SlideShare una empresa de Scribd logo
1 de 30
Descargar para leer sin conexión
TTHEHE GGAUSSIANAUSSIAN MMINIMUMINIMUM EENTROPYNTROPY CCONJECTUREONJECTURE
&&
ITS IMPORTANCE FOR THE INFORMATION CAPACITYITS IMPORTANCE FOR THE INFORMATION CAPACITY
OF GAUSSIAN BOSONIC CHANNELSOF GAUSSIAN BOSONIC CHANNELS
Institut Henri Poincaré, Paris, November 23-25, 2011
Raul Garcia-Patron, Carlos Navarrete,
Seth Lloyd, Jeff H. Shapiro, and Nicolas J. Cerf
1st workshop of GDR “Quantum Information,
Fundamentals, and Applications”
We wish to calculate the ultimate information capacity
of optical communication channels
Context
Since communication channels
are “physical devices” ...
Since physics itself is
“quantum mechanical” ...
... we need to use the tools of “quantum information theory”
Outline
Gaussian bosonic channels
Classical capacity of quantum channels
Gaussian minimum (output) entropy conjecture
Link with entanglement of a 2-mode squeezer
Gaussian minimum (output) entanglement conjecture
Connection with majorization theory
(Stronger) Gaussian majorization conjecture
Incomplete proof of the conjecture (Fock state inputs)
Conclusions — importance for physics problems !
… new path to the ultimate proof ?
Motivation: perfect (noiseless) channel
C M =
1
2
log
1
 P
N 
Shannon theory
power P
Numerous communication links modeled by
a classical Gaussian additive-noise channel
Infinite capacity for finite input power P !
..... we need quantum mechanics to calculate the ultimate limits of communication !
C M =max S =1log1− log
Gaussian quantum channelsQuantum theory
H. P. Yuen, and M. Ozawa, PRL 1993
z
y= xzx
noise variance N
=1
N =0
M
Finite capacity for finite input energy, achieved by a thermal state of photons
for identity channel
map
  M []
  K  KT
N
M K , N
real
real & symmetric
N≥0 det N ≥det K−12
M
one-mode case
Gaussian (quantum) Bosonic channels
r  K r r

= coherent vector
= covariance matrix
Corresponds to linear CP maps
s.t. Gaussian if Gaussian
fully characterized by two matrices
completely positive
M
K
N
“transmission”
“noise”
 M 
M [] 
uncertainty principle
K=diag  G , G
N=diag G−1 ,G−1
K=diag  T , T 
N=diag 1−T ,1−T 
Phase-insensitive Gaussian Channels
M
K=diag   , 
n
N =diag n ,n


n
= transmission
= noise variance
210−1
1
2
Purely lossy channel
Ideal (quantum-limited) amplifier
G≥1
T ≤1
Classical
additive noise
 M 
Forbidden region
( our analysis is focused on phase-insensitive channels w.n.l.g. )
Classical Capacity of Quantum Channels
Ma M a
Holevo bound
Holevo, Schumacher,
Westmoreland, 1998
{pa ,a} ∑a
pa a = 
Single-shot capacity
{pa ,a}, M =S  M −∑a
pa S M a
such that
C
1
M =max
{pa ,a}
 {pa ,a }, M 
encoding
Capacity CM =lim
n∞
1
n
C
1
M
×n

M
×n
... in general, not additive !
(Hastings, Nature Phys. 2009)
 M 
a=1,...d
with  , M ≡S M −min
{pa ,a} ∑a
pa SM a
∑a
pa a=
≥ S M 0
we need to find pure state minimizing output entropy0
≤ S M −SM 0
Minimum Output Entropy
Ma M a
{pa ,a} ∑a
pa a = such thatencoding
C
1
M =max
 ,M 
min S M ≡S  M 0
... maximization in 2 steps
a=1,...d
≤ max
S M −S M 0
continuous encoding
energy constraint
Yuen and Ozawa, 1993Capacity of Gaussian Quantum Channels
for fixed energy,
achieved by a thermal state
Gaussian minimum output entropy conjecture: 0=∣0〉 〈0∣
M M a
{p(α),ρα} ∫d α p(α)ρα = ρsuch that
2
minimum
output entropy
state ???
encoding
S M therm
C
1
M =max
 ,M 
Holevo and Werner, 1998
Conjectured Single-shot Capacity
C
1
M =g[ n]−g[n]
coherent states modulated with a Gaussian bivariate distribution
do achieve the capacity (it is the optimal encoding)
g[ x]=x1logx1−x logxwhere
M M a
{p, } ∫d  p = such that
2
encoding
= transmission
= noise variance

n
ρα=D(α)∣0〉〈0∣D(α)+
p(α)=
1
√πν
exp(−∣α∣
2
ν )use encoding
C1
M  ≤ SM therm−S M ∣0〉〈0∣
... provided the Gaussian minimum entropy conjecture holds !
Φ0
with = mean thermal photon numberν
min S M =S M ∣0〉〈 0∣
Gaussian Minimum Entropy Conjecture
The same conjecture is made for the joint channel
then, CM ≡lim
n∞
1
n
C
1
M
×n
=C
1
M 
M
×n
All papers ( > 30 ) on the topic of Gaussian bosonic channels
rely on this widely admitted conjecture !!!
Single exception: pure lossy channel
V. Giovannetti et al., PRL, 2004
T
0=∣0〉
∣0〉E
M 0=∣0〉
C
1
M =g[ ]
(environment E in vacuum state)
Generic Decomposition of Phase-insensitive Channels
A
Input Output
G>1
 M 
∣0〉E
∣0〉E
Pure loss (L) Ideal amplifier (A)
=T G1
=T G=1
=T G1
T<1
lossy fiber with thermal noise
classical Gaussian additive noise
(non-ideal) noisy amplifier
L
signal
idler
Reduction of the Conjecture
M M 
min SM =SM ∣0〉〈0∣Conjecture I
Conjecture II min S A =S A∣0〉 〈0∣
L M 
=A 
A
=L
Reduction to Ideal Amplifier
A
∣0〉 ∣0〉
it is (necessary and) sufficient to prove the reduced conjecture II
saturated if
T<1
∣0〉E
∣0〉E G>1
L
S M  = S A  ≥S A∣0〉 〈0∣
assume conjecture II holds
̃σ
M (σ)
=A ( ̃σ)
σ
Link with Output Entanglement of a Two-Mode Squeezer
∣0〉
∣〉
∣〉
∣0〉
S A∣〉 〈∣=E U r∣〉∣0〉
We are now dealing with
the output entanglement
of a two-mode squeezer
U r
entanglement
entropy of a
pure state
G=cosh
2
r
E=exp(r
2
(ab−a
+
b
+
))U r
A
M M 
min SM =SM ∣0〉〈0∣Conjecture I
∣0〉E
min E∣〉AB=E∣V 〉ABConjecture II (bis)
∣〉 AB=U r∣〉A∣0〉E
∣V 〉 AB=U r∣0〉A∣0〉E
∣〉A
U r
signal
idler
compare with vacuum input :
Gaussian Minimum Entanglement Conjecture
Proof for Gaussian vs non-Gaussian states
∣0〉E
E∣Gauss〉AB
 ≥ E∣V 〉AB
∣〉 AB=U r∣〉A∣0〉E
∣V 〉 AB=U r∣0〉A∣0〉E
∣〉A
U r
2-mode vacuum squeezed state
∣〉A=∑k
ck∣k 〉
Fock states
easy to prove for Gaussian states
expansion of non-Gaussian states in Fock basis
... only an incomplete proof for Fock states !
actual output state
signal
idler
Fock State Inputs
signal
∣0〉
idler
∣k〉
∣Ψk 〉=∑
n=0
∞
√Pn(k) ∣n+k 〉∣n〉
Ek=H [Pnk ]
Pnk=
1
cosh2k 1
r nk
n tanh2n
r
Using Pascal identity
nk1
n =
nk
n 
nk
n−1
Pnk1=1−
2
Pnk 
2
Pn−1k1 =tanh r
Ek11−
2
Ek
2
Ek1Concavity of entropy
Ek1Ek ∀ k≥0
U r
vacuum state beats
all other Fock states
Shannon entropy
with
E∣
k
〉
r
k=0
k=1
k=2
k=3k=4Fock State Inputs
E(k+1)⩾E (k) ∀k≥0 ∀r
This is the tip of the iceberg
of majorization theory...
∣k〉
U (r)
∣0〉
Majorization Theory
pn qn
pn ,qnwith probability distributions
majorizes
∑n=0
m
pn

≥ ∑n=0
m
qn

∀ m≥0 ( p is “more peaked” than q )
qn=∑m
Dn, m pm Dn, m is doubly-stochastic matrix
can be converted to by applying a random permutationqnpn
∑n
h pn ≤ ∑n
hqn ∀ hx concave function
e.g. entropy: h(x)=−xlog(x)
entropy can only increase
= (partial) order relation for probability distributions
Dn, m
qn
pn
if and only if
or
or
Dn, m
H(pn)≤H(qn)
Quantum case : Interconversion of pure bipartite states
pn qn pn ,qn
with majorizing
majorizes
∣ψ〉=∑n
√pn ∣en〉∣f n〉 ∣ϕ〉=∑n
√qn ∣en ' 〉 ∣f n' 〉∣〉 ∣〉majorizes
can be converted to by applying a deterministic LOCC∣〉∣〉
E∣〉≤E∣〉 entanglement can only decrease
pn qn
Dn,m
LOCC
probability distributions
M. Nielsen, G. Vidal, 2000
Trick: ρA=trB(∣ψ〉〈ψ∣)=∑n
pn ∣en〉 〈en∣
orthonormal
=∑n
qn ∣ζn 〉〈ζn∣
not orthonormal
provided majorizespn qn
eigenbasis representation
Explicit conversion LOCC
∣ψ〉=∑n
√pn ∣en〉∣f n〉
∣〉 ∣〉majorizes
LOCC
∣ψ〉=∑n
√qn ∣ζn〉 ∣f n' ' 〉 above trick (provided majorizes )pn qn
∣ϕ〉=∑n
√qn ∣en' 〉 ∣f n '〉
LOCC U
POVM: Am=∑n
ωnm
∣ζn〉〈en'∣ ∑m
Am
+
Am=Iω=ei 2π/d
with and
(Am×I )∣ϕ〉 = ∑n √qn ωnm
∣ζn 〉 ∣f n' 〉 ≡∣ϕm〉
Conditional U: Bm=∑n
ω−nm
∣f n ' ' 〉〈 f n '∣
(I ×Bm)∣ϕm〉 = ∑n
√qn ∣ζn〉 ∣f n ' '〉 ≡∣ψ〉
depends on outcome m
conditional on m
Gaussian Majorization Conjecture
... stronger than minimum output entropy conjecture
... but perhaps easier to prove (?)
∣0〉E
∣V 〉 AB ∣〉AB ∀ ∣〉AConjecture III
∣〉 AB=U r∣〉A∣0〉E
∣V 〉 AB=U r∣0〉A∣0〉E
∣〉A
U r
signal
idler compare with vacuum input
majorizes
For a given 2-mode squeezer (Bogoliubov transformation),
the 2-mode vacuum squeezed state majorizes all other output states !!!
E∣V 〉 AB ≤ E∣〉AB∣V 〉AB ∣Φ〉AB
LOCC
implying
Majorization relations in a 2-mode squeezer
r
k=0
k=1
k=2k=3k=4
⃗P
(k +1)
=D ⃗P
(k)
∀k ∀r
Dn, m=1−2
2n
H n−m
λ=tanh r
H ≡ Heaviside step function
E∣
k
〉
LOCC
LOCC
( as a function of k given r )
(ANO×1)∣Ψk+1〉 = √λ2
∑
n=0
∞
√pn(k+1) ∣n+k+1〉∣n+1〉 → √λ2
∣Ψk+1 〉
∣Ψk 〉 = ∑
n=0
∞
√ pn (k) ∣n+k〉∣n〉Explicit LOCC
∣Ψk+1〉 = ∑
n=0
∞
√ pn(k+1) ∣n+k+1〉∣n〉
AYES = ∑m=0
∞
√(1−λ
2
)pm(k)
pm(k+1)
∣m+k〉〈m+k+1∣
ANO = ∑m=0
∞
√λ
2
pm−1(k+1)
pm(k+1)
∣m+k〉〈m+k+1∣
Alice applies
a POVM
If “NO” she communicates it to Bob who applies
and then they start a new round again
U = ∑
m=0
∞
∣m〉 〈m1∣
(AYES×1)∣Ψk +1〉 = √(1−λ2
) ∑
n=0
∞
√pn(k) ∣n+k〉∣n〉 = √(1−λ2
) ∣Ψk 〉 YES
NO
r
k=0
k=1
k=2k=3k=4
⃗P r'
(k )
=R
(k )
⃗P r
(k)
∀r'>r ∀k
E∣
k
〉
LOCC
Majorization relations in a 2-mode squeezer
LOCC
( as a function of r given k )
Arbitrary superposition of Fock states
r
0.4∣0〉0.6∣1〉
k=0
k=1
E∣〉AB 
numerical evidence
∣0〉 ∀rmajorized by
r
0.4∣0〉0.6∣1〉
0.4∣1〉0.6∣2〉
k=0
k=1
E∣〉AB 
more complicated
than it looks !
∣1〉not majorized by
Arbitrary superposition of Fock states
ALTERNATE TITLE: can we prove that ...
“ Nothing is less than the vacuum” ?
( less random than the vacuum state )
This is a fundamental problem
∣0〉
(even if you don't care
about quantum channels !)
Bogoliubov transformation is everywhere
(e.g., quantum optics, supraconductivity, Hawking radiation, Unruh effect,...)
… this conjecture may have implications there !
̂ai '=∑j
(uij ̂aj+vij ̂a j
+
)
New approach to solve the “Minimum Output Entropy Conjecture”
for Gaussian bosonic channels
Reduction to ideal amplifier channel
Output entanglement of a two-mode squeezer
Link with majorization theory (currently, Fock states only)
Numerical analysis for random input states
strongly suggests that (majorization) conjecture is true...
Take-home message “ Nothing is less than the vacuum ”
very plausible but not (yet) proven !
See: R. Garcia-Patron, C. Navarrete-Benlloch, S. Lloyd,
J. H. Shapiro & N. J. Cerf, arXiv:1111.1986 [quant-ph]

Más contenido relacionado

La actualidad más candente

QMC: Transition Workshop - Probabilistic Integrators for Deterministic Differ...
QMC: Transition Workshop - Probabilistic Integrators for Deterministic Differ...QMC: Transition Workshop - Probabilistic Integrators for Deterministic Differ...
QMC: Transition Workshop - Probabilistic Integrators for Deterministic Differ...
The Statistical and Applied Mathematical Sciences Institute
 
RSS discussion of Girolami and Calderhead, October 13, 2010
RSS discussion of Girolami and Calderhead, October 13, 2010RSS discussion of Girolami and Calderhead, October 13, 2010
RSS discussion of Girolami and Calderhead, October 13, 2010
Christian Robert
 

La actualidad más candente (20)

mcmc
mcmcmcmc
mcmc
 
Unbiased Hamiltonian Monte Carlo
Unbiased Hamiltonian Monte CarloUnbiased Hamiltonian Monte Carlo
Unbiased Hamiltonian Monte Carlo
 
Unbiased Bayes for Big Data
Unbiased Bayes for Big DataUnbiased Bayes for Big Data
Unbiased Bayes for Big Data
 
Poster for Bayesian Statistics in the Big Data Era conference
Poster for Bayesian Statistics in the Big Data Era conferencePoster for Bayesian Statistics in the Big Data Era conference
Poster for Bayesian Statistics in the Big Data Era conference
 
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
 
Mark Girolami's Read Paper 2010
Mark Girolami's Read Paper 2010Mark Girolami's Read Paper 2010
Mark Girolami's Read Paper 2010
 
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
 
Rao-Blackwellisation schemes for accelerating Metropolis-Hastings algorithms
Rao-Blackwellisation schemes for accelerating Metropolis-Hastings algorithmsRao-Blackwellisation schemes for accelerating Metropolis-Hastings algorithms
Rao-Blackwellisation schemes for accelerating Metropolis-Hastings algorithms
 
Adc
AdcAdc
Adc
 
Rdnd2008
Rdnd2008Rdnd2008
Rdnd2008
 
QMC: Transition Workshop - Probabilistic Integrators for Deterministic Differ...
QMC: Transition Workshop - Probabilistic Integrators for Deterministic Differ...QMC: Transition Workshop - Probabilistic Integrators for Deterministic Differ...
QMC: Transition Workshop - Probabilistic Integrators for Deterministic Differ...
 
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
 
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
 
RSS discussion of Girolami and Calderhead, October 13, 2010
RSS discussion of Girolami and Calderhead, October 13, 2010RSS discussion of Girolami and Calderhead, October 13, 2010
RSS discussion of Girolami and Calderhead, October 13, 2010
 
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
 
2 classical field theories
2 classical field theories2 classical field theories
2 classical field theories
 
no U-turn sampler, a discussion of Hoffman & Gelman NUTS algorithm
no U-turn sampler, a discussion of Hoffman & Gelman NUTS algorithmno U-turn sampler, a discussion of Hoffman & Gelman NUTS algorithm
no U-turn sampler, a discussion of Hoffman & Gelman NUTS algorithm
 
2018 MUMS Fall Course - Bayesian inference for model calibration in UQ - Ralp...
2018 MUMS Fall Course - Bayesian inference for model calibration in UQ - Ralp...2018 MUMS Fall Course - Bayesian inference for model calibration in UQ - Ralp...
2018 MUMS Fall Course - Bayesian inference for model calibration in UQ - Ralp...
 
2018 MUMS Fall Course - Statistical Representation of Model Input (EDITED) - ...
2018 MUMS Fall Course - Statistical Representation of Model Input (EDITED) - ...2018 MUMS Fall Course - Statistical Representation of Model Input (EDITED) - ...
2018 MUMS Fall Course - Statistical Representation of Model Input (EDITED) - ...
 
Slides compiegne
Slides compiegneSlides compiegne
Slides compiegne
 

Destacado (6)

Manipulating continuous variable photonic entanglement
Manipulating continuous variable photonic entanglementManipulating continuous variable photonic entanglement
Manipulating continuous variable photonic entanglement
 
Entanglement of formation
Entanglement of formationEntanglement of formation
Entanglement of formation
 
Gaussian discord imperial
Gaussian discord imperialGaussian discord imperial
Gaussian discord imperial
 
Quantum optical measurement
Quantum optical measurementQuantum optical measurement
Quantum optical measurement
 
The security of quantum cryptography
The security of quantum cryptographyThe security of quantum cryptography
The security of quantum cryptography
 
Classification of transducers
Classification of transducersClassification of transducers
Classification of transducers
 

Similar a The gaussian minimum entropy conjecture

Natalini nse slide_giu2013
Natalini nse slide_giu2013Natalini nse slide_giu2013
Natalini nse slide_giu2013
Madd Maths
 
dhirota_hone_corrected
dhirota_hone_correcteddhirota_hone_corrected
dhirota_hone_corrected
Andy Hone
 
Diffusion Schrödinger bridges for score-based generative modeling
Diffusion Schrödinger bridges for score-based generative modelingDiffusion Schrödinger bridges for score-based generative modeling
Diffusion Schrödinger bridges for score-based generative modeling
JeremyHeng10
 

Similar a The gaussian minimum entropy conjecture (20)

Mathematics and AI
Mathematics and AIMathematics and AI
Mathematics and AI
 
Complexity of exact solutions of many body systems: nonequilibrium steady sta...
Complexity of exact solutions of many body systems: nonequilibrium steady sta...Complexity of exact solutions of many body systems: nonequilibrium steady sta...
Complexity of exact solutions of many body systems: nonequilibrium steady sta...
 
Introduction to Diffusion Monte Carlo
Introduction to Diffusion Monte CarloIntroduction to Diffusion Monte Carlo
Introduction to Diffusion Monte Carlo
 
Quantum chaos of generic systems - Marko Robnik
Quantum chaos of generic systems - Marko RobnikQuantum chaos of generic systems - Marko Robnik
Quantum chaos of generic systems - Marko Robnik
 
Ph 101-9 QUANTUM MACHANICS
Ph 101-9 QUANTUM MACHANICSPh 101-9 QUANTUM MACHANICS
Ph 101-9 QUANTUM MACHANICS
 
Scattering theory analogues of several classical estimates in Fourier analysis
Scattering theory analogues of several classical estimates in Fourier analysisScattering theory analogues of several classical estimates in Fourier analysis
Scattering theory analogues of several classical estimates in Fourier analysis
 
Tutorial APS 2023: Phase transition for statistical estimation: algorithms an...
Tutorial APS 2023: Phase transition for statistical estimation: algorithms an...Tutorial APS 2023: Phase transition for statistical estimation: algorithms an...
Tutorial APS 2023: Phase transition for statistical estimation: algorithms an...
 
Natalini nse slide_giu2013
Natalini nse slide_giu2013Natalini nse slide_giu2013
Natalini nse slide_giu2013
 
Introduction to the electron phonon renormalization of the electronic band st...
Introduction to the electron phonon renormalization of the electronic band st...Introduction to the electron phonon renormalization of the electronic band st...
Introduction to the electron phonon renormalization of the electronic band st...
 
Calculus of variations
Calculus of variationsCalculus of variations
Calculus of variations
 
On probability distributions
On probability distributionsOn probability distributions
On probability distributions
 
Upm etsiccp-seminar-vf
Upm etsiccp-seminar-vfUpm etsiccp-seminar-vf
Upm etsiccp-seminar-vf
 
Omiros' talk on the Bernoulli factory problem
Omiros' talk on the  Bernoulli factory problemOmiros' talk on the  Bernoulli factory problem
Omiros' talk on the Bernoulli factory problem
 
Lecture1
Lecture1Lecture1
Lecture1
 
Noise Performance of CW system
Noise Performance of CW systemNoise Performance of CW system
Noise Performance of CW system
 
EE402B Radio Systems and Personal Communication Networks-Formula sheet
EE402B Radio Systems and Personal Communication Networks-Formula sheetEE402B Radio Systems and Personal Communication Networks-Formula sheet
EE402B Radio Systems and Personal Communication Networks-Formula sheet
 
My presentation Jose M. Escalante Fernandez
My presentation Jose M. Escalante FernandezMy presentation Jose M. Escalante Fernandez
My presentation Jose M. Escalante Fernandez
 
Unit 5.pdf
Unit 5.pdfUnit 5.pdf
Unit 5.pdf
 
dhirota_hone_corrected
dhirota_hone_correcteddhirota_hone_corrected
dhirota_hone_corrected
 
Diffusion Schrödinger bridges for score-based generative modeling
Diffusion Schrödinger bridges for score-based generative modelingDiffusion Schrödinger bridges for score-based generative modeling
Diffusion Schrödinger bridges for score-based generative modeling
 

Más de wtyru1989

Bound entanglement is not rare
Bound entanglement is not rareBound entanglement is not rare
Bound entanglement is not rare
wtyru1989
 
Continuous variable quantum entanglement and its applications
Continuous variable quantum entanglement and its applicationsContinuous variable quantum entanglement and its applications
Continuous variable quantum entanglement and its applications
wtyru1989
 
Relative entropy and_squahed_entanglement
Relative entropy and_squahed_entanglementRelative entropy and_squahed_entanglement
Relative entropy and_squahed_entanglement
wtyru1989
 
Towards a one shot entanglement theory
Towards a one shot entanglement theoryTowards a one shot entanglement theory
Towards a one shot entanglement theory
wtyru1989
 
Postselection technique for quantum channels and applications for qkd
Postselection technique for quantum channels and applications for qkdPostselection technique for quantum channels and applications for qkd
Postselection technique for quantum channels and applications for qkd
wtyru1989
 
Qkd and de finetti theorem
Qkd and de finetti theoremQkd and de finetti theorem
Qkd and de finetti theorem
wtyru1989
 
Lattices, sphere packings, spherical codes
Lattices, sphere packings, spherical codesLattices, sphere packings, spherical codes
Lattices, sphere packings, spherical codes
wtyru1989
 
Tsinghua visit
Tsinghua visitTsinghua visit
Tsinghua visit
wtyru1989
 
Quantum conditional states, bayes' rule, and state compatibility
Quantum conditional states, bayes' rule, and state compatibilityQuantum conditional states, bayes' rule, and state compatibility
Quantum conditional states, bayes' rule, and state compatibility
wtyru1989
 
Quantization
QuantizationQuantization
Quantization
wtyru1989
 
Randomness conductors
Randomness conductorsRandomness conductors
Randomness conductors
wtyru1989
 
Studies on next generation access technology using radio over free space opti...
Studies on next generation access technology using radio over free space opti...Studies on next generation access technology using radio over free space opti...
Studies on next generation access technology using radio over free space opti...
wtyru1989
 
Complex model of fso links
Complex model of fso linksComplex model of fso links
Complex model of fso links
wtyru1989
 

Más de wtyru1989 (20)

Bound entanglement is not rare
Bound entanglement is not rareBound entanglement is not rare
Bound entanglement is not rare
 
Continuous variable quantum entanglement and its applications
Continuous variable quantum entanglement and its applicationsContinuous variable quantum entanglement and its applications
Continuous variable quantum entanglement and its applications
 
Relative entropy and_squahed_entanglement
Relative entropy and_squahed_entanglementRelative entropy and_squahed_entanglement
Relative entropy and_squahed_entanglement
 
Lect12 photodiode detectors
Lect12 photodiode detectorsLect12 photodiode detectors
Lect12 photodiode detectors
 
Towards a one shot entanglement theory
Towards a one shot entanglement theoryTowards a one shot entanglement theory
Towards a one shot entanglement theory
 
Postselection technique for quantum channels and applications for qkd
Postselection technique for quantum channels and applications for qkdPostselection technique for quantum channels and applications for qkd
Postselection technique for quantum channels and applications for qkd
 
Encrypting with entanglement matthias christandl
Encrypting with entanglement matthias christandlEncrypting with entanglement matthias christandl
Encrypting with entanglement matthias christandl
 
Qkd and de finetti theorem
Qkd and de finetti theoremQkd and de finetti theorem
Qkd and de finetti theorem
 
Dic rd theory_quantization_07
Dic rd theory_quantization_07Dic rd theory_quantization_07
Dic rd theory_quantization_07
 
Lattices, sphere packings, spherical codes
Lattices, sphere packings, spherical codesLattices, sphere packings, spherical codes
Lattices, sphere packings, spherical codes
 
Em method
Em methodEm method
Em method
 
标量量化
标量量化标量量化
标量量化
 
Fully understanding cmrr taiwan-2012
Fully understanding cmrr taiwan-2012Fully understanding cmrr taiwan-2012
Fully understanding cmrr taiwan-2012
 
Op amp tutorial-1
Op amp tutorial-1Op amp tutorial-1
Op amp tutorial-1
 
Tsinghua visit
Tsinghua visitTsinghua visit
Tsinghua visit
 
Quantum conditional states, bayes' rule, and state compatibility
Quantum conditional states, bayes' rule, and state compatibilityQuantum conditional states, bayes' rule, and state compatibility
Quantum conditional states, bayes' rule, and state compatibility
 
Quantization
QuantizationQuantization
Quantization
 
Randomness conductors
Randomness conductorsRandomness conductors
Randomness conductors
 
Studies on next generation access technology using radio over free space opti...
Studies on next generation access technology using radio over free space opti...Studies on next generation access technology using radio over free space opti...
Studies on next generation access technology using radio over free space opti...
 
Complex model of fso links
Complex model of fso linksComplex model of fso links
Complex model of fso links
 

Último

Finding Java's Hidden Performance Traps @ DevoxxUK 2024
Finding Java's Hidden Performance Traps @ DevoxxUK 2024Finding Java's Hidden Performance Traps @ DevoxxUK 2024
Finding Java's Hidden Performance Traps @ DevoxxUK 2024
Victor Rentea
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Safe Software
 

Último (20)

ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemkeProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
 
ICT role in 21st century education and its challenges
ICT role in 21st century education and its challengesICT role in 21st century education and its challenges
ICT role in 21st century education and its challenges
 
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot TakeoffStrategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
 
Strategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a FresherStrategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a Fresher
 
Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...
Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...
Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...
 
MS Copilot expands with MS Graph connectors
MS Copilot expands with MS Graph connectorsMS Copilot expands with MS Graph connectors
MS Copilot expands with MS Graph connectors
 
Cyberprint. Dark Pink Apt Group [EN].pdf
Cyberprint. Dark Pink Apt Group [EN].pdfCyberprint. Dark Pink Apt Group [EN].pdf
Cyberprint. Dark Pink Apt Group [EN].pdf
 
DEV meet-up UiPath Document Understanding May 7 2024 Amsterdam
DEV meet-up UiPath Document Understanding May 7 2024 AmsterdamDEV meet-up UiPath Document Understanding May 7 2024 Amsterdam
DEV meet-up UiPath Document Understanding May 7 2024 Amsterdam
 
2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...
 
MINDCTI Revenue Release Quarter One 2024
MINDCTI Revenue Release Quarter One 2024MINDCTI Revenue Release Quarter One 2024
MINDCTI Revenue Release Quarter One 2024
 
Rising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdf
Rising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdfRising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdf
Rising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdf
 
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...
 
Finding Java's Hidden Performance Traps @ DevoxxUK 2024
Finding Java's Hidden Performance Traps @ DevoxxUK 2024Finding Java's Hidden Performance Traps @ DevoxxUK 2024
Finding Java's Hidden Performance Traps @ DevoxxUK 2024
 
Artificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : UncertaintyArtificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : Uncertainty
 
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, AdobeApidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
 
DBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor PresentationDBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor Presentation
 
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
 
"I see eyes in my soup": How Delivery Hero implemented the safety system for ...
"I see eyes in my soup": How Delivery Hero implemented the safety system for ..."I see eyes in my soup": How Delivery Hero implemented the safety system for ...
"I see eyes in my soup": How Delivery Hero implemented the safety system for ...
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
 
Spring Boot vs Quarkus the ultimate battle - DevoxxUK
Spring Boot vs Quarkus the ultimate battle - DevoxxUKSpring Boot vs Quarkus the ultimate battle - DevoxxUK
Spring Boot vs Quarkus the ultimate battle - DevoxxUK
 

The gaussian minimum entropy conjecture

  • 1. TTHEHE GGAUSSIANAUSSIAN MMINIMUMINIMUM EENTROPYNTROPY CCONJECTUREONJECTURE && ITS IMPORTANCE FOR THE INFORMATION CAPACITYITS IMPORTANCE FOR THE INFORMATION CAPACITY OF GAUSSIAN BOSONIC CHANNELSOF GAUSSIAN BOSONIC CHANNELS Institut Henri Poincaré, Paris, November 23-25, 2011 Raul Garcia-Patron, Carlos Navarrete, Seth Lloyd, Jeff H. Shapiro, and Nicolas J. Cerf 1st workshop of GDR “Quantum Information, Fundamentals, and Applications”
  • 2. We wish to calculate the ultimate information capacity of optical communication channels Context Since communication channels are “physical devices” ... Since physics itself is “quantum mechanical” ... ... we need to use the tools of “quantum information theory”
  • 3. Outline Gaussian bosonic channels Classical capacity of quantum channels Gaussian minimum (output) entropy conjecture Link with entanglement of a 2-mode squeezer Gaussian minimum (output) entanglement conjecture Connection with majorization theory (Stronger) Gaussian majorization conjecture Incomplete proof of the conjecture (Fock state inputs) Conclusions — importance for physics problems ! … new path to the ultimate proof ?
  • 4. Motivation: perfect (noiseless) channel C M = 1 2 log 1  P N  Shannon theory power P Numerous communication links modeled by a classical Gaussian additive-noise channel Infinite capacity for finite input power P ! ..... we need quantum mechanics to calculate the ultimate limits of communication ! C M =max S =1log1− log Gaussian quantum channelsQuantum theory H. P. Yuen, and M. Ozawa, PRL 1993 z y= xzx noise variance N =1 N =0 M Finite capacity for finite input energy, achieved by a thermal state of photons for identity channel map
  • 5.   M []   K  KT N M K , N real real & symmetric N≥0 det N ≥det K−12 M one-mode case Gaussian (quantum) Bosonic channels r  K r r  = coherent vector = covariance matrix Corresponds to linear CP maps s.t. Gaussian if Gaussian fully characterized by two matrices completely positive M K N “transmission” “noise”  M  M []  uncertainty principle
  • 6. K=diag  G , G N=diag G−1 ,G−1 K=diag  T , T  N=diag 1−T ,1−T  Phase-insensitive Gaussian Channels M K=diag   ,  n N =diag n ,n   n = transmission = noise variance 210−1 1 2 Purely lossy channel Ideal (quantum-limited) amplifier G≥1 T ≤1 Classical additive noise  M  Forbidden region ( our analysis is focused on phase-insensitive channels w.n.l.g. )
  • 7. Classical Capacity of Quantum Channels Ma M a Holevo bound Holevo, Schumacher, Westmoreland, 1998 {pa ,a} ∑a pa a =  Single-shot capacity {pa ,a}, M =S  M −∑a pa S M a such that C 1 M =max {pa ,a}  {pa ,a }, M  encoding Capacity CM =lim n∞ 1 n C 1 M ×n  M ×n ... in general, not additive ! (Hastings, Nature Phys. 2009)  M  a=1,...d
  • 8. with  , M ≡S M −min {pa ,a} ∑a pa SM a ∑a pa a= ≥ S M 0 we need to find pure state minimizing output entropy0 ≤ S M −SM 0 Minimum Output Entropy Ma M a {pa ,a} ∑a pa a = such thatencoding C 1 M =max  ,M  min S M ≡S  M 0 ... maximization in 2 steps a=1,...d
  • 9. ≤ max S M −S M 0 continuous encoding energy constraint Yuen and Ozawa, 1993Capacity of Gaussian Quantum Channels for fixed energy, achieved by a thermal state Gaussian minimum output entropy conjecture: 0=∣0〉 〈0∣ M M a {p(α),ρα} ∫d α p(α)ρα = ρsuch that 2 minimum output entropy state ??? encoding S M therm C 1 M =max  ,M  Holevo and Werner, 1998
  • 10. Conjectured Single-shot Capacity C 1 M =g[ n]−g[n] coherent states modulated with a Gaussian bivariate distribution do achieve the capacity (it is the optimal encoding) g[ x]=x1logx1−x logxwhere M M a {p, } ∫d  p = such that 2 encoding = transmission = noise variance  n ρα=D(α)∣0〉〈0∣D(α)+ p(α)= 1 √πν exp(−∣α∣ 2 ν )use encoding C1 M  ≤ SM therm−S M ∣0〉〈0∣ ... provided the Gaussian minimum entropy conjecture holds ! Φ0 with = mean thermal photon numberν
  • 11. min S M =S M ∣0〉〈 0∣ Gaussian Minimum Entropy Conjecture The same conjecture is made for the joint channel then, CM ≡lim n∞ 1 n C 1 M ×n =C 1 M  M ×n All papers ( > 30 ) on the topic of Gaussian bosonic channels rely on this widely admitted conjecture !!! Single exception: pure lossy channel V. Giovannetti et al., PRL, 2004 T 0=∣0〉 ∣0〉E M 0=∣0〉 C 1 M =g[ ] (environment E in vacuum state)
  • 12. Generic Decomposition of Phase-insensitive Channels A Input Output G>1  M  ∣0〉E ∣0〉E Pure loss (L) Ideal amplifier (A) =T G1 =T G=1 =T G1 T<1 lossy fiber with thermal noise classical Gaussian additive noise (non-ideal) noisy amplifier L signal idler
  • 13. Reduction of the Conjecture M M  min SM =SM ∣0〉〈0∣Conjecture I Conjecture II min S A =S A∣0〉 〈0∣ L M  =A  A =L
  • 14. Reduction to Ideal Amplifier A ∣0〉 ∣0〉 it is (necessary and) sufficient to prove the reduced conjecture II saturated if T<1 ∣0〉E ∣0〉E G>1 L S M  = S A  ≥S A∣0〉 〈0∣ assume conjecture II holds ̃σ M (σ) =A ( ̃σ) σ
  • 15. Link with Output Entanglement of a Two-Mode Squeezer ∣0〉 ∣〉 ∣〉 ∣0〉 S A∣〉 〈∣=E U r∣〉∣0〉 We are now dealing with the output entanglement of a two-mode squeezer U r entanglement entropy of a pure state G=cosh 2 r E=exp(r 2 (ab−a + b + ))U r A
  • 16. M M  min SM =SM ∣0〉〈0∣Conjecture I ∣0〉E min E∣〉AB=E∣V 〉ABConjecture II (bis) ∣〉 AB=U r∣〉A∣0〉E ∣V 〉 AB=U r∣0〉A∣0〉E ∣〉A U r signal idler compare with vacuum input : Gaussian Minimum Entanglement Conjecture
  • 17. Proof for Gaussian vs non-Gaussian states ∣0〉E E∣Gauss〉AB  ≥ E∣V 〉AB ∣〉 AB=U r∣〉A∣0〉E ∣V 〉 AB=U r∣0〉A∣0〉E ∣〉A U r 2-mode vacuum squeezed state ∣〉A=∑k ck∣k 〉 Fock states easy to prove for Gaussian states expansion of non-Gaussian states in Fock basis ... only an incomplete proof for Fock states ! actual output state signal idler
  • 18. Fock State Inputs signal ∣0〉 idler ∣k〉 ∣Ψk 〉=∑ n=0 ∞ √Pn(k) ∣n+k 〉∣n〉 Ek=H [Pnk ] Pnk= 1 cosh2k 1 r nk n tanh2n r Using Pascal identity nk1 n = nk n  nk n−1 Pnk1=1− 2 Pnk  2 Pn−1k1 =tanh r Ek11− 2 Ek 2 Ek1Concavity of entropy Ek1Ek ∀ k≥0 U r vacuum state beats all other Fock states Shannon entropy with
  • 19. E∣ k 〉 r k=0 k=1 k=2 k=3k=4Fock State Inputs E(k+1)⩾E (k) ∀k≥0 ∀r This is the tip of the iceberg of majorization theory... ∣k〉 U (r) ∣0〉
  • 20. Majorization Theory pn qn pn ,qnwith probability distributions majorizes ∑n=0 m pn  ≥ ∑n=0 m qn  ∀ m≥0 ( p is “more peaked” than q ) qn=∑m Dn, m pm Dn, m is doubly-stochastic matrix can be converted to by applying a random permutationqnpn ∑n h pn ≤ ∑n hqn ∀ hx concave function e.g. entropy: h(x)=−xlog(x) entropy can only increase = (partial) order relation for probability distributions Dn, m qn pn if and only if or or Dn, m H(pn)≤H(qn)
  • 21. Quantum case : Interconversion of pure bipartite states pn qn pn ,qn with majorizing majorizes ∣ψ〉=∑n √pn ∣en〉∣f n〉 ∣ϕ〉=∑n √qn ∣en ' 〉 ∣f n' 〉∣〉 ∣〉majorizes can be converted to by applying a deterministic LOCC∣〉∣〉 E∣〉≤E∣〉 entanglement can only decrease pn qn Dn,m LOCC probability distributions M. Nielsen, G. Vidal, 2000 Trick: ρA=trB(∣ψ〉〈ψ∣)=∑n pn ∣en〉 〈en∣ orthonormal =∑n qn ∣ζn 〉〈ζn∣ not orthonormal provided majorizespn qn eigenbasis representation
  • 22. Explicit conversion LOCC ∣ψ〉=∑n √pn ∣en〉∣f n〉 ∣〉 ∣〉majorizes LOCC ∣ψ〉=∑n √qn ∣ζn〉 ∣f n' ' 〉 above trick (provided majorizes )pn qn ∣ϕ〉=∑n √qn ∣en' 〉 ∣f n '〉 LOCC U POVM: Am=∑n ωnm ∣ζn〉〈en'∣ ∑m Am + Am=Iω=ei 2π/d with and (Am×I )∣ϕ〉 = ∑n √qn ωnm ∣ζn 〉 ∣f n' 〉 ≡∣ϕm〉 Conditional U: Bm=∑n ω−nm ∣f n ' ' 〉〈 f n '∣ (I ×Bm)∣ϕm〉 = ∑n √qn ∣ζn〉 ∣f n ' '〉 ≡∣ψ〉 depends on outcome m conditional on m
  • 23. Gaussian Majorization Conjecture ... stronger than minimum output entropy conjecture ... but perhaps easier to prove (?) ∣0〉E ∣V 〉 AB ∣〉AB ∀ ∣〉AConjecture III ∣〉 AB=U r∣〉A∣0〉E ∣V 〉 AB=U r∣0〉A∣0〉E ∣〉A U r signal idler compare with vacuum input majorizes For a given 2-mode squeezer (Bogoliubov transformation), the 2-mode vacuum squeezed state majorizes all other output states !!! E∣V 〉 AB ≤ E∣〉AB∣V 〉AB ∣Φ〉AB LOCC implying
  • 24. Majorization relations in a 2-mode squeezer r k=0 k=1 k=2k=3k=4 ⃗P (k +1) =D ⃗P (k) ∀k ∀r Dn, m=1−2 2n H n−m λ=tanh r H ≡ Heaviside step function E∣ k 〉 LOCC LOCC ( as a function of k given r )
  • 25. (ANO×1)∣Ψk+1〉 = √λ2 ∑ n=0 ∞ √pn(k+1) ∣n+k+1〉∣n+1〉 → √λ2 ∣Ψk+1 〉 ∣Ψk 〉 = ∑ n=0 ∞ √ pn (k) ∣n+k〉∣n〉Explicit LOCC ∣Ψk+1〉 = ∑ n=0 ∞ √ pn(k+1) ∣n+k+1〉∣n〉 AYES = ∑m=0 ∞ √(1−λ 2 )pm(k) pm(k+1) ∣m+k〉〈m+k+1∣ ANO = ∑m=0 ∞ √λ 2 pm−1(k+1) pm(k+1) ∣m+k〉〈m+k+1∣ Alice applies a POVM If “NO” she communicates it to Bob who applies and then they start a new round again U = ∑ m=0 ∞ ∣m〉 〈m1∣ (AYES×1)∣Ψk +1〉 = √(1−λ2 ) ∑ n=0 ∞ √pn(k) ∣n+k〉∣n〉 = √(1−λ2 ) ∣Ψk 〉 YES NO
  • 26. r k=0 k=1 k=2k=3k=4 ⃗P r' (k ) =R (k ) ⃗P r (k) ∀r'>r ∀k E∣ k 〉 LOCC Majorization relations in a 2-mode squeezer LOCC ( as a function of r given k )
  • 27. Arbitrary superposition of Fock states r 0.4∣0〉0.6∣1〉 k=0 k=1 E∣〉AB  numerical evidence ∣0〉 ∀rmajorized by
  • 29. ALTERNATE TITLE: can we prove that ... “ Nothing is less than the vacuum” ? ( less random than the vacuum state ) This is a fundamental problem ∣0〉 (even if you don't care about quantum channels !) Bogoliubov transformation is everywhere (e.g., quantum optics, supraconductivity, Hawking radiation, Unruh effect,...) … this conjecture may have implications there ! ̂ai '=∑j (uij ̂aj+vij ̂a j + )
  • 30. New approach to solve the “Minimum Output Entropy Conjecture” for Gaussian bosonic channels Reduction to ideal amplifier channel Output entanglement of a two-mode squeezer Link with majorization theory (currently, Fock states only) Numerical analysis for random input states strongly suggests that (majorization) conjecture is true... Take-home message “ Nothing is less than the vacuum ” very plausible but not (yet) proven ! See: R. Garcia-Patron, C. Navarrete-Benlloch, S. Lloyd, J. H. Shapiro & N. J. Cerf, arXiv:1111.1986 [quant-ph]