SlideShare una empresa de Scribd logo
1 de 30
Descargar para leer sin conexión
Types voltaic cell
Conversion electrical energy
to chemical energy
Electrochemistry
Electrolytic cellVoltaic cell
NH4CI and ZnCI2
Chemical and electrical energy
Redox rxn
(Oxidation/reduction)
Movement electron
Produce electricity
Conversion chemical energy
to electrical energy
Electrodes– different metal (Half cell) Electrodes – same metal (Half cell)
Chemical
rxn
Electric current
Daniell cell Alkaline cellDry cell Nickel cadmium cell
Primary cell (Non rechargeable)
MnO2 and KOH
Secondary cell (Rechargeable)
Conversion electrical to chemical energy
Electrochemistry
ElectrolyticcellVoltaic cell
Conversion chemicalto electricalenergy
Cathode (+ve) - Reduction Cathode (-ve) - Reduction
Vs
Electron flow from anode (-ve) to cathode (+ve) electrode Electron flow from anode (+ve) to cathode (-ve) electrode
Anode
(-ve)
Spontaneous rxn Non Spontaneous rxn
Anode (-ve) – Oxidation Anode (+ve) – Oxidation
++
О
О
О
О
- -
Zn → Zn 2+ + 2e
(oxidized)
Cu2+ + 2e → Cu
(reduced)
Zn2+
Zn2+
Zn2+
Zn2+-
-
-
-
→ +
+
+
Cu2+
Cu2+
Cu2+
-e
-e
+
+
+ -
-
-
X-→ X + -e
(oxidized)
X
-
X
-
X
-
Anode
(+ve)
Cathode
(-ve)
Cathode
(+ve)
-e
-e
Y+ + e- → Y
(reduced)
Y+
Y+
Y+
-e
-e
-e
-e
Anode Cathode
Voltaic Cell Electrolytic Cell
Anode Oxidation Negative (-ve) Oxidation Positive (+ve)
Cathode Reduction Positive (+ve) Reduction Negative (-ve)
Cation (+ve ion) to cathode (-ve)Anion (-ve ion) to anode (+ve)
Current– measured in Amperes or Coulombs per second
1A = 1 Coulomb charge pass througha point in 1 second = 1C/s
1 Coulomb charge (electron)= 6.28 x 10 18 electronspassing in 1 second
1 electron/protoncarry charge of – 1.6 x 10 -19 C ( very small)
6.28 x 10 18 electron carry charge of - 1 C
Electric current
Flow electric charges (electron, -ve)
From High electric potential – low potential
Due to Potential Difference– measure with ammeter
ond
electron
ond
Coulomb
A
sec.1
.1028.6
sec1
1
1
18


Click here current/voltage
Current Electric Current – movingcharges in solid wire or solution
Flow of
charges
-
-
-
Solid/WireSolution/Electrolyte
Electron move in random
No current flow cause
No potential difference
Electrons & Protons
-
-
+
+
1A = 6.28 x 1018 e
1 second
Video on current/voltage
Potential Difference across wire
Electron move in one direction
Current flow
+ve ions -ve ions
(cations) (anions)
Potential Difference applied/Battery used
ItQ  t = Time/ s
Find amt charges pass through a sol if
Current is 2.ooA, time is 15 mins
ItQ 
Current flow
Q = Amt Charges/ C I = Current/ A
CQ 1800601500.2 
Electric Potential
C
J
Volt
1
1 
Potential Diff/Voltage
-Measured in Volt with Voltmeter
- 1 V = 1 Joule energy released when 1 Coulomb
charge pass through 1 point
- 1 V = 1 J/C
6V battery - 6J energy for every Coulomb
moved bet its terminals.
V = Potential Diff
I = Current
R = Resistance
Potential diff bet 2 points is 1 V
↓
1 J energy released when 1 C charge passes through
Voltmeter across
1Volt
1 V
Potential Diff/Voltage/PotentialEnergy
+ -
1 Ω 2 Ω
Charges (-ve)
flow down
A
R
V
I
RIV
2
3
6


VV
RIV
212 

-
+
-
+
VV
RIV
422 

Total current
Potential Diff(PD)vs Current
PD = Water Pressure
PD = 1.5V – 1.5J energy released 1C charge flow down
PD – cause charge flow- charge flow = Called CURRENT
Potential Diff(PD)vs Current
1.5V = 1.5J/C
A
DElectric potential/PD/Voltage = Electric Pressure = Volt
Electric Current/Current = Charge flow = Amp
Electric Potential Energy = Work done to bring a charge to a point = Joule
Voltage NOT same as energy, Voltage = energy/charge
Battery lift charges, Q to higher potential
Potential Energy bet 2 terminals in battery stored as chemical energy
2A 2A
EMF vs PD
V = Potential Diff
I = Current
R = Resistance
Max potential diff bet two
electrodes of battery source.
+ -
1 Ω 2 Ω
A
R
V
I
RIV
2
3
6


VV
RIV
212 

VV
RIV
422 

Total current
Current flow Circuit complete
Circuit complete
↓
Current flow
↓
Internal resistance
(battery - 1Ω)
↓
Terminal PD = 8V
(Voltage drop)
Potential Diff/Voltage in Volt
Symbol for EMF = E or ℰ
Click here voltage drop
internal resistance
No Current flow in circuit
EMF (ElectromotiveForce) in Volt
Battery = EMF = 9V
9 Volt
).(9 currentnoVEMFV
IRV


EMF Internal resistance Ir
Place voltmeter across – EMF= 9V
No current flow.
A
rR
E
I
rRIE
IrIREMFE
1
9
9
)18(
9
)(
)(
)(







VV
RIV
881 

VV
RIV
111 

EMF = 8V+1V
8 Volt
1 Volt
Voltage measured across terminal = 8V Click here EMF notes Click here PD, PE and I
EMF (6V) = 2V + 4V
4 Volt2 Volt
Charges passing through wire
Current flow Circuit complete
Series vs Parallel Circuit
3 Ω
A
R
V
I
RIV
5.0
18
9


VV
V
RIV
5.2
55.0



VV
V
RIV
5
105.0



Total Resistance
3 + 10 + 5 = 18Ω
Parallel CircuitSeries Circuit
EMF (9V) = 2.5V + 5V + 1.5V
R = 0.625Ω
Voltage same across all component. VT = V1 = V2 = V3
Total current = sum of current in each branch. IT = I1 + I2 + I3
Total equi resistance < value of any individual resistor
Total Current
Current same in circuit
Total voltage = sum of component in series
5 Ω
10 Ω0.5 A
VV
V
RIV
5.1
35.0



Voltage across all component
Same = 9V
Total Current = sum of all current in each branch
Total Resistance
10Ω 2Ω 1Ω
AI
R
V
I
9.0
10
9


AI
R
V
I
5.4
2
9


AI
R
V
I
9
1
9


Total current (14.4A) = 0.9A + 4.5A + 9A
Ohm’s Law
Sum voltage drop equal to voltage source (EMF). VT = V1 + V2 + V3
Current same in all components in series.
Total resistance = sum of individual resistances. RT = R1 + R2 + R3
Click here voltage drop
Series Circuit Parallel Circuit
• Voltage do not flow
• Charges/Current flow
• Voltage cause current to flow
• Voltage ≠ Energy
• Battery do not supply electron
• Wire contain electron, they flow
Electron in wire repel by -ve terminal move in circuit
Electron move slowly, drift velocity, electric field move at speed of light
Electric signal travel speed of light, bulb light up instantaneously,
Electric signal/field travel faster than movement of electron
Movement e – cause electric field – travel speed of light – bulb light up
Voltage Diff – Pressure diff across
Voltage Diff – Cause water/current to flow
14.4A 4.5A0.9A 9A
Potential Diff bet Zn/Zn2+
Electrode potential Zn/Zn2+ = -ve
-
Electrode Potential
Redox Equilibrium
Zn2+
Zn → Zn 2+ + 2e
(Oxidation)
Zn 2+ + 2e → Zn
(Reduction)
Zn 2+ + 2e ↔ Zn
(At equilibrium)
Metal Zn placed in its sol Zn2+ ion
Equilibrium bet Zn/Zn2+
Zn metal reactive lose e form Zn2+
Equilibrium shift to right ←
Potential Diff form bet Zn/Zn2+
Potential Diff
Electrode potential = -ve
Zn2+
Zn2+
Zn
Zn2+
Zn
Zn2+
Zn2+ Zn2+
Zn 2+ + 2e ↔ Zn
Equi shift to ←
-
--
Zn
-
-
-
-
+
+
+
+
+ +
+ +
+
Voltage of Zn/Zn2+ can’t be measured.
Abs electrodepotentialcan’t measured.
Only Diff in electrode potentialcan be measured.
Cannot measure
Abs Potential
Metal Cu placed in its sol Cu2+ ion
Equilibrium bet Cu/Cu2+
Cu2+ ion gain -2e form Cu
Equilibrium shift to left ←
Potential Diff form bet Cu/Cu2+
Potential Diff
Electrode potential = +ve
Cu
Cu2+
Cu2+
Cu2+
Cu2+
Cu → Cu2+ + 2e
(Oxidation)
Cu2+ + 2e → Cu
(Reduction)
Cu2+ + 2e ↔ Cu
(At equilibrium)
Cu
-e
-e
-e
Cu2+
Cu2+
Cu2+
Cu2+ + 2e ↔ Cu
Equi shift to →
Zn Half Cell
+
+
+
Cu
+
+
+
---
-
--- ----
--
Potential Diff bet Cu/Cu2+
Electrode potential Cu/Cu2+ = +ve
Cannot measure
Abs Potential
Voltage of Cu/Cu2+can’t be measured.
Abs electrodepotentialcan’t measured.
Only Diff in electrode potentialcan be measured.
Click here chem database
(std electrode potential)
Click here chem database
(std electrode potential)
Click here interactive ECS Click here pdf version ECS
Cu Half Cell
PotentialDiff Cu/Cu2+
Electrode potential
Cu/Cu2+ = +ve
PotentialDiff Zn/Zn2+
Electrode potential
Zn/Zn2+ = -ve
Zn2+
Zn → Zn 2+ + 2e
(Oxidation)
Zn 2+ + 2e → Zn
(Reduction)
Zn 2+ + 2e ↔ Zn
(At equilibrium)
Zn2+
Zn2+
Zn
Zn2+
Zn
Zn2+
Zn2+ Zn2+
Zn 2+ + 2e ↔ Zn
Equi shift to ←
-
-
-
Zn
-
--
-
+
++
+
+ +
+
+
+
Can’t measure
Abs Potential
Cu
Cu2+
Cu2+
Cu2+
Cu2+
Cu → Cu2+ + 2e
(Oxidation)
Cu2+ + 2e → Cu
(Reduction)
Cu2+ + 2e ↔ Cu
(At equilibrium)
Cu
-e
-e
-e
Cu2+
Cu2+
Cu2+
Cu2+ + 2e ↔ Cu
Equi shift to →
Zn Half Cell
+
+
+
Cu
+
+
+
-
Cu Half Cell
Zn/Cu Voltaic Cell
External circuit – flow of electrons
Complete circuit
-
--
--
-
-
----
-- -
Connect 2 Half Cell with wire/ salt bridge
Zn half cell (-ve)
Oxidation
Cu half cell (+ve)
Reduction
Salt Bridge – flow of ions
Complete the circuit
Cu2+ + 2e → CuZn → Zn 2+ + 2e
Zn + Cu2+ → Zn2+ + Cu
Anode Cathode
Maintain electrical
neutrality
Salt bridge – saturated KNO3
Zn2+ increase ↑
NO3
- flow in to balance excess Zn2+
Cu2+ decrease ↓, excess –ve ion ↑
K+ flow in to balance loss of Cu2+
Zn Cu
--
-
-
Zn2+
Zn2+
Zn2+
Excess of Zn2+ ion
+
+
++
-
-
-
-
---
-
-
-
-
-
Excess of –ve ion
+
+
+
+
++
+
Without Salt Bridge
-+
+
+
+
With Salt Bridge
(electron unable to flow due to ESF)
NO3
-
NO3
-
NO3
-
NO3
-
+
+
+ K
+
K
+
K
+
-
-
-
K+ flow in to balance
excess of – ion
NO3
-
flow in to balance
excess of + ion
2 Half Cell to make a Voltaic Cell
-e -e
-
-
-
-
+
+
+
+
PotentialDiff Cu/Cu2+
Electrode potential
Cu/Cu2+ = +ve
PotentialDiff Zn/Zn2+
Electrode potential
Zn/Zn2+ = -ve
Zn2+
Zn → Zn 2+ + 2e
(Oxidation)
Zn 2+ + 2e → Zn
(Reduction)
Zn 2+ + 2e ↔ Zn
(At equilibrium)
Zn2+
Zn2+
Zn
Zn2+
Zn
Zn2+
Zn2+ Zn2+
Zn 2+ + 2e ↔ Zn
Equi shift to ←
-
-
-
Zn
-
--
-
+
++
+
+ +
+
+
+
Can’t measure
Abs Potential
Cu
Cu2+
Cu2+
Cu2+
Cu2+
Cu → Cu2+ + 2e
(Oxidation)
Cu2+ + 2e → Cu
(Reduction)
Cu2+ + 2e ↔ Cu
(At equilibrium)
Cu
-e
-e
-e
Cu2+
Cu2+
Cu2+
Cu2+ + 2e ↔ Cu
Equi shift to →
+
+
+
Cu
+
+
+
-
External circuit – flow of electrons
Complete circuit
-
--
--
-
-
----
-- -
Connect 2 Half Cell with wire/ salt bridge
Zn half cell (-ve)
Oxidation
Cu half cell (+ve)
Reduction
Voltmeter – High resistance
(No current flow) Salt Bridge – flow of ions
Complete the circuit
Cu2+ + 2e → CuZn → Zn 2+ + 2e
1.10Volt
Potential diff can be measured.
Voltmeter across – EMF
1.10 Volt
Zn + Cu2+ → Zn2+ + Cu
Anode Cathode
Zn(s) | Zn2+
(aq) || Cu2+
(aq)| Cu (s)
Cell diagram
Anode Cathode
Half Cell Half Cell
(Oxidation) (Reduction)
Phase boundarySalt Bridge Flow
electrons
Maintain electrical
neutrality
Salt bridge – saturated KNO3
Zn2+ increase ↑
NO3
- flow in to balance excess Zn2+
Cu2+ decrease ↓
K+ flow in to balance loss of Cu2+
Zn/Cu Voltaic Cell 2 Half Cell to make a Voltaic Cell
Zn Half Cell Cu Half Cell
-e -e
-
-
-
-
+
+
+
+
PotentialDiff Ag/Ag2+
Electrode potential
Ag/Ag2+ = +ve
PotentialDiff Zn/Zn2+
Electrode potential
Zn/Zn2+ = -ve
Zn2+
Zn → Zn 2+ + 2e
(Oxidation)
Zn 2+ + 2e → Zn
(Reduction)
Zn 2+ + 2e ↔ Zn
(At equilibrium)
Zn2+
Zn2+
Zn
Zn2+
Zn
Zn2+
Zn2+ Zn2+
Zn 2+ + 2e ↔ Zn
Equi shift to ←
-
-
-
Zn
-
--
-
+
++
+
+ +
+
+
+
Can’t measure
Abs Potential
Ag
Ag+
Ag+
Ag+
Ag+
Ag → Ag+ + e
(Oxidation)
Ag+ + e → Ag
(Reduction)
Ag+ + e ↔ Ag
(At equilibrium)
Ag
-e
-e
-e
Ag+
Ag+
Ag+
Ag+ + e ↔ Ag
Equi shift to →
+
+
+
Ag
+
+
+
-
External circuit – flow of electrons
Complete circuit
-
--
--
-
-
----
-- -
Connect 2 Half Cell with wire/ salt bridge
Zn half cell (-ve)
Oxidation
Ag half cell (+ve)
Reduction
Voltmeter – High resistance
(No current flow) Salt Bridge – flow of ions
Complete the circuit
Ag+ + e → AgZn → Zn 2+ + 2e
1.56Volt
Potential diff can be measured.
Voltmeter across – EMF
1.56 Volt
Zn + 2Ag+ → Zn2+ + 2Ag
Anode Cathode
Zn(s) | Zn2+
(aq) || Ag+
(aq)| Ag (s)
Cell diagram
Anode Cathode
Half Cell Half Cell
(Oxidation) (Reduction)
Phase boundarySalt Bridge Flow
electrons
Maintain electrical
neutrality
Salt bridge – saturated KNO3
Zn2+ increase ↑
NO3
- flow in to balance excess Zn2+
Ag+ decrease ↓
K+ flow in to balance loss of Ag+
Zn/Ag Voltaic Cell 2 Half Cell to make a Voltaic Cell
Zn Half Cell Ag Half Cell
Ag
Ag+
-e -e
-
-
-
-
+
+
+
+
PotentialDiff Ag/Ag2+
Electrode potential
Ag/Ag2+ = +ve
PotentialDiff Cu/Cu2+
Electrode potential
Cu/Cu2+ = -ve
Cu2+
Cu → Cu 2+ + 2e
(Oxidation)
Cu 2+ + 2e → Cu
(Reduction)
Cu 2+ + 2e ↔ Cu
(At equilibrium)
Cu2+
Cu2+
Cu
Cu2+
Cu
Cu2+
Cu2+ Cu2+
Cu 2+ + 2e ↔ Cu
Equi shift to ←
-
-
-
Cu
-
--
-
+
++
+
+ +
+
+
+
Can’t measure
Abs Potential
Ag
Ag+
Ag+
Ag+
Ag+
Ag → Ag+ + e
(Oxidation)
Ag+ + e → Ag
(Reduction)
Ag+ + e ↔ Ag
(At equilibrium)
Ag
-e
-e
-e
Ag+
Ag+
Ag+
Ag+ + e ↔ Ag
Equi shift to →
+
+
+
Ag
+
+
+
-
External circuit – flow of electrons
Complete circuit
-
--
--
-
-
----
-- -
Connect 2 Half Cell with wire/ salt bridge
Cu half cell (-ve)
Oxidation
Ag half cell (+ve)
Reduction
Voltmeter – High resistance
(No current flow) Salt Bridge – flow of ions
Complete the circuit
Ag+ + e → AgCu → Cu 2+ + 2e
0.46Volt
Potential diff can be measured.
Voltmeter across – EMF
0.46 Volt
Cu + 2Ag+ → Cu2+ + 2Ag
Anode Cathode
Cu(s) | Cu2+
(aq) || Ag+
(aq)| Ag (s)
Cell diagram
Anode Cathode
Half Cell Half Cell
(Oxidation) (Reduction)
Phase boundarySalt Bridge Flow
electrons
Maintain electrical
neutrality
Salt bridge – saturated KNO3
Cu2+ increase ↑
NO3
- flow in to balance excess Cu2+
Ag+ decrease ↓
K+ flow in to balance loss of Ag+
Cu/Ag Voltaic Cell 2 Half Cell to make a Voltaic Cell
Cu Half Cell Ag Half Cell
Ag
Ag+
Cu
Cu2+
-e -e
-
-
-
-
+
+
+
+
Standard Electrode Potential
Standard HydrogenElectrode (SHE)
Platinum coat with Platinum oxide/black
– increase surface area for adsorption H2
- catalyze equilibrium bet H2 /H+
- H2 ↔ 2H+ + 2e-
Eθ
Standard Reference electrode
All Cell Potential are measured against
• Conc ( 1M)
• Pressure (1 atm)
• Temp (298K)
• Platinum-inert electrode
(sys without metal)
Standard
condition
H2 at 1 atm
Platinum
H2 gas
Pt wire
Platinum
2H+ + 2e ↔ H2
Eθ
= 0V
Types of Half Cells
Metal/ Ion (M/M+)
Gas/ Ion (M/M-)
Ion/ Ion (Fe3+/Fe2+)
• Pure Zn metal
• Conc (1M Zn2+)
• Pressure (1 atm)
• Temp(298K)
Condition Std Zn/Zn2+
Condition Std CI2/CI-
• CI2 gas
• Platinum electrode
• Conc (1M CI-)
• Pressure (1 atm)
• Temp(298K)
• Platinum electrode
• Conc (1M Fe3+/Fe2+)
• Pressure (1 atm)
• Temp(298K)
Condition Std Fe3+/ Fe2+
Zn2+
Zn
Fe3+/Fe2+
CI-
Condition for Standard
C
A
N
T
M
E
A
S
U
R
E
A
B
S
P
O
T
E
N
T
I
A
L
1
2
3
How to measure
electrode
potential ?
Pt
1M H+
Measure
Difference?
Standard Electrode Potential
Std HydrogenElectrode (SHE)
Eθ
= 0V
Types of Half Cells
Metal/ Ion (M/M+)
Gas/ Ion (M/M+)
Ion/ Ion (Fe3+/Fe2+)
• Pure Zn metal
• Conc (1M Zn2+)
• Pressure (1 atm)
• Temp(298K)
Condition Std Zn/Zn2+
Condition Std CI2/CI-
• CI2 gas
• Platinum electrode
• Conc (1M CI-)
• Pressure (1 atm)
• Temp(298K)
• Platinum electrode
• Conc (1M Fe3+/Fe2+)
• Pressure (1 atm)
• Temp(298K)
Condition Std Fe3+/ Fe2+
Zn2+
Zn
Fe3+/Fe2+
1
2
3
Connect to SHE
Connect to SHE
Connect to SHE
Eθ
= 0V
Eθ
= 0V
Eθ
= -0.76V
Standard electrode potential Zn/Zn2+ = -0.76V
Eθ
cell = -0.76V
Eθ
= +0.77V
Eθ
= +1.35V
Standard electrode potential Fe3+/Fe2+ = +0.77V
Eθ
cell = +0.77V
Standard electrode potential CI2 /CI- = +1.35V
Eθ
cell = +1.35V
Eθ
= -0.76V
Eθ
= +0.77V
Eθ
= +1.35V
2 Half Cellwith SHE as referenceelectrode
CI-
Pt
+
+
+
Pt
Standard Electrode Potential
Std Electrode Potential diff systems
Eθ
= 0V
Eθ
= 0V
Eθ
= 0V
Eθ
= -0.76V
Standard electrode potential Zn/Zn2+ = -0.76V
Eθ
cell = -0.76V
Eθ
= +0.77V
Eθ
= +1.35V
Standard electrode potential Fe3+/Fe2+ = +0.77V
Eθ
cell = +0.77V
Standard electrode potential CI2 /CI- = +1.35V
Eθ
cell = +1.35V
Eθ
= -0.76V
Eθ
= +0.77V
Eθ
= +1.35V
STANDARD Reduction potential – Hydrogen as std
Oxidized sp ↔ Reduced sp Eθ/V
Li+ + e- ↔ Li -3.04
K+ + e- ↔ K -2.93
Ca2+ + 2e- ↔ Ca -2.87
Na+ + e- ↔ Na -2.71
Mg 2+ + 2e- ↔ Mg -2.37
Al3+ + 3e- ↔ AI -1.66
Mn2+ + 2e- ↔ Mn -1.19
H2O + e- ↔ 1/2H2 + OH- -0.83
Zn2+ + 2e- ↔ Zn -0.76
Fe2+ + 2e- ↔ Fe -0.45
Ni2+ + 2e- ↔ Ni -0.26
Sn2+ + 2e- ↔ Sn -0.14
Pb2+ + 2e- ↔ Pb -0.13
H+ + e- ↔ 1/2H2 0.00
Cu2+ + e- ↔ Cu+ +0.15
SO4
2-
+ 4H+ + 2e- ↔ H2SO3 + H2O +0.17
Cu2+ + 2e- ↔ Cu +0.34
1/2O2 + H2O +2e- ↔ 2OH- +0.40
Cu+ + e- ↔ Cu +0.52
1/2I2 + e- ↔ I- +0.54
Fe3+ + e- ↔ Fe2+ +0.77
Ag+ + e- ↔ Ag +0.80
1/2Br2 + e- ↔ Br- +1.07
1/2O2 + 2H+ +2e- ↔ H2O +1.23
Cr2O7
2-+14H+ +6e- ↔ 2Cr3+ + 7H2O +1.33
1/2CI2 + e- ↔ CI- +1.35
MnO4
-
+ 8H+ + 5e- ↔ Mn2+ + 4H2O +1.51
1/2F2 + e- ↔ F +2.87
-ve
reduction
potential
+ve
reduction
potential
Click here std analogy video
Click here std analogy
Click here chem database
(std electrode potential)
Compared to
H2 as std
Eθ
cell/CellPotential= EMF in volt
EMF prod when half cell connect to SHE at std condition
Std electrode potential written as std reduction potential
Zn half cell (-ve)
Oxidation
H2 half cell (+ve)
Reduction
Anode Cathode
Zn(s) | Zn2+
(aq) || H+
(aq) , H2(g) | Pt (s)
Cell diagram
Anode Cathode
Half Cell Half Cell
(Oxidation) (Reduction)
Salt Bridge Flow
electrons
Eθ
cell = Eθ
(cathode) – Eθ
(anode)
Eθ
cell = 0.00 – ( Eθ Zn )
0.76 = 0.00 - Eθ Zn
Eθ Zn = -0.76V
Zn2+ + 2e ↔ Zn Eθ = ?
2H+ + 2e ↔ H2 Eθ = 0.00V
Std electrode potential as std reductionpotential
Find Eθ
cell (use formula)
Eθ
cell = Eθ
(cathode) – Eθ
(anode)
Oxidized sp ↔ Reduced sp Eθ/V
Li+ + e- ↔ Li -3.04
K+ + e- ↔ K -2.93
Ca2+ + 2e- ↔ Ca -2.87
Na+ + e- ↔ Na -2.71
Mg 2+ + 2e- ↔ Mg -2.37
Al3+ + 3e- ↔ AI -1.66
Mn2+ + 2e- ↔ Mn -1.19
H2O + e- ↔ 1/2H2 + OH- -0.83
Zn2+ + 2e- ↔ Zn ????
Fe2+ + 2e- ↔ Fe -0.45
Ni2+ + 2e- ↔ Ni -0.26
Sn2+ + 2e- ↔ Sn -0.14
Pb2+ + 2e- ↔ Pb -0.13
H+ + e- ↔ 1/2H2 0.00
Cu2+ + e- ↔ Cu+ +0.15
SO4
2-
+ 4H+ + 2e- ↔ H2SO3 + H2O +0.17
Cu2+ + 2e- ↔ Cu +0.34
1/2O2 + H2O +2e- ↔ 2OH- +0.40
Cu+ + e- ↔ Cu +0.52
1/2I2 + e- ↔ I- +0.54
Fe3+ + e- ↔ Fe2+ + 0.77
Ag+ + e- ↔ Ag +0.80
1/2Br2 + e- ↔ Br- +1.07
1/2O2 + 2H+ +2e- ↔ H2O +1.23
Cr2O7
2-+14H+ +6e- ↔ 2Cr3+ + 7H2O +1.33
1/2CI2 + e- ↔ CI- +1.35
MnO4
- + 8H+ + 5e- ↔ Mn2+ + 4H2O +1.51
1/2F2 + e- ↔ F +2.87
-0.76V
+ve/high electrode potentialis cathode(+)
-ve/ low electrode potential is anode (-)
Electronsflow from anode (- ) to cathode (+ )
Eθ
Zn/H2 = 0.76V
Zn/H2
Eθ value DO NOT depend on stoichiometric coefficient
(Independentof stoichiometric eqn)
Zn
Zn2+ H+
Pt
H2
-
-
- +
-e
Zn/H2 Cell Determine Eθ cell Zn/Zn2+
Zn2+ + 2e →Zn Eθ
= -0.76V
H2 half cell (-ve)
Oxidation
Fe3+/2+ half cell (+ve)
Reduction
Anode Cathode
Pt(s) | H2, H+
(aq) || Fe3+ Fe2+ | Pt (s)
Cell diagram
Anode Cathode
Half Cell Half Cell
(Oxidation) (Reduction)
Salt Bridge Flow
electrons
Std electrode potential as std reductionpotential
Find Eθ
cell (use formula)
Eθ
cell = Eθ
(cathode) – Eθ
(anode)
Oxidized sp ↔ Reduced sp Eθ/V
Li+ + e- ↔ Li -3.04
K+ + e- ↔ K -2.93
Ca2+ + 2e- ↔ Ca -2.87
Na+ + e- ↔ Na -2.71
Mg 2+ + 2e- ↔ Mg -2.37
Al3+ + 3e- ↔ AI -1.66
Mn2+ + 2e- ↔ Mn -1.19
H2O + e- ↔ 1/2H2 + OH- -0.83
Zn2+ + 2e- ↔ Zn -0.76
Fe2+ + 2e- ↔ Fe -0.45
Ni2+ + 2e- ↔ Ni -0.26
Sn2+ + 2e- ↔ Sn -0.14
Pb2+ + 2e- ↔ Pb -0.13
H+ + e- ↔ 1/2H2 0.00
Cu2+ + e- ↔ Cu+ +0.15
SO4
2- + 4H+ + 2e- ↔ H2SO3 + H2O +0.17
Cu2+ + 2e- ↔ Cu +0.34
1/2O2 + H2O +2e- ↔ 2OH- +0.40
Cu+ + e- ↔ Cu +0.52
1/2I2 + e- ↔ I- +0.54
Fe3+ + e- ↔ Fe2+ ?????
Ag+ + e- ↔ Ag +0.80
1/2Br2 + e- ↔ Br- +1.07
1/2O2 + 2H+ +2e- ↔ H2O +1.23
Cr2O7
2-+14H+ +6e- ↔ 2Cr3+ + 7H2O +1.33
1/2CI2 + e- ↔ CI- +1.35
MnO4
- + 8H+ + 5e- ↔ Mn2+ + 4H2O +1.51
1/2F2 + e- ↔ F +2.87
+0.77V
+ve/high electrode potentialis cathode(+)
-ve/ low electrode potential is anode (-)
Electronsflow from anode (- ) to cathode (+ )
Pt
Fe3+
H+
Pt
H2
+
+
+--
-e
H2 /Fe3+,Fe2+ Cell
H2 /Fe3+,Fe2+
2H+ + 2e ↔ H2 Eθ = 0.00V
Fe3+ + e ↔ Fe2+ Eθ = ????
Eθ
cell = Eθ
(cathode) – Eθ
(anode)
Eθ
cell = Eθ Fe3+ – (-0.00)
0.77 = Eθ Fe3+
Determine Eθ cell Fe 3+/Fe2+
Eθ
H2 /Fe3+ = 0.77V
Fe3+ + e →Fe2+ Eθ
= +0.77V
Eθ value DO NOT depend on stoichiometric coefficient
(Independentof stoichiometric eqn)
H2 half cell (-ve)
Oxidation
CI2 half cell (+ve)
Reduction
Anode
Pt(s) | H2, H+
(aq) || CI2 ,CI- | Pt (s)
Cell diagram
Anode Cathode
Half Cell Half Cell
(Oxidation) (Reduction)
Salt Bridge Flow
electrons
Std electrode potential as std reductionpotential
Find Eθ
cell (use formula)
Eθ
cell = Eθ
(cathode) – Eθ
(anode)
Oxidized sp ↔ Reduced sp Eθ/V
Li+ + e- ↔ Li -3.04
K+ + e- ↔ K -2.93
Ca2+ + 2e- ↔ Ca -2.87
Na+ + e- ↔ Na -2.71
Mg 2+ + 2e- ↔ Mg -2.37
Al3+ + 3e- ↔ AI -1.66
Mn2+ + 2e- ↔ Mn -1.19
H2O + e- ↔ 1/2H2 + OH- -0.83
Zn2+ + 2e- ↔ Zn -0.76
Fe2+ + 2e- ↔ Fe -0.45
Ni2+ + 2e- ↔ Ni -0.26
Sn2+ + 2e- ↔ Sn -0.14
Pb2+ + 2e- ↔ Pb -0.13
H+ + e- ↔ 1/2H2 0.00
Cu2+ + e- ↔ Cu+ +0.15
SO4
2- + 4H+ + 2e- ↔ H2SO3 + H2O +0.17
Cu2+ + 2e- ↔ Cu +0.34
1/2O2 + H2O +2e- ↔ 2OH- +0.40
Cu+ + e- ↔ Cu +0.52
1/2I2 + e- ↔ I- +0.54
Fe3+ + e- ↔ Fe2+ + 0.77
Ag+ + e- ↔ Ag +0.80
1/2Br2 + e- ↔ Br- +1.07
1/2O2 + 2H+ +2e- ↔ H2O +1.23
Cr2O7
2-+14H+ +6e- ↔ 2Cr3+ + 7H2O +1.33
1/2CI2 + e- ↔ CI- ?????
MnO4
- + 8H+ + 5e- ↔ Mn2+ + 4H2O +1.51
1/2F2 + e- ↔ F +2.87
+1.35V
+ve/high electrode potentialis cathode(+)
-ve/ low electrode potential is anode (-)
Electronsflow from anode (- ) to cathode (+ )
H+
Pt
H2 --
-e
H2 /CI2 Cell
2H+ + 2e ↔ H2 Eθ = 0.00V
CI + e ↔ CI- Eθ = ?????
Eθ
cell = Eθ
(cathode) – Eθ
(anode)
Eθ
cell = Eθ CI2 – (-0.00)
1.35 = Eθ CI2
H2 /CI2 Cell
+
Pt
CI - CI2
Determine Eθ cell H2 /CI2
Eθ
H2 /CI2 = 1.35V
1/2CI- + e →CI- Eθ
= +1.35V
Eθ value DO NOT depend on stoichiometric coefficient
(Independentof stoichiometric eqn)
Zn half cell (-ve)
Oxidation
Cu half cell (+ve)
Reduction
Anode Cathode
Zn(s) | Zn2+
(aq) || Cu2+
(aq) | Cu (s)
Cell diagram
Anode Cathode
Half Cell Half Cell
(Oxidation) (Reduction)
Salt Bridge Flow
electrons
Zn/Cu Voltaic Cell
-e -e
Zn/Cu half cell
Eθ
cell = Eθ
(cathode) – Eθ
(anode)
Eθ
cell = +0.34 – (-0.76) = +1.10V
Zn 2+ + 2e ↔ Zn (anode) Eθ = -0.76V
Cu2+ + 2e ↔ Cu (cathode) Eθ = +0.34V
Std electrode potential as std reduction potential
Find Eθ
cell (use reduction potential)Find Eθ
cell (use formula)
Zn + Cu2+ → Zn2+ + Cu Eθ = ?????
Eθ
cell = Eθ
(cathode) – Eθ
(anode)
Zn 2+ + 2e ↔ Zn Eθ = -0.76V
Cu2+ + 2e ↔ Cu Eθ = +0.34V
Zn ↔ Zn2+ + 2e Eθ = +0.76V
Cu2+ + 2e ↔ Cu Eθ = +0.34V
Zn + Cu2+ → Zn 2+ + Cu Eθ = +1.10V
Oxidized sp ↔ Reduced sp Eθ/V
Li+ + e- ↔ Li -3.04
K+ + e- ↔ K -2.93
Ca2+ + 2e- ↔ Ca -2.87
Na+ + e- ↔ Na -2.71
Mg 2+ + 2e- ↔ Mg -2.37
Al3+ + 3e- ↔ AI -1.66
Mn2+ + 2e- ↔ Mn -1.19
H2O + e- ↔ 1/2H2 + OH- -0.83
Zn2+ + 2e- ↔ Zn - 0.76
Fe2+ + 2e- ↔ Fe -0.45
Ni2+ + 2e- ↔ Ni -0.26
Sn2+ + 2e- ↔ Sn -0.14
Pb2+ + 2e- ↔ Pb -0.13
H+ + e- ↔ 1/2H2 0.00
Cu2+ + e- ↔ Cu+ +0.15
SO4
2- + 4H+ + 2e- ↔ H2SO3 + H2O +0.17
Cu2+ + 2e- ↔ Cu + 0.34
1/2O2 + H2O +2e- ↔ 2OH- +0.40
Cu+ + e- ↔ Cu +0.52
1/2I2 + e- ↔ I- +0.54
Fe3+ + e- ↔ Fe2+ +0.77
Ag+ + e- ↔ Ag +0.80
1/2Br2 + e- ↔ Br- +1.07
1/2O2 + 2H+ +2e- ↔ H2O +1.23
Cr2O7
2-+14H+ +6e- ↔ 2Cr3+ + 7H2O +1.33
1/2CI2 + e- ↔ CI- +1.35
MnO4
- + 8H+ + 5e- ↔ Mn2+ + 4H2O +1.51
1/2F2 + e- ↔ F +2.87
+
+1.10 V
Eθ
Zn/Cu = 1.10V
Cu2+
+ve/high electrode potentialis cathode(+)
-ve/ low electrode potential is anode (-)
Electronsflow from anode (- ) to cathode (+ )
-
-
-
-
Zn Cu
+
+
+
+
Eθ value DO NOT depend on stoichiometric coefficient
(Independentof stoichiometric eqn)
Zn half cell (-ve)
Oxidation
Ag half cell (+ve)
Reduction
Anode Cathode
Zn(s) | Zn2+
(aq) || Ag+
(aq) | Ag (s)
Cell diagram
Anode Cathode
Half Cell Half Cell
(Oxidation) (Reduction)
Salt Bridge Flow
electrons
Zn/Ag Voltaic Cell
-e -e
Zn/Ag half cell
Eθ
cell = Eθ
(cathode) – Eθ
(anode)
Eθ
cell = +0.80 – (-0.76) = +1.56V
Zn 2+ + 2e ↔ Zn (anode) Eθ = -0.76V
Ag+ + e ↔ Ag(cathode) Eθ = +0.80V
Std electrode potential as std reduction potential
Find Eθ
cell (use reduction potential)Find Eθ
cell (use formula)
Zn + Ag+ → Zn2+ + Ag Eθ = ?????
Eθ
cell = Eθ
(cathode) – Eθ
(anode)
Zn 2+ + 2e ↔ Zn Eθ = -0.76V
Ag+ + e ↔ Ag Eθ = +0.80V
Zn ↔ Zn2+ + 2e Eθ = +0.76V
Ag+ + e ↔ Ag Eθ = +0.80V
Zn + Ag+ → Zn 2+ + Ag Eθ = +1.56V
Oxidized sp ↔ Reduced sp Eθ/V
Li+ + e- ↔ Li -3.04
K+ + e- ↔ K -2.93
Ca2+ + 2e- ↔ Ca -2.87
Na+ + e- ↔ Na -2.71
Mg 2+ + 2e- ↔ Mg -2.37
Al3+ + 3e- ↔ AI -1.66
Mn2+ + 2e- ↔ Mn -1.19
H2O + e- ↔ 1/2H2 + OH- -0.83
Zn2+ + 2e- ↔ Zn - 0.76
Fe2+ + 2e- ↔ Fe -0.45
Ni2+ + 2e- ↔ Ni -0.26
Sn2+ + 2e- ↔ Sn -0.14
Pb2+ + 2e- ↔ Pb -0.13
H+ + e- ↔ 1/2H2 0.00
Cu2+ + e- ↔ Cu+ +0.15
SO4
2- + 4H+ + 2e- ↔ H2SO3 + H2O +0.17
Cu2+ + 2e- ↔ Cu +0.34
1/2O2 + H2O +2e- ↔ 2OH- +0.40
Cu+ + e- ↔ Cu +0.52
1/2I2 + e- ↔ I- +0.54
Fe3+ + e- ↔ Fe2+ +0.77
Ag+ + e- ↔ Ag + 0.80
1/2Br2 + e- ↔ Br- +1.07
1/2O2 + 2H+ +2e- ↔ H2O +1.23
Cr2O7
2-+14H+ +6e- ↔ 2Cr3+ + 7H2O +1.33
1/2CI2 + e- ↔ CI- +1.36
MnO4
- + 8H+ + 5e- ↔ Mn2+ + 4H2O +1.51
1/2F2 + e- ↔ F +2.87
+
+1.56 V
Ag
Eθ
Zn/Ag = 1.56V
Ag+
+ve/high electrode potentialis cathode(+)
-ve/ low electrode potential is anode (-)
Electronsflow from anode (- ) to cathode (+ )
-
-
-
-
+
+
+
+
Zn
Eθ value DO NOT dependon stoichiometric coefficient
(Independentof stoichiometric eqn)
Cu half cell (-ve)
Oxidation
Ag half cell (+ve)
Reduction
Anode Cathode
Cu(s) | Cu2+
(aq) || Ag+
(aq) | Ag (s)
Cell diagram
Anode Cathode
Half Cell Half Cell
(Oxidation) (Reduction)
Salt Bridge Flow
electrons
Cu/Ag Voltaic Cell
-e -e
Cu/Ag half cell
Eθ
cell = Eθ
(cathode) – Eθ
(anode)
Eθ
cell = +0.80 – (+0.34) = +0.46V
Cu 2+ + 2e ↔ Cu (anode) Eθ = +0.34V
Ag+ + e ↔ Ag(cathode) Eθ = +0.80V
Std electrode potential as std reductionpotential
Find Eθ
cell (use reduction potential)Find Eθ
cell (use formula)
Cu + 2Ag+ → Cu2+ + 2Ag Eθ = ?????
Eθ
cell = Eθ
(cathode) – Eθ
(anode)
Cu 2+ + 2e ↔ Cu Eθ = +0.34V
Ag+ + e ↔ Ag Eθ = +0.80V
Cu ↔ Cu2+ + 2e Eθ = -0.34V
2Ag+ + e ↔ 2Ag Eθ = +0.80V
Cu + 2Ag+→ Cu 2+ + 2Ag Eθ = +0.46V
Oxidized sp ↔ Reduced sp Eθ/V
Li+ + e- ↔ Li -3.04
K+ + e- ↔ K -2.93
Ca2+ + 2e- ↔ Ca -2.87
Na+ + e- ↔ Na -2.71
Mg 2+ + 2e- ↔ Mg -2.37
Al3+ + 3e- ↔ AI -1.66
Mn2+ + 2e- ↔ Mn -1.19
H2O + e- ↔ 1/2H2 + OH- -0.83
Zn2+ + 2e- ↔ Zn -0.76
Fe2+ + 2e- ↔ Fe -0.45
Ni2+ + 2e- ↔ Ni -0.26
Sn2+ + 2e- ↔ Sn -0.14
Pb2+ + 2e- ↔ Pb -0.13
H+ + e- ↔ 1/2H2 0.00
Cu2+ + e- ↔ Cu+ +0.15
SO4
2- + 4H+ + 2e- ↔ H2SO3 + H2O +0.17
Cu2+ + 2e- ↔ Cu +0.34
1/2O2 + H2O +2e- ↔ 2OH- +0.40
Cu+ + e- ↔ Cu +0.52
1/2I2 + e- ↔ I- +0.54
Fe3+ + e- ↔ Fe2+ +0.77
Ag+ + e- ↔ Ag +0.80
1/2Br2 + e- ↔ Br- +1.07
1/2O2 + 2H+ +2e- ↔ H2O +1.23
Cr2O7
2-+14H+ +6e- ↔ 2Cr3+ + 7H2O +1.33
1/2CI2 + e- ↔ CI- +1.36
MnO4
- + 8H+ + 5e- ↔ Mn2+ + 4H2O +1.51
1/2F2 + e- ↔ F +2.87
+
+0.46V
AgCu
Cu2+
Half cell- high electrodepotential is cathode(+)
Half cell - low electrodepotential is anode (-)
Electronsflow from anode (- ) to cathode (+ )
Eθ
Cu/Ag = 0.46V
Ag+
-
-
-
-
+
+
+
+
Eθ value DO NOT depend on stoichiometric coefficient
(Independentof stoichiometric eqn)
Mn half cell (-ve)
Oxidation
Ni half cell (+ve)
Reduction
Anode Cathode
Mn(s) | Mn2+
(aq) || Ni2+
(aq) | Ni (s)
Cell diagram
Anode Cathode
Half Cell Half Cell
(Oxidation) (Reduction)
Salt Bridge Flow
electrons
Mn/Ni Voltaic Cell
-e -e
Mn/Ni half cells
Eθ
cell = Eθ
(cathode) – Eθ
(anode)
Eθ
cell = -0.26 – (-1.19) = +0.93V
Mn 2+ + 2e ↔ Mn (anode) Eθ = -1.19V
Ni2+ + 2e ↔ Ni (cathode) Eθ = -0.26V
Std electrode potential as std reduction potential
Find Eθ
cell (use reduction potential)Find Eθ
cell (use formula)
Mn + Ni2+ → Mn2+ + Ni Eθ = ?????
Eθ
cell = Eθ
(cathode) – Eθ
(anode)
Mn 2+ + 2e ↔ Mn Eθ = -1.19V
Ni2+ + 2e ↔ Ni Eθ = -0.26V
Mn ↔ Mn2+ + 2e Eθ = +1.19V
Ni2+ + 2e ↔ Ni Eθ = -0.26V
Mn + Ni2+ → Mn2+ + Ni Eθ = +0.93V
Oxidized sp ↔ Reduced sp Eθ/V
Li+ + e- ↔ Li -3.04
K+ + e- ↔ K -2.93
Ca2+ + 2e- ↔ Ca -2.87
Na+ + e- ↔ Na -2.71
Mg 2+ + 2e- ↔ Mg -2.37
Al3+ + 3e- ↔ AI -1.66
Mn2+ + 2e- ↔ Mn -1.19
H2O + e- ↔ 1/2H2 + OH- -0.83
Zn2+ + 2e- ↔ Zn -0.76
Fe2+ + 2e- ↔ Fe -0.45
Ni2+ + 2e- ↔ Ni - 0.26
Sn2+ + 2e- ↔ Sn -0.14
Pb2+ + 2e- ↔ Pb -0.13
H+ + e- ↔ 1/2H2 0.00
Cu2+ + e- ↔ Cu+ +0.15
SO4
2- + 4H+ + 2e- ↔ H2SO3 + H2O +0.17
Cu2+ + 2e- ↔ Cu +0.34
1/2O2 + H2O +2e- ↔ 2OH- +0.40
Cu+ + e- ↔ Cu +0.52
1/2I2 + e- ↔ I- +0.54
Fe3+ + e- ↔ Fe2+ +0.77
Ag+ + e- ↔ Ag +0.80
1/2Br2 + e- ↔ Br- +1.07
1/2O2 + 2H+ +2e- ↔ H2O +1.23
Cr2O7
2-+14H+ +6e- ↔ 2Cr3+ + 7H2O +1.33
1/2CI2 + e- ↔ CI- +1.36
MnO4
-
+ 8H+ + 5e- ↔ Mn2+ + 4H2O +1.51
1/2F2 + e- ↔ F +2.87
+
+0.93 V
Eθ
Mn/Ni = 0.93V
Ni2+
+ve/high electrode potentialis cathode(+)
-ve/ low electrode potential is anode (-)
Electronsflow from anode (- ) to cathode (+ )
-
-
-
-
NiMn
+
+
+
+Mn2+
Eθ value DO NOT depend on stoichiometric coefficient
(Independentof stoichiometric eqn)
Fe half cell (-ve)
Oxidation
MnO4- half cell (+ve)
Reduction
Anode Cathode
Fe(s) | Fe2+
(aq) || MnO4
- ,H+, Mn2+ | Pt (s)
Cell diagram
Anode Cathode
Half Cell Half Cell
(Oxidation) (Reduction)
Salt Bridge Flow
electrons
Fe/MnO4
- Voltaic Cell
-e -e
Fe/MnO4
- half cells
Eθ
cell = Eθ
(cathode) – Eθ
(anode)
Eθ
cell = +1.51 – (-0.45) = +1.96V
Fe2+ + 2e ↔ Fe Eθ = -0.45V
MnO4
- + 5e ↔ Mn2+ + 4H2O E θ = +1.51V
Std electrode potential asstd reduction potential
Find Eθ
cell (use reduction potential)Find Eθ
cell (use formula)
5Fe + 2MnO4
- + 16H+→5Fe2+ +2Mn2+ + 8H2O Eθ = ?
Eθ
cell = Eθ
(cathode) – Eθ
(anode)
Fe 2+ + 2e ↔ Fe Eθ = -0.45V
MnO4
- + 5e ↔ Mn2+ + 4H2O Eθ = +1.51V
Fe ↔ Fe2+ + 2e Eθ = +0.45V
MnO4
- +5e ↔ Mn2+ + 4H2O Eθ = +1.51V
Fe + MnO4
- → Mn2+ + Fe2+ Eθ = +1.96V
Oxidized sp ↔ Reduced sp Eθ/V
Li+ + e- ↔ Li -3.04
K+ + e- ↔ K -2.93
Ca2+ + 2e- ↔ Ca -2.87
Na+ + e- ↔ Na -2.71
Mg 2+ + 2e- ↔ Mg -2.37
Al3+ + 3e- ↔ AI -1.66
Mn2+ + 2e- ↔ Mn -1.19
H2O + e- ↔ 1/2H2 + OH- -0.83
Zn2+ + 2e- ↔ Zn -0.76
Fe2+ + 2e- ↔ Fe -0.45
Ni2+ + 2e- ↔ Ni -0.26
Sn2+ + 2e- ↔ Sn -0.14
Pb2+ + 2e- ↔ Pb -0.13
H+ + e- ↔ 1/2H2 0.00
Cu2+ + e- ↔ Cu+ +0.15
SO4
2- + 4H+ + 2e- ↔ H2SO3 + H2O +0.17
Cu2+ + 2e- ↔ Cu +0.34
1/2O2 + H2O +2e- ↔ 2OH- +0.40
Cu+ + e- ↔ Cu +0.52
1/2I2 + e- ↔ I- +0.54
Fe3+ + e- ↔ Fe2+ +0.77
Ag+ + e- ↔ Ag +0.80
1/2Br2 + e- ↔ Br- +1.07
1/2O2 + 2H+ +2e- ↔ H2O +1.23
Cr2O7
2-+14H+ +6e- ↔ 2Cr3+ + 7H2O +1.33
1/2CI2 + e- ↔ CI- +1.36
MnO4
- + 8H+ + 5e- ↔ Mn2+ + 4H2O +1.51
1/2F2 + e- ↔ F +2.87
+
+1.96V
PtFe
Fe2+
Eθ
Fe/MnO4
- = 1.96V
MnO4
-
Mn2+
Using platinumelectrode
+ve/high electrode potentialis cathode(+)
-ve/ low electrode potential is anode (-)
Electronsflow from anode (- ) to cathode (+ )
-
-
-
-
+
+
+
+
Eθ value DO NOT depend on stoichiometric coefficient
(Independentof stoichiometric eqn)
Zn half cell (-ve)
Oxidation
Fe3+/2+ half cell (+ve)
Reduction
Anode Cathode
Zn(s) | Zn2+
(aq) || Fe3+ , Fe2+
(aq) | Pt (s)
Cell diagram
Anode Cathode
Half Cell Half Cell
(Oxidation) (Reduction)
Salt Bridge Flow
electrons
Zn/Fe3+,Fe2+ Cell
-e -e
Eθ
cell = Eθ
(cathode) – Eθ
(anode)
Eθ
cell = +0.77 – (-0.76) = +1.53V
Zn2+ + 2e ↔ Zn Eθ = -0.76V
Fe3+ + e ↔ Fe2+ Eθ = +0.77V
Std electrode potential asstd reduction potential
Find Eθ
cell (use reduction potential)Find Eθ
cell (use formula)
Zn + 2Fe3+→ Zn2+ +2Fe2+ Eθ = ?
Eθ
cell = Eθ
(cathode) – Eθ
(anode)
Zn 2+ + 2e ↔ Zn Eθ = -0.76V
Fe3+ + e ↔ Fe2+ Eθ = +0.77V
Zn ↔ Zn2+ + 2e Eθ = +0.76V
Fe3+ +e ↔ Fe2+ Eθ = +0.77V
Zn + 2Fe3+ → Zn2+ + 2Fe2+ Eθ = +1.53V
Oxidized sp ↔ Reduced sp Eθ/V
Li+ + e- ↔ Li -3.04
K+ + e- ↔ K -2.93
Ca2+ + 2e- ↔ Ca -2.87
Na+ + e- ↔ Na -2.71
Mg 2+ + 2e- ↔ Mg -2.37
Al3+ + 3e- ↔ AI -1.66
Mn2+ + 2e- ↔ Mn -1.19
H2O + e- ↔ 1/2H2 + OH- -0.83
Zn2+ + 2e- ↔ Zn -0.76
Fe2+ + 2e- ↔ Fe -0.45
Ni2+ + 2e- ↔ Ni -0.26
Sn2+ + 2e- ↔ Sn -0.14
Pb2+ + 2e- ↔ Pb -0.13
H+ + e- ↔ 1/2H2 0.00
Cu2+ + e- ↔ Cu+ +0.15
SO4
2- + 4H+ + 2e- ↔ H2SO3 + H2O +0.17
Cu2+ + 2e- ↔ Cu +0.34
1/2O2 + H2O +2e- ↔ 2OH- +0.40
Cu+ + e- ↔ Cu +0.52
1/2I2 + e- ↔ I- +0.54
Fe3+ + e- ↔ Fe2+ + 0.77
Ag+ + e- ↔ Ag +0.80
1/2Br2 + e- ↔ Br- +1.07
1/2O2 + 2H+ +2e- ↔ H2O +1.23
Cr2O7
2-+14H+ +6e- ↔ 2Cr3+ + 7H2O +1.33
1/2CI2 + e- ↔ CI- +1.36
MnO4
- + 8H+ + 5e- ↔ Mn2+ + 4H2O +1.51
1/2F2 + e- ↔ F +2.87
+
+1.53V
PtZn
Zn2+
+ve/high electrode potentialis cathode(+)
-ve/ low electrode potential is anode (-)
Electronsflow from anode (- ) to cathode (+ )
Eθ
Zn/Fe3+ = 1.53V
Fe3+-
Fe2+
Using platinumelectrode
Zn/Fe3+,Fe2+
-
-
-
-
+
+
+
+
Eθ value DO NOT depend on stoichiometric coefficient
(Independentof stoichiometric eqn)
Zn half cell (-ve)
Oxidation
I2 half cell (+ve)
Reduction
Anode Cathode
Zn(s) | Zn2+
(aq) || I2 , I-
(aq) | Pt (s)
Cell diagram
Anode Cathode
Half Cell Half Cell
(Oxidation) (Reduction)
Salt Bridge Flow
electrons
Zn/I2 , I- Cell
-e -e
Eθ
cell = Eθ
(cathode) – Eθ
(anode)
Eθ
cell = +0.54 – (-0.76) = +1.30V
Zn2+ + 2e ↔ Zn Eθ = -0.76V
I2 + 2e ↔ 2I- Eθ = +0.54V
Std electrode potential asstd reduction potential
Find Eθ
cell (use reduction potential)Find Eθ
cell (use formula)
Zn + I2 → Zn2+ +2I- Eθ = ?
Eθ
cell = Eθ
(cathode) – Eθ
(anode)
Zn ↔ Zn2+ + 2e Eθ = +0.76V
I2 + 2e ↔ 2I- Eθ = +0.54V
Zn + I2 → Zn2+ + 2I- Eθ = +1.30V
Oxidized sp ↔ Reduced sp Eθ/V
Li+ + e- ↔ Li -3.04
K+ + e- ↔ K -2.93
Ca2+ + 2e- ↔ Ca -2.87
Na+ + e- ↔ Na -2.71
Mg 2+ + 2e- ↔ Mg -2.37
Al3+ + 3e- ↔ AI -1.66
Mn2+ + 2e- ↔ Mn -1.19
H2O + e- ↔ 1/2H2 + OH- -0.83
Zn2+ + 2e- ↔ Zn -0.76
Fe2+ + 2e- ↔ Fe -0.45
Ni2+ + 2e- ↔ Ni -0.26
Sn2+ + 2e- ↔ Sn -0.14
Pb2+ + 2e- ↔ Pb -0.13
H+ + e- ↔ 1/2H2 0.00
Cu2+ + e- ↔ Cu+ +0.15
SO4
2- + 4H+ + 2e- ↔ H2SO3 + H2O +0.17
Cu2+ + 2e- ↔ Cu +0.34
1/2O2 + H2O +2e- ↔ 2OH- +0.40
Cu+ + e- ↔ Cu +0.52
1/2I2 + e- ↔ I- +0.54
Fe3+ + e- ↔ Fe2+ + 0.77
Ag+ + e- ↔ Ag +0.80
1/2Br2 + e- ↔ Br- +1.07
1/2O2 + 2H+ +2e- ↔ H2O +1.23
Cr2O7
2-+14H+ +6e- ↔ 2Cr3+ + 7H2O +1.33
1/2CI2 + e- ↔ CI- +1.36
MnO4
-
+ 8H+ + 5e- ↔ Mn2+ + 4H2O +1.51
1/2F2 + e- ↔ F +2.87
+
+1.30V
PtZn
Zn2+
+ve/high electrode potentialis cathode(+)
-ve/ low electrode potential is anode (-)
Electronsflow from anode (- ) to cathode (+ )
Eθ
Zn/I2 = 1.30V
I--
I2
Using platinumelectrode
-
-
-
-
+
+
+
+
Zn/I2 , I-
Zn2+ + 2e ↔ Zn Eθ = -0.76V
I2 + 2e ↔ 2I- Eθ = +0.54V
Eθ value DO NOT depend on stoichiometric coefficient
(Independentof stoichiometric eqn)
Zn half cell (-ve)
Oxidation
H2 half cell (+ve)
Reduction
Anode Cathode
Zn(s) | Zn2+
(aq) || H+
(aq) , H2(g) | Pt (s)
Cell diagram
Anode Cathode
Half Cell Half Cell
(Oxidation) (Reduction)
Salt Bridge Flow
electrons
Eθ
cell = Eθ
(cathode) – Eθ
(anode)
Eθ
cell = 0.00 – (-0.76) = +0.76V
Zn2+ + 2e ↔ Zn Eθ = -0.76V
2H+ + 2e ↔ H2 Eθ = 0.00V
Std electrode potential as std reductionpotential
Find Eθ
cell (use reduction potential)Find Eθ
cell (use formula)
Zn + 2H+→ Zn2+ + H2 Eθ = ?
Eθ
cell = Eθ
(cathode) – Eθ
(anode)
Zn 2+ + 2e ↔ Zn Eθ = -0.76V
2H+ + 2e ↔ H2 Eθ = 0.00V
Zn ↔ Zn2+ + 2e Eθ = +0.76V
2H+ +2e ↔ H2 Eθ = 0.00V
Zn + 2H+ → Zn2+ + H2 Eθ = +0.76V
Oxidized sp ↔ Reduced sp Eθ/V
Li+ + e- ↔ Li -3.04
K+ + e- ↔ K -2.93
Ca2+ + 2e- ↔ Ca -2.87
Na+ + e- ↔ Na -2.71
Mg 2+ + 2e- ↔ Mg -2.37
Al3+ + 3e- ↔ AI -1.66
Mn2+ + 2e- ↔ Mn -1.19
H2O + e- ↔ 1/2H2 + OH- -0.83
Zn2+ + 2e- ↔ Zn -0.76
Fe2+ + 2e- ↔ Fe -0.45
Ni2+ + 2e- ↔ Ni -0.26
Sn2+ + 2e- ↔ Sn -0.14
Pb2+ + 2e- ↔ Pb -0.13
H+ + e- ↔ 1/2H2 0.00
Cu2+ + e- ↔ Cu+ +0.15
SO4
2-
+ 4H+ + 2e- ↔ H2SO3 + H2O +0.17
Cu2+ + 2e- ↔ Cu +0.34
1/2O2 + H2O +2e- ↔ 2OH- +0.40
Cu+ + e- ↔ Cu +0.52
1/2I2 + e- ↔ I- +0.54
Fe3+ + e- ↔ Fe2+ + 0.77
Ag+ + e- ↔ Ag +0.80
1/2Br2 + e- ↔ Br- +1.07
1/2O2 + 2H+ +2e- ↔ H2O +1.23
Cr2O7
2-+14H+ +6e- ↔ 2Cr3+ + 7H2O +1.33
1/2CI2 + e- ↔ CI- +1.36
MnO4
- + 8H+ + 5e- ↔ Mn2+ + 4H2O +1.51
1/2F2 + e- ↔ F +2.87
+
+0.76V
+ve/high electrode potentialis cathode(+)
-ve/ low electrode potential is anode (-)
Electronsflow from anode (- ) to cathode (+ )
Eθ
Zn/H2 = 0.76V
Using platinumelectrode/H2
Zn/H2
Zn
Zn2+ H+
Pt
H2
-
-
- +
-e
Zn/H2 Cell
Eθ value DO NOT depend on stoichiometric coefficient
(Independentof stoichiometric eqn)
H2 half cell (-ve)
Oxidation
Ag half cell (+ve)
Reduction
Anode Cathode
Pt(s) | H2, H+
(aq) || Ag+
(aq) | Ag (s)
Cell diagram
Anode Cathode
Half Cell Half Cell
(Oxidation) (Reduction)
Salt Bridge Flow
electrons
H2/Ag Cell
Eθ
cell = Eθ
(cathode) – Eθ
(anode)
Eθ
cell = +0.80 – (-0.00) = +0.80V
2H+ + 2e ↔ H2 Eθ = 0.00V
Ag+ + e ↔ Ag Eθ = +0.80V
Std electrode potential as std reductionpotential
Find Eθ
cell (use reduction potential)Find Eθ
cell (use formula)
H2 + 2Ag+ → 2H+ + 2Ag Eθ = ?
Eθ
cell = Eθ
(cathode) – Eθ
(anode)
H2 ↔ 2H+ + 2e Eθ = +0.00V
2Ag+ +2e ↔ 2Ag Eθ = +0.80V
H2 + 2Ag+ → 2H+ + 2Ag Eθ = +0.80V
Oxidized sp ↔ Reduced sp Eθ/V
Li+ + e- ↔ Li -3.04
K+ + e- ↔ K -2.93
Ca2+ + 2e- ↔ Ca -2.87
Na+ + e- ↔ Na -2.71
Mg 2+ + 2e- ↔ Mg -2.37
Al3+ + 3e- ↔ AI -1.66
Mn2+ + 2e- ↔ Mn -1.19
H2O + e- ↔ 1/2H2 + OH- -0.83
Zn2+ + 2e- ↔ Zn -0.76
Fe2+ + 2e- ↔ Fe -0.45
Ni2+ + 2e- ↔ Ni -0.26
Sn2+ + 2e- ↔ Sn -0.14
Pb2+ + 2e- ↔ Pb -0.13
H+ + e- ↔ 1/2H2 0.00
Cu2+ + e- ↔ Cu+ +0.15
SO4
2-
+ 4H+ + 2e- ↔ H2SO3 + H2O +0.17
Cu2+ + 2e- ↔ Cu +0.34
1/2O2 + H2O +2e- ↔ 2OH- +0.40
Cu+ + e- ↔ Cu +0.52
1/2I2 + e- ↔ I- +0.54
Fe3+ + e- ↔ Fe2+ + 0.77
Ag+ + e- ↔ Ag +0.80
1/2Br2 + e- ↔ Br- +1.07
1/2O2 + 2H+ +2e- ↔ H2O +1.23
Cr2O7
2-+14H+ +6e- ↔ 2Cr3+ + 7H2O +1.33
1/2CI2 + e- ↔ CI- +1.36
MnO4
- + 8H+ + 5e- ↔ Mn2+ + 4H2O +1.51
1/2F2 + e- ↔ F +2.87
+
+0.80V
+ve/high electrode potentialis cathode(+)
-ve/ low electrode potential is anode (-)
Electronsflow from anode (- ) to cathode (+ )
Eθ
H2 /Ag = 0.80V
Using platinumelectrode/H2
H2/Ag
Ag
Ag+
H+
Pt
H2
2H+ + 2e ↔ H2 Eθ = 0.00V
Ag+ + e ↔ Ag Eθ = +0.80V
+
+
+--
-e
Eθ value DO NOT depend on stoichiometric coefficient
(Independentof stoichiometric eqn)
H2 half cell (-ve)
Oxidation
Fe3+/2+ half cell (+ve)
Reduction
Anode Cathode
Pt(s) | H2, H+
(aq) || Fe3+ Fe2+ | Pt (s)
Cell diagram
Anode Cathode
Half Cell Half Cell
(Oxidation) (Reduction)
Salt Bridge Flow
electrons
Std electrode potential as std reductionpotential
Find Eθ
cell (use reduction potential)Find Eθ
cell (use formula)
H2 + 2Fe3+ → 2H+ + 2Fe Eθ = ?
Eθ
cell = Eθ
(cathode) – Eθ
(anode)
H2 ↔ 2H+ + 2e Eθ = +0.00V
2Fe3+ +2e ↔ 2Fe2+ Eθ = +0.77V
H2 + 2Ag+ → 2H+ + 2Ag Eθ = +0.77V
Oxidized sp ↔ Reduced sp Eθ/V
Li+ + e- ↔ Li -3.04
K+ + e- ↔ K -2.93
Ca2+ + 2e- ↔ Ca -2.87
Na+ + e- ↔ Na -2.71
Mg 2+ + 2e- ↔ Mg -2.37
Al3+ + 3e- ↔ AI -1.66
Mn2+ + 2e- ↔ Mn -1.19
H2O + e- ↔ 1/2H2 + OH- -0.83
Zn2+ + 2e- ↔ Zn -0.76
Fe2+ + 2e- ↔ Fe -0.45
Ni2+ + 2e- ↔ Ni -0.26
Sn2+ + 2e- ↔ Sn -0.14
Pb2+ + 2e- ↔ Pb -0.13
H+ + e- ↔ 1/2H2 0.00
Cu2+ + e- ↔ Cu+ +0.15
SO4
2- + 4H+ + 2e- ↔ H2SO3 + H2O +0.17
Cu2+ + 2e- ↔ Cu +0.34
1/2O2 + H2O +2e- ↔ 2OH- +0.40
Cu+ + e- ↔ Cu +0.52
1/2I2 + e- ↔ I- +0.54
Fe3+ + e- ↔ Fe2+ + 0.77
Ag+ + e- ↔ Ag +0.80
1/2Br2 + e- ↔ Br- +1.07
1/2O2 + 2H+ +2e- ↔ H2O +1.23
Cr2O7
2-+14H+ +6e- ↔ 2Cr3+ + 7H2O +1.33
1/2CI2 + e- ↔ CI- +1.36
MnO4
- + 8H+ + 5e- ↔ Mn2+ + 4H2O +1.51
1/2F2 + e- ↔ F +2.87
+
+0.77V
+ve/high electrode potentialis cathode(+)
-ve/ low electrode potential is anode (-)
Electronsflow from anode (- ) to cathode (+ )
Eθ
H2 /Fe3+ = 0.77V
Using platinum electrode/H2
Pt
Fe3+
H+
Pt
H2
+
+
+--
-e
H2 /Fe3+,Fe2+ Cell
H2 /Fe3+,Fe2+
2H+ + 2e ↔ H2 Eθ = 0.00V
Fe3+ + e ↔ Fe2+ Eθ = +0.77V
2H+ + 2e ↔ H2 Eθ = 0.00V
Fe3+ + e ↔ Fe2+ Eθ = +0.77V
Eθ
cell = Eθ
(cathode) – Eθ
(anode)
Eθ
cell = +0.77– (-0.00) = +0.77V
Eθ value DO NOT depend on stoichiometric coefficient
(Independentof stoichiometric eqn)
H2 half cell (-ve)
Oxidation
CI2 half cell (+ve)
Reduction
Anode Cathode
Pt(s) | H2, H+
(aq) || CI2 ,CI- | Pt (s)
Cell diagram
Anode Cathode
Half Cell Half Cell
(Oxidation) (Reduction)
Salt Bridge Flow
electrons
Std electrode potential as std reductionpotential
Find Eθ
cell (use reduction potential)Find Eθ
cell (use formula)
CI2 + H2 → 2CI- + 2H+ Eθ = ?
Eθ
cell = Eθ
(cathode) – Eθ
(anode)
H2 ↔ 2H+ + 2e Eθ = +0.00V
CI2 +2e ↔ 2CI- Eθ = +1.35V
H2 + CI2 → 2H+ + 2CI- Eθ = +1.35V
Oxidized sp ↔ Reduced sp Eθ/V
Li+ + e- ↔ Li -3.04
K+ + e- ↔ K -2.93
Ca2+ + 2e- ↔ Ca -2.87
Na+ + e- ↔ Na -2.71
Mg 2+ + 2e- ↔ Mg -2.37
Al3+ + 3e- ↔ AI -1.66
Mn2+ + 2e- ↔ Mn -1.19
H2O + e- ↔ 1/2H2 + OH- -0.83
Zn2+ + 2e- ↔ Zn -0.76
Fe2+ + 2e- ↔ Fe -0.45
Ni2+ + 2e- ↔ Ni -0.26
Sn2+ + 2e- ↔ Sn -0.14
Pb2+ + 2e- ↔ Pb -0.13
H+ + e- ↔ 1/2H2 0.00
Cu2+ + e- ↔ Cu+ +0.15
SO4
2- + 4H+ + 2e- ↔ H2SO3 + H2O +0.17
Cu2+ + 2e- ↔ Cu +0.34
1/2O2 + H2O +2e- ↔ 2OH- +0.40
Cu+ + e- ↔ Cu +0.52
1/2I2 + e- ↔ I- +0.54
Fe3+ + e- ↔ Fe2+ + 0.77
Ag+ + e- ↔ Ag +0.80
1/2Br2 + e- ↔ Br- +1.07
1/2O2 + 2H+ +2e- ↔ H2O +1.23
Cr2O7
2-+14H+ +6e- ↔ 2Cr3+ + 7H2O +1.33
1/2CI2 + e- ↔ CI- +1.35
MnO4
- + 8H+ + 5e- ↔ Mn2+ + 4H2O +1.51
1/2F2 + e- ↔ F +2.87
+
+1.35V
+ve/high electrode potentialis cathode(+)
-ve/ low electrode potential is anode (-)
Electronsflow from anode (- ) to cathode (+ )
Eθ
H2 /CI2 = 1.35V
Using platinum electrode/H2
H+
Pt
H2 --
-e
H2 /CI2 Cell
2H+ + 2e ↔ H2 Eθ = 0.00V
CI + e ↔ CI- Eθ = +1.35V
Eθ
cell = Eθ
(cathode) – Eθ
(anode)
Eθ
cell = +1.35 – (-0.00) = +1.35V
H2 /CI2 Cell
2H+ + 2e ↔ H2 Eθ = 0.00V
CI + e ↔ CI- Eθ = +1.35V
+
Pt
CI - CI2
Eθ value DO NOT depend on stoichiometric coefficient
(Independentof stoichiometric eqn)
Standard Electrode Potential
STANDARD Reduction potential – H2 as std
Oxidized sp ↔ Reduced sp Eθ/V
Li+ + e- ↔ Li -3.04
K+ + e- ↔ K -2.93
Ca2+ + 2e- ↔ Ca -2.87
Na+ + e- ↔ Na -2.71
Mg 2+ + 2e- ↔ Mg -2.37
Al3+ + 3e- ↔ AI -1.66
Mn2+ + 2e- ↔ Mn -1.19
H2O + e- ↔ H2+OH- -0.83
Zn2+ + 2e- ↔ Zn -0.76
Fe2+ + 2e- ↔ Fe -0.45
Ni2+ + 2e- ↔ Ni -0.26
Sn2+ + 2e- ↔ Sn -0.14
Pb2+ + 2e- ↔ Pb -0.13
H+ + e- ↔ 1/2H2 0.00
Cu2+ + e- ↔ Cu+ +0.15
SO4
2-
+ 4H+ + 2e- ↔ H2SO3 + H2O +0.17
Cu2+ + 2e- ↔ Cu +0.34
1/2O2 + H2O +2e- ↔ 2OH- +0.40
Cu+ + e- ↔ Cu +0.52
1/2I2 + e- ↔ I- +0.54
Fe3+ + e- ↔ Fe2+ +0.77
Ag+ + e- ↔ Ag +0.80
1/2Br2 + e- ↔ Br- +1.07
1/2O2 + 2H+ +2e- ↔ H2O +1.23
Cr2O7
2-+14H+ +6e- ↔ 2Cr3+ +7H2O +1.33
1/2CI2 + e- ↔ CI- +1.36
MnO4
-
+ 8H+ + 5e- ↔ Mn2+ + 4H2O +1.51
1/2F2 + e- ↔ F +2.87
-ve
reduction
potential
+ve
reduction
potential
Compared to
H2 as std
Eθ
cell/CellPotential= EMF in volt
EMF when half cell connect to SHE std condition
Std potentialwritten as std reduction potential
TOP right
• High ↑ tendency lose e
• Li → Li +
+ e
• Eθ
Li = +3.04V
• STRONG reducingAgent
•Oxi favourable (Eθ =+ve)
STRONG
Reducing Agent
WEAK
Reducing Agent
BOTTOM right
• Low ↓ tendency lose e
• F - → 1/2F2 + e
• Eθ
F2 = - 2.87V
• WEAK reducingAgent
•Oxi NOT favourable (Eθ =-ve)
WEAK
Oxidizing Agent
Strong
Oxidizing Agent
TOP left
• Low ↓ tendency gain e
• Li+
+ e → Li
• Eθ
Li= - 3.04V
• WEAK oxidizingAgent
• Red NOT favourable
(Eθ =-ve)
BOTTOM left
• High ↑ tendency gain e
• F2 + 2e → 2F-
• Eθ
F2= +2.87V
• STRONG oxidizing Agent
•Red favourable
(Eθ =+ve)
Acknowledgements
Thanks to source of pictures and video used in this presentation
Thanks to Creative Commons for excellent contribution on licenses
http://creativecommons.org/licenses/
http://spmchemistry.onlinetuition.com.my/2013/10/electrolytic-cell.html
http://www.chemguide.co.uk/physical/redoxeqia/introduction.html
http://educationia.tk/reduction-potential-table
http://2012books.lardbucket.org/books/principles-of-general-chemistry-v1.0/s23-
electrochemistry.html
Prepared by Lawrence Kok
Check out more video tutorials from my site and hope you enjoy this tutorial
http://lawrencekok.blogspot.com

Más contenido relacionado

La actualidad más candente

Chapter 19.4 : Electrochemistry
Chapter 19.4 : ElectrochemistryChapter 19.4 : Electrochemistry
Chapter 19.4 : Electrochemistry
Chris Foltz
 
Introduction to electrochemistry by t. hara
Introduction to electrochemistry by t. haraIntroduction to electrochemistry by t. hara
Introduction to electrochemistry by t. hara
Toru Hara
 

La actualidad más candente (20)

Chapter 19.4 : Electrochemistry
Chapter 19.4 : ElectrochemistryChapter 19.4 : Electrochemistry
Chapter 19.4 : Electrochemistry
 
Class XII Electrochemistry - Nernst equation.
Class XII Electrochemistry - Nernst equation.Class XII Electrochemistry - Nernst equation.
Class XII Electrochemistry - Nernst equation.
 
Potentiometry titration
Potentiometry titrationPotentiometry titration
Potentiometry titration
 
conductometry.pptx
conductometry.pptxconductometry.pptx
conductometry.pptx
 
PA-I Potentiometry. (HRB)
PA-I Potentiometry. (HRB)PA-I Potentiometry. (HRB)
PA-I Potentiometry. (HRB)
 
Complex compounds
Complex compoundsComplex compounds
Complex compounds
 
Conductometry- Pharmaceutical Analysis
Conductometry- Pharmaceutical AnalysisConductometry- Pharmaceutical Analysis
Conductometry- Pharmaceutical Analysis
 
Electrochemistry
ElectrochemistryElectrochemistry
Electrochemistry
 
PA-I Condutometry.(HRB)
PA-I Condutometry.(HRB)PA-I Condutometry.(HRB)
PA-I Condutometry.(HRB)
 
Coordination chemistry-2
Coordination chemistry-2Coordination chemistry-2
Coordination chemistry-2
 
Reactions of complexes
Reactions of complexesReactions of complexes
Reactions of complexes
 
Electrochemistry chapter 1
Electrochemistry chapter 1Electrochemistry chapter 1
Electrochemistry chapter 1
 
Potentiometry
PotentiometryPotentiometry
Potentiometry
 
Electro chemistry
Electro chemistryElectro chemistry
Electro chemistry
 
Chemistry of Coordination Compounds.pptx
Chemistry of Coordination Compounds.pptxChemistry of Coordination Compounds.pptx
Chemistry of Coordination Compounds.pptx
 
Introduction to electrochemistry by t. hara
Introduction to electrochemistry by t. haraIntroduction to electrochemistry by t. hara
Introduction to electrochemistry by t. hara
 
Fundamentals of Electrochemistry
Fundamentals of ElectrochemistryFundamentals of Electrochemistry
Fundamentals of Electrochemistry
 
Solid State
Solid StateSolid State
Solid State
 
Stability of metal complexes
Stability of metal complexesStability of metal complexes
Stability of metal complexes
 
Electrochemistry(a)
Electrochemistry(a)Electrochemistry(a)
Electrochemistry(a)
 

Destacado

Destacado (20)

IB Chemistry on ICT, 3D software, Jmol, Pymol and Rasmol for Internal Assessment
IB Chemistry on ICT, 3D software, Jmol, Pymol and Rasmol for Internal AssessmentIB Chemistry on ICT, 3D software, Jmol, Pymol and Rasmol for Internal Assessment
IB Chemistry on ICT, 3D software, Jmol, Pymol and Rasmol for Internal Assessment
 
IB Chemistry on ICT, 3D software, Avogadro, AngusLab, Swiss PDB Viewer for In...
IB Chemistry on ICT, 3D software, Avogadro, AngusLab, Swiss PDB Viewer for In...IB Chemistry on ICT, 3D software, Avogadro, AngusLab, Swiss PDB Viewer for In...
IB Chemistry on ICT, 3D software, Avogadro, AngusLab, Swiss PDB Viewer for In...
 
IB Chemistry on ICT, 3D software, Avogadro, Jmol, Swiss PDB, Pymol for Intern...
IB Chemistry on ICT, 3D software, Avogadro, Jmol, Swiss PDB, Pymol for Intern...IB Chemistry on ICT, 3D software, Avogadro, Jmol, Swiss PDB, Pymol for Intern...
IB Chemistry on ICT, 3D software, Avogadro, Jmol, Swiss PDB, Pymol for Intern...
 
IB Chemistry on ICT, 3D software, Avogadro, Jmol, Swiss PDB, Pymol for Intern...
IB Chemistry on ICT, 3D software, Avogadro, Jmol, Swiss PDB, Pymol for Intern...IB Chemistry on ICT, 3D software, Avogadro, Jmol, Swiss PDB, Pymol for Intern...
IB Chemistry on ICT, 3D software, Avogadro, Jmol, Swiss PDB, Pymol for Intern...
 
IB Chemistry on Redox, Reactivity Series and Displacement reaction
IB Chemistry on Redox, Reactivity Series and Displacement reactionIB Chemistry on Redox, Reactivity Series and Displacement reaction
IB Chemistry on Redox, Reactivity Series and Displacement reaction
 
IB Chemistry on Standard Reduction Potential, Standard Hydrogen Electrode and...
IB Chemistry on Standard Reduction Potential, Standard Hydrogen Electrode and...IB Chemistry on Standard Reduction Potential, Standard Hydrogen Electrode and...
IB Chemistry on Standard Reduction Potential, Standard Hydrogen Electrode and...
 
IB Chemistry on Redox, Oxidizing, Reducing Agents and writing half redox equa...
IB Chemistry on Redox, Oxidizing, Reducing Agents and writing half redox equa...IB Chemistry on Redox, Oxidizing, Reducing Agents and writing half redox equa...
IB Chemistry on Redox, Oxidizing, Reducing Agents and writing half redox equa...
 
IB Chemistry on ICT, 3D software, Avogadro, AngusLab, Swiss PDB Viewer for In...
IB Chemistry on ICT, 3D software, Avogadro, AngusLab, Swiss PDB Viewer for In...IB Chemistry on ICT, 3D software, Avogadro, AngusLab, Swiss PDB Viewer for In...
IB Chemistry on ICT, 3D software, Avogadro, AngusLab, Swiss PDB Viewer for In...
 
IB Chemistry on Organic nomenclature and functional groups.
IB Chemistry on Organic nomenclature and functional groups.IB Chemistry on Organic nomenclature and functional groups.
IB Chemistry on Organic nomenclature and functional groups.
 
IB Chemistry on Reactivity Series vs Electrochemical Series
IB Chemistry on Reactivity Series vs Electrochemical SeriesIB Chemistry on Reactivity Series vs Electrochemical Series
IB Chemistry on Reactivity Series vs Electrochemical Series
 
IB Chemistry on ICT, 3D software, Avogadro, Jmol, Swiss PDB, Pymol for Intern...
IB Chemistry on ICT, 3D software, Avogadro, Jmol, Swiss PDB, Pymol for Intern...IB Chemistry on ICT, 3D software, Avogadro, Jmol, Swiss PDB, Pymol for Intern...
IB Chemistry on ICT, 3D software, Avogadro, Jmol, Swiss PDB, Pymol for Intern...
 
IB Chemistry on Gibbs Free Energy and Equilibrium constant, Kc
IB Chemistry on Gibbs Free Energy and Equilibrium constant, KcIB Chemistry on Gibbs Free Energy and Equilibrium constant, Kc
IB Chemistry on Gibbs Free Energy and Equilibrium constant, Kc
 
IB Chemistry on Electrophilic Addition and Synthetic routes
IB Chemistry on Electrophilic Addition and Synthetic routesIB Chemistry on Electrophilic Addition and Synthetic routes
IB Chemistry on Electrophilic Addition and Synthetic routes
 
IB Chemistry on Gibbs Free Energy and Entropy
IB Chemistry on Gibbs Free Energy and EntropyIB Chemistry on Gibbs Free Energy and Entropy
IB Chemistry on Gibbs Free Energy and Entropy
 
IB Chemistry on ICT, 3D software, Avogadro, Jmol, Swiss PDB, Pymol for Intern...
IB Chemistry on ICT, 3D software, Avogadro, Jmol, Swiss PDB, Pymol for Intern...IB Chemistry on ICT, 3D software, Avogadro, Jmol, Swiss PDB, Pymol for Intern...
IB Chemistry on ICT, 3D software, Avogadro, Jmol, Swiss PDB, Pymol for Intern...
 
IB Chemistry on Born Haber Cycle and Lattice Enthalpy
IB Chemistry on Born Haber Cycle and Lattice EnthalpyIB Chemistry on Born Haber Cycle and Lattice Enthalpy
IB Chemistry on Born Haber Cycle and Lattice Enthalpy
 
IB Chemistry on ICT, 3D software, Jmol, Pymol, Rasmol and ACD for Internal As...
IB Chemistry on ICT, 3D software, Jmol, Pymol, Rasmol and ACD for Internal As...IB Chemistry on ICT, 3D software, Jmol, Pymol, Rasmol and ACD for Internal As...
IB Chemistry on ICT, 3D software, Jmol, Pymol, Rasmol and ACD for Internal As...
 
IB Chemistry on Entropy and Law of Thermodynamics
IB Chemistry on Entropy and Law of ThermodynamicsIB Chemistry on Entropy and Law of Thermodynamics
IB Chemistry on Entropy and Law of Thermodynamics
 
IB Chemistry on Gibbs Free Energy, Equilibrium constant and Cell Potential
IB Chemistry on Gibbs Free Energy, Equilibrium constant and Cell PotentialIB Chemistry on Gibbs Free Energy, Equilibrium constant and Cell Potential
IB Chemistry on Gibbs Free Energy, Equilibrium constant and Cell Potential
 
IB Chemistry on Absorption Spectrum and Line Emission/Absorption Spectrum
IB Chemistry on Absorption Spectrum and Line Emission/Absorption SpectrumIB Chemistry on Absorption Spectrum and Line Emission/Absorption Spectrum
IB Chemistry on Absorption Spectrum and Line Emission/Absorption Spectrum
 

Similar a IB Chemistry on Voltaic Cell, Standard Electrode Potential and Standard Hydrogen Electrode

New chm-152-unit-8-power-points-sp13-140227172047-phpapp01
New chm-152-unit-8-power-points-sp13-140227172047-phpapp01New chm-152-unit-8-power-points-sp13-140227172047-phpapp01
New chm-152-unit-8-power-points-sp13-140227172047-phpapp01
Cleophas Rwemera
 
Tunnel Diode (Esaki Diode )
Tunnel Diode (Esaki Diode )Tunnel Diode (Esaki Diode )
Tunnel Diode (Esaki Diode )
Soudip Sinha Roy
 
Resistors and resistance.ppt
Resistors and resistance.pptResistors and resistance.ppt
Resistors and resistance.ppt
mrmeredith
 
Introduction to electrochemistry by t. hara
Introduction to electrochemistry by t. haraIntroduction to electrochemistry by t. hara
Introduction to electrochemistry by t. hara
Toru Hara
 
Electrochemistry Introduction electrochemical cells
Electrochemistry Introduction electrochemical cellsElectrochemistry Introduction electrochemical cells
Electrochemistry Introduction electrochemical cells
Hhelenaa1
 

Similar a IB Chemistry on Voltaic Cell, Standard Electrode Potential and Standard Hydrogen Electrode (20)

IB Chemistry on Voltaic Cell, Standard Electrode Potential and Standard Hydro...
IB Chemistry on Voltaic Cell, Standard Electrode Potential and Standard Hydro...IB Chemistry on Voltaic Cell, Standard Electrode Potential and Standard Hydro...
IB Chemistry on Voltaic Cell, Standard Electrode Potential and Standard Hydro...
 
Option C Nernst Equation, Voltaic Cell and Concentration Cell
Option C Nernst Equation, Voltaic Cell and Concentration CellOption C Nernst Equation, Voltaic Cell and Concentration Cell
Option C Nernst Equation, Voltaic Cell and Concentration Cell
 
Option C Nernst Equation, Voltaic Cell and Concentration Cell
Option C Nernst Equation, Voltaic Cell and Concentration CellOption C Nernst Equation, Voltaic Cell and Concentration Cell
Option C Nernst Equation, Voltaic Cell and Concentration Cell
 
IB Chemistry on Standard Reduction Potential, Standard Hydrogen Electrode and...
IB Chemistry on Standard Reduction Potential, Standard Hydrogen Electrode and...IB Chemistry on Standard Reduction Potential, Standard Hydrogen Electrode and...
IB Chemistry on Standard Reduction Potential, Standard Hydrogen Electrode and...
 
Lecture 21- Electrochemical cells
Lecture 21- Electrochemical cellsLecture 21- Electrochemical cells
Lecture 21- Electrochemical cells
 
New chm-152-unit-8-power-points-sp13-140227172047-phpapp01
New chm-152-unit-8-power-points-sp13-140227172047-phpapp01New chm-152-unit-8-power-points-sp13-140227172047-phpapp01
New chm-152-unit-8-power-points-sp13-140227172047-phpapp01
 
Tunnel Diode (Esaki Diode )
Tunnel Diode (Esaki Diode )Tunnel Diode (Esaki Diode )
Tunnel Diode (Esaki Diode )
 
IA on effect of zinc concentration on voltage using nernst equation
IA on effect of zinc concentration on voltage using nernst equationIA on effect of zinc concentration on voltage using nernst equation
IA on effect of zinc concentration on voltage using nernst equation
 
Resistors and resistance.ppt
Resistors and resistance.pptResistors and resistance.ppt
Resistors and resistance.ppt
 
Elec chem2.pptxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxddddddddddddddddddddddd...
Elec chem2.pptxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxddddddddddddddddddddddd...Elec chem2.pptxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxddddddddddddddddddddddd...
Elec chem2.pptxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxddddddddddddddddddddddd...
 
Elec chem2.pptxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxddddddddddddddddddddddd...
Elec chem2.pptxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxddddddddddddddddddddddd...Elec chem2.pptxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxddddddddddddddddddddddd...
Elec chem2.pptxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxddddddddddddddddddddddd...
 
Introduction to electrochemistry by t. hara
Introduction to electrochemistry by t. haraIntroduction to electrochemistry by t. hara
Introduction to electrochemistry by t. hara
 
Electro chemistry.docx
Electro chemistry.docxElectro chemistry.docx
Electro chemistry.docx
 
Electrical Servuces_MOD I_I.pptx
Electrical Servuces_MOD I_I.pptxElectrical Servuces_MOD I_I.pptx
Electrical Servuces_MOD I_I.pptx
 
intro to electrochemistry
intro to  electrochemistryintro to  electrochemistry
intro to electrochemistry
 
Electrochemistry
ElectrochemistryElectrochemistry
Electrochemistry
 
Basic concepts in electrochemistry
Basic concepts in electrochemistryBasic concepts in electrochemistry
Basic concepts in electrochemistry
 
Chapter - 6 (Electrochemistry).ppt
Chapter - 6 (Electrochemistry).pptChapter - 6 (Electrochemistry).ppt
Chapter - 6 (Electrochemistry).ppt
 
Electrochemistry Introduction electrochemical cells
Electrochemistry Introduction electrochemical cellsElectrochemistry Introduction electrochemical cells
Electrochemistry Introduction electrochemical cells
 
Lect05 handout
Lect05 handoutLect05 handout
Lect05 handout
 

Más de Lawrence kok

Más de Lawrence kok (20)

IA on effect of duration on efficiency of immobilized enzyme amylase (yeast e...
IA on effect of duration on efficiency of immobilized enzyme amylase (yeast e...IA on effect of duration on efficiency of immobilized enzyme amylase (yeast e...
IA on effect of duration on efficiency of immobilized enzyme amylase (yeast e...
 
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
 
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
 
IA on effect of duration on the efficiency of immobilized enzyme amylase (fun...
IA on effect of duration on the efficiency of immobilized enzyme amylase (fun...IA on effect of duration on the efficiency of immobilized enzyme amylase (fun...
IA on effect of duration on the efficiency of immobilized enzyme amylase (fun...
 
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
 
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
 
IA on effect of duration on efficiency of immobilized MnO2 in alginate beads ...
IA on effect of duration on efficiency of immobilized MnO2 in alginate beads ...IA on effect of duration on efficiency of immobilized MnO2 in alginate beads ...
IA on effect of duration on efficiency of immobilized MnO2 in alginate beads ...
 
IA on effect of concentration of sodium alginate and calcium chloride in maki...
IA on effect of concentration of sodium alginate and calcium chloride in maki...IA on effect of concentration of sodium alginate and calcium chloride in maki...
IA on effect of concentration of sodium alginate and calcium chloride in maki...
 
IA on effect of temperature on polyphenol (tannins) of white wine, using pota...
IA on effect of temperature on polyphenol (tannins) of white wine, using pota...IA on effect of temperature on polyphenol (tannins) of white wine, using pota...
IA on effect of temperature on polyphenol (tannins) of white wine, using pota...
 
IA on effect of temperature on polyphenol (tannins) of green tea, using potas...
IA on effect of temperature on polyphenol (tannins) of green tea, using potas...IA on effect of temperature on polyphenol (tannins) of green tea, using potas...
IA on effect of temperature on polyphenol (tannins) of green tea, using potas...
 
IA on effect of duration (steeping time) on polyphenol (tannins) of tea, usin...
IA on effect of duration (steeping time) on polyphenol (tannins) of tea, usin...IA on effect of duration (steeping time) on polyphenol (tannins) of tea, usin...
IA on effect of duration (steeping time) on polyphenol (tannins) of tea, usin...
 
IA on polyphenol (tannins) quantification between green and black tea using p...
IA on polyphenol (tannins) quantification between green and black tea using p...IA on polyphenol (tannins) quantification between green and black tea using p...
IA on polyphenol (tannins) quantification between green and black tea using p...
 
IA on temperature on polyphenol (tannins strawberry) quantification using pot...
IA on temperature on polyphenol (tannins strawberry) quantification using pot...IA on temperature on polyphenol (tannins strawberry) quantification using pot...
IA on temperature on polyphenol (tannins strawberry) quantification using pot...
 
IA on temperature on polyphenol (tannins apple cider) quantification using po...
IA on temperature on polyphenol (tannins apple cider) quantification using po...IA on temperature on polyphenol (tannins apple cider) quantification using po...
IA on temperature on polyphenol (tannins apple cider) quantification using po...
 
IA on effect of temperature on polyphenol (tannins) quantification using pota...
IA on effect of temperature on polyphenol (tannins) quantification using pota...IA on effect of temperature on polyphenol (tannins) quantification using pota...
IA on effect of temperature on polyphenol (tannins) quantification using pota...
 
IA on polyphenol quantification using potassium permanganate titration (Lowen...
IA on polyphenol quantification using potassium permanganate titration (Lowen...IA on polyphenol quantification using potassium permanganate titration (Lowen...
IA on polyphenol quantification using potassium permanganate titration (Lowen...
 
IA on rate of hydrolysis of aspirin at different temperature, measured using ...
IA on rate of hydrolysis of aspirin at different temperature, measured using ...IA on rate of hydrolysis of aspirin at different temperature, measured using ...
IA on rate of hydrolysis of aspirin at different temperature, measured using ...
 
IA on hydrolysis of aspirin in water, duration over 5 days, measured using vi...
IA on hydrolysis of aspirin in water, duration over 5 days, measured using vi...IA on hydrolysis of aspirin in water, duration over 5 days, measured using vi...
IA on hydrolysis of aspirin in water, duration over 5 days, measured using vi...
 
IA on aspirin hydrolysis in different HCI concentration (0.0625 -1M), measure...
IA on aspirin hydrolysis in different HCI concentration (0.0625 -1M), measure...IA on aspirin hydrolysis in different HCI concentration (0.0625 -1M), measure...
IA on aspirin hydrolysis in different HCI concentration (0.0625 -1M), measure...
 
IA on aspirin hydrolysis in different medium, water vs acid (1M) medium, meas...
IA on aspirin hydrolysis in different medium, water vs acid (1M) medium, meas...IA on aspirin hydrolysis in different medium, water vs acid (1M) medium, meas...
IA on aspirin hydrolysis in different medium, water vs acid (1M) medium, meas...
 

Último

Making and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdfMaking and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdf
Chris Hunter
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
heathfieldcps1
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
kauryashika82
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
heathfieldcps1
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
QucHHunhnh
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
PECB
 

Último (20)

On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan Fellows
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104
 
Making and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdfMaking and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdf
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
 
Food Chain and Food Web (Ecosystem) EVS, B. Pharmacy 1st Year, Sem-II
Food Chain and Food Web (Ecosystem) EVS, B. Pharmacy 1st Year, Sem-IIFood Chain and Food Web (Ecosystem) EVS, B. Pharmacy 1st Year, Sem-II
Food Chain and Food Web (Ecosystem) EVS, B. Pharmacy 1st Year, Sem-II
 
General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...
 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
 
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17  How to Extend Models Using Mixin ClassesMixin Classes in Odoo 17  How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
 
Unit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptxUnit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptx
 
Energy Resources. ( B. Pharmacy, 1st Year, Sem-II) Natural Resources
Energy Resources. ( B. Pharmacy, 1st Year, Sem-II) Natural ResourcesEnergy Resources. ( B. Pharmacy, 1st Year, Sem-II) Natural Resources
Energy Resources. ( B. Pharmacy, 1st Year, Sem-II) Natural Resources
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
 
Micro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfMicro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdf
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17
 
Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024
 
Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptx
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
 
Class 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfClass 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdf
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
 

IB Chemistry on Voltaic Cell, Standard Electrode Potential and Standard Hydrogen Electrode

  • 1. Types voltaic cell Conversion electrical energy to chemical energy Electrochemistry Electrolytic cellVoltaic cell NH4CI and ZnCI2 Chemical and electrical energy Redox rxn (Oxidation/reduction) Movement electron Produce electricity Conversion chemical energy to electrical energy Electrodes– different metal (Half cell) Electrodes – same metal (Half cell) Chemical rxn Electric current Daniell cell Alkaline cellDry cell Nickel cadmium cell Primary cell (Non rechargeable) MnO2 and KOH Secondary cell (Rechargeable)
  • 2. Conversion electrical to chemical energy Electrochemistry ElectrolyticcellVoltaic cell Conversion chemicalto electricalenergy Cathode (+ve) - Reduction Cathode (-ve) - Reduction Vs Electron flow from anode (-ve) to cathode (+ve) electrode Electron flow from anode (+ve) to cathode (-ve) electrode Anode (-ve) Spontaneous rxn Non Spontaneous rxn Anode (-ve) – Oxidation Anode (+ve) – Oxidation ++ О О О О - - Zn → Zn 2+ + 2e (oxidized) Cu2+ + 2e → Cu (reduced) Zn2+ Zn2+ Zn2+ Zn2+- - - - → + + + Cu2+ Cu2+ Cu2+ -e -e + + + - - - X-→ X + -e (oxidized) X - X - X - Anode (+ve) Cathode (-ve) Cathode (+ve) -e -e Y+ + e- → Y (reduced) Y+ Y+ Y+ -e -e -e -e Anode Cathode Voltaic Cell Electrolytic Cell Anode Oxidation Negative (-ve) Oxidation Positive (+ve) Cathode Reduction Positive (+ve) Reduction Negative (-ve) Cation (+ve ion) to cathode (-ve)Anion (-ve ion) to anode (+ve)
  • 3. Current– measured in Amperes or Coulombs per second 1A = 1 Coulomb charge pass througha point in 1 second = 1C/s 1 Coulomb charge (electron)= 6.28 x 10 18 electronspassing in 1 second 1 electron/protoncarry charge of – 1.6 x 10 -19 C ( very small) 6.28 x 10 18 electron carry charge of - 1 C Electric current Flow electric charges (electron, -ve) From High electric potential – low potential Due to Potential Difference– measure with ammeter ond electron ond Coulomb A sec.1 .1028.6 sec1 1 1 18   Click here current/voltage Current Electric Current – movingcharges in solid wire or solution Flow of charges - - - Solid/WireSolution/Electrolyte Electron move in random No current flow cause No potential difference Electrons & Protons - - + + 1A = 6.28 x 1018 e 1 second Video on current/voltage Potential Difference across wire Electron move in one direction Current flow +ve ions -ve ions (cations) (anions) Potential Difference applied/Battery used ItQ  t = Time/ s Find amt charges pass through a sol if Current is 2.ooA, time is 15 mins ItQ  Current flow Q = Amt Charges/ C I = Current/ A CQ 1800601500.2 
  • 4. Electric Potential C J Volt 1 1  Potential Diff/Voltage -Measured in Volt with Voltmeter - 1 V = 1 Joule energy released when 1 Coulomb charge pass through 1 point - 1 V = 1 J/C 6V battery - 6J energy for every Coulomb moved bet its terminals. V = Potential Diff I = Current R = Resistance Potential diff bet 2 points is 1 V ↓ 1 J energy released when 1 C charge passes through Voltmeter across 1Volt 1 V Potential Diff/Voltage/PotentialEnergy + - 1 Ω 2 Ω Charges (-ve) flow down A R V I RIV 2 3 6   VV RIV 212   - + - + VV RIV 422   Total current Potential Diff(PD)vs Current PD = Water Pressure PD = 1.5V – 1.5J energy released 1C charge flow down PD – cause charge flow- charge flow = Called CURRENT Potential Diff(PD)vs Current 1.5V = 1.5J/C A DElectric potential/PD/Voltage = Electric Pressure = Volt Electric Current/Current = Charge flow = Amp Electric Potential Energy = Work done to bring a charge to a point = Joule Voltage NOT same as energy, Voltage = energy/charge Battery lift charges, Q to higher potential Potential Energy bet 2 terminals in battery stored as chemical energy 2A 2A
  • 5. EMF vs PD V = Potential Diff I = Current R = Resistance Max potential diff bet two electrodes of battery source. + - 1 Ω 2 Ω A R V I RIV 2 3 6   VV RIV 212   VV RIV 422   Total current Current flow Circuit complete Circuit complete ↓ Current flow ↓ Internal resistance (battery - 1Ω) ↓ Terminal PD = 8V (Voltage drop) Potential Diff/Voltage in Volt Symbol for EMF = E or ℰ Click here voltage drop internal resistance No Current flow in circuit EMF (ElectromotiveForce) in Volt Battery = EMF = 9V 9 Volt ).(9 currentnoVEMFV IRV   EMF Internal resistance Ir Place voltmeter across – EMF= 9V No current flow. A rR E I rRIE IrIREMFE 1 9 9 )18( 9 )( )( )(        VV RIV 881   VV RIV 111   EMF = 8V+1V 8 Volt 1 Volt Voltage measured across terminal = 8V Click here EMF notes Click here PD, PE and I EMF (6V) = 2V + 4V 4 Volt2 Volt Charges passing through wire Current flow Circuit complete
  • 6. Series vs Parallel Circuit 3 Ω A R V I RIV 5.0 18 9   VV V RIV 5.2 55.0    VV V RIV 5 105.0    Total Resistance 3 + 10 + 5 = 18Ω Parallel CircuitSeries Circuit EMF (9V) = 2.5V + 5V + 1.5V R = 0.625Ω Voltage same across all component. VT = V1 = V2 = V3 Total current = sum of current in each branch. IT = I1 + I2 + I3 Total equi resistance < value of any individual resistor Total Current Current same in circuit Total voltage = sum of component in series 5 Ω 10 Ω0.5 A VV V RIV 5.1 35.0    Voltage across all component Same = 9V Total Current = sum of all current in each branch Total Resistance 10Ω 2Ω 1Ω AI R V I 9.0 10 9   AI R V I 5.4 2 9   AI R V I 9 1 9   Total current (14.4A) = 0.9A + 4.5A + 9A Ohm’s Law Sum voltage drop equal to voltage source (EMF). VT = V1 + V2 + V3 Current same in all components in series. Total resistance = sum of individual resistances. RT = R1 + R2 + R3 Click here voltage drop Series Circuit Parallel Circuit • Voltage do not flow • Charges/Current flow • Voltage cause current to flow • Voltage ≠ Energy • Battery do not supply electron • Wire contain electron, they flow Electron in wire repel by -ve terminal move in circuit Electron move slowly, drift velocity, electric field move at speed of light Electric signal travel speed of light, bulb light up instantaneously, Electric signal/field travel faster than movement of electron Movement e – cause electric field – travel speed of light – bulb light up Voltage Diff – Pressure diff across Voltage Diff – Cause water/current to flow 14.4A 4.5A0.9A 9A
  • 7. Potential Diff bet Zn/Zn2+ Electrode potential Zn/Zn2+ = -ve - Electrode Potential Redox Equilibrium Zn2+ Zn → Zn 2+ + 2e (Oxidation) Zn 2+ + 2e → Zn (Reduction) Zn 2+ + 2e ↔ Zn (At equilibrium) Metal Zn placed in its sol Zn2+ ion Equilibrium bet Zn/Zn2+ Zn metal reactive lose e form Zn2+ Equilibrium shift to right ← Potential Diff form bet Zn/Zn2+ Potential Diff Electrode potential = -ve Zn2+ Zn2+ Zn Zn2+ Zn Zn2+ Zn2+ Zn2+ Zn 2+ + 2e ↔ Zn Equi shift to ← - -- Zn - - - - + + + + + + + + + Voltage of Zn/Zn2+ can’t be measured. Abs electrodepotentialcan’t measured. Only Diff in electrode potentialcan be measured. Cannot measure Abs Potential Metal Cu placed in its sol Cu2+ ion Equilibrium bet Cu/Cu2+ Cu2+ ion gain -2e form Cu Equilibrium shift to left ← Potential Diff form bet Cu/Cu2+ Potential Diff Electrode potential = +ve Cu Cu2+ Cu2+ Cu2+ Cu2+ Cu → Cu2+ + 2e (Oxidation) Cu2+ + 2e → Cu (Reduction) Cu2+ + 2e ↔ Cu (At equilibrium) Cu -e -e -e Cu2+ Cu2+ Cu2+ Cu2+ + 2e ↔ Cu Equi shift to → Zn Half Cell + + + Cu + + + --- - --- ---- -- Potential Diff bet Cu/Cu2+ Electrode potential Cu/Cu2+ = +ve Cannot measure Abs Potential Voltage of Cu/Cu2+can’t be measured. Abs electrodepotentialcan’t measured. Only Diff in electrode potentialcan be measured. Click here chem database (std electrode potential) Click here chem database (std electrode potential) Click here interactive ECS Click here pdf version ECS Cu Half Cell
  • 8. PotentialDiff Cu/Cu2+ Electrode potential Cu/Cu2+ = +ve PotentialDiff Zn/Zn2+ Electrode potential Zn/Zn2+ = -ve Zn2+ Zn → Zn 2+ + 2e (Oxidation) Zn 2+ + 2e → Zn (Reduction) Zn 2+ + 2e ↔ Zn (At equilibrium) Zn2+ Zn2+ Zn Zn2+ Zn Zn2+ Zn2+ Zn2+ Zn 2+ + 2e ↔ Zn Equi shift to ← - - - Zn - -- - + ++ + + + + + + Can’t measure Abs Potential Cu Cu2+ Cu2+ Cu2+ Cu2+ Cu → Cu2+ + 2e (Oxidation) Cu2+ + 2e → Cu (Reduction) Cu2+ + 2e ↔ Cu (At equilibrium) Cu -e -e -e Cu2+ Cu2+ Cu2+ Cu2+ + 2e ↔ Cu Equi shift to → Zn Half Cell + + + Cu + + + - Cu Half Cell Zn/Cu Voltaic Cell External circuit – flow of electrons Complete circuit - -- -- - - ---- -- - Connect 2 Half Cell with wire/ salt bridge Zn half cell (-ve) Oxidation Cu half cell (+ve) Reduction Salt Bridge – flow of ions Complete the circuit Cu2+ + 2e → CuZn → Zn 2+ + 2e Zn + Cu2+ → Zn2+ + Cu Anode Cathode Maintain electrical neutrality Salt bridge – saturated KNO3 Zn2+ increase ↑ NO3 - flow in to balance excess Zn2+ Cu2+ decrease ↓, excess –ve ion ↑ K+ flow in to balance loss of Cu2+ Zn Cu -- - - Zn2+ Zn2+ Zn2+ Excess of Zn2+ ion + + ++ - - - - --- - - - - - Excess of –ve ion + + + + ++ + Without Salt Bridge -+ + + + With Salt Bridge (electron unable to flow due to ESF) NO3 - NO3 - NO3 - NO3 - + + + K + K + K + - - - K+ flow in to balance excess of – ion NO3 - flow in to balance excess of + ion 2 Half Cell to make a Voltaic Cell -e -e - - - - + + + +
  • 9. PotentialDiff Cu/Cu2+ Electrode potential Cu/Cu2+ = +ve PotentialDiff Zn/Zn2+ Electrode potential Zn/Zn2+ = -ve Zn2+ Zn → Zn 2+ + 2e (Oxidation) Zn 2+ + 2e → Zn (Reduction) Zn 2+ + 2e ↔ Zn (At equilibrium) Zn2+ Zn2+ Zn Zn2+ Zn Zn2+ Zn2+ Zn2+ Zn 2+ + 2e ↔ Zn Equi shift to ← - - - Zn - -- - + ++ + + + + + + Can’t measure Abs Potential Cu Cu2+ Cu2+ Cu2+ Cu2+ Cu → Cu2+ + 2e (Oxidation) Cu2+ + 2e → Cu (Reduction) Cu2+ + 2e ↔ Cu (At equilibrium) Cu -e -e -e Cu2+ Cu2+ Cu2+ Cu2+ + 2e ↔ Cu Equi shift to → + + + Cu + + + - External circuit – flow of electrons Complete circuit - -- -- - - ---- -- - Connect 2 Half Cell with wire/ salt bridge Zn half cell (-ve) Oxidation Cu half cell (+ve) Reduction Voltmeter – High resistance (No current flow) Salt Bridge – flow of ions Complete the circuit Cu2+ + 2e → CuZn → Zn 2+ + 2e 1.10Volt Potential diff can be measured. Voltmeter across – EMF 1.10 Volt Zn + Cu2+ → Zn2+ + Cu Anode Cathode Zn(s) | Zn2+ (aq) || Cu2+ (aq)| Cu (s) Cell diagram Anode Cathode Half Cell Half Cell (Oxidation) (Reduction) Phase boundarySalt Bridge Flow electrons Maintain electrical neutrality Salt bridge – saturated KNO3 Zn2+ increase ↑ NO3 - flow in to balance excess Zn2+ Cu2+ decrease ↓ K+ flow in to balance loss of Cu2+ Zn/Cu Voltaic Cell 2 Half Cell to make a Voltaic Cell Zn Half Cell Cu Half Cell -e -e - - - - + + + +
  • 10. PotentialDiff Ag/Ag2+ Electrode potential Ag/Ag2+ = +ve PotentialDiff Zn/Zn2+ Electrode potential Zn/Zn2+ = -ve Zn2+ Zn → Zn 2+ + 2e (Oxidation) Zn 2+ + 2e → Zn (Reduction) Zn 2+ + 2e ↔ Zn (At equilibrium) Zn2+ Zn2+ Zn Zn2+ Zn Zn2+ Zn2+ Zn2+ Zn 2+ + 2e ↔ Zn Equi shift to ← - - - Zn - -- - + ++ + + + + + + Can’t measure Abs Potential Ag Ag+ Ag+ Ag+ Ag+ Ag → Ag+ + e (Oxidation) Ag+ + e → Ag (Reduction) Ag+ + e ↔ Ag (At equilibrium) Ag -e -e -e Ag+ Ag+ Ag+ Ag+ + e ↔ Ag Equi shift to → + + + Ag + + + - External circuit – flow of electrons Complete circuit - -- -- - - ---- -- - Connect 2 Half Cell with wire/ salt bridge Zn half cell (-ve) Oxidation Ag half cell (+ve) Reduction Voltmeter – High resistance (No current flow) Salt Bridge – flow of ions Complete the circuit Ag+ + e → AgZn → Zn 2+ + 2e 1.56Volt Potential diff can be measured. Voltmeter across – EMF 1.56 Volt Zn + 2Ag+ → Zn2+ + 2Ag Anode Cathode Zn(s) | Zn2+ (aq) || Ag+ (aq)| Ag (s) Cell diagram Anode Cathode Half Cell Half Cell (Oxidation) (Reduction) Phase boundarySalt Bridge Flow electrons Maintain electrical neutrality Salt bridge – saturated KNO3 Zn2+ increase ↑ NO3 - flow in to balance excess Zn2+ Ag+ decrease ↓ K+ flow in to balance loss of Ag+ Zn/Ag Voltaic Cell 2 Half Cell to make a Voltaic Cell Zn Half Cell Ag Half Cell Ag Ag+ -e -e - - - - + + + +
  • 11. PotentialDiff Ag/Ag2+ Electrode potential Ag/Ag2+ = +ve PotentialDiff Cu/Cu2+ Electrode potential Cu/Cu2+ = -ve Cu2+ Cu → Cu 2+ + 2e (Oxidation) Cu 2+ + 2e → Cu (Reduction) Cu 2+ + 2e ↔ Cu (At equilibrium) Cu2+ Cu2+ Cu Cu2+ Cu Cu2+ Cu2+ Cu2+ Cu 2+ + 2e ↔ Cu Equi shift to ← - - - Cu - -- - + ++ + + + + + + Can’t measure Abs Potential Ag Ag+ Ag+ Ag+ Ag+ Ag → Ag+ + e (Oxidation) Ag+ + e → Ag (Reduction) Ag+ + e ↔ Ag (At equilibrium) Ag -e -e -e Ag+ Ag+ Ag+ Ag+ + e ↔ Ag Equi shift to → + + + Ag + + + - External circuit – flow of electrons Complete circuit - -- -- - - ---- -- - Connect 2 Half Cell with wire/ salt bridge Cu half cell (-ve) Oxidation Ag half cell (+ve) Reduction Voltmeter – High resistance (No current flow) Salt Bridge – flow of ions Complete the circuit Ag+ + e → AgCu → Cu 2+ + 2e 0.46Volt Potential diff can be measured. Voltmeter across – EMF 0.46 Volt Cu + 2Ag+ → Cu2+ + 2Ag Anode Cathode Cu(s) | Cu2+ (aq) || Ag+ (aq)| Ag (s) Cell diagram Anode Cathode Half Cell Half Cell (Oxidation) (Reduction) Phase boundarySalt Bridge Flow electrons Maintain electrical neutrality Salt bridge – saturated KNO3 Cu2+ increase ↑ NO3 - flow in to balance excess Cu2+ Ag+ decrease ↓ K+ flow in to balance loss of Ag+ Cu/Ag Voltaic Cell 2 Half Cell to make a Voltaic Cell Cu Half Cell Ag Half Cell Ag Ag+ Cu Cu2+ -e -e - - - - + + + +
  • 12. Standard Electrode Potential Standard HydrogenElectrode (SHE) Platinum coat with Platinum oxide/black – increase surface area for adsorption H2 - catalyze equilibrium bet H2 /H+ - H2 ↔ 2H+ + 2e- Eθ Standard Reference electrode All Cell Potential are measured against • Conc ( 1M) • Pressure (1 atm) • Temp (298K) • Platinum-inert electrode (sys without metal) Standard condition H2 at 1 atm Platinum H2 gas Pt wire Platinum 2H+ + 2e ↔ H2 Eθ = 0V Types of Half Cells Metal/ Ion (M/M+) Gas/ Ion (M/M-) Ion/ Ion (Fe3+/Fe2+) • Pure Zn metal • Conc (1M Zn2+) • Pressure (1 atm) • Temp(298K) Condition Std Zn/Zn2+ Condition Std CI2/CI- • CI2 gas • Platinum electrode • Conc (1M CI-) • Pressure (1 atm) • Temp(298K) • Platinum electrode • Conc (1M Fe3+/Fe2+) • Pressure (1 atm) • Temp(298K) Condition Std Fe3+/ Fe2+ Zn2+ Zn Fe3+/Fe2+ CI- Condition for Standard C A N T M E A S U R E A B S P O T E N T I A L 1 2 3 How to measure electrode potential ? Pt 1M H+ Measure Difference?
  • 13. Standard Electrode Potential Std HydrogenElectrode (SHE) Eθ = 0V Types of Half Cells Metal/ Ion (M/M+) Gas/ Ion (M/M+) Ion/ Ion (Fe3+/Fe2+) • Pure Zn metal • Conc (1M Zn2+) • Pressure (1 atm) • Temp(298K) Condition Std Zn/Zn2+ Condition Std CI2/CI- • CI2 gas • Platinum electrode • Conc (1M CI-) • Pressure (1 atm) • Temp(298K) • Platinum electrode • Conc (1M Fe3+/Fe2+) • Pressure (1 atm) • Temp(298K) Condition Std Fe3+/ Fe2+ Zn2+ Zn Fe3+/Fe2+ 1 2 3 Connect to SHE Connect to SHE Connect to SHE Eθ = 0V Eθ = 0V Eθ = -0.76V Standard electrode potential Zn/Zn2+ = -0.76V Eθ cell = -0.76V Eθ = +0.77V Eθ = +1.35V Standard electrode potential Fe3+/Fe2+ = +0.77V Eθ cell = +0.77V Standard electrode potential CI2 /CI- = +1.35V Eθ cell = +1.35V Eθ = -0.76V Eθ = +0.77V Eθ = +1.35V 2 Half Cellwith SHE as referenceelectrode CI- Pt + + + Pt
  • 14. Standard Electrode Potential Std Electrode Potential diff systems Eθ = 0V Eθ = 0V Eθ = 0V Eθ = -0.76V Standard electrode potential Zn/Zn2+ = -0.76V Eθ cell = -0.76V Eθ = +0.77V Eθ = +1.35V Standard electrode potential Fe3+/Fe2+ = +0.77V Eθ cell = +0.77V Standard electrode potential CI2 /CI- = +1.35V Eθ cell = +1.35V Eθ = -0.76V Eθ = +0.77V Eθ = +1.35V STANDARD Reduction potential – Hydrogen as std Oxidized sp ↔ Reduced sp Eθ/V Li+ + e- ↔ Li -3.04 K+ + e- ↔ K -2.93 Ca2+ + 2e- ↔ Ca -2.87 Na+ + e- ↔ Na -2.71 Mg 2+ + 2e- ↔ Mg -2.37 Al3+ + 3e- ↔ AI -1.66 Mn2+ + 2e- ↔ Mn -1.19 H2O + e- ↔ 1/2H2 + OH- -0.83 Zn2+ + 2e- ↔ Zn -0.76 Fe2+ + 2e- ↔ Fe -0.45 Ni2+ + 2e- ↔ Ni -0.26 Sn2+ + 2e- ↔ Sn -0.14 Pb2+ + 2e- ↔ Pb -0.13 H+ + e- ↔ 1/2H2 0.00 Cu2+ + e- ↔ Cu+ +0.15 SO4 2- + 4H+ + 2e- ↔ H2SO3 + H2O +0.17 Cu2+ + 2e- ↔ Cu +0.34 1/2O2 + H2O +2e- ↔ 2OH- +0.40 Cu+ + e- ↔ Cu +0.52 1/2I2 + e- ↔ I- +0.54 Fe3+ + e- ↔ Fe2+ +0.77 Ag+ + e- ↔ Ag +0.80 1/2Br2 + e- ↔ Br- +1.07 1/2O2 + 2H+ +2e- ↔ H2O +1.23 Cr2O7 2-+14H+ +6e- ↔ 2Cr3+ + 7H2O +1.33 1/2CI2 + e- ↔ CI- +1.35 MnO4 - + 8H+ + 5e- ↔ Mn2+ + 4H2O +1.51 1/2F2 + e- ↔ F +2.87 -ve reduction potential +ve reduction potential Click here std analogy video Click here std analogy Click here chem database (std electrode potential) Compared to H2 as std Eθ cell/CellPotential= EMF in volt EMF prod when half cell connect to SHE at std condition Std electrode potential written as std reduction potential
  • 15. Zn half cell (-ve) Oxidation H2 half cell (+ve) Reduction Anode Cathode Zn(s) | Zn2+ (aq) || H+ (aq) , H2(g) | Pt (s) Cell diagram Anode Cathode Half Cell Half Cell (Oxidation) (Reduction) Salt Bridge Flow electrons Eθ cell = Eθ (cathode) – Eθ (anode) Eθ cell = 0.00 – ( Eθ Zn ) 0.76 = 0.00 - Eθ Zn Eθ Zn = -0.76V Zn2+ + 2e ↔ Zn Eθ = ? 2H+ + 2e ↔ H2 Eθ = 0.00V Std electrode potential as std reductionpotential Find Eθ cell (use formula) Eθ cell = Eθ (cathode) – Eθ (anode) Oxidized sp ↔ Reduced sp Eθ/V Li+ + e- ↔ Li -3.04 K+ + e- ↔ K -2.93 Ca2+ + 2e- ↔ Ca -2.87 Na+ + e- ↔ Na -2.71 Mg 2+ + 2e- ↔ Mg -2.37 Al3+ + 3e- ↔ AI -1.66 Mn2+ + 2e- ↔ Mn -1.19 H2O + e- ↔ 1/2H2 + OH- -0.83 Zn2+ + 2e- ↔ Zn ???? Fe2+ + 2e- ↔ Fe -0.45 Ni2+ + 2e- ↔ Ni -0.26 Sn2+ + 2e- ↔ Sn -0.14 Pb2+ + 2e- ↔ Pb -0.13 H+ + e- ↔ 1/2H2 0.00 Cu2+ + e- ↔ Cu+ +0.15 SO4 2- + 4H+ + 2e- ↔ H2SO3 + H2O +0.17 Cu2+ + 2e- ↔ Cu +0.34 1/2O2 + H2O +2e- ↔ 2OH- +0.40 Cu+ + e- ↔ Cu +0.52 1/2I2 + e- ↔ I- +0.54 Fe3+ + e- ↔ Fe2+ + 0.77 Ag+ + e- ↔ Ag +0.80 1/2Br2 + e- ↔ Br- +1.07 1/2O2 + 2H+ +2e- ↔ H2O +1.23 Cr2O7 2-+14H+ +6e- ↔ 2Cr3+ + 7H2O +1.33 1/2CI2 + e- ↔ CI- +1.35 MnO4 - + 8H+ + 5e- ↔ Mn2+ + 4H2O +1.51 1/2F2 + e- ↔ F +2.87 -0.76V +ve/high electrode potentialis cathode(+) -ve/ low electrode potential is anode (-) Electronsflow from anode (- ) to cathode (+ ) Eθ Zn/H2 = 0.76V Zn/H2 Eθ value DO NOT depend on stoichiometric coefficient (Independentof stoichiometric eqn) Zn Zn2+ H+ Pt H2 - - - + -e Zn/H2 Cell Determine Eθ cell Zn/Zn2+ Zn2+ + 2e →Zn Eθ = -0.76V
  • 16. H2 half cell (-ve) Oxidation Fe3+/2+ half cell (+ve) Reduction Anode Cathode Pt(s) | H2, H+ (aq) || Fe3+ Fe2+ | Pt (s) Cell diagram Anode Cathode Half Cell Half Cell (Oxidation) (Reduction) Salt Bridge Flow electrons Std electrode potential as std reductionpotential Find Eθ cell (use formula) Eθ cell = Eθ (cathode) – Eθ (anode) Oxidized sp ↔ Reduced sp Eθ/V Li+ + e- ↔ Li -3.04 K+ + e- ↔ K -2.93 Ca2+ + 2e- ↔ Ca -2.87 Na+ + e- ↔ Na -2.71 Mg 2+ + 2e- ↔ Mg -2.37 Al3+ + 3e- ↔ AI -1.66 Mn2+ + 2e- ↔ Mn -1.19 H2O + e- ↔ 1/2H2 + OH- -0.83 Zn2+ + 2e- ↔ Zn -0.76 Fe2+ + 2e- ↔ Fe -0.45 Ni2+ + 2e- ↔ Ni -0.26 Sn2+ + 2e- ↔ Sn -0.14 Pb2+ + 2e- ↔ Pb -0.13 H+ + e- ↔ 1/2H2 0.00 Cu2+ + e- ↔ Cu+ +0.15 SO4 2- + 4H+ + 2e- ↔ H2SO3 + H2O +0.17 Cu2+ + 2e- ↔ Cu +0.34 1/2O2 + H2O +2e- ↔ 2OH- +0.40 Cu+ + e- ↔ Cu +0.52 1/2I2 + e- ↔ I- +0.54 Fe3+ + e- ↔ Fe2+ ????? Ag+ + e- ↔ Ag +0.80 1/2Br2 + e- ↔ Br- +1.07 1/2O2 + 2H+ +2e- ↔ H2O +1.23 Cr2O7 2-+14H+ +6e- ↔ 2Cr3+ + 7H2O +1.33 1/2CI2 + e- ↔ CI- +1.35 MnO4 - + 8H+ + 5e- ↔ Mn2+ + 4H2O +1.51 1/2F2 + e- ↔ F +2.87 +0.77V +ve/high electrode potentialis cathode(+) -ve/ low electrode potential is anode (-) Electronsflow from anode (- ) to cathode (+ ) Pt Fe3+ H+ Pt H2 + + +-- -e H2 /Fe3+,Fe2+ Cell H2 /Fe3+,Fe2+ 2H+ + 2e ↔ H2 Eθ = 0.00V Fe3+ + e ↔ Fe2+ Eθ = ???? Eθ cell = Eθ (cathode) – Eθ (anode) Eθ cell = Eθ Fe3+ – (-0.00) 0.77 = Eθ Fe3+ Determine Eθ cell Fe 3+/Fe2+ Eθ H2 /Fe3+ = 0.77V Fe3+ + e →Fe2+ Eθ = +0.77V Eθ value DO NOT depend on stoichiometric coefficient (Independentof stoichiometric eqn)
  • 17. H2 half cell (-ve) Oxidation CI2 half cell (+ve) Reduction Anode Pt(s) | H2, H+ (aq) || CI2 ,CI- | Pt (s) Cell diagram Anode Cathode Half Cell Half Cell (Oxidation) (Reduction) Salt Bridge Flow electrons Std electrode potential as std reductionpotential Find Eθ cell (use formula) Eθ cell = Eθ (cathode) – Eθ (anode) Oxidized sp ↔ Reduced sp Eθ/V Li+ + e- ↔ Li -3.04 K+ + e- ↔ K -2.93 Ca2+ + 2e- ↔ Ca -2.87 Na+ + e- ↔ Na -2.71 Mg 2+ + 2e- ↔ Mg -2.37 Al3+ + 3e- ↔ AI -1.66 Mn2+ + 2e- ↔ Mn -1.19 H2O + e- ↔ 1/2H2 + OH- -0.83 Zn2+ + 2e- ↔ Zn -0.76 Fe2+ + 2e- ↔ Fe -0.45 Ni2+ + 2e- ↔ Ni -0.26 Sn2+ + 2e- ↔ Sn -0.14 Pb2+ + 2e- ↔ Pb -0.13 H+ + e- ↔ 1/2H2 0.00 Cu2+ + e- ↔ Cu+ +0.15 SO4 2- + 4H+ + 2e- ↔ H2SO3 + H2O +0.17 Cu2+ + 2e- ↔ Cu +0.34 1/2O2 + H2O +2e- ↔ 2OH- +0.40 Cu+ + e- ↔ Cu +0.52 1/2I2 + e- ↔ I- +0.54 Fe3+ + e- ↔ Fe2+ + 0.77 Ag+ + e- ↔ Ag +0.80 1/2Br2 + e- ↔ Br- +1.07 1/2O2 + 2H+ +2e- ↔ H2O +1.23 Cr2O7 2-+14H+ +6e- ↔ 2Cr3+ + 7H2O +1.33 1/2CI2 + e- ↔ CI- ????? MnO4 - + 8H+ + 5e- ↔ Mn2+ + 4H2O +1.51 1/2F2 + e- ↔ F +2.87 +1.35V +ve/high electrode potentialis cathode(+) -ve/ low electrode potential is anode (-) Electronsflow from anode (- ) to cathode (+ ) H+ Pt H2 -- -e H2 /CI2 Cell 2H+ + 2e ↔ H2 Eθ = 0.00V CI + e ↔ CI- Eθ = ????? Eθ cell = Eθ (cathode) – Eθ (anode) Eθ cell = Eθ CI2 – (-0.00) 1.35 = Eθ CI2 H2 /CI2 Cell + Pt CI - CI2 Determine Eθ cell H2 /CI2 Eθ H2 /CI2 = 1.35V 1/2CI- + e →CI- Eθ = +1.35V Eθ value DO NOT depend on stoichiometric coefficient (Independentof stoichiometric eqn)
  • 18. Zn half cell (-ve) Oxidation Cu half cell (+ve) Reduction Anode Cathode Zn(s) | Zn2+ (aq) || Cu2+ (aq) | Cu (s) Cell diagram Anode Cathode Half Cell Half Cell (Oxidation) (Reduction) Salt Bridge Flow electrons Zn/Cu Voltaic Cell -e -e Zn/Cu half cell Eθ cell = Eθ (cathode) – Eθ (anode) Eθ cell = +0.34 – (-0.76) = +1.10V Zn 2+ + 2e ↔ Zn (anode) Eθ = -0.76V Cu2+ + 2e ↔ Cu (cathode) Eθ = +0.34V Std electrode potential as std reduction potential Find Eθ cell (use reduction potential)Find Eθ cell (use formula) Zn + Cu2+ → Zn2+ + Cu Eθ = ????? Eθ cell = Eθ (cathode) – Eθ (anode) Zn 2+ + 2e ↔ Zn Eθ = -0.76V Cu2+ + 2e ↔ Cu Eθ = +0.34V Zn ↔ Zn2+ + 2e Eθ = +0.76V Cu2+ + 2e ↔ Cu Eθ = +0.34V Zn + Cu2+ → Zn 2+ + Cu Eθ = +1.10V Oxidized sp ↔ Reduced sp Eθ/V Li+ + e- ↔ Li -3.04 K+ + e- ↔ K -2.93 Ca2+ + 2e- ↔ Ca -2.87 Na+ + e- ↔ Na -2.71 Mg 2+ + 2e- ↔ Mg -2.37 Al3+ + 3e- ↔ AI -1.66 Mn2+ + 2e- ↔ Mn -1.19 H2O + e- ↔ 1/2H2 + OH- -0.83 Zn2+ + 2e- ↔ Zn - 0.76 Fe2+ + 2e- ↔ Fe -0.45 Ni2+ + 2e- ↔ Ni -0.26 Sn2+ + 2e- ↔ Sn -0.14 Pb2+ + 2e- ↔ Pb -0.13 H+ + e- ↔ 1/2H2 0.00 Cu2+ + e- ↔ Cu+ +0.15 SO4 2- + 4H+ + 2e- ↔ H2SO3 + H2O +0.17 Cu2+ + 2e- ↔ Cu + 0.34 1/2O2 + H2O +2e- ↔ 2OH- +0.40 Cu+ + e- ↔ Cu +0.52 1/2I2 + e- ↔ I- +0.54 Fe3+ + e- ↔ Fe2+ +0.77 Ag+ + e- ↔ Ag +0.80 1/2Br2 + e- ↔ Br- +1.07 1/2O2 + 2H+ +2e- ↔ H2O +1.23 Cr2O7 2-+14H+ +6e- ↔ 2Cr3+ + 7H2O +1.33 1/2CI2 + e- ↔ CI- +1.35 MnO4 - + 8H+ + 5e- ↔ Mn2+ + 4H2O +1.51 1/2F2 + e- ↔ F +2.87 + +1.10 V Eθ Zn/Cu = 1.10V Cu2+ +ve/high electrode potentialis cathode(+) -ve/ low electrode potential is anode (-) Electronsflow from anode (- ) to cathode (+ ) - - - - Zn Cu + + + + Eθ value DO NOT depend on stoichiometric coefficient (Independentof stoichiometric eqn)
  • 19. Zn half cell (-ve) Oxidation Ag half cell (+ve) Reduction Anode Cathode Zn(s) | Zn2+ (aq) || Ag+ (aq) | Ag (s) Cell diagram Anode Cathode Half Cell Half Cell (Oxidation) (Reduction) Salt Bridge Flow electrons Zn/Ag Voltaic Cell -e -e Zn/Ag half cell Eθ cell = Eθ (cathode) – Eθ (anode) Eθ cell = +0.80 – (-0.76) = +1.56V Zn 2+ + 2e ↔ Zn (anode) Eθ = -0.76V Ag+ + e ↔ Ag(cathode) Eθ = +0.80V Std electrode potential as std reduction potential Find Eθ cell (use reduction potential)Find Eθ cell (use formula) Zn + Ag+ → Zn2+ + Ag Eθ = ????? Eθ cell = Eθ (cathode) – Eθ (anode) Zn 2+ + 2e ↔ Zn Eθ = -0.76V Ag+ + e ↔ Ag Eθ = +0.80V Zn ↔ Zn2+ + 2e Eθ = +0.76V Ag+ + e ↔ Ag Eθ = +0.80V Zn + Ag+ → Zn 2+ + Ag Eθ = +1.56V Oxidized sp ↔ Reduced sp Eθ/V Li+ + e- ↔ Li -3.04 K+ + e- ↔ K -2.93 Ca2+ + 2e- ↔ Ca -2.87 Na+ + e- ↔ Na -2.71 Mg 2+ + 2e- ↔ Mg -2.37 Al3+ + 3e- ↔ AI -1.66 Mn2+ + 2e- ↔ Mn -1.19 H2O + e- ↔ 1/2H2 + OH- -0.83 Zn2+ + 2e- ↔ Zn - 0.76 Fe2+ + 2e- ↔ Fe -0.45 Ni2+ + 2e- ↔ Ni -0.26 Sn2+ + 2e- ↔ Sn -0.14 Pb2+ + 2e- ↔ Pb -0.13 H+ + e- ↔ 1/2H2 0.00 Cu2+ + e- ↔ Cu+ +0.15 SO4 2- + 4H+ + 2e- ↔ H2SO3 + H2O +0.17 Cu2+ + 2e- ↔ Cu +0.34 1/2O2 + H2O +2e- ↔ 2OH- +0.40 Cu+ + e- ↔ Cu +0.52 1/2I2 + e- ↔ I- +0.54 Fe3+ + e- ↔ Fe2+ +0.77 Ag+ + e- ↔ Ag + 0.80 1/2Br2 + e- ↔ Br- +1.07 1/2O2 + 2H+ +2e- ↔ H2O +1.23 Cr2O7 2-+14H+ +6e- ↔ 2Cr3+ + 7H2O +1.33 1/2CI2 + e- ↔ CI- +1.36 MnO4 - + 8H+ + 5e- ↔ Mn2+ + 4H2O +1.51 1/2F2 + e- ↔ F +2.87 + +1.56 V Ag Eθ Zn/Ag = 1.56V Ag+ +ve/high electrode potentialis cathode(+) -ve/ low electrode potential is anode (-) Electronsflow from anode (- ) to cathode (+ ) - - - - + + + + Zn Eθ value DO NOT dependon stoichiometric coefficient (Independentof stoichiometric eqn)
  • 20. Cu half cell (-ve) Oxidation Ag half cell (+ve) Reduction Anode Cathode Cu(s) | Cu2+ (aq) || Ag+ (aq) | Ag (s) Cell diagram Anode Cathode Half Cell Half Cell (Oxidation) (Reduction) Salt Bridge Flow electrons Cu/Ag Voltaic Cell -e -e Cu/Ag half cell Eθ cell = Eθ (cathode) – Eθ (anode) Eθ cell = +0.80 – (+0.34) = +0.46V Cu 2+ + 2e ↔ Cu (anode) Eθ = +0.34V Ag+ + e ↔ Ag(cathode) Eθ = +0.80V Std electrode potential as std reductionpotential Find Eθ cell (use reduction potential)Find Eθ cell (use formula) Cu + 2Ag+ → Cu2+ + 2Ag Eθ = ????? Eθ cell = Eθ (cathode) – Eθ (anode) Cu 2+ + 2e ↔ Cu Eθ = +0.34V Ag+ + e ↔ Ag Eθ = +0.80V Cu ↔ Cu2+ + 2e Eθ = -0.34V 2Ag+ + e ↔ 2Ag Eθ = +0.80V Cu + 2Ag+→ Cu 2+ + 2Ag Eθ = +0.46V Oxidized sp ↔ Reduced sp Eθ/V Li+ + e- ↔ Li -3.04 K+ + e- ↔ K -2.93 Ca2+ + 2e- ↔ Ca -2.87 Na+ + e- ↔ Na -2.71 Mg 2+ + 2e- ↔ Mg -2.37 Al3+ + 3e- ↔ AI -1.66 Mn2+ + 2e- ↔ Mn -1.19 H2O + e- ↔ 1/2H2 + OH- -0.83 Zn2+ + 2e- ↔ Zn -0.76 Fe2+ + 2e- ↔ Fe -0.45 Ni2+ + 2e- ↔ Ni -0.26 Sn2+ + 2e- ↔ Sn -0.14 Pb2+ + 2e- ↔ Pb -0.13 H+ + e- ↔ 1/2H2 0.00 Cu2+ + e- ↔ Cu+ +0.15 SO4 2- + 4H+ + 2e- ↔ H2SO3 + H2O +0.17 Cu2+ + 2e- ↔ Cu +0.34 1/2O2 + H2O +2e- ↔ 2OH- +0.40 Cu+ + e- ↔ Cu +0.52 1/2I2 + e- ↔ I- +0.54 Fe3+ + e- ↔ Fe2+ +0.77 Ag+ + e- ↔ Ag +0.80 1/2Br2 + e- ↔ Br- +1.07 1/2O2 + 2H+ +2e- ↔ H2O +1.23 Cr2O7 2-+14H+ +6e- ↔ 2Cr3+ + 7H2O +1.33 1/2CI2 + e- ↔ CI- +1.36 MnO4 - + 8H+ + 5e- ↔ Mn2+ + 4H2O +1.51 1/2F2 + e- ↔ F +2.87 + +0.46V AgCu Cu2+ Half cell- high electrodepotential is cathode(+) Half cell - low electrodepotential is anode (-) Electronsflow from anode (- ) to cathode (+ ) Eθ Cu/Ag = 0.46V Ag+ - - - - + + + + Eθ value DO NOT depend on stoichiometric coefficient (Independentof stoichiometric eqn)
  • 21. Mn half cell (-ve) Oxidation Ni half cell (+ve) Reduction Anode Cathode Mn(s) | Mn2+ (aq) || Ni2+ (aq) | Ni (s) Cell diagram Anode Cathode Half Cell Half Cell (Oxidation) (Reduction) Salt Bridge Flow electrons Mn/Ni Voltaic Cell -e -e Mn/Ni half cells Eθ cell = Eθ (cathode) – Eθ (anode) Eθ cell = -0.26 – (-1.19) = +0.93V Mn 2+ + 2e ↔ Mn (anode) Eθ = -1.19V Ni2+ + 2e ↔ Ni (cathode) Eθ = -0.26V Std electrode potential as std reduction potential Find Eθ cell (use reduction potential)Find Eθ cell (use formula) Mn + Ni2+ → Mn2+ + Ni Eθ = ????? Eθ cell = Eθ (cathode) – Eθ (anode) Mn 2+ + 2e ↔ Mn Eθ = -1.19V Ni2+ + 2e ↔ Ni Eθ = -0.26V Mn ↔ Mn2+ + 2e Eθ = +1.19V Ni2+ + 2e ↔ Ni Eθ = -0.26V Mn + Ni2+ → Mn2+ + Ni Eθ = +0.93V Oxidized sp ↔ Reduced sp Eθ/V Li+ + e- ↔ Li -3.04 K+ + e- ↔ K -2.93 Ca2+ + 2e- ↔ Ca -2.87 Na+ + e- ↔ Na -2.71 Mg 2+ + 2e- ↔ Mg -2.37 Al3+ + 3e- ↔ AI -1.66 Mn2+ + 2e- ↔ Mn -1.19 H2O + e- ↔ 1/2H2 + OH- -0.83 Zn2+ + 2e- ↔ Zn -0.76 Fe2+ + 2e- ↔ Fe -0.45 Ni2+ + 2e- ↔ Ni - 0.26 Sn2+ + 2e- ↔ Sn -0.14 Pb2+ + 2e- ↔ Pb -0.13 H+ + e- ↔ 1/2H2 0.00 Cu2+ + e- ↔ Cu+ +0.15 SO4 2- + 4H+ + 2e- ↔ H2SO3 + H2O +0.17 Cu2+ + 2e- ↔ Cu +0.34 1/2O2 + H2O +2e- ↔ 2OH- +0.40 Cu+ + e- ↔ Cu +0.52 1/2I2 + e- ↔ I- +0.54 Fe3+ + e- ↔ Fe2+ +0.77 Ag+ + e- ↔ Ag +0.80 1/2Br2 + e- ↔ Br- +1.07 1/2O2 + 2H+ +2e- ↔ H2O +1.23 Cr2O7 2-+14H+ +6e- ↔ 2Cr3+ + 7H2O +1.33 1/2CI2 + e- ↔ CI- +1.36 MnO4 - + 8H+ + 5e- ↔ Mn2+ + 4H2O +1.51 1/2F2 + e- ↔ F +2.87 + +0.93 V Eθ Mn/Ni = 0.93V Ni2+ +ve/high electrode potentialis cathode(+) -ve/ low electrode potential is anode (-) Electronsflow from anode (- ) to cathode (+ ) - - - - NiMn + + + +Mn2+ Eθ value DO NOT depend on stoichiometric coefficient (Independentof stoichiometric eqn)
  • 22. Fe half cell (-ve) Oxidation MnO4- half cell (+ve) Reduction Anode Cathode Fe(s) | Fe2+ (aq) || MnO4 - ,H+, Mn2+ | Pt (s) Cell diagram Anode Cathode Half Cell Half Cell (Oxidation) (Reduction) Salt Bridge Flow electrons Fe/MnO4 - Voltaic Cell -e -e Fe/MnO4 - half cells Eθ cell = Eθ (cathode) – Eθ (anode) Eθ cell = +1.51 – (-0.45) = +1.96V Fe2+ + 2e ↔ Fe Eθ = -0.45V MnO4 - + 5e ↔ Mn2+ + 4H2O E θ = +1.51V Std electrode potential asstd reduction potential Find Eθ cell (use reduction potential)Find Eθ cell (use formula) 5Fe + 2MnO4 - + 16H+→5Fe2+ +2Mn2+ + 8H2O Eθ = ? Eθ cell = Eθ (cathode) – Eθ (anode) Fe 2+ + 2e ↔ Fe Eθ = -0.45V MnO4 - + 5e ↔ Mn2+ + 4H2O Eθ = +1.51V Fe ↔ Fe2+ + 2e Eθ = +0.45V MnO4 - +5e ↔ Mn2+ + 4H2O Eθ = +1.51V Fe + MnO4 - → Mn2+ + Fe2+ Eθ = +1.96V Oxidized sp ↔ Reduced sp Eθ/V Li+ + e- ↔ Li -3.04 K+ + e- ↔ K -2.93 Ca2+ + 2e- ↔ Ca -2.87 Na+ + e- ↔ Na -2.71 Mg 2+ + 2e- ↔ Mg -2.37 Al3+ + 3e- ↔ AI -1.66 Mn2+ + 2e- ↔ Mn -1.19 H2O + e- ↔ 1/2H2 + OH- -0.83 Zn2+ + 2e- ↔ Zn -0.76 Fe2+ + 2e- ↔ Fe -0.45 Ni2+ + 2e- ↔ Ni -0.26 Sn2+ + 2e- ↔ Sn -0.14 Pb2+ + 2e- ↔ Pb -0.13 H+ + e- ↔ 1/2H2 0.00 Cu2+ + e- ↔ Cu+ +0.15 SO4 2- + 4H+ + 2e- ↔ H2SO3 + H2O +0.17 Cu2+ + 2e- ↔ Cu +0.34 1/2O2 + H2O +2e- ↔ 2OH- +0.40 Cu+ + e- ↔ Cu +0.52 1/2I2 + e- ↔ I- +0.54 Fe3+ + e- ↔ Fe2+ +0.77 Ag+ + e- ↔ Ag +0.80 1/2Br2 + e- ↔ Br- +1.07 1/2O2 + 2H+ +2e- ↔ H2O +1.23 Cr2O7 2-+14H+ +6e- ↔ 2Cr3+ + 7H2O +1.33 1/2CI2 + e- ↔ CI- +1.36 MnO4 - + 8H+ + 5e- ↔ Mn2+ + 4H2O +1.51 1/2F2 + e- ↔ F +2.87 + +1.96V PtFe Fe2+ Eθ Fe/MnO4 - = 1.96V MnO4 - Mn2+ Using platinumelectrode +ve/high electrode potentialis cathode(+) -ve/ low electrode potential is anode (-) Electronsflow from anode (- ) to cathode (+ ) - - - - + + + + Eθ value DO NOT depend on stoichiometric coefficient (Independentof stoichiometric eqn)
  • 23. Zn half cell (-ve) Oxidation Fe3+/2+ half cell (+ve) Reduction Anode Cathode Zn(s) | Zn2+ (aq) || Fe3+ , Fe2+ (aq) | Pt (s) Cell diagram Anode Cathode Half Cell Half Cell (Oxidation) (Reduction) Salt Bridge Flow electrons Zn/Fe3+,Fe2+ Cell -e -e Eθ cell = Eθ (cathode) – Eθ (anode) Eθ cell = +0.77 – (-0.76) = +1.53V Zn2+ + 2e ↔ Zn Eθ = -0.76V Fe3+ + e ↔ Fe2+ Eθ = +0.77V Std electrode potential asstd reduction potential Find Eθ cell (use reduction potential)Find Eθ cell (use formula) Zn + 2Fe3+→ Zn2+ +2Fe2+ Eθ = ? Eθ cell = Eθ (cathode) – Eθ (anode) Zn 2+ + 2e ↔ Zn Eθ = -0.76V Fe3+ + e ↔ Fe2+ Eθ = +0.77V Zn ↔ Zn2+ + 2e Eθ = +0.76V Fe3+ +e ↔ Fe2+ Eθ = +0.77V Zn + 2Fe3+ → Zn2+ + 2Fe2+ Eθ = +1.53V Oxidized sp ↔ Reduced sp Eθ/V Li+ + e- ↔ Li -3.04 K+ + e- ↔ K -2.93 Ca2+ + 2e- ↔ Ca -2.87 Na+ + e- ↔ Na -2.71 Mg 2+ + 2e- ↔ Mg -2.37 Al3+ + 3e- ↔ AI -1.66 Mn2+ + 2e- ↔ Mn -1.19 H2O + e- ↔ 1/2H2 + OH- -0.83 Zn2+ + 2e- ↔ Zn -0.76 Fe2+ + 2e- ↔ Fe -0.45 Ni2+ + 2e- ↔ Ni -0.26 Sn2+ + 2e- ↔ Sn -0.14 Pb2+ + 2e- ↔ Pb -0.13 H+ + e- ↔ 1/2H2 0.00 Cu2+ + e- ↔ Cu+ +0.15 SO4 2- + 4H+ + 2e- ↔ H2SO3 + H2O +0.17 Cu2+ + 2e- ↔ Cu +0.34 1/2O2 + H2O +2e- ↔ 2OH- +0.40 Cu+ + e- ↔ Cu +0.52 1/2I2 + e- ↔ I- +0.54 Fe3+ + e- ↔ Fe2+ + 0.77 Ag+ + e- ↔ Ag +0.80 1/2Br2 + e- ↔ Br- +1.07 1/2O2 + 2H+ +2e- ↔ H2O +1.23 Cr2O7 2-+14H+ +6e- ↔ 2Cr3+ + 7H2O +1.33 1/2CI2 + e- ↔ CI- +1.36 MnO4 - + 8H+ + 5e- ↔ Mn2+ + 4H2O +1.51 1/2F2 + e- ↔ F +2.87 + +1.53V PtZn Zn2+ +ve/high electrode potentialis cathode(+) -ve/ low electrode potential is anode (-) Electronsflow from anode (- ) to cathode (+ ) Eθ Zn/Fe3+ = 1.53V Fe3+- Fe2+ Using platinumelectrode Zn/Fe3+,Fe2+ - - - - + + + + Eθ value DO NOT depend on stoichiometric coefficient (Independentof stoichiometric eqn)
  • 24. Zn half cell (-ve) Oxidation I2 half cell (+ve) Reduction Anode Cathode Zn(s) | Zn2+ (aq) || I2 , I- (aq) | Pt (s) Cell diagram Anode Cathode Half Cell Half Cell (Oxidation) (Reduction) Salt Bridge Flow electrons Zn/I2 , I- Cell -e -e Eθ cell = Eθ (cathode) – Eθ (anode) Eθ cell = +0.54 – (-0.76) = +1.30V Zn2+ + 2e ↔ Zn Eθ = -0.76V I2 + 2e ↔ 2I- Eθ = +0.54V Std electrode potential asstd reduction potential Find Eθ cell (use reduction potential)Find Eθ cell (use formula) Zn + I2 → Zn2+ +2I- Eθ = ? Eθ cell = Eθ (cathode) – Eθ (anode) Zn ↔ Zn2+ + 2e Eθ = +0.76V I2 + 2e ↔ 2I- Eθ = +0.54V Zn + I2 → Zn2+ + 2I- Eθ = +1.30V Oxidized sp ↔ Reduced sp Eθ/V Li+ + e- ↔ Li -3.04 K+ + e- ↔ K -2.93 Ca2+ + 2e- ↔ Ca -2.87 Na+ + e- ↔ Na -2.71 Mg 2+ + 2e- ↔ Mg -2.37 Al3+ + 3e- ↔ AI -1.66 Mn2+ + 2e- ↔ Mn -1.19 H2O + e- ↔ 1/2H2 + OH- -0.83 Zn2+ + 2e- ↔ Zn -0.76 Fe2+ + 2e- ↔ Fe -0.45 Ni2+ + 2e- ↔ Ni -0.26 Sn2+ + 2e- ↔ Sn -0.14 Pb2+ + 2e- ↔ Pb -0.13 H+ + e- ↔ 1/2H2 0.00 Cu2+ + e- ↔ Cu+ +0.15 SO4 2- + 4H+ + 2e- ↔ H2SO3 + H2O +0.17 Cu2+ + 2e- ↔ Cu +0.34 1/2O2 + H2O +2e- ↔ 2OH- +0.40 Cu+ + e- ↔ Cu +0.52 1/2I2 + e- ↔ I- +0.54 Fe3+ + e- ↔ Fe2+ + 0.77 Ag+ + e- ↔ Ag +0.80 1/2Br2 + e- ↔ Br- +1.07 1/2O2 + 2H+ +2e- ↔ H2O +1.23 Cr2O7 2-+14H+ +6e- ↔ 2Cr3+ + 7H2O +1.33 1/2CI2 + e- ↔ CI- +1.36 MnO4 - + 8H+ + 5e- ↔ Mn2+ + 4H2O +1.51 1/2F2 + e- ↔ F +2.87 + +1.30V PtZn Zn2+ +ve/high electrode potentialis cathode(+) -ve/ low electrode potential is anode (-) Electronsflow from anode (- ) to cathode (+ ) Eθ Zn/I2 = 1.30V I-- I2 Using platinumelectrode - - - - + + + + Zn/I2 , I- Zn2+ + 2e ↔ Zn Eθ = -0.76V I2 + 2e ↔ 2I- Eθ = +0.54V Eθ value DO NOT depend on stoichiometric coefficient (Independentof stoichiometric eqn)
  • 25. Zn half cell (-ve) Oxidation H2 half cell (+ve) Reduction Anode Cathode Zn(s) | Zn2+ (aq) || H+ (aq) , H2(g) | Pt (s) Cell diagram Anode Cathode Half Cell Half Cell (Oxidation) (Reduction) Salt Bridge Flow electrons Eθ cell = Eθ (cathode) – Eθ (anode) Eθ cell = 0.00 – (-0.76) = +0.76V Zn2+ + 2e ↔ Zn Eθ = -0.76V 2H+ + 2e ↔ H2 Eθ = 0.00V Std electrode potential as std reductionpotential Find Eθ cell (use reduction potential)Find Eθ cell (use formula) Zn + 2H+→ Zn2+ + H2 Eθ = ? Eθ cell = Eθ (cathode) – Eθ (anode) Zn 2+ + 2e ↔ Zn Eθ = -0.76V 2H+ + 2e ↔ H2 Eθ = 0.00V Zn ↔ Zn2+ + 2e Eθ = +0.76V 2H+ +2e ↔ H2 Eθ = 0.00V Zn + 2H+ → Zn2+ + H2 Eθ = +0.76V Oxidized sp ↔ Reduced sp Eθ/V Li+ + e- ↔ Li -3.04 K+ + e- ↔ K -2.93 Ca2+ + 2e- ↔ Ca -2.87 Na+ + e- ↔ Na -2.71 Mg 2+ + 2e- ↔ Mg -2.37 Al3+ + 3e- ↔ AI -1.66 Mn2+ + 2e- ↔ Mn -1.19 H2O + e- ↔ 1/2H2 + OH- -0.83 Zn2+ + 2e- ↔ Zn -0.76 Fe2+ + 2e- ↔ Fe -0.45 Ni2+ + 2e- ↔ Ni -0.26 Sn2+ + 2e- ↔ Sn -0.14 Pb2+ + 2e- ↔ Pb -0.13 H+ + e- ↔ 1/2H2 0.00 Cu2+ + e- ↔ Cu+ +0.15 SO4 2- + 4H+ + 2e- ↔ H2SO3 + H2O +0.17 Cu2+ + 2e- ↔ Cu +0.34 1/2O2 + H2O +2e- ↔ 2OH- +0.40 Cu+ + e- ↔ Cu +0.52 1/2I2 + e- ↔ I- +0.54 Fe3+ + e- ↔ Fe2+ + 0.77 Ag+ + e- ↔ Ag +0.80 1/2Br2 + e- ↔ Br- +1.07 1/2O2 + 2H+ +2e- ↔ H2O +1.23 Cr2O7 2-+14H+ +6e- ↔ 2Cr3+ + 7H2O +1.33 1/2CI2 + e- ↔ CI- +1.36 MnO4 - + 8H+ + 5e- ↔ Mn2+ + 4H2O +1.51 1/2F2 + e- ↔ F +2.87 + +0.76V +ve/high electrode potentialis cathode(+) -ve/ low electrode potential is anode (-) Electronsflow from anode (- ) to cathode (+ ) Eθ Zn/H2 = 0.76V Using platinumelectrode/H2 Zn/H2 Zn Zn2+ H+ Pt H2 - - - + -e Zn/H2 Cell Eθ value DO NOT depend on stoichiometric coefficient (Independentof stoichiometric eqn)
  • 26. H2 half cell (-ve) Oxidation Ag half cell (+ve) Reduction Anode Cathode Pt(s) | H2, H+ (aq) || Ag+ (aq) | Ag (s) Cell diagram Anode Cathode Half Cell Half Cell (Oxidation) (Reduction) Salt Bridge Flow electrons H2/Ag Cell Eθ cell = Eθ (cathode) – Eθ (anode) Eθ cell = +0.80 – (-0.00) = +0.80V 2H+ + 2e ↔ H2 Eθ = 0.00V Ag+ + e ↔ Ag Eθ = +0.80V Std electrode potential as std reductionpotential Find Eθ cell (use reduction potential)Find Eθ cell (use formula) H2 + 2Ag+ → 2H+ + 2Ag Eθ = ? Eθ cell = Eθ (cathode) – Eθ (anode) H2 ↔ 2H+ + 2e Eθ = +0.00V 2Ag+ +2e ↔ 2Ag Eθ = +0.80V H2 + 2Ag+ → 2H+ + 2Ag Eθ = +0.80V Oxidized sp ↔ Reduced sp Eθ/V Li+ + e- ↔ Li -3.04 K+ + e- ↔ K -2.93 Ca2+ + 2e- ↔ Ca -2.87 Na+ + e- ↔ Na -2.71 Mg 2+ + 2e- ↔ Mg -2.37 Al3+ + 3e- ↔ AI -1.66 Mn2+ + 2e- ↔ Mn -1.19 H2O + e- ↔ 1/2H2 + OH- -0.83 Zn2+ + 2e- ↔ Zn -0.76 Fe2+ + 2e- ↔ Fe -0.45 Ni2+ + 2e- ↔ Ni -0.26 Sn2+ + 2e- ↔ Sn -0.14 Pb2+ + 2e- ↔ Pb -0.13 H+ + e- ↔ 1/2H2 0.00 Cu2+ + e- ↔ Cu+ +0.15 SO4 2- + 4H+ + 2e- ↔ H2SO3 + H2O +0.17 Cu2+ + 2e- ↔ Cu +0.34 1/2O2 + H2O +2e- ↔ 2OH- +0.40 Cu+ + e- ↔ Cu +0.52 1/2I2 + e- ↔ I- +0.54 Fe3+ + e- ↔ Fe2+ + 0.77 Ag+ + e- ↔ Ag +0.80 1/2Br2 + e- ↔ Br- +1.07 1/2O2 + 2H+ +2e- ↔ H2O +1.23 Cr2O7 2-+14H+ +6e- ↔ 2Cr3+ + 7H2O +1.33 1/2CI2 + e- ↔ CI- +1.36 MnO4 - + 8H+ + 5e- ↔ Mn2+ + 4H2O +1.51 1/2F2 + e- ↔ F +2.87 + +0.80V +ve/high electrode potentialis cathode(+) -ve/ low electrode potential is anode (-) Electronsflow from anode (- ) to cathode (+ ) Eθ H2 /Ag = 0.80V Using platinumelectrode/H2 H2/Ag Ag Ag+ H+ Pt H2 2H+ + 2e ↔ H2 Eθ = 0.00V Ag+ + e ↔ Ag Eθ = +0.80V + + +-- -e Eθ value DO NOT depend on stoichiometric coefficient (Independentof stoichiometric eqn)
  • 27. H2 half cell (-ve) Oxidation Fe3+/2+ half cell (+ve) Reduction Anode Cathode Pt(s) | H2, H+ (aq) || Fe3+ Fe2+ | Pt (s) Cell diagram Anode Cathode Half Cell Half Cell (Oxidation) (Reduction) Salt Bridge Flow electrons Std electrode potential as std reductionpotential Find Eθ cell (use reduction potential)Find Eθ cell (use formula) H2 + 2Fe3+ → 2H+ + 2Fe Eθ = ? Eθ cell = Eθ (cathode) – Eθ (anode) H2 ↔ 2H+ + 2e Eθ = +0.00V 2Fe3+ +2e ↔ 2Fe2+ Eθ = +0.77V H2 + 2Ag+ → 2H+ + 2Ag Eθ = +0.77V Oxidized sp ↔ Reduced sp Eθ/V Li+ + e- ↔ Li -3.04 K+ + e- ↔ K -2.93 Ca2+ + 2e- ↔ Ca -2.87 Na+ + e- ↔ Na -2.71 Mg 2+ + 2e- ↔ Mg -2.37 Al3+ + 3e- ↔ AI -1.66 Mn2+ + 2e- ↔ Mn -1.19 H2O + e- ↔ 1/2H2 + OH- -0.83 Zn2+ + 2e- ↔ Zn -0.76 Fe2+ + 2e- ↔ Fe -0.45 Ni2+ + 2e- ↔ Ni -0.26 Sn2+ + 2e- ↔ Sn -0.14 Pb2+ + 2e- ↔ Pb -0.13 H+ + e- ↔ 1/2H2 0.00 Cu2+ + e- ↔ Cu+ +0.15 SO4 2- + 4H+ + 2e- ↔ H2SO3 + H2O +0.17 Cu2+ + 2e- ↔ Cu +0.34 1/2O2 + H2O +2e- ↔ 2OH- +0.40 Cu+ + e- ↔ Cu +0.52 1/2I2 + e- ↔ I- +0.54 Fe3+ + e- ↔ Fe2+ + 0.77 Ag+ + e- ↔ Ag +0.80 1/2Br2 + e- ↔ Br- +1.07 1/2O2 + 2H+ +2e- ↔ H2O +1.23 Cr2O7 2-+14H+ +6e- ↔ 2Cr3+ + 7H2O +1.33 1/2CI2 + e- ↔ CI- +1.36 MnO4 - + 8H+ + 5e- ↔ Mn2+ + 4H2O +1.51 1/2F2 + e- ↔ F +2.87 + +0.77V +ve/high electrode potentialis cathode(+) -ve/ low electrode potential is anode (-) Electronsflow from anode (- ) to cathode (+ ) Eθ H2 /Fe3+ = 0.77V Using platinum electrode/H2 Pt Fe3+ H+ Pt H2 + + +-- -e H2 /Fe3+,Fe2+ Cell H2 /Fe3+,Fe2+ 2H+ + 2e ↔ H2 Eθ = 0.00V Fe3+ + e ↔ Fe2+ Eθ = +0.77V 2H+ + 2e ↔ H2 Eθ = 0.00V Fe3+ + e ↔ Fe2+ Eθ = +0.77V Eθ cell = Eθ (cathode) – Eθ (anode) Eθ cell = +0.77– (-0.00) = +0.77V Eθ value DO NOT depend on stoichiometric coefficient (Independentof stoichiometric eqn)
  • 28. H2 half cell (-ve) Oxidation CI2 half cell (+ve) Reduction Anode Cathode Pt(s) | H2, H+ (aq) || CI2 ,CI- | Pt (s) Cell diagram Anode Cathode Half Cell Half Cell (Oxidation) (Reduction) Salt Bridge Flow electrons Std electrode potential as std reductionpotential Find Eθ cell (use reduction potential)Find Eθ cell (use formula) CI2 + H2 → 2CI- + 2H+ Eθ = ? Eθ cell = Eθ (cathode) – Eθ (anode) H2 ↔ 2H+ + 2e Eθ = +0.00V CI2 +2e ↔ 2CI- Eθ = +1.35V H2 + CI2 → 2H+ + 2CI- Eθ = +1.35V Oxidized sp ↔ Reduced sp Eθ/V Li+ + e- ↔ Li -3.04 K+ + e- ↔ K -2.93 Ca2+ + 2e- ↔ Ca -2.87 Na+ + e- ↔ Na -2.71 Mg 2+ + 2e- ↔ Mg -2.37 Al3+ + 3e- ↔ AI -1.66 Mn2+ + 2e- ↔ Mn -1.19 H2O + e- ↔ 1/2H2 + OH- -0.83 Zn2+ + 2e- ↔ Zn -0.76 Fe2+ + 2e- ↔ Fe -0.45 Ni2+ + 2e- ↔ Ni -0.26 Sn2+ + 2e- ↔ Sn -0.14 Pb2+ + 2e- ↔ Pb -0.13 H+ + e- ↔ 1/2H2 0.00 Cu2+ + e- ↔ Cu+ +0.15 SO4 2- + 4H+ + 2e- ↔ H2SO3 + H2O +0.17 Cu2+ + 2e- ↔ Cu +0.34 1/2O2 + H2O +2e- ↔ 2OH- +0.40 Cu+ + e- ↔ Cu +0.52 1/2I2 + e- ↔ I- +0.54 Fe3+ + e- ↔ Fe2+ + 0.77 Ag+ + e- ↔ Ag +0.80 1/2Br2 + e- ↔ Br- +1.07 1/2O2 + 2H+ +2e- ↔ H2O +1.23 Cr2O7 2-+14H+ +6e- ↔ 2Cr3+ + 7H2O +1.33 1/2CI2 + e- ↔ CI- +1.35 MnO4 - + 8H+ + 5e- ↔ Mn2+ + 4H2O +1.51 1/2F2 + e- ↔ F +2.87 + +1.35V +ve/high electrode potentialis cathode(+) -ve/ low electrode potential is anode (-) Electronsflow from anode (- ) to cathode (+ ) Eθ H2 /CI2 = 1.35V Using platinum electrode/H2 H+ Pt H2 -- -e H2 /CI2 Cell 2H+ + 2e ↔ H2 Eθ = 0.00V CI + e ↔ CI- Eθ = +1.35V Eθ cell = Eθ (cathode) – Eθ (anode) Eθ cell = +1.35 – (-0.00) = +1.35V H2 /CI2 Cell 2H+ + 2e ↔ H2 Eθ = 0.00V CI + e ↔ CI- Eθ = +1.35V + Pt CI - CI2 Eθ value DO NOT depend on stoichiometric coefficient (Independentof stoichiometric eqn)
  • 29. Standard Electrode Potential STANDARD Reduction potential – H2 as std Oxidized sp ↔ Reduced sp Eθ/V Li+ + e- ↔ Li -3.04 K+ + e- ↔ K -2.93 Ca2+ + 2e- ↔ Ca -2.87 Na+ + e- ↔ Na -2.71 Mg 2+ + 2e- ↔ Mg -2.37 Al3+ + 3e- ↔ AI -1.66 Mn2+ + 2e- ↔ Mn -1.19 H2O + e- ↔ H2+OH- -0.83 Zn2+ + 2e- ↔ Zn -0.76 Fe2+ + 2e- ↔ Fe -0.45 Ni2+ + 2e- ↔ Ni -0.26 Sn2+ + 2e- ↔ Sn -0.14 Pb2+ + 2e- ↔ Pb -0.13 H+ + e- ↔ 1/2H2 0.00 Cu2+ + e- ↔ Cu+ +0.15 SO4 2- + 4H+ + 2e- ↔ H2SO3 + H2O +0.17 Cu2+ + 2e- ↔ Cu +0.34 1/2O2 + H2O +2e- ↔ 2OH- +0.40 Cu+ + e- ↔ Cu +0.52 1/2I2 + e- ↔ I- +0.54 Fe3+ + e- ↔ Fe2+ +0.77 Ag+ + e- ↔ Ag +0.80 1/2Br2 + e- ↔ Br- +1.07 1/2O2 + 2H+ +2e- ↔ H2O +1.23 Cr2O7 2-+14H+ +6e- ↔ 2Cr3+ +7H2O +1.33 1/2CI2 + e- ↔ CI- +1.36 MnO4 - + 8H+ + 5e- ↔ Mn2+ + 4H2O +1.51 1/2F2 + e- ↔ F +2.87 -ve reduction potential +ve reduction potential Compared to H2 as std Eθ cell/CellPotential= EMF in volt EMF when half cell connect to SHE std condition Std potentialwritten as std reduction potential TOP right • High ↑ tendency lose e • Li → Li + + e • Eθ Li = +3.04V • STRONG reducingAgent •Oxi favourable (Eθ =+ve) STRONG Reducing Agent WEAK Reducing Agent BOTTOM right • Low ↓ tendency lose e • F - → 1/2F2 + e • Eθ F2 = - 2.87V • WEAK reducingAgent •Oxi NOT favourable (Eθ =-ve) WEAK Oxidizing Agent Strong Oxidizing Agent TOP left • Low ↓ tendency gain e • Li+ + e → Li • Eθ Li= - 3.04V • WEAK oxidizingAgent • Red NOT favourable (Eθ =-ve) BOTTOM left • High ↑ tendency gain e • F2 + 2e → 2F- • Eθ F2= +2.87V • STRONG oxidizing Agent •Red favourable (Eθ =+ve)
  • 30. Acknowledgements Thanks to source of pictures and video used in this presentation Thanks to Creative Commons for excellent contribution on licenses http://creativecommons.org/licenses/ http://spmchemistry.onlinetuition.com.my/2013/10/electrolytic-cell.html http://www.chemguide.co.uk/physical/redoxeqia/introduction.html http://educationia.tk/reduction-potential-table http://2012books.lardbucket.org/books/principles-of-general-chemistry-v1.0/s23- electrochemistry.html Prepared by Lawrence Kok Check out more video tutorials from my site and hope you enjoy this tutorial http://lawrencekok.blogspot.com