
2C + 3H2 + 3.5O2
C2H6 + 3.5 O2
∆Hf
θ = -85
∆Hf
θ = - 393
∆Hf
θ = 0
2C + 3H2 + 3.5O2
Elements
Reactants
Products
∆Hf
θ = - 286
∆Hrxn= (- 393 x 2 + -286 x 3) – (- 85 + 0) = - 1559 kJ mol-1
x 2
x 3
C2H4 + H2
Reactants
C2H6
∆Hrxn = - 85 – ( + 52 + 0 ) = - 137 kJ mol-1
2C + 2H2 + H2
∆Hf
θ = + 52
∆Hf
θ = 0
∆Hrxn
Products
2C + 3H2
Elements
∆Hf
θ = - 85
Elements
∆Hf
θ (reactant) ∆Hf
θ (product)
∆Hf
θ (reactant) ∆Hf
θ (product)
Using Std ∆Hf
θ formationto find ∆H rxn
Hess’s Law
Reactants Products
∆Hrxn
θ = ∑∆Hf
θ
(products) - ∑∆Hf
θ
(reactants)
∆Hf
θ (products)∆Hf
θ (reactants)
∆Hrxn
θ
Elements
2H2S + SO2 3S + 2H2O
Find ΔHθ rxn using std ∆H formation
Reactants Products
3S + O2 + 2H2
Elements
∆Hrxn
θ
∆Hrxn
θ = ∑∆Hf
θ
(pro) - ∑∆Hf
θ
(react)
∆Hrxn
θ = - 572 - ( - 338 )
= - 234 kJ mol -1
2H2S + SO2 → 3S + 2H2O
∆Hf
θ - 20.6 - 297 0 - 286
- 41.2 - 297 0 - 572
x 2 x 2
Reactants Products
Using Std ∆Hf
θ formationto find ∆H rxn
Reactants Products
∆Hrxn
θ
∆Hf
θ (product)∆Hf
θ (reactant)
4C + 12H2 + 9N2 + 10O2
Elements
∆Hf
θ + 53 - 20 - 393 - 286 0
Reactants Products
∆Hrxn
θ = ∑∆Hf
θ
(pro) - ∑∆Hf
θ
(react)
∆Hrxn
θ = - 5004 - ( +112 )
= - 5116 kJ mol -1
4CH3NHNH2 + 5N2O4 4CO2 + 12H2O + 9N2
4CH3NHNH2 + 5N2O4 4CO2 + 12H2O + 9N2
+ 212 - 100 - 1572 - 3432 0
x 4 x 5 x 4 x 12
NH4NO3 N2O + 2H2O
∆Hrxn
θReactants Products
N2 + 2H2 + 3/2O2
NH4NO3 N2O + 2H2O
∆Hf
θ - 366 + 82 - 286 x 2
Reactants Products
∆Hrxn
θ = ∑∆Hf
θ
(pro) - ∑∆Hf
θ
(react)
∆Hrxn
θ = - 488 - ( - 366 )
= - 122 kJ mol -1
Elements
∆Hc
θ (reactant) ∆Hc
θ (product)
∆Hc
θ combustion to find ∆H formationof hydrocarbon
∆H when 1 mol completelyburnt in oxygen under std condition
Std Enthalpy Changes ∆Hθ
Std condition
Pressure
100kPa
Temp
298K
Conc 1M All substance
at std states
Hess’s Law
Std ∆Hc
θ combustion
C(s) + O2(g) → CO2(g) ∆Hc
θ = - 395 kJ mol -1
Reactants Products
∆Hrxn
θ = ∑∆Hc
θ
(reactant) - ∑∆Hc
θ
(product)
∆Hc
θ (product)∆Hc
θ (reactant)
∆Hrxn
θ
Combusted products
1 mole combusted
H2(g) + ½O2(g) → H2O(I) ∆Hc
θ = - 286 kJ mol -1
Std ∆Hc
θ combustionto find ∆H of a rxn
Click here chem database
(std combustion enthalpy)
Click here chem database
(std combustion enthalpy)
Find ΔHθ formation using std ∆H comb
Reactants Products
2CO2 + 3H2O
∆Hrxn
θ
∆Hrxn
θ = ∑∆Hc
θ
(react) - ∑∆Hc
θ
(pro)
∆Hrxn
θ = Hc
θ ( C + H2 )- ∆Hc
θ C2H6
= 2 x (-395) + 3 x (-286) – (-1560)
= - 88 kJ mol -1
H2(g) + ½O2(g) → H2O(I) ∆Hc
θ = - 286 kJ mol -1
C(s) + O2(g) → CO2(g) ∆Hc
θ = - 395 kJ mol -1
Combustion H2 = formationof H2O
∆Hc = ∆Hf
Combustion C = formationof CO2
∆Hc = ∆Hf
Using combustion data
2C(s) + 3H2(g) → C2H6(g) ∆Hf
θ = - 84 kJ mol -1
2C(s) + 3H2(g) + ½O2(g) → C2H5OH(I) ∆Hf
θ = - 275 kJ mol -1
2C + 3H2 C2H6
+ 3.5O2 + 3.5O2
x 2 x 3
How enthalpy formationhydrocarbonobtained ?
-790 -858 - 1371
2 C + 3H2 + 3.5O2 C2H5OH
∆Hc
θ (reactant) ∆Hc
θ (product)
∆Hrxn
θ = ∑∆Hc
θ
(react) - ∑∆Hc
θ
(pro)
= 2 x (-395) + 3 x (-286) – (-1560)
= - 88 kJ mol -1
Reactants Products
2 C + 3H2 + 3.5O2 C2H5OH
2C + 3H2 C2H6
2C + 3H2 C2H6
∆Hc
θ comb to find ∆Hf formationof hydrocarbon
∆Hrxn
Hess’s Law
Reactants Products
∆Hrxn
θ
∆Hc
θ (product)∆Hc
θ (reactant)
∆Hc
θ -395 -286 - 1560
Reactants Products
- 790 -858 - 1560
x 2
∆Hrxn
θ
Reactants Products
EnergyLevel Diagram
∆Hc
θ = -395
∆Hc
θ = - 1560
∆Hc
θ = -286
Combustedproducts
Reactants
Products
∆Hrxn = (- 395 x 2 + -286 x 3) – (-1560 ) = - 88 kJ mol-1
Reactants
∆Hrxn
Products
∆Hc
θ = - 1371
2CO2 + 3H2O
x 3
2C + 3H2
C2H6
2CO2 + 3H2O 2CO2 + 3H2O
x 2 x 3
2 C + 3H2 + 3.5O2
2CO2 + 3H2O
∆Hc
θ -395 -286 - 1371
∆Hrxn
θ = ∑∆Hc
θ
(react) - ∑∆Hc
θ
(pro)
= 2 x (-395) + 3 x (-286) – (-1371)
= - 275 kJ mol -1
x 2 x 3
C2H5OH
∆Hc
θ = -395
x 2
∆Hc
θ = -286
x 3
2CO2 + 3H2O
Combustedproducts
2CO2 + 3H2O
∆Hrxn = (- 395 x 2 + -286 x 3) – (-1371 ) = - 275 kJ mol-1
+ 3.5O2 + 3.5O2
+ 3.5O2 + 3.5O2
3C2H2 C6H6
∆Hc
θ (reactant) ∆Hc
θ (product)
∆Hrxn
θ = ∑∆Hc
θ
(react) - ∑∆Hc
θ
(pro)
= 6 x (-395) + 3 x (-286) – (-3271)
= + 49 kJ mol -1
Reactants Products
3 C2H2 C6H6
6C + 3H2 C6H6
6C + 3H2 C6H6
∆Hc
θ comb to find ∆Hf formationof hydrocarbon
∆Hrxn
Hess’s Law
Reactants Products
∆Hrxn
θ
∆Hc
θ (product)∆Hc
θ (reactant)
∆Hc
θ -395 -286 - 3271
Reactants Products
-2370 -858 - 3271
x 6
∆Hrxn
θ
Reactants Products
EnergyLevel Diagram
∆Hc
θ = -395
∆Hc
θ = - 3271
∆Hc
θ = -286
Combustedproducts
Reactants
Products
∆Hrxn = (- 395 x 6 + -286 x 3) – (-3271 ) = + 49 kJ mol-1
Reactants
∆Hrxn
Products
∆Hc
θ = - 3270
6CO2 + 3H2O
x 3
6C + 3H2
C6H6
6CO2 + 3H2O 6CO2 + 3H2O
x 6 x 3
3 C2H2
6CO2 + 3H2O
∆Hc
θ -1300 - 3270
∆Hrxn
θ = ∑∆Hc
θ
(react) - ∑∆Hc
θ
(pro)
= 3 x (- 1300) – (-3270)
= - 630 kJ mol -1
x 3
C6H6
∆Hc
θ = -1300
x 3
6CO2 + 3H2O
Combustedproducts
6CO2 + 3H2O
∆Hrxn = (- 1300 x 3 ) – (-3270 ) = - 630 kJ mol-1
-3900 - 3270
Combustion
C2H2
+ 7.5O2 + 7.5O2
+ 7.5O2 + 7.5O2
Reactants Products
CH2 =CHCH3 + H2 → CH3CH2CH3
CH2 = CHCH3 + H2 CH3CH2CH3
Reactants Products
∆Hc
θ (reactant) ∆Hc
θ (product)
∆Hrxn
θ = ∑∆Hc
θ
(react) - ∑∆Hc
θ
(pro)
= ( -1411) + (-286) – (-1560)
= - 137 kJ mol -1
C2H4 + H2 C2H6
∆Hc
θ comb to find ∆Hf formationof hydrocarbon
∆Hrxn
Hess’s Law
Reactants Products
∆Hrxn
θ
∆Hc
θ (product)∆Hc
θ (reactant)
∆Hc
θ -1411 -286 - 1560
Reactants Products
∆Hrxn
θ
EnergyLevel Diagram
∆Hc
θ = -1411
∆Hc
θ = - 1560
∆Hc
θ = -286
Combustedproducts
Reactants
Products
∆Hrxn = (-1411)+ (-286)– (-1560)= - 137 kJ mol-1
Reactants
∆Hrxn
Products
∆Hc
θ = - 2222
2CO2 + 3H2O
C6H6
2CO2 + 2H2O 2CO2 + 3H2O
3CO2 + 4H2O
∆Hc
θ - 2060 -286 - 2222
∆Hrxn
θ = ∑∆Hc
θ
(react) - ∑∆Hc
θ
(pro)
= (-2060) + (-286) – (-2222)
= - 124 kJ mol -1
∆Hc
θ = -2060
3CO2 + 3H2O
Combustedproducts
3CO2 + 4H2O
∆Hrxn = (-2060)+ (-286) – (-2222 ) = - 124 kJ mol-1
Combustion
CH2 =CHCH3
C2H4 + H2 C2H6
C2H4 + H2
+ H2O
Combustion
C2H4
CH3CH2CH3
CH2=CHCH3 + H2
∆Hc
θ = -286
+ H2O
+ 3.5O2 + 3.5O2
+ 5O2 + 5O2
∆Hc
Std ∆Hf
θ formationto find ∆H rxn
2H2S + SO2 → 2H2O + 3S ∆Hrxn = ?
∆Hf
θ - 21 x 2 - 297 - 286 x 2 0
∆Hrxn
θ = ∑∆Hf
θ
(pro) - ∑∆Hf
θ
(react)
∆Hrxn
θ = - 572 - ( - 339 )
= - 233 kJ mol -1
Reactants Products
IB Question ∆Hf and ∆Hc
1 2
2 Pb(NO3)2 → 2PbO + 4 NO2 + O2 ∆Hrxn = ?
∆Hf
θ - 444 x 2 - 218 x 2 + 34 x 4 0
Std ∆Hf
θ formationto find ∆H rxn
Reactants Products
∆Hrxn
θ = ∑∆Hf
θ
(pro) - ∑∆Hf
θ
(react)
∆Hrxn
θ = - 300 - ( - 888 )
= + 588 kJ mol -1
∆Hc
θ comb to find ∆Hf formation of C6H6 (Benzene)
6C + 3H2 → C6H6 ∆H form= ?
∆Hc
θ -395 x 6 -286 x 3 - 3271
∆Hrxn
θ = ∑∆Hc
θ
(react) - ∑∆Hc
θ
(pro)
= 6 x (-395) + 3 x (-286) – (-3271)
= + 49 kJ mol -1
Reactants Products
2C + 3H2 + 3.5O2 → C2H5OH ∆Hform= ?
∆Hc
θ -395 x 2 -286 x 3 - 1371
∆Hrxn
θ = ∑∆Hc
θ
(react) - ∑∆Hc
θ
(pro)
= 2 x (-395) + 3 x (-286) – (-1371)
= - 275 kJ mol -1
∆Hc
θ comb to find ∆Hf formation of C2H5OH (Ethanol)
Reactants Products
Combustion C / H2
to CO2 and H2O
C2H4 + H2 → C2H6 ∆H rxn = ?
∆Hc
θ comb to find ∆Hrxn of C2H6
∆Hrxn
θ = ∑∆Hc
θ
(react) - ∑∆Hc
θ
(pro)
= ( -1411) + (-286) – (-1560)
= - 137 kJ mol -1
∆Hc
θ -1411 -286 - 1560
Reactants Products
Find ∆Hc using ∆H provided
CH2 = CHCH3 + H2 CH3CH2CH3
3CO2 + 4H2O
CH2 =CHCH3 + H2 → CH3CH2CH3
∆Hc
θ x -286 - 2222
∆Hrxn
θ = ∑∆Hc
θ
(react) - ∑∆Hc
θ
(pro)
- 124 = x + (-286) – (-2222)
x = - 2060 kJ mol -1
Reactants Products
∆H = -2222
∆H = - 124
CH2 = CHCH3 + H2 → CH3CH2CH3 ∆H = -124
CH3CH2CH3 + 5O2 → 3CO2 + 4H2O ∆H = -2222
H2 + ½ O2 → H2O ∆H = -28.6Combustion of
hydrocarbon
Formation Enthalpy
use
NOT Formation
Enthalpy
use
Diamondunstablerespect tographite
↓
Kineticallystable (High Ea)
↓
Wont decompose spontaneous
∆H = - 98
∆H = - 187
H2O(I) + 1/2O2(g)
H2O2(I)
H2(g) + O2(g)
∆H2= -111
∆H1 = -394
CO2(g)
C(s) + ½ O2(g)
CO(g) + ½ O2
C(s) + O2(g)
CO2(g)
∆H3 = -283
Energy Level Diagram Energy Cycle Diagram
Energetic stabilityvs Kinetic stability
C(s) + O2(g) → CO2 ∆H = - 394
C(s) + 1.5O2(g) → CO ∆H = - 111
CO(g) + 1.5O2(g) → CO2 ∆H = - 283
Lower in energy ( -ve ∆H)
↓
Thermodynamicallymore stable
∆H = - ve
All are thermodynamically stable (-ve ∆H)
↓
More heat released to surrounding
Lower in energy
↓
Both oxides (CO2/CO) are thermodynamically
↓
Stable with respect to their element (C and O2)
H2(g) + O2(g) → H2O2 ∆H = - 187
H2O2(I) → H2O+ O2 ∆H = - 98
C(diamond) → C (graphite)
C(diamond) → C (graphite) ∆H = - 2
Diamond forever
H2O2 unstable respect to H2O/O2
↓
Kineticallystable (High Ea)
↓
Wont decompose spontaneous
All are thermodynamically stable (-ve ∆H)
↓
More heat released (lower energy)
↓
H2O2 thermodynamically more stable
with respect to its elements H2/O2
↓
H2O2 unstable with respect to H2O and O2
Will decompose to lower energy (stable)
High Activation energy
Kinetically stable
Wont decompose
∆H = - ve
H2O (I) + O2
H2O2(I)∆H = - ve
High Activation energy
Kinetically stable
Wont decompose
C + O2 energeticallyunstablerespect to CO2
↓
Kineticallystable (High Ea)
↓
Wont react spontaneousunless ignited!
C + O2
CO2(g)
High Activation energy
Kinetically stable
Wont decompose
C graphite thermodynamically more
stable with respect diamond
↓
Will diamond decompose to graphite ?
∆H = - ve
Diamond
Graphite
∆H = - 50 – (+12)
= - 62 kJ mol -1
∆H = - 50 kJ mol -1
Cold water = 50g
CuSO4 .100H2O
CuSO4 (s) + 95H2O
→ CuSO4 .100H2O
CuSO4 (s) + 100H2O
→ CuSO4 .100H2O
Mass cold water add = 50 g
Mass warm water add = 50 g
Initial Temp flask/cold water = 23.1 C
Initial Temp warm water = 41.3 C
Final Temp mixture = 31 C
CuSO4 (s) + 5H2O → CuSO4 .5H2O ∆H = ?
Slow rxn – heat lost huge – flask used.
Heat capacityflask must be determined.
CuSO4 (s) + 5H2O → CuSO4 .5H2O
1. Find heat capacityflask
Ti = 23.1C
Hot water = 50g
T i = 41.3C
No heat loss from system
(isolated system)
↓
∆H system = O
Heat lost hot H2O=Heat absorbcold H2O+ Heat absorb flask
(mc∆θ) (mc∆θ) (c ∆θ)
50 x 4.18 x (41.3 – 31) = 50 x 4.18 x (31-23.1) + c x (31-23.1)
Water Flask CuSO4
Heat capacity flask, c = 63.5JK-1
Mass CuSO4 = 3.99 g (0.025mol)
Mass water = 45 g
T initial flask/water= 22.5 C
Tfinal = 27.5 C
Mass CuSO4 5H2O = 6.24 g (0.025mol)
Mass water = 42.75 g
Tinitial flask/water= 23 C
T final = 21.8 C
2. Find ∆H CuSO4 + 100H2O → CuSO4 .100H2O
3. Find ∆H CuSO4 .5H2O + 95H2O → CuSO4 .100H2O
Hess’s Law
CuSO4 + H2O → CuSO4 .100H2O CuSO4 .5H2O + H2O → CuSO4 .100H2O
Water Flask CuSO4 5H2O
∆Hrxn = Heat absorb water + vacuum
(mc∆θ) + (c∆θ)
∆Hrxn = Heat absorb water + vacuum
(mc∆θ) + (c∆θ)
∆Hrxn= 45 x 4.18 x 5 + 63.5 x 5
∆Hrxn= - 1.25 kJ
∆Hrxn= 42.75 x 4.18 x 1.2 + 63.5 x 1.2
∆Hrxn= + 0.299 kJ
0.025 mol = - 1.25 kJ
1 mol = - 50 kJ mol-1
0.025 mol = + 0.299 kJ
1 mol = + 12 kJ mol-1
CuSO4 (s) + 5H2O → CuSO4 .5H2O
CuSO4 .100H2O
∆H = + 12 kJ mol -1
Assumption
No heat lost from system ∆H = 0
Water has density = 1.0 gml-1
Sol diluted Vol CuSO4 = Vol H2O
All heat transferto water + flask
Rxn slow – lose heat to surrounding
Plot Temp/time – extrapolation done, Temp correction
limiting
Enthalpy change ∆H - using calorimeter
without temp
correction
Lit value = - 78 kJ mol -1
CONTINUE
Time/m 0 0.5 1 1.5 2 2.5 3 3.5 4
Temp/C 22 22 22 22 2
2
27 28 27 26
∆H = - 60 kJ mol -1
CuSO4 .100H2O
CuSO4 (s) + 95H2O
→ CuSO4 .100H2O
CuSO4 (s) + 100H2O
→ CuSO4 .100H2O
CuSO4 (s) + 5H2O → CuSO4 .5H2O ∆H = ?
CuSO4 (s) + 5H2O → CuSO4 .5H2O
Water Flask CuSO4
Mass CuSO4 = 3.99 g (0.025 mol)
Mass water = 45 g
T initial mix = 22 C
Tfinal = 28 C
Mass CuSO4 5H2O = 6.24 g (0.025 mol)
Mass water = 42.75 g
Tinitial mix = 23 C
T final = 21 C
Find ∆H CuSO4 + 100H2O → CuSO4 .100H2O
Find ∆H CuSO4 .5H2O + 95H2O → CuSO4 .100H2O
Hess’s Law
CuSO4 + H2O → CuSO4 .100H2O CuSO4 .5H2O + H2O → CuSO4 .100H2O
Water Flask CuSO4 5H2O
∆Hrxn = Heat absorb water + flask
(mc∆θ) + (c∆θ)
∆Hrxn = Heat absorb water + flask
(mc∆θ) + (c∆θ)
∆Hrxn= 45 x 4.18 x 6 + 63.5 x 6
∆Hrxn= - 1.5 kJ
∆Hrxn= 42.75 x 4.18 x 2 + 63.5 x 2
∆Hrxn= + 0.48kJ
0.025 mol = - 1.5 kJ
1 mol = - 60 kJ mol-1
0.025 mol = + 0.48 kJ
1 mol = + 19 kJ mol-1
CuSO4 (s) + 5H2O → CuSO4 .5H2O
CuSO4 .100H2O
∆H = + 19 kJ mol -1
∆H = - 60 – (+19)
= - 69 kJ mol -1
Rxn slow – lose heat to surrounding
Plot Temp/time – extrapolation done, Temp correction
limiting
Enthalpy change ∆H using calorimeter
Datacollection
Temp correction – using cooling curve for last 5 m
time, x = 2
initial Temp = 22 C
final Temp = 28 C
Extrapolation best curve fit
y = -2.68x+ 33
y = -2.68 x 2 + 33
y = 28 (Max Temp)
Excel plot
CuSO4 + H2O → CuSO4 .100H2O
(Exothermic) Heat released
CuSO4 .5H2O + H2O → CuSO4 .100H2O
(Endothermic) – Heat absorbed
Temp correction – using warming curve for last 5 m
Time/m 0 0.5 1 1.5 2 2.5 3 3.5 4
Temp/C 23 23 23 23 2
3
22 22 22.4 22.7
initial Temp = 23 C
time, x = 2
final Temp = 21 C
Excel plot
Extrapolation curve fit
y = + 0.8 x + 19.4
y = + 0.8 x 2 + 19.4
y = 21 (Min Temp)
Lit value = - 78 kJ mol -1
with temp
correction
∆H = - 113 kJ mol -1
Enthalpy change ∆H using calorimeter
Cold water = 50 g
MgSO4 .100H2O
MgSO4.7H2O + 93H2O
→ MgSO4 .100H2O
MgSO4 + 100H2O
→ MgSO4 .100H2O
Mass cold water add = 50 g
Mass warm water add = 50 g
Initial Temp flask/cold water = 23.1 C
Initial Temp warm water = 41.3 C
Final Temp flask/mixture= 31 C
MgSO4 (s) + 7H2O → MgSO4 .7H2O ∆H = ?
Slow rxn – heat lost huge – flask used.
Heat capacityflask must be determined.
MgSO4(s) + 7H2O → MgSO4 .7H2O
1. Find heat capacityflask
Ti = 23.1 C
Hot water = 50 g
T i = 41.3 C
No heat loss from system
(isolated system)
↓
∆H system = O
Heat lost hot H2O=Heat absorbcold H2O+ Heat absorb flask
(mc∆θ) (mc∆θ) (c ∆θ)
50 x 4.18 x (41.3 – 31) = 50 x 4.18 x (31-23.1) + c x (31-23.1)
Water Flask MgSO4
Heat capacity flask, c = 63.5JK-1
Mass MgSO4 = 3.01 g (0.025mol)
Mass water = 45 g
T initial mix = 24.1 C
Tfinal = 35.4 C
Mass MgSO4 7H2O = 6.16 g (0.025mol)
Mass water = 41.8 g
Tinitial mix= 24.8 C
T final = 23.4 C
2. Find ∆H MgSO4 +100H2O → MgSO4 .100H2O
3. Find ∆H MgSO4 .7H2O + 93H2O → MgSO4 .100H2O
Hess’s Law
MgSO4 + H2O → MgSO4 .100H2O MgSO4 .7H2O + H2O → MgSO4 .100H2O
Water Flask MgSO4 .7H2O
∆Hrxn = Heat absorb water + flask
(mc∆θ) + (c∆θ)
∆Hrxn = Heat absorb water + flask
(mc∆θ) + (c∆θ)
∆Hrxn= 45 x 4.18 x 11.3 + 63.5 x 11.3
∆Hrxn= - 2.83 kJ
∆Hrxn= 41.8 x 4.18 x 1.4 + 63.5 x 1.4
∆Hrxn= + 0.3 kJ
0.025 mol = - 2.83 kJ
1 mol = - 113 kJ mol-1
0.025 mol = + 0.3 kJ
1 mol = + 12 kJ mol-1
MgSO4 (s) + 7H2O → MgSO4 .7H2O
MgSO4 .100H2O
∆H = + 12 kJ mol -1
∆H = - 113 - 12
= - 125 kJ mol -1
Assumption
No heat lost from system ∆H = 0
Water has density = 1.00g ml-1
Sol diluted Vol MgSO4 = Vol H2O
All heat transfer to water + flask
Rxn fast – heat lost to surrounding minimized
Dont need to Plot Temp/time
No extrapolation
Error Analysis
Heat loss to surrounding
Heat capacity sol is not 4.18
Mass MgSO4 ignored
Impurity present
MgSo4 already hydrated
limiting
∆H = - 286 kJ mol -1
∆H = - 442 kJ mol -1
Enthalpy change ∆H using calorimeter
Cold water = 50g
Mass cold water add = 50g
Mass warm water add = 50g
Initial Temp flask/cold water = 23.1C
Initial Temp warm water = 41.3C
Final Temp flask/mixture= 31C
Mg(s) + ½ O2 → MgO ∆H = ?
Slow rxn – heat lost huge – flask is used.
Heat capacityflask must be determined.
Mg + ½ O2 → MgO
1. Find heat capacityflask
Ti = 23.1C
Hot water = 50g
T i = 41.3C
No heat loss from system
(isolated system)
↓
∆H system = O
Heat lost hot H2O=Heat absorbcold H2O+ Heat absorb Flask
(mc∆θ) (mc∆θ) (c ∆θ)
50 x 4.18 x (41.3 – 31) = 50 x 4.18 x (31-23.1) + c x (31-23.1)
HCI Flask Mg
Heat capacity flask, c = 63.5JK-1
Mass Mg = 0.5 g (0.02 mol)
Vol/ConcHCI = 100 g, 0.1M
T initial mix = 22 C
Tfinal = 41 C
Mass MgO = 1 g (o.o248 mol)
Vol/Conc HCI = 100 g, 0.1M
Tinitial mix= 22 C
T final = 28.4 C
2. Find ∆H Mg + 2HCI → MgCI2 + H2
3. Find ∆H MgO + 2HCI → MgCI2 + H2O
4. Find H2 + ½ O2 → H2O
Hess’s Law
∆H Mg + 2HCI → MgCI2 + H2
∆Hrxn = Heat absorb water + flask
(mc∆θ) + (c∆θ)
∆Hrxn = Heat absorb water + flask
(mc∆θ) + (c∆θ)
∆Hrxn= 100 x 4.18 x 19 + 63.5 x 19
∆Hrxn= - 9.11kJ
∆Hrxn= 100 x 4.18 x 6.4 + 63.5 x 6.4
∆Hrxn= -3.1 kJ
0.02 mol = - 9.11 kJ
1 mol = - 442 kJ mol-1
0.0248 mol = - 3.1 kJ
1 mol = - 125 kJ mol-1
∆H = - 125 kJ mol -1
∆H = - 442 – 286 + 125
= - 603 kJ mol -1
Assumption
No heat lost from system ∆H = 0
Water has density = 1.00g ml-1
Sol diluted Vol HCI = Vol H2O
All heat transfer to water + flask
Rxn fast – heat lost to surrounding minimized
Dont need to Plot Temp/time
No extrapolation
Error Analysis
Heat loss to surrounding
Heat capacity sol is not 4.18
Mass MgO ignored
Impurity present
Effervescence cause loss Mg
+ 2HCI
MgCI2 + H2
HCI Flask MgO
+ ½ O2
MgCI2 + H2O
+ 2HCI
MgCI2 + H2O
∆H MgO + 2HCI → MgCI2 + H2O
Mg + ½ O2 → MgO
MgCI2 + H2
+ 2HCI
MgCI2 + H2O
+ ½ O2
limiting
MgCI2 + H2O
Data given
2KHCO3(s) → K2CO3 + CO2 + H2O
∆H = + 51.4 kJ mol -1
Enthalpy change ∆H for rxn using calorimeter
Cold water = 50g
Mass cold water add = 50 g
Mass warm water add = 50 g
Initial Temp flask/cold water = 23.1 C
Initial Temp warm water = 41.3 C
Final Temp flask/mixture= 31 C
2KHCO3(s) → K2CO3 + CO2 + H2O ∆H = ?
Slow rxn – heat lost huge – vacuum flask is used.
Heat capacityof flask must be determined.
1. Find heat capacityflask
Ti = 23.1C
Hot water = 50g
T i = 41.3C
No heat loss from system
(isolated system)
↓
∆H system = O
Heat lost hot H2O=Heat absorbcold H2O+ Heat absorb flask
(mc∆θ) (mc∆θ) (c ∆θ)
50 x 4.18 x (41.3 – 31) = 50 x 4.18 x (31-23.1) + c x (31-23.1)
HCI Flask KHCO3
Heat capacity vacuum, c = 63.5JK-1
Mass KHCO3 = 3.5 g (0.035 mol)
Vol/ConcHCI = 30 g, 2M
T initial mix = 25 C
Tfinal = 20 C
Mass K2CO3 = 2.75 g (0.02 mol)
Vol/Conc HCI = 30 g, 2M
Tinitial mix= 25 C
T final = 28 C
2. Find ∆H 2KHCO3 + 2HCI → 2KCI + 2CO2 + 2H2O
3. Find ∆H K2CO3 + 2HCI → 2KCI + CO2 + H2O
Hess’s Law
∆Hrxn = Heat absorb water + vacuum
(mc∆θ) + (c∆θ)
∆Hrxn = Heat absorb water + vacuum
(mc∆θ) + (c∆θ)
∆Hrxn= 30 x 4.18 x 5 + 63.5 x 5
∆Hrxn= + 0.9 kJ
∆Hrxn= 30 x 4.18 x 3 + 63.5 x 3
∆Hrxn= -0.56 kJ
0.035 mol = + 0.9 kJ
1 mol = + 25.7 kJ mol-1
0.02 mol = - 0.56 kJ
1 mol = - 28 kJ mol-1
∆H = - 28 kJ mol -1
∆H = +51.4 – (-28)
= + 79 kJ mol -1
Assumption
No heat lost from system ∆H = 0
Water has density = 1.00g ml-1
Sol diluted Vol HCI = Vol H2O
All heat transfer to water + vacuum
Rxn fast – heat lost to surrounding minimized
Dont need to Plot Temp/time
No extrapolation
Error Analysis
Heat loss to surrounding
Heat capacity sol is not 4.18
Mass of MgO ignored
Impurity present
Effervescence cause loss Mg
+ 2HCI
HCI Flask K2CO3
2KCI + 2CO2 + 2H2O
+ 2HCI
+ 2HCI
limiting
2KHCO3(s) → K2CO3 + CO2 + H2O
2KCI + CO2 + H2O
2KHCO3 +2HCI → 2KCI + 2CO2 + 2H2O K2CO3 +2HCI → 2KCI + CO2 + H2O
x 2
2KCI + 2CO2 + 2H2O 2KCI + CO2 + H2O
+ 2HCI

Más contenido relacionado

La actualidad más candente

Tang 03 equilibrium law - keq 2
Tang 03   equilibrium law - keq 2Tang 03   equilibrium law - keq 2
Tang 03 equilibrium law - keq 2
mrtangextrahelp
 
Energetics hess's law & born haber cycle
Energetics  hess's law & born haber cycleEnergetics  hess's law & born haber cycle
Energetics hess's law & born haber cycle
Punia Turiman
 
Chemical equilibrium
Chemical equilibriumChemical equilibrium
Chemical equilibrium
Hoshi94
 

La actualidad más candente (20)

Thermochemistry
Thermochemistry  Thermochemistry
Thermochemistry
 
Ch18
Ch18Ch18
Ch18
 
Tang 03 equilibrium law - keq 2
Tang 03   equilibrium law - keq 2Tang 03   equilibrium law - keq 2
Tang 03 equilibrium law - keq 2
 
IB Chemistry on Gibbs Free Energy and Equilibrium constant, Kc
IB Chemistry on Gibbs Free Energy and Equilibrium constant, KcIB Chemistry on Gibbs Free Energy and Equilibrium constant, Kc
IB Chemistry on Gibbs Free Energy and Equilibrium constant, Kc
 
Chapter 5 lecture- Thermochemistry
Chapter 5 lecture- ThermochemistryChapter 5 lecture- Thermochemistry
Chapter 5 lecture- Thermochemistry
 
Tang 05 bond energy
Tang 05   bond energyTang 05   bond energy
Tang 05 bond energy
 
Lesson 3 hess' law
Lesson 3 hess' lawLesson 3 hess' law
Lesson 3 hess' law
 
Chemical kinetics
Chemical kineticsChemical kinetics
Chemical kinetics
 
Chemical equilibrium
Chemical equilibriumChemical equilibrium
Chemical equilibrium
 
Unit 4 chemical kinetics (Class XII)
Unit  4 chemical kinetics (Class XII)Unit  4 chemical kinetics (Class XII)
Unit 4 chemical kinetics (Class XII)
 
Hess's law
Hess's lawHess's law
Hess's law
 
Chemica kinetic 2017
Chemica kinetic 2017Chemica kinetic 2017
Chemica kinetic 2017
 
07 - Structure and Synthesis of Alkenes - Wade 7th
07 - Structure and Synthesis of Alkenes - Wade 7th07 - Structure and Synthesis of Alkenes - Wade 7th
07 - Structure and Synthesis of Alkenes - Wade 7th
 
Chapter 15 Lecture- Chemical Equilibrium
Chapter 15 Lecture- Chemical EquilibriumChapter 15 Lecture- Chemical Equilibrium
Chapter 15 Lecture- Chemical Equilibrium
 
Energetics hess's law & born haber cycle
Energetics  hess's law & born haber cycleEnergetics  hess's law & born haber cycle
Energetics hess's law & born haber cycle
 
Kinetics of Chain reaction
Kinetics of Chain reactionKinetics of Chain reaction
Kinetics of Chain reaction
 
Alkynes
AlkynesAlkynes
Alkynes
 
Ch15
Ch15Ch15
Ch15
 
Chemical equilibrium
Chemical equilibriumChemical equilibrium
Chemical equilibrium
 
Thermochemistry
ThermochemistryThermochemistry
Thermochemistry
 

Destacado

Destacado (20)

IB Chemistry on ICT, 3D software, Avogadro, Jmol, Swiss PDB, Pymol for Intern...
IB Chemistry on ICT, 3D software, Avogadro, Jmol, Swiss PDB, Pymol for Intern...IB Chemistry on ICT, 3D software, Avogadro, Jmol, Swiss PDB, Pymol for Intern...
IB Chemistry on ICT, 3D software, Avogadro, Jmol, Swiss PDB, Pymol for Intern...
 
IB Chemistry on Energetics, Enthalpy Change and Thermodynamics
IB Chemistry on Energetics, Enthalpy Change and ThermodynamicsIB Chemistry on Energetics, Enthalpy Change and Thermodynamics
IB Chemistry on Energetics, Enthalpy Change and Thermodynamics
 
IB Chemistry on HNMR Spectroscopy and Spin spin coupling
IB Chemistry on HNMR Spectroscopy and Spin spin couplingIB Chemistry on HNMR Spectroscopy and Spin spin coupling
IB Chemistry on HNMR Spectroscopy and Spin spin coupling
 
IB Chemistry on Bond Enthalpy and Bond Dissociation Energy
IB Chemistry on Bond Enthalpy and Bond Dissociation EnergyIB Chemistry on Bond Enthalpy and Bond Dissociation Energy
IB Chemistry on Bond Enthalpy and Bond Dissociation Energy
 
IB Chemistry on Absorption Spectrum and Line Emission/Absorption Spectrum
IB Chemistry on Absorption Spectrum and Line Emission/Absorption SpectrumIB Chemistry on Absorption Spectrum and Line Emission/Absorption Spectrum
IB Chemistry on Absorption Spectrum and Line Emission/Absorption Spectrum
 
IB Chemistry on Redox Design and Nernst Equation
IB Chemistry on Redox Design and Nernst EquationIB Chemistry on Redox Design and Nernst Equation
IB Chemistry on Redox Design and Nernst Equation
 
IB Chemistry on Gibbs Free Energy, Equilibrium constant and Cell Potential
IB Chemistry on Gibbs Free Energy, Equilibrium constant and Cell PotentialIB Chemistry on Gibbs Free Energy, Equilibrium constant and Cell Potential
IB Chemistry on Gibbs Free Energy, Equilibrium constant and Cell Potential
 
IB Chemistry on Infrared Spectroscopy
IB Chemistry on Infrared SpectroscopyIB Chemistry on Infrared Spectroscopy
IB Chemistry on Infrared Spectroscopy
 
IB Chemistry on ICT, 3D software, Chimera, Jmol, Swiss PDB, Pymol for Interna...
IB Chemistry on ICT, 3D software, Chimera, Jmol, Swiss PDB, Pymol for Interna...IB Chemistry on ICT, 3D software, Chimera, Jmol, Swiss PDB, Pymol for Interna...
IB Chemistry on ICT, 3D software, Chimera, Jmol, Swiss PDB, Pymol for Interna...
 
IB Chemistry on Stereoisomers, E/Z, Cis Trans, Geometric, Optical and Polarim...
IB Chemistry on Stereoisomers, E/Z, Cis Trans, Geometric, Optical and Polarim...IB Chemistry on Stereoisomers, E/Z, Cis Trans, Geometric, Optical and Polarim...
IB Chemistry on Stereoisomers, E/Z, Cis Trans, Geometric, Optical and Polarim...
 
IB Chemistry on ICT, 3D software, Jmol, Pymol and Rasmol for Internal Assessment
IB Chemistry on ICT, 3D software, Jmol, Pymol and Rasmol for Internal AssessmentIB Chemistry on ICT, 3D software, Jmol, Pymol and Rasmol for Internal Assessment
IB Chemistry on ICT, 3D software, Jmol, Pymol and Rasmol for Internal Assessment
 
IB Chemistry on Entropy and Law of Thermodynamics
IB Chemistry on Entropy and Law of ThermodynamicsIB Chemistry on Entropy and Law of Thermodynamics
IB Chemistry on Entropy and Law of Thermodynamics
 
IB Chemistry on ICT, 3D software, Jmol, Pymol and Rasmol for Internal Assessment
IB Chemistry on ICT, 3D software, Jmol, Pymol and Rasmol for Internal AssessmentIB Chemistry on ICT, 3D software, Jmol, Pymol and Rasmol for Internal Assessment
IB Chemistry on ICT, 3D software, Jmol, Pymol and Rasmol for Internal Assessment
 
IB Chemistry on ICT, 3D software, Jmol, Pymol, Rasmol and ACD for Internal As...
IB Chemistry on ICT, 3D software, Jmol, Pymol, Rasmol and ACD for Internal As...IB Chemistry on ICT, 3D software, Jmol, Pymol, Rasmol and ACD for Internal As...
IB Chemistry on ICT, 3D software, Jmol, Pymol, Rasmol and ACD for Internal As...
 
IB Chemistry on Gibbs Free Energy vs Entropy on spontaniety
IB Chemistry on Gibbs Free Energy vs Entropy on spontanietyIB Chemistry on Gibbs Free Energy vs Entropy on spontaniety
IB Chemistry on Gibbs Free Energy vs Entropy on spontaniety
 
IB Chemistry on Structural Isomers and Benzene Structure
IB Chemistry on Structural Isomers and Benzene StructureIB Chemistry on Structural Isomers and Benzene Structure
IB Chemistry on Structural Isomers and Benzene Structure
 
IB Chemistry on Gibbs Free Energy and Entropy
IB Chemistry on Gibbs Free Energy and EntropyIB Chemistry on Gibbs Free Energy and Entropy
IB Chemistry on Gibbs Free Energy and Entropy
 
IB Chemistry on Crystal Field Theory and Splitting of 3d orbital
IB Chemistry on Crystal Field Theory and Splitting of 3d orbitalIB Chemistry on Crystal Field Theory and Splitting of 3d orbital
IB Chemistry on Crystal Field Theory and Splitting of 3d orbital
 
IB Chemistry on Reactivity Series vs Electrochemical Series
IB Chemistry on Reactivity Series vs Electrochemical SeriesIB Chemistry on Reactivity Series vs Electrochemical Series
IB Chemistry on Reactivity Series vs Electrochemical Series
 
IB Chemistry on Redox, Oxidizing, Reducing Agents and writing half redox equa...
IB Chemistry on Redox, Oxidizing, Reducing Agents and writing half redox equa...IB Chemistry on Redox, Oxidizing, Reducing Agents and writing half redox equa...
IB Chemistry on Redox, Oxidizing, Reducing Agents and writing half redox equa...
 

Similar a IB Chemistry on Hess's Law, Enthalpy Formation and Combustion

IB Chemistry on Hess's Law, Enthalpy Formation and Combustion
IB Chemistry on Hess's Law, Enthalpy Formation and CombustionIB Chemistry on Hess's Law, Enthalpy Formation and Combustion
IB Chemistry on Hess's Law, Enthalpy Formation and Combustion
Lawrence kok
 
Tang 03 enthalpy of formation and combustion
Tang 03   enthalpy of formation and combustionTang 03   enthalpy of formation and combustion
Tang 03 enthalpy of formation and combustion
mrtangextrahelp
 
Kimia lecture
Kimia lectureKimia lecture
Kimia lecture
nanzor
 
Hess's law
Hess's lawHess's law
Hess's law
tanzmanj
 
Module 7 - Energy Balance chemical process calculations
Module 7 - Energy Balance chemical process calculationsModule 7 - Energy Balance chemical process calculations
Module 7 - Energy Balance chemical process calculations
balaaguywithagang1
 
ch6.pptx
ch6.pptxch6.pptx
ch6.pptx
aliabdolkhani4
 
Lect w10 abbrev_ thermochemistry_alg
Lect w10 abbrev_ thermochemistry_algLect w10 abbrev_ thermochemistry_alg
Lect w10 abbrev_ thermochemistry_alg
chelss
 
hess low combustion.pptx
hess low combustion.pptxhess low combustion.pptx
hess low combustion.pptx
houd8
 

Similar a IB Chemistry on Hess's Law, Enthalpy Formation and Combustion (20)

IB Chemistry on Hess's Law, Enthalpy Formation and Combustion
IB Chemistry on Hess's Law, Enthalpy Formation and CombustionIB Chemistry on Hess's Law, Enthalpy Formation and Combustion
IB Chemistry on Hess's Law, Enthalpy Formation and Combustion
 
Tang 03 enthalpy of formation and combustion
Tang 03   enthalpy of formation and combustionTang 03   enthalpy of formation and combustion
Tang 03 enthalpy of formation and combustion
 
Kimia lecture
Kimia lectureKimia lecture
Kimia lecture
 
Energetics1
Energetics1Energetics1
Energetics1
 
Chemical thermodynamics
Chemical thermodynamicsChemical thermodynamics
Chemical thermodynamics
 
Hessslaw 140506102234-phpapp02
Hessslaw 140506102234-phpapp02Hessslaw 140506102234-phpapp02
Hessslaw 140506102234-phpapp02
 
Hess's law
Hess's lawHess's law
Hess's law
 
IB Chemistry on Bond Enthalpy, Enthalpy formation, combustion and atomization
IB Chemistry on Bond Enthalpy, Enthalpy formation, combustion and atomizationIB Chemistry on Bond Enthalpy, Enthalpy formation, combustion and atomization
IB Chemistry on Bond Enthalpy, Enthalpy formation, combustion and atomization
 
For enthalp yrequired
For enthalp yrequiredFor enthalp yrequired
For enthalp yrequired
 
Tang 03 enthalpy of formation and combustion
Tang 03   enthalpy of formation and combustionTang 03   enthalpy of formation and combustion
Tang 03 enthalpy of formation and combustion
 
Module 7 - Energy Balance chemical process calculations
Module 7 - Energy Balance chemical process calculationsModule 7 - Energy Balance chemical process calculations
Module 7 - Energy Balance chemical process calculations
 
ch6.pptx
ch6.pptxch6.pptx
ch6.pptx
 
Ch6 Thermochemistry (old version)
Ch6 Thermochemistry (old version)Ch6 Thermochemistry (old version)
Ch6 Thermochemistry (old version)
 
Enthalpy change
Enthalpy changeEnthalpy change
Enthalpy change
 
unit-6-thermodynamics.ppt
unit-6-thermodynamics.pptunit-6-thermodynamics.ppt
unit-6-thermodynamics.ppt
 
Lect w10 abbrev_ thermochemistry_alg
Lect w10 abbrev_ thermochemistry_algLect w10 abbrev_ thermochemistry_alg
Lect w10 abbrev_ thermochemistry_alg
 
Tang 02 enthalpy and hess' law
Tang 02   enthalpy and hess' lawTang 02   enthalpy and hess' law
Tang 02 enthalpy and hess' law
 
#23 Key
#23 Key#23 Key
#23 Key
 
Pembahasan Soal2 termokimia
Pembahasan Soal2 termokimiaPembahasan Soal2 termokimia
Pembahasan Soal2 termokimia
 
hess low combustion.pptx
hess low combustion.pptxhess low combustion.pptx
hess low combustion.pptx
 

Más de Lawrence kok

Más de Lawrence kok (20)

IA on effect of duration on efficiency of immobilized enzyme amylase (yeast e...
IA on effect of duration on efficiency of immobilized enzyme amylase (yeast e...IA on effect of duration on efficiency of immobilized enzyme amylase (yeast e...
IA on effect of duration on efficiency of immobilized enzyme amylase (yeast e...
 
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
 
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
 
IA on effect of duration on the efficiency of immobilized enzyme amylase (fun...
IA on effect of duration on the efficiency of immobilized enzyme amylase (fun...IA on effect of duration on the efficiency of immobilized enzyme amylase (fun...
IA on effect of duration on the efficiency of immobilized enzyme amylase (fun...
 
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
 
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
 
IA on effect of duration on efficiency of immobilized MnO2 in alginate beads ...
IA on effect of duration on efficiency of immobilized MnO2 in alginate beads ...IA on effect of duration on efficiency of immobilized MnO2 in alginate beads ...
IA on effect of duration on efficiency of immobilized MnO2 in alginate beads ...
 
IA on effect of concentration of sodium alginate and calcium chloride in maki...
IA on effect of concentration of sodium alginate and calcium chloride in maki...IA on effect of concentration of sodium alginate and calcium chloride in maki...
IA on effect of concentration of sodium alginate and calcium chloride in maki...
 
IA on effect of temperature on polyphenol (tannins) of white wine, using pota...
IA on effect of temperature on polyphenol (tannins) of white wine, using pota...IA on effect of temperature on polyphenol (tannins) of white wine, using pota...
IA on effect of temperature on polyphenol (tannins) of white wine, using pota...
 
IA on effect of temperature on polyphenol (tannins) of green tea, using potas...
IA on effect of temperature on polyphenol (tannins) of green tea, using potas...IA on effect of temperature on polyphenol (tannins) of green tea, using potas...
IA on effect of temperature on polyphenol (tannins) of green tea, using potas...
 
IA on effect of duration (steeping time) on polyphenol (tannins) of tea, usin...
IA on effect of duration (steeping time) on polyphenol (tannins) of tea, usin...IA on effect of duration (steeping time) on polyphenol (tannins) of tea, usin...
IA on effect of duration (steeping time) on polyphenol (tannins) of tea, usin...
 
IA on polyphenol (tannins) quantification between green and black tea using p...
IA on polyphenol (tannins) quantification between green and black tea using p...IA on polyphenol (tannins) quantification between green and black tea using p...
IA on polyphenol (tannins) quantification between green and black tea using p...
 
IA on temperature on polyphenol (tannins strawberry) quantification using pot...
IA on temperature on polyphenol (tannins strawberry) quantification using pot...IA on temperature on polyphenol (tannins strawberry) quantification using pot...
IA on temperature on polyphenol (tannins strawberry) quantification using pot...
 
IA on temperature on polyphenol (tannins apple cider) quantification using po...
IA on temperature on polyphenol (tannins apple cider) quantification using po...IA on temperature on polyphenol (tannins apple cider) quantification using po...
IA on temperature on polyphenol (tannins apple cider) quantification using po...
 
IA on effect of temperature on polyphenol (tannins) quantification using pota...
IA on effect of temperature on polyphenol (tannins) quantification using pota...IA on effect of temperature on polyphenol (tannins) quantification using pota...
IA on effect of temperature on polyphenol (tannins) quantification using pota...
 
IA on polyphenol quantification using potassium permanganate titration (Lowen...
IA on polyphenol quantification using potassium permanganate titration (Lowen...IA on polyphenol quantification using potassium permanganate titration (Lowen...
IA on polyphenol quantification using potassium permanganate titration (Lowen...
 
IA on rate of hydrolysis of aspirin at different temperature, measured using ...
IA on rate of hydrolysis of aspirin at different temperature, measured using ...IA on rate of hydrolysis of aspirin at different temperature, measured using ...
IA on rate of hydrolysis of aspirin at different temperature, measured using ...
 
IA on hydrolysis of aspirin in water, duration over 5 days, measured using vi...
IA on hydrolysis of aspirin in water, duration over 5 days, measured using vi...IA on hydrolysis of aspirin in water, duration over 5 days, measured using vi...
IA on hydrolysis of aspirin in water, duration over 5 days, measured using vi...
 
IA on aspirin hydrolysis in different HCI concentration (0.0625 -1M), measure...
IA on aspirin hydrolysis in different HCI concentration (0.0625 -1M), measure...IA on aspirin hydrolysis in different HCI concentration (0.0625 -1M), measure...
IA on aspirin hydrolysis in different HCI concentration (0.0625 -1M), measure...
 
IA on aspirin hydrolysis in different medium, water vs acid (1M) medium, meas...
IA on aspirin hydrolysis in different medium, water vs acid (1M) medium, meas...IA on aspirin hydrolysis in different medium, water vs acid (1M) medium, meas...
IA on aspirin hydrolysis in different medium, water vs acid (1M) medium, meas...
 

Último

Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
ZurliaSoop
 

Último (20)

UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfUGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
 
Single or Multiple melodic lines structure
Single or Multiple melodic lines structureSingle or Multiple melodic lines structure
Single or Multiple melodic lines structure
 
Exploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptx
Exploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptxExploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptx
Exploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptx
 
SOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning PresentationSOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning Presentation
 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docx
 
Sociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning ExhibitSociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning Exhibit
 
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
 
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptxHMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
 
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
 
How to Add New Custom Addons Path in Odoo 17
How to Add New Custom Addons Path in Odoo 17How to Add New Custom Addons Path in Odoo 17
How to Add New Custom Addons Path in Odoo 17
 
Plant propagation: Sexual and Asexual propapagation.pptx
Plant propagation: Sexual and Asexual propapagation.pptxPlant propagation: Sexual and Asexual propapagation.pptx
Plant propagation: Sexual and Asexual propapagation.pptx
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
 
FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdf
 
Micro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfMicro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdf
 
Fostering Friendships - Enhancing Social Bonds in the Classroom
Fostering Friendships - Enhancing Social Bonds  in the ClassroomFostering Friendships - Enhancing Social Bonds  in the Classroom
Fostering Friendships - Enhancing Social Bonds in the Classroom
 
Jamworks pilot and AI at Jisc (20/03/2024)
Jamworks pilot and AI at Jisc (20/03/2024)Jamworks pilot and AI at Jisc (20/03/2024)
Jamworks pilot and AI at Jisc (20/03/2024)
 
Towards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptxTowards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptx
 
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
 
Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024
 

IB Chemistry on Hess's Law, Enthalpy Formation and Combustion

  • 1. CO(g) ∆H2 ∆H2 ∆H1 = -394 CO2(g) C(s) + ½ O2(g) CO(g) + ½ O2 C(s) + O2(g) CO2(g) A E B C D ∆H6∆H5 ∆H4∆H2 Hess’s Law C(s) + O2(g) CO2(g) Overall ∆H rxn is independent ofits pathway ∆H rxn in series steps = sum of enthalpychangesfor individualsteps ∆H1 ∆H2 ∆H4 ∆H1 ∆H3 EnergyLevel or Cycle Diagram to find ΔH State function- propertyof system whose magnitude dependon initial and final state ∆H3 A → D A → B → C → D ∆H1 = H2 + H3 + H4 ∆H A → E is same regardlessof its path Final state A → E A → C→ D → E ∆H1 = H2 + H3 + H4 A → E A → B → E ∆H1 = H5 + H6 Initial stateInitial state Final state ∆H3 = -283 ∆H1 = ∆H2 + ∆H3 EnergyLevel Diagram 2 2 1 O ∆H2 = H1 - H3 = -394 +283 = -111 kJ mol-1 ∆H3 = -283 2 2 1 O EnergyCycle Diagram ∆H1 = -394 ∆H2 = H1 - H3 = -394 +283 = -111 kJ mol-1 Path not impt !!!! ∆H1 = ∆H2 + ∆H3 C(s) + O2 → CO2 (g) ∆H1 = -394 C (s) + ½ O2 → CO(g) ∆H2 = ??? CO(g) + ½ O2 → CO2 (g) ∆H3 = -283+ Hess’s Law Find ∆H cannot be measured directly/experimentally C(s) + 1/2O2 → CO(g) ∆H2 ????
  • 2. SO2(g) ∆H2 ∆H2 ∆H1 = -395 SO3(g) S(s) + O2(g) SO2(g) + ½O2 S(s) + 3/2O2(g) SO3(g) A E B C D ∆H6∆H5 ∆H4∆H2 Hess’s Law S(s) + 3/2O2(g) SO3(g) Overall ∆H rxn is independent ofits pathway ∆H rxn in series steps = sum of enthalpychangesfor individualsteps ∆H1 ∆H2 ∆H4 ∆H1 ∆H3 EnergyLevel or Cycle Diagram to find ΔH State function- propertyof system whose magnitude dependon initial and final state ∆H3 A → D A → B → C → D ∆H1 = H2 + H3 + H4 ∆H A → E is same regardlessof its path Final state A → E A → C→ D → E ∆H1 = H2 + H3 + H4 A → E A → B → E ∆H1 = H5 + H6 Initial stateInitial state Final state ∆H3 = -98 ∆H1 = ∆H2 + ∆H3 EnergyLevel Diagram Find ∆H cannot be measured directly/experimentally ∆H2 = H1 - H3 = -395 + 98 = - 297 kJ mol-1 ∆H3 = - 98 2 2 1 O EnergyCycle Diagram ∆H1 = -395 ∆H2 = H1 - H3 = - 395 + 98 = - 297 kJ mol-1 Path not impt !!!! Hess’s Law ∆H1 = ∆H2 + ∆H3 S(s) + 3/2O2 → SO3 (g) ∆H1 = -395 S(s) + O2 → SO2(g) ∆H2 = ??? SO2(g) + ½O2 → SO3 (g) ∆H3 = -98+ O2 S(s) + O2 → SO2(g) ∆H2 ?????
  • 3. N2(g) + 2O2(g)N2(g) + 2O2(g) N2O4(g) 2NO2(g) ∆H1 N2O4(g) ∆H1 ∆H2 = + 33 2NO2(g) A E B C D ∆H6∆H5 ∆H4∆H2 Hess’s Law N2(g) + 2O2(g) 2NO2(g) Overall ∆H rxn is independent ofits pathway ∆H rxn in series steps = sum of enthalpychangesfor individualsteps ∆H1 ∆H2 ∆H4 ∆H1 ∆H3 EnergyLevel or Cycle Diagram to find ΔH State function- propertyof system whose magnitude dependon initial and final state ∆H3 A → D A → B → C → D ∆H1 = H2 + H3 + H4 ∆H A → E is same regardlessof its path Final state A → E A → C→ D → E ∆H1 = H2 + H3 + H4 A → E A → B → E ∆H1 = H5 + H6 Initial stateInitial state Final state ∆H3 = + 9 EnergyLevel Diagram Find ∆H cannot be measured directly/experimentally ∆H3 = + 9 EnergyCycle Diagram ∆H2 = + 33 ∆H1 = H2 + H3 = -33 + 9 = - 24 kJ mol-1 Path not impt !!!! Hess’s Law ∆H1 = ∆H2 + ∆H3 N2(g)+ 2O2 → 2NO2(g) ∆H2 = +33 2NO2 → N2+ 2O2 ∆H2 = - 33 N2(g) + 2O2 → N2O4(g) ∆H3 = + 9+ 2NO2(g) → N2O4(g) ∆H1 = ? ∆H1 = ∆H2 + ∆H3 ∆H1 = H2 + H3 = -33 + 9 = - 24 kJ mol-1 inverse 2NO2(g) → N2O4(g) ∆H = -24
  • 4. ∆Hf θ (reactant) ∆Hf θ (product) Using Std ∆Hf θ formationto find ∆H rxn ∆H when 1 mol form from its element under std condition Na(s) + ½ CI2(g) → NaCI (s) ∆Hf θ = - 411 kJ mol -1 Std Enthalpy Changes ∆Hθ Std condition Pressure 100kPa Temp 298K Conc 1M All substance at std states Hess’s Law Std ∆Hf θ formation Mg(s) + ½ O2(g) → MgO(s) ∆Hf θ =- 602 kJ mol -1 Reactants Products O2(g) → O2 (g) ∆Hf θ = 0 kJ mol -1 ∆Hrxn θ = ∑∆Hf θ (products) - ∑∆Hf θ (reactants) ∆Hf θ (products)∆Hf θ (reactants) ∆Hrxn θ Elements Std state solid gas 2C(s) + 3H2(g)+ ½O2(g) → C2H5OH(I) ∆Hf θ =- 275 kJ mol -1 1 mole formed H2(g) + ½O2(g) → H2O(I) ∆Hf θ =- 286 kJ mol -1 Std state solid gas 1 mol liquid For element Std ∆Hf θ formation= 0 Mg(s)→ Mg(s) ∆Hf θ = 0 kJ mol -1 No product form Using Std ∆Hf θ formationto find ∆H of a rxn Click here chem database (std formation enthalpy) Click here chem database (std formation enthalpy) C2H4 + H2 C2H6 Find ΔHθ rxn using std ∆H formation Reactants Products 2C + 3H2 Elements C2H4 + H2 → C2H6 ∆Hrxn θ ∆Hrxn θ = ∑∆Hf θ (pro) - ∑∆Hf θ (react) ∆Hrxn θ = Hf θ C2H6 - ∆Hf θ C2H4+ H2 = - 84.6 – ( + 52.3 + 0 ) = - 136.9 kJ mol -1
  • 5. 2CH4(g) + 4O2(g) → 4H2O + 2CO2(s) ∆Hc θ = - 890 x 2 = - 1780 kJ mol -1 Std ∆Hf θ formationto find ∆H rxn ∆H when 1 mol form from its element under std condition Na(s) + ½ CI2(g) → NaCI (s) ∆Hf θ = - 411 kJ mol -1 Hess’s Law Std ∆Hf θ formation Mg(s) + ½ O2(g) → MgO(s) ∆Hf θ =- 602 kJ mol -1 Reactants Products ∆Hrxn θ = ∑∆Hf θ (products) - ∑∆Hf θ (reactants) ∆Hf θ (products)∆Hf θ (reactants) ∆Hrxn θ Elements Std state solid gas 1 mole formed Total amt energyreleased/absorbed α mol reactants CH4(g) + 2O2(g) → 2H2O + CO2(s) ∆Hc θ = - 890 kJ mol -1 ΔH reverse EQUAL in magnitude but opposite sign to ΔH forward Na+ (g) + CI_ (g) → NaCI(s) ∆Hlatt θ = - 770 kJ mol -1 NaCI(s) → Na+ (g) + CI_ (g) ∆Hlatt θ = + 770 kJ mol -1 H2(g) + ½O2(g) → H2O(I) ∆Hf θ =- 286 kJ mol -1 H2(g) + ½O2(g) → H2O(I) ∆Hc θ =- 286 kJ mol -1 Compound NaF NaCI NaBr NaI Hf θ(kJ mol-1) -573 -414 -361 -288 More ↑ – ve formation ↓ More ↑heat releasedto surrounding ↓ More ↑ energetically stable (lower in energy) ↓ Do not decomposeeasily Subs Na2O MgO AI2O3 Hf θ -416 -602 -1670 Subs P4O10 SO3 CI2O7 Hf θ -3030 -390 +250 1 mole formed 2 mole formedx 2 О О ∆Hf θ formationvs ∆Hc θ combustion ∆H Form - std state liquid ∆H Comb - std state liquid More –ve – more stable Across Period3 ↓ ∆H – more ↑ –ve ↓ Lower in energy ↓ Oxides more stable Across Period3 ↓ ∆H – more ↑ +ve ↓ Higherin energy ↓ Oxides less stable – decomposeeasily ∆Hf = ∆Hc
  • 6. ∆Hrxn C2H4 + H2 C2H6 C2H6 + 3.5 O2 2CO2 + 3 H2O ∆Hf θ (reactant) ∆Hf θ (product) Hess’s Law Std ∆Hf θ formationto find ∆H rxn Reactants Products ∆Hrxn θ ∆Hf θ (product)∆Hf θ (reactant) Elements ∆Hf θ - 85 0 - 393 - 286 Reactants Products ∆Hrxn θ = ∑∆Hf θ (pro) - ∑∆Hf θ (react) ∆Hrxn θ = - 1644 - ( - 85 ) = - 1559 kJ mol -1 - 85 0 - 858 - 786 x 2 x 3 C2H4 + H2 C2H6 ∆Hrxn θReactants Products 2C + 3H2 ∆Hf θ + 52 o - 85 Reactants Products ∆Hrxn θ = ∑∆Hf θ (pro) - ∑∆Hf θ (react) ∆Hrxn θ = - 85 - ( + 52 ) = - 137 kJ mol -1 C2H6 + 3.5 O2 2CO2 + 3 H2O 2C + 3H2 + 3.5O2 EnergyLevel Diagram 2CO2 + 3H2O 2C + 3H2 + 3.5O2 C2H6 + 3.5 O2 ∆Hf θ = -85 ∆Hf θ = - 393 ∆Hf θ = 0 2C + 3H2 + 3.5O2 Elements Reactants Products ∆Hf θ = - 286 ∆Hrxn= (- 393 x 2 + -286 x 3) – (- 85 + 0) = - 1559 kJ mol-1 x 2 x 3 C2H4 + H2 Reactants C2H6 ∆Hrxn = - 85 – ( + 52 + 0 ) = - 137 kJ mol-1 2C + 2H2 + H2 ∆Hf θ = + 52 ∆Hf θ = 0 ∆Hrxn Products 2C + 3H2 Elements ∆Hf θ = - 85 Elements
  • 7. ∆Hf θ (reactant) ∆Hf θ (product) ∆Hf θ (reactant) ∆Hf θ (product) Using Std ∆Hf θ formationto find ∆H rxn Hess’s Law Reactants Products ∆Hrxn θ = ∑∆Hf θ (products) - ∑∆Hf θ (reactants) ∆Hf θ (products)∆Hf θ (reactants) ∆Hrxn θ Elements 2H2S + SO2 3S + 2H2O Find ΔHθ rxn using std ∆H formation Reactants Products 3S + O2 + 2H2 Elements ∆Hrxn θ ∆Hrxn θ = ∑∆Hf θ (pro) - ∑∆Hf θ (react) ∆Hrxn θ = - 572 - ( - 338 ) = - 234 kJ mol -1 2H2S + SO2 → 3S + 2H2O ∆Hf θ - 20.6 - 297 0 - 286 - 41.2 - 297 0 - 572 x 2 x 2 Reactants Products Using Std ∆Hf θ formationto find ∆H rxn Reactants Products ∆Hrxn θ ∆Hf θ (product)∆Hf θ (reactant) 4C + 12H2 + 9N2 + 10O2 Elements ∆Hf θ + 53 - 20 - 393 - 286 0 Reactants Products ∆Hrxn θ = ∑∆Hf θ (pro) - ∑∆Hf θ (react) ∆Hrxn θ = - 5004 - ( +112 ) = - 5116 kJ mol -1 4CH3NHNH2 + 5N2O4 4CO2 + 12H2O + 9N2 4CH3NHNH2 + 5N2O4 4CO2 + 12H2O + 9N2 + 212 - 100 - 1572 - 3432 0 x 4 x 5 x 4 x 12 NH4NO3 N2O + 2H2O ∆Hrxn θReactants Products N2 + 2H2 + 3/2O2 NH4NO3 N2O + 2H2O ∆Hf θ - 366 + 82 - 286 x 2 Reactants Products ∆Hrxn θ = ∑∆Hf θ (pro) - ∑∆Hf θ (react) ∆Hrxn θ = - 488 - ( - 366 ) = - 122 kJ mol -1 Elements
  • 8. ∆Hc θ (reactant) ∆Hc θ (product) ∆Hc θ combustion to find ∆H formationof hydrocarbon ∆H when 1 mol completelyburnt in oxygen under std condition Std Enthalpy Changes ∆Hθ Std condition Pressure 100kPa Temp 298K Conc 1M All substance at std states Hess’s Law Std ∆Hc θ combustion C(s) + O2(g) → CO2(g) ∆Hc θ = - 395 kJ mol -1 Reactants Products ∆Hrxn θ = ∑∆Hc θ (reactant) - ∑∆Hc θ (product) ∆Hc θ (product)∆Hc θ (reactant) ∆Hrxn θ Combusted products 1 mole combusted H2(g) + ½O2(g) → H2O(I) ∆Hc θ = - 286 kJ mol -1 Std ∆Hc θ combustionto find ∆H of a rxn Click here chem database (std combustion enthalpy) Click here chem database (std combustion enthalpy) Find ΔHθ formation using std ∆H comb Reactants Products 2CO2 + 3H2O ∆Hrxn θ ∆Hrxn θ = ∑∆Hc θ (react) - ∑∆Hc θ (pro) ∆Hrxn θ = Hc θ ( C + H2 )- ∆Hc θ C2H6 = 2 x (-395) + 3 x (-286) – (-1560) = - 88 kJ mol -1 H2(g) + ½O2(g) → H2O(I) ∆Hc θ = - 286 kJ mol -1 C(s) + O2(g) → CO2(g) ∆Hc θ = - 395 kJ mol -1 Combustion H2 = formationof H2O ∆Hc = ∆Hf Combustion C = formationof CO2 ∆Hc = ∆Hf Using combustion data 2C(s) + 3H2(g) → C2H6(g) ∆Hf θ = - 84 kJ mol -1 2C(s) + 3H2(g) + ½O2(g) → C2H5OH(I) ∆Hf θ = - 275 kJ mol -1 2C + 3H2 C2H6 + 3.5O2 + 3.5O2 x 2 x 3 How enthalpy formationhydrocarbonobtained ?
  • 9. -790 -858 - 1371 2 C + 3H2 + 3.5O2 C2H5OH ∆Hc θ (reactant) ∆Hc θ (product) ∆Hrxn θ = ∑∆Hc θ (react) - ∑∆Hc θ (pro) = 2 x (-395) + 3 x (-286) – (-1560) = - 88 kJ mol -1 Reactants Products 2 C + 3H2 + 3.5O2 C2H5OH 2C + 3H2 C2H6 2C + 3H2 C2H6 ∆Hc θ comb to find ∆Hf formationof hydrocarbon ∆Hrxn Hess’s Law Reactants Products ∆Hrxn θ ∆Hc θ (product)∆Hc θ (reactant) ∆Hc θ -395 -286 - 1560 Reactants Products - 790 -858 - 1560 x 2 ∆Hrxn θ Reactants Products EnergyLevel Diagram ∆Hc θ = -395 ∆Hc θ = - 1560 ∆Hc θ = -286 Combustedproducts Reactants Products ∆Hrxn = (- 395 x 2 + -286 x 3) – (-1560 ) = - 88 kJ mol-1 Reactants ∆Hrxn Products ∆Hc θ = - 1371 2CO2 + 3H2O x 3 2C + 3H2 C2H6 2CO2 + 3H2O 2CO2 + 3H2O x 2 x 3 2 C + 3H2 + 3.5O2 2CO2 + 3H2O ∆Hc θ -395 -286 - 1371 ∆Hrxn θ = ∑∆Hc θ (react) - ∑∆Hc θ (pro) = 2 x (-395) + 3 x (-286) – (-1371) = - 275 kJ mol -1 x 2 x 3 C2H5OH ∆Hc θ = -395 x 2 ∆Hc θ = -286 x 3 2CO2 + 3H2O Combustedproducts 2CO2 + 3H2O ∆Hrxn = (- 395 x 2 + -286 x 3) – (-1371 ) = - 275 kJ mol-1 + 3.5O2 + 3.5O2 + 3.5O2 + 3.5O2
  • 10. 3C2H2 C6H6 ∆Hc θ (reactant) ∆Hc θ (product) ∆Hrxn θ = ∑∆Hc θ (react) - ∑∆Hc θ (pro) = 6 x (-395) + 3 x (-286) – (-3271) = + 49 kJ mol -1 Reactants Products 3 C2H2 C6H6 6C + 3H2 C6H6 6C + 3H2 C6H6 ∆Hc θ comb to find ∆Hf formationof hydrocarbon ∆Hrxn Hess’s Law Reactants Products ∆Hrxn θ ∆Hc θ (product)∆Hc θ (reactant) ∆Hc θ -395 -286 - 3271 Reactants Products -2370 -858 - 3271 x 6 ∆Hrxn θ Reactants Products EnergyLevel Diagram ∆Hc θ = -395 ∆Hc θ = - 3271 ∆Hc θ = -286 Combustedproducts Reactants Products ∆Hrxn = (- 395 x 6 + -286 x 3) – (-3271 ) = + 49 kJ mol-1 Reactants ∆Hrxn Products ∆Hc θ = - 3270 6CO2 + 3H2O x 3 6C + 3H2 C6H6 6CO2 + 3H2O 6CO2 + 3H2O x 6 x 3 3 C2H2 6CO2 + 3H2O ∆Hc θ -1300 - 3270 ∆Hrxn θ = ∑∆Hc θ (react) - ∑∆Hc θ (pro) = 3 x (- 1300) – (-3270) = - 630 kJ mol -1 x 3 C6H6 ∆Hc θ = -1300 x 3 6CO2 + 3H2O Combustedproducts 6CO2 + 3H2O ∆Hrxn = (- 1300 x 3 ) – (-3270 ) = - 630 kJ mol-1 -3900 - 3270 Combustion C2H2 + 7.5O2 + 7.5O2 + 7.5O2 + 7.5O2
  • 11. Reactants Products CH2 =CHCH3 + H2 → CH3CH2CH3 CH2 = CHCH3 + H2 CH3CH2CH3 Reactants Products ∆Hc θ (reactant) ∆Hc θ (product) ∆Hrxn θ = ∑∆Hc θ (react) - ∑∆Hc θ (pro) = ( -1411) + (-286) – (-1560) = - 137 kJ mol -1 C2H4 + H2 C2H6 ∆Hc θ comb to find ∆Hf formationof hydrocarbon ∆Hrxn Hess’s Law Reactants Products ∆Hrxn θ ∆Hc θ (product)∆Hc θ (reactant) ∆Hc θ -1411 -286 - 1560 Reactants Products ∆Hrxn θ EnergyLevel Diagram ∆Hc θ = -1411 ∆Hc θ = - 1560 ∆Hc θ = -286 Combustedproducts Reactants Products ∆Hrxn = (-1411)+ (-286)– (-1560)= - 137 kJ mol-1 Reactants ∆Hrxn Products ∆Hc θ = - 2222 2CO2 + 3H2O C6H6 2CO2 + 2H2O 2CO2 + 3H2O 3CO2 + 4H2O ∆Hc θ - 2060 -286 - 2222 ∆Hrxn θ = ∑∆Hc θ (react) - ∑∆Hc θ (pro) = (-2060) + (-286) – (-2222) = - 124 kJ mol -1 ∆Hc θ = -2060 3CO2 + 3H2O Combustedproducts 3CO2 + 4H2O ∆Hrxn = (-2060)+ (-286) – (-2222 ) = - 124 kJ mol-1 Combustion CH2 =CHCH3 C2H4 + H2 C2H6 C2H4 + H2 + H2O Combustion C2H4 CH3CH2CH3 CH2=CHCH3 + H2 ∆Hc θ = -286 + H2O + 3.5O2 + 3.5O2 + 5O2 + 5O2
  • 12. ∆Hc Std ∆Hf θ formationto find ∆H rxn 2H2S + SO2 → 2H2O + 3S ∆Hrxn = ? ∆Hf θ - 21 x 2 - 297 - 286 x 2 0 ∆Hrxn θ = ∑∆Hf θ (pro) - ∑∆Hf θ (react) ∆Hrxn θ = - 572 - ( - 339 ) = - 233 kJ mol -1 Reactants Products IB Question ∆Hf and ∆Hc 1 2 2 Pb(NO3)2 → 2PbO + 4 NO2 + O2 ∆Hrxn = ? ∆Hf θ - 444 x 2 - 218 x 2 + 34 x 4 0 Std ∆Hf θ formationto find ∆H rxn Reactants Products ∆Hrxn θ = ∑∆Hf θ (pro) - ∑∆Hf θ (react) ∆Hrxn θ = - 300 - ( - 888 ) = + 588 kJ mol -1 ∆Hc θ comb to find ∆Hf formation of C6H6 (Benzene) 6C + 3H2 → C6H6 ∆H form= ? ∆Hc θ -395 x 6 -286 x 3 - 3271 ∆Hrxn θ = ∑∆Hc θ (react) - ∑∆Hc θ (pro) = 6 x (-395) + 3 x (-286) – (-3271) = + 49 kJ mol -1 Reactants Products 2C + 3H2 + 3.5O2 → C2H5OH ∆Hform= ? ∆Hc θ -395 x 2 -286 x 3 - 1371 ∆Hrxn θ = ∑∆Hc θ (react) - ∑∆Hc θ (pro) = 2 x (-395) + 3 x (-286) – (-1371) = - 275 kJ mol -1 ∆Hc θ comb to find ∆Hf formation of C2H5OH (Ethanol) Reactants Products Combustion C / H2 to CO2 and H2O C2H4 + H2 → C2H6 ∆H rxn = ? ∆Hc θ comb to find ∆Hrxn of C2H6 ∆Hrxn θ = ∑∆Hc θ (react) - ∑∆Hc θ (pro) = ( -1411) + (-286) – (-1560) = - 137 kJ mol -1 ∆Hc θ -1411 -286 - 1560 Reactants Products Find ∆Hc using ∆H provided CH2 = CHCH3 + H2 CH3CH2CH3 3CO2 + 4H2O CH2 =CHCH3 + H2 → CH3CH2CH3 ∆Hc θ x -286 - 2222 ∆Hrxn θ = ∑∆Hc θ (react) - ∑∆Hc θ (pro) - 124 = x + (-286) – (-2222) x = - 2060 kJ mol -1 Reactants Products ∆H = -2222 ∆H = - 124 CH2 = CHCH3 + H2 → CH3CH2CH3 ∆H = -124 CH3CH2CH3 + 5O2 → 3CO2 + 4H2O ∆H = -2222 H2 + ½ O2 → H2O ∆H = -28.6Combustion of hydrocarbon Formation Enthalpy use NOT Formation Enthalpy use
  • 13. Diamondunstablerespect tographite ↓ Kineticallystable (High Ea) ↓ Wont decompose spontaneous ∆H = - 98 ∆H = - 187 H2O(I) + 1/2O2(g) H2O2(I) H2(g) + O2(g) ∆H2= -111 ∆H1 = -394 CO2(g) C(s) + ½ O2(g) CO(g) + ½ O2 C(s) + O2(g) CO2(g) ∆H3 = -283 Energy Level Diagram Energy Cycle Diagram Energetic stabilityvs Kinetic stability C(s) + O2(g) → CO2 ∆H = - 394 C(s) + 1.5O2(g) → CO ∆H = - 111 CO(g) + 1.5O2(g) → CO2 ∆H = - 283 Lower in energy ( -ve ∆H) ↓ Thermodynamicallymore stable ∆H = - ve All are thermodynamically stable (-ve ∆H) ↓ More heat released to surrounding Lower in energy ↓ Both oxides (CO2/CO) are thermodynamically ↓ Stable with respect to their element (C and O2) H2(g) + O2(g) → H2O2 ∆H = - 187 H2O2(I) → H2O+ O2 ∆H = - 98 C(diamond) → C (graphite) C(diamond) → C (graphite) ∆H = - 2 Diamond forever H2O2 unstable respect to H2O/O2 ↓ Kineticallystable (High Ea) ↓ Wont decompose spontaneous All are thermodynamically stable (-ve ∆H) ↓ More heat released (lower energy) ↓ H2O2 thermodynamically more stable with respect to its elements H2/O2 ↓ H2O2 unstable with respect to H2O and O2 Will decompose to lower energy (stable) High Activation energy Kinetically stable Wont decompose ∆H = - ve H2O (I) + O2 H2O2(I)∆H = - ve High Activation energy Kinetically stable Wont decompose C + O2 energeticallyunstablerespect to CO2 ↓ Kineticallystable (High Ea) ↓ Wont react spontaneousunless ignited! C + O2 CO2(g) High Activation energy Kinetically stable Wont decompose C graphite thermodynamically more stable with respect diamond ↓ Will diamond decompose to graphite ? ∆H = - ve Diamond Graphite
  • 14. ∆H = - 50 – (+12) = - 62 kJ mol -1 ∆H = - 50 kJ mol -1 Cold water = 50g CuSO4 .100H2O CuSO4 (s) + 95H2O → CuSO4 .100H2O CuSO4 (s) + 100H2O → CuSO4 .100H2O Mass cold water add = 50 g Mass warm water add = 50 g Initial Temp flask/cold water = 23.1 C Initial Temp warm water = 41.3 C Final Temp mixture = 31 C CuSO4 (s) + 5H2O → CuSO4 .5H2O ∆H = ? Slow rxn – heat lost huge – flask used. Heat capacityflask must be determined. CuSO4 (s) + 5H2O → CuSO4 .5H2O 1. Find heat capacityflask Ti = 23.1C Hot water = 50g T i = 41.3C No heat loss from system (isolated system) ↓ ∆H system = O Heat lost hot H2O=Heat absorbcold H2O+ Heat absorb flask (mc∆θ) (mc∆θ) (c ∆θ) 50 x 4.18 x (41.3 – 31) = 50 x 4.18 x (31-23.1) + c x (31-23.1) Water Flask CuSO4 Heat capacity flask, c = 63.5JK-1 Mass CuSO4 = 3.99 g (0.025mol) Mass water = 45 g T initial flask/water= 22.5 C Tfinal = 27.5 C Mass CuSO4 5H2O = 6.24 g (0.025mol) Mass water = 42.75 g Tinitial flask/water= 23 C T final = 21.8 C 2. Find ∆H CuSO4 + 100H2O → CuSO4 .100H2O 3. Find ∆H CuSO4 .5H2O + 95H2O → CuSO4 .100H2O Hess’s Law CuSO4 + H2O → CuSO4 .100H2O CuSO4 .5H2O + H2O → CuSO4 .100H2O Water Flask CuSO4 5H2O ∆Hrxn = Heat absorb water + vacuum (mc∆θ) + (c∆θ) ∆Hrxn = Heat absorb water + vacuum (mc∆θ) + (c∆θ) ∆Hrxn= 45 x 4.18 x 5 + 63.5 x 5 ∆Hrxn= - 1.25 kJ ∆Hrxn= 42.75 x 4.18 x 1.2 + 63.5 x 1.2 ∆Hrxn= + 0.299 kJ 0.025 mol = - 1.25 kJ 1 mol = - 50 kJ mol-1 0.025 mol = + 0.299 kJ 1 mol = + 12 kJ mol-1 CuSO4 (s) + 5H2O → CuSO4 .5H2O CuSO4 .100H2O ∆H = + 12 kJ mol -1 Assumption No heat lost from system ∆H = 0 Water has density = 1.0 gml-1 Sol diluted Vol CuSO4 = Vol H2O All heat transferto water + flask Rxn slow – lose heat to surrounding Plot Temp/time – extrapolation done, Temp correction limiting Enthalpy change ∆H - using calorimeter without temp correction Lit value = - 78 kJ mol -1 CONTINUE
  • 15. Time/m 0 0.5 1 1.5 2 2.5 3 3.5 4 Temp/C 22 22 22 22 2 2 27 28 27 26 ∆H = - 60 kJ mol -1 CuSO4 .100H2O CuSO4 (s) + 95H2O → CuSO4 .100H2O CuSO4 (s) + 100H2O → CuSO4 .100H2O CuSO4 (s) + 5H2O → CuSO4 .5H2O ∆H = ? CuSO4 (s) + 5H2O → CuSO4 .5H2O Water Flask CuSO4 Mass CuSO4 = 3.99 g (0.025 mol) Mass water = 45 g T initial mix = 22 C Tfinal = 28 C Mass CuSO4 5H2O = 6.24 g (0.025 mol) Mass water = 42.75 g Tinitial mix = 23 C T final = 21 C Find ∆H CuSO4 + 100H2O → CuSO4 .100H2O Find ∆H CuSO4 .5H2O + 95H2O → CuSO4 .100H2O Hess’s Law CuSO4 + H2O → CuSO4 .100H2O CuSO4 .5H2O + H2O → CuSO4 .100H2O Water Flask CuSO4 5H2O ∆Hrxn = Heat absorb water + flask (mc∆θ) + (c∆θ) ∆Hrxn = Heat absorb water + flask (mc∆θ) + (c∆θ) ∆Hrxn= 45 x 4.18 x 6 + 63.5 x 6 ∆Hrxn= - 1.5 kJ ∆Hrxn= 42.75 x 4.18 x 2 + 63.5 x 2 ∆Hrxn= + 0.48kJ 0.025 mol = - 1.5 kJ 1 mol = - 60 kJ mol-1 0.025 mol = + 0.48 kJ 1 mol = + 19 kJ mol-1 CuSO4 (s) + 5H2O → CuSO4 .5H2O CuSO4 .100H2O ∆H = + 19 kJ mol -1 ∆H = - 60 – (+19) = - 69 kJ mol -1 Rxn slow – lose heat to surrounding Plot Temp/time – extrapolation done, Temp correction limiting Enthalpy change ∆H using calorimeter Datacollection Temp correction – using cooling curve for last 5 m time, x = 2 initial Temp = 22 C final Temp = 28 C Extrapolation best curve fit y = -2.68x+ 33 y = -2.68 x 2 + 33 y = 28 (Max Temp) Excel plot CuSO4 + H2O → CuSO4 .100H2O (Exothermic) Heat released CuSO4 .5H2O + H2O → CuSO4 .100H2O (Endothermic) – Heat absorbed Temp correction – using warming curve for last 5 m Time/m 0 0.5 1 1.5 2 2.5 3 3.5 4 Temp/C 23 23 23 23 2 3 22 22 22.4 22.7 initial Temp = 23 C time, x = 2 final Temp = 21 C Excel plot Extrapolation curve fit y = + 0.8 x + 19.4 y = + 0.8 x 2 + 19.4 y = 21 (Min Temp) Lit value = - 78 kJ mol -1 with temp correction
  • 16. ∆H = - 113 kJ mol -1 Enthalpy change ∆H using calorimeter Cold water = 50 g MgSO4 .100H2O MgSO4.7H2O + 93H2O → MgSO4 .100H2O MgSO4 + 100H2O → MgSO4 .100H2O Mass cold water add = 50 g Mass warm water add = 50 g Initial Temp flask/cold water = 23.1 C Initial Temp warm water = 41.3 C Final Temp flask/mixture= 31 C MgSO4 (s) + 7H2O → MgSO4 .7H2O ∆H = ? Slow rxn – heat lost huge – flask used. Heat capacityflask must be determined. MgSO4(s) + 7H2O → MgSO4 .7H2O 1. Find heat capacityflask Ti = 23.1 C Hot water = 50 g T i = 41.3 C No heat loss from system (isolated system) ↓ ∆H system = O Heat lost hot H2O=Heat absorbcold H2O+ Heat absorb flask (mc∆θ) (mc∆θ) (c ∆θ) 50 x 4.18 x (41.3 – 31) = 50 x 4.18 x (31-23.1) + c x (31-23.1) Water Flask MgSO4 Heat capacity flask, c = 63.5JK-1 Mass MgSO4 = 3.01 g (0.025mol) Mass water = 45 g T initial mix = 24.1 C Tfinal = 35.4 C Mass MgSO4 7H2O = 6.16 g (0.025mol) Mass water = 41.8 g Tinitial mix= 24.8 C T final = 23.4 C 2. Find ∆H MgSO4 +100H2O → MgSO4 .100H2O 3. Find ∆H MgSO4 .7H2O + 93H2O → MgSO4 .100H2O Hess’s Law MgSO4 + H2O → MgSO4 .100H2O MgSO4 .7H2O + H2O → MgSO4 .100H2O Water Flask MgSO4 .7H2O ∆Hrxn = Heat absorb water + flask (mc∆θ) + (c∆θ) ∆Hrxn = Heat absorb water + flask (mc∆θ) + (c∆θ) ∆Hrxn= 45 x 4.18 x 11.3 + 63.5 x 11.3 ∆Hrxn= - 2.83 kJ ∆Hrxn= 41.8 x 4.18 x 1.4 + 63.5 x 1.4 ∆Hrxn= + 0.3 kJ 0.025 mol = - 2.83 kJ 1 mol = - 113 kJ mol-1 0.025 mol = + 0.3 kJ 1 mol = + 12 kJ mol-1 MgSO4 (s) + 7H2O → MgSO4 .7H2O MgSO4 .100H2O ∆H = + 12 kJ mol -1 ∆H = - 113 - 12 = - 125 kJ mol -1 Assumption No heat lost from system ∆H = 0 Water has density = 1.00g ml-1 Sol diluted Vol MgSO4 = Vol H2O All heat transfer to water + flask Rxn fast – heat lost to surrounding minimized Dont need to Plot Temp/time No extrapolation Error Analysis Heat loss to surrounding Heat capacity sol is not 4.18 Mass MgSO4 ignored Impurity present MgSo4 already hydrated limiting
  • 17. ∆H = - 286 kJ mol -1 ∆H = - 442 kJ mol -1 Enthalpy change ∆H using calorimeter Cold water = 50g Mass cold water add = 50g Mass warm water add = 50g Initial Temp flask/cold water = 23.1C Initial Temp warm water = 41.3C Final Temp flask/mixture= 31C Mg(s) + ½ O2 → MgO ∆H = ? Slow rxn – heat lost huge – flask is used. Heat capacityflask must be determined. Mg + ½ O2 → MgO 1. Find heat capacityflask Ti = 23.1C Hot water = 50g T i = 41.3C No heat loss from system (isolated system) ↓ ∆H system = O Heat lost hot H2O=Heat absorbcold H2O+ Heat absorb Flask (mc∆θ) (mc∆θ) (c ∆θ) 50 x 4.18 x (41.3 – 31) = 50 x 4.18 x (31-23.1) + c x (31-23.1) HCI Flask Mg Heat capacity flask, c = 63.5JK-1 Mass Mg = 0.5 g (0.02 mol) Vol/ConcHCI = 100 g, 0.1M T initial mix = 22 C Tfinal = 41 C Mass MgO = 1 g (o.o248 mol) Vol/Conc HCI = 100 g, 0.1M Tinitial mix= 22 C T final = 28.4 C 2. Find ∆H Mg + 2HCI → MgCI2 + H2 3. Find ∆H MgO + 2HCI → MgCI2 + H2O 4. Find H2 + ½ O2 → H2O Hess’s Law ∆H Mg + 2HCI → MgCI2 + H2 ∆Hrxn = Heat absorb water + flask (mc∆θ) + (c∆θ) ∆Hrxn = Heat absorb water + flask (mc∆θ) + (c∆θ) ∆Hrxn= 100 x 4.18 x 19 + 63.5 x 19 ∆Hrxn= - 9.11kJ ∆Hrxn= 100 x 4.18 x 6.4 + 63.5 x 6.4 ∆Hrxn= -3.1 kJ 0.02 mol = - 9.11 kJ 1 mol = - 442 kJ mol-1 0.0248 mol = - 3.1 kJ 1 mol = - 125 kJ mol-1 ∆H = - 125 kJ mol -1 ∆H = - 442 – 286 + 125 = - 603 kJ mol -1 Assumption No heat lost from system ∆H = 0 Water has density = 1.00g ml-1 Sol diluted Vol HCI = Vol H2O All heat transfer to water + flask Rxn fast – heat lost to surrounding minimized Dont need to Plot Temp/time No extrapolation Error Analysis Heat loss to surrounding Heat capacity sol is not 4.18 Mass MgO ignored Impurity present Effervescence cause loss Mg + 2HCI MgCI2 + H2 HCI Flask MgO + ½ O2 MgCI2 + H2O + 2HCI MgCI2 + H2O ∆H MgO + 2HCI → MgCI2 + H2O Mg + ½ O2 → MgO MgCI2 + H2 + 2HCI MgCI2 + H2O + ½ O2 limiting MgCI2 + H2O Data given
  • 18. 2KHCO3(s) → K2CO3 + CO2 + H2O ∆H = + 51.4 kJ mol -1 Enthalpy change ∆H for rxn using calorimeter Cold water = 50g Mass cold water add = 50 g Mass warm water add = 50 g Initial Temp flask/cold water = 23.1 C Initial Temp warm water = 41.3 C Final Temp flask/mixture= 31 C 2KHCO3(s) → K2CO3 + CO2 + H2O ∆H = ? Slow rxn – heat lost huge – vacuum flask is used. Heat capacityof flask must be determined. 1. Find heat capacityflask Ti = 23.1C Hot water = 50g T i = 41.3C No heat loss from system (isolated system) ↓ ∆H system = O Heat lost hot H2O=Heat absorbcold H2O+ Heat absorb flask (mc∆θ) (mc∆θ) (c ∆θ) 50 x 4.18 x (41.3 – 31) = 50 x 4.18 x (31-23.1) + c x (31-23.1) HCI Flask KHCO3 Heat capacity vacuum, c = 63.5JK-1 Mass KHCO3 = 3.5 g (0.035 mol) Vol/ConcHCI = 30 g, 2M T initial mix = 25 C Tfinal = 20 C Mass K2CO3 = 2.75 g (0.02 mol) Vol/Conc HCI = 30 g, 2M Tinitial mix= 25 C T final = 28 C 2. Find ∆H 2KHCO3 + 2HCI → 2KCI + 2CO2 + 2H2O 3. Find ∆H K2CO3 + 2HCI → 2KCI + CO2 + H2O Hess’s Law ∆Hrxn = Heat absorb water + vacuum (mc∆θ) + (c∆θ) ∆Hrxn = Heat absorb water + vacuum (mc∆θ) + (c∆θ) ∆Hrxn= 30 x 4.18 x 5 + 63.5 x 5 ∆Hrxn= + 0.9 kJ ∆Hrxn= 30 x 4.18 x 3 + 63.5 x 3 ∆Hrxn= -0.56 kJ 0.035 mol = + 0.9 kJ 1 mol = + 25.7 kJ mol-1 0.02 mol = - 0.56 kJ 1 mol = - 28 kJ mol-1 ∆H = - 28 kJ mol -1 ∆H = +51.4 – (-28) = + 79 kJ mol -1 Assumption No heat lost from system ∆H = 0 Water has density = 1.00g ml-1 Sol diluted Vol HCI = Vol H2O All heat transfer to water + vacuum Rxn fast – heat lost to surrounding minimized Dont need to Plot Temp/time No extrapolation Error Analysis Heat loss to surrounding Heat capacity sol is not 4.18 Mass of MgO ignored Impurity present Effervescence cause loss Mg + 2HCI HCI Flask K2CO3 2KCI + 2CO2 + 2H2O + 2HCI + 2HCI limiting 2KHCO3(s) → K2CO3 + CO2 + H2O 2KCI + CO2 + H2O 2KHCO3 +2HCI → 2KCI + 2CO2 + 2H2O K2CO3 +2HCI → 2KCI + CO2 + H2O x 2 2KCI + 2CO2 + 2H2O 2KCI + CO2 + H2O + 2HCI