SlideShare una empresa de Scribd logo
1 de 104
FBW
06-12-2016
Wim Van Criekinge
BPC 2016 ?
BPC 2015
*** ERGRO ***
BPC 2015
*** ERGRO *** 1. Longest English word where first three
letters are identical to the last three
2. English word where longest stretch of letters
are identical at beginning and at the end
3. In Dutch ?
4. Any other language
5. Biological relevance ?
Send before 1st of december to
wim.vancriekinge@gmail.com
Longest one wins, if same size first to submit
The reason for “bioinformatics” to exist ?
• empirical finding: if two biological
sequences are sufficiently similar, almost
invariably they have similar biological
functions and will be descended from a
common ancestor.
• (i) function is encoded into sequence,
this means: the sequence provides the
syntax and
• (ii) there is a redundancy in the
encoding, many positions in the
sequence may be changed without
perceptible changes in the function, thus
the semantics of the encoding is robust.
Protein Structure
Introduction
Why ?
How do proteins fold ?
Levels of protein structure
0,1,2,3,4
X-ray / NMR
The Protein Database (PDB)
Protein Modeling
Bioinformatics & Proteomics
Weblems
• Proteins perform a variety of cellular
tasks in the living cells
• Each protein adopts a particular folding
that determines its function
• The 3D structure of a protein can bring
into close proximity residues that are far
apart in the amino acid sequence
• Catalytic site: Business End of the
molecule
Why protein structure ?
Rationale for understanding protein structure and function
Protein sequence
-large numbers of
sequences, including
whole genomes
Protein function
- rational drug design and treatment of disease
- protein and genetic engineering
- build networks to model cellular pathways
- study organismal function and evolution
?
structure determination
structure prediction
homology
rational mutagenesis
biochemical analysis
model studies
Protein structure
- three dimensional
- complicated
- mediates function
About the use of protein models (Peitch)
• Structure is preserved under evolution when
sequence is not
– Interpreting the impact of mutations/SNPs and conserved
residues on protein function. Potential link to disease
• Function ?
– Biochemical: the chemical interactions occerring in a protein
– Biological: role within the cell
– Phenotypic: the role in the organism
• Gene Ontology functional classification !
– Priorisation of residues to mutate to determine protein
function
– Providing hints for protein function:Catalytic mechanisms
of enzymes often require key residues to be close
together in 3D space
– (protein-ligand complexes, rational drug design, putative
interaction interfaces)
MIS-SENSE MUTATION
e.g. Sickle Cell Anaemia
Cause: defective haemoglobin due to mutation in β-
globin gene
Symptoms: severe anaemia and death in homozygote
Normal β-globin - 146 amino acids
val - his - leu - thr - pro - glu - glu - ---------
1 2 3 4 5 6 7
Normal gene (aa 6) Mutant gene
DNA CTC CAC
mRNA GAG GUG
Product Glu Valine
Mutant β-globin
val - his - leu - thr - pro - val - glu - ---------
Protein Conformation
• Christian Anfinsen
Studies on reversible denaturation
“Sequence specifies conformation”
• Chaperones and disulfide
interchange enzymes:
involved but not controlling final state, they
provide environment to refold if misfolded
• Structure implies function: The amino
acid sequence encodes the protein’s
structural information
• by itself:
– Anfinsen had developed what he called his
"thermodynamic hypothesis" of protein folding to explain
the native conformation of amino acid structures. He
theorized that the native or natural conformation occurs
because this particular shape is thermodynamically the
most stable in the intracellular environment. That is, it
takes this shape as a result of the constraints of the
peptide bonds as modified by the other chemical and
physical properties of the amino acids.
– To test this hypothesis, Anfinsen unfolded the RNase
enzyme under extreme chemical conditions and observed
that the enzyme's amino acid structure refolded
spontaneously back into its original form when he returned
the chemical environment to natural cellular conditions.
– "The native conformation is determined by the totality of
interatomic interactions and hence by the amino acid
sequence, in a given environment."
How does a protein fold ?
Protein Structure
Introduction
Why ?
How do proteins fold ?
Levels of protein structure
0,1,2,3,4
X-ray / NMR
The Protein Database (PDB)
Protein Modeling
Bioinformatics & Proteomics
Weblems
• Proteins are linear heteropolymers: one or more
polypeptide chains
• Below about 40 residues the term peptide is frequently
used.
• A certain number of residues is necessary to perform a
particular biochemical function, and around 40-50
residues appears to be the lower limit for a functional
domain size.
• Protein sizes range from this lower limit to several
hundred residues in multi-functional proteins.
• Three-dimentional shapes (folds) adopted vary
enormously
• Experimental methods:
– X-ray crystallography
– NMR (nuclear magnetic resonance)
– Electron microscopy
– Ab initio calculations …
The Basics
• Zeroth: amino acid composition
(proteomics, %cysteine, %glycine)
Levels of protein structure
The basic structure of an a-amino acid is quite simple. R denotes any one of the
20 possible side chains (see table below). We notice that the Ca-atom has 4
different ligands (the H is omitted in the drawing) and is thus chiral. An easy
trick to remember the correct L-form is the CORN-rule: when the Ca-atom is
viewed with the H in front, the residues read "CO-R-N" in a clockwise
direction.
Amino Acid Residues
Amino Acid Residues
Amino Acid Residues
Amino Acid Residues
Amino Acid Residues
• Primary: This is simply the order of
covalent linkages along the
polypeptide chain, I.e. the sequence
itself
Levels of protein structure
Backbone Torsion Angles
Backbone Torsion Angles
• Secondary
– Local organization of the protein backbone: alpha-
helix, Beta-strand (which assemble into Beta-
sheets) turn and interconnecting loop.
Levels of protein structure
Ramachandran / Phi-Psi Plot
The alpha-helix
• Residues with hydrophobic properties
conserved at i, i+2, i+4 separated by
unconserved or hydrophilic residues
suggest surface beta- strands.
 A short run of hydrophobic amino acids
(4 residues) suggests a buried beta-
strand.
 Pairs of conserved hydrophobic amino
acids separated by pairs of
unconserved, or hydrophilic residues
suggests an alfa-helix with one face
packing in the protein core. Likewise,
an i, i+3, i+4, i+7 pattern of conserved
hydrophobic residues.
A Practical Approach: Interpretation
Beta-sheets
Topologies of Beta-sheets
Secondary structure prediction ?
• Chou, P.Y. and Fasman, G.D. (1974).
Conformational parameters for amino acids in helical, b-
sheet, and random coil regions calculated from proteins.
Biochemistry 13, 211-221.
• Chou, P.Y. and Fasman, G.D. (1974).
Prediction of protein conformation.
Biochemistry 13, 222-245.
Secondary structure prediction:CHOU-FASMAN
•Method
•Assigning a set of prediction values to a
residue, based on statistic analysis of 15
proteins
• Applying a simple algorithm to those
numbers
Secondary structure prediction:CHOU-FASMAN
Calculation of preference parameters
observed counts
• P = Log --------------------- + 1.0
expected counts
• Preference parameter > 1.0  specific residue has a
preference for the specific secondary structure.
• Preference parameter = 1.0  specific residue does not
have a preference for, nor dislikes the specific secondary
structure.
• Preference parameter < 1.0  specific residue dislikes the
specific secondary structure.
For each of the 20 residues and each secondary structure (a-
helix, b-sheet and b-turn):
Secondary structure prediction:CHOU-FASMAN
Preference parameters
Residue P(a) P(b) P(t) f(i) f(i+1) f(i+2) f(i+3)
Ala 1.45 0.97 0.57 0.049 0.049 0.034 0.029
Arg 0.79 0.90 1.00 0.051 0.127 0.025 0.101
Asn 0.73 0.65 1.68 0.101 0.086 0.216 0.065
Asp 0.98 0.80 1.26 0.137 0.088 0.069 0.059
Cys 0.77 1.30 1.17 0.089 0.022 0.111 0.089
Gln 1.17 1.23 0.56 0.050 0.089 0.030 0.089
Glu 1.53 0.26 0.44 0.011 0.032 0.053 0.021
Gly 0.53 0.81 1.68 0.104 0.090 0.158 0.113
His 1.24 0.71 0.69 0.083 0.050 0.033 0.033
Ile 1.00 1.60 0.58 0.068 0.034 0.017 0.051
Leu 1.34 1.22 0.53 0.038 0.019 0.032 0.051
Lys 1.07 0.74 1.01 0.060 0.080 0.067 0.073
Met 1.20 1.67 0.67 0.070 0.070 0.036 0.070
Phe 1.12 1.28 0.71 0.031 0.047 0.063 0.063
Pro 0.59 0.62 1.54 0.074 0.272 0.012 0.062
Ser 0.79 0.72 1.56 0.100 0.095 0.095 0.104
Thr 0.82 1.20 1.00 0.062 0.093 0.056 0.068
Trp 1.14 1.19 1.11 0.045 0.000 0.045 0.205
Tyr 0.61 1.29 1.25 0.136 0.025 0.110 0.102
Val 1.14 1.65 0.30 0.023 0.029 0.011 0.029
Secondary structure prediction:CHOU-FASMAN
Applying algorithm
1. Assign parameters to residue.
2. Identify regions where 4 out of 6 residues have P(a)>100: a-helix. Extend
helix in both directions until four contiguous residues have an average
P(a)<100: end of a-helix. If segment is longer than 5 residues and P(a)>P(b):
a-helix.
3. Repeat this procedure to locate all of the helical regions.
4. Identify regions where 3 out of 5 residues have P(b)>100: b-sheet. Extend
sheet in both directions until four contiguous residues have an average
P(b)<100: end of b-sheet. If P(b)>105 and P(b)>P(a): a-helix.
5. Rest: P(a)>P(b)  a-helix. P(b)>P(a)  b-sheet.
6. To identify a bend at residue number i, calculate the following value:
p(t) = f(i)f(i+1)f(i+2)f(i+3)
If: (1) p(t) > 0.000075; (2) average P(t)>1.00 in the tetrapeptide; and (3)
averages for tetrapeptide obey P(a)<P(t)>P(b): b-turn.
Secondary structure prediction:CHOU-FASMAN
Successful method?
19 proteins evaluated:
• Successful in locating 88% of helical and 95% of
b regions
• Correctly predicting 80% of helical and 86% of b-
sheet residues
• Accuracy of predicting the three conformational
states for all residues, helix, b, and coil, is 77%
Chou & Fasman:successful method
After 1974:improvement of preference parameters
Secondary structure prediction:CHOU-FASMAN
Sander-Schneider: Evolution of overall structure
• Naturally occurring sequences with more than
20% sequence identity over 80 or more
residues always adopt the same basic
structure (Sander and Schneider 1991)
Sander-Schneider
• HSSP: homology derived secondary structure
• SCOP:
– Structural Classification of
Proteins
• FSSP:
– Family of Structurally Similar
Proteins
• CATH:
– Class, Architecture, Topology,
Homology
Structural Family Databases
Levels of protein structure
• Tertiary
– Packing of secondary structure
elements into a compact spatial unit
– Fold or domain – this is the level to
which structure is currently possible
Domains
Protein Architecture
• Protein Dissection into domain
• Conserved Domain Architecture
Retrieval Tool (CDART) uses
information in Pfam and SMART to
assign domains along a sequence
• (automatic when blasting)
Domains
• From the analysis of alignment of protein
families
• Conserved sequence features, usually
associate with a specific function
• PROSITE database for protein
“signature” protein (large amount of FP &
FN)
• From aligment of homologous sequences
(PRINTS/PRODOM)
• From Hidden Markov Models (PFAM)
• Meta approach: INTERPRO
Domains
Protein Architecture
Levels of protein structure: Topology
Hydrophobicity Plot
P53_HUMAN (P04637) human cellular tumor antigen p53
Kyte-Doolittle hydrophilicty, window=19
The ‘positive inside’ rule
(EMBO J. 5:3021; EJB 174:671,205:1207; FEBS lett. 282:41)
Bacterial IM
In: 16% KR out: 4% KR
Eukaryotic PM
In: 17% KR out: 7% KR
Thylakoid membrane
In: 13% KR out: 5% KR
Mitochondrial IM
In: 10% KR out: 3% KR
• Membrane-bound receptors
• A very large number of different domains both to
bind their ligand and to activate G proteins.
• 6 different families
• Transducing messages as photons, organic odorants,
nucleotides, nucleosides, peptides, lipids and proteins.
GPCR Topology
• Pharmaceutically the most important class
• Challenge: Methods to find novel GCPRs in human genome
…
GPCR Topology
• Seven transmembrane regions
GPCR Structure
• Conserved residues and motifs (i.e. NPXXY)
• Hydrophobic/ hydrophilic domains
GPCR Topology
GPCR Topology
Eg. Plot conserverd residues (or multiple alignement: MSA to SSA)
Levels of protein structure
• Difficult to predict
• Functional units: Apoptosome,
proteasome
Protein Structure
Introduction
Why ?
How do proteins fold ?
Levels of protein structure
0,1,2,3,4
X-ray / NMR
The Protein Database (PDB)
Protein Modeling
Bioinformatics & Proteomics
Weblems
• X-ray crystallography is an experimental
technique that exploits the fact that X-rays are
diffracted by crystals.
• X-rays have the proper wavelength (in the
Ångström range, ~10-8 cm) to be scattered by
the electron cloud of an atom of comparable
size.
• Based on the diffraction pattern obtained from
X-ray scattering off the periodic assembly of
molecules or atoms in the crystal, the electron
density can be reconstructed.
• A model is then progressively built into the
experimental electron density, refined against
the data and the result is a quite accurate
molecular structure.
What is X-ray Crystallography
• NMR uses protein in solution
– Can look at the dynamic properties of the protein structure
– Can look at the interactions between the protein and ligands,
substrates or other proteins
– Can look at protein folding
– Sample is not damaged in any way
– The maximum size of a protein for NMR structure determination is ~30
kDa.This elliminates ~50% of all proteins
– High solubility is a requirement
• X-ray crystallography uses protein crystals
– No size limit: As long as you can crystallise it
– Solubility requirement is less stringent
– Simple definition of resolution
– Direct calculation from data to electron density and back again
– Crystallisation is the process bottleneck, Binary (all or nothing)
– Phase problem Relies on heavy atom soaks or SeMet incorporation
• Both techniques require large amounts of pure protein and require
expensive equipment!
NMR or Crystallography ?
Protein Structure
Introduction
Why ?
How do proteins fold ?
Levels of protein structure
0,1,2,3,4
X-ray / NMR
The Protein Database (PDB)
Protein Modeling
Bioinformatics & Proteomics
Weblems
PDB
PDB
PDB
PDB
Visualizing Structures
Cn3D versie 4.0 (NCBI)
Ball: Van der Waals radius
Stick: length joins center
N, blue/O, red/S, yellow/C, gray (green)
Visualizing Structures
From N to C
Visualizing Structures
• Demonstration of Protein explorer
• PDB, install Chime
• Search helicase (select structure where
DNA is present)
• Stop spinning, hide water molecules
• Show basic residues, interact with
negatively charged backbone
• RASMOL / Cn3D
Visualizing Structures
Protein Structure
Introduction
Why ?
How do proteins fold ?
Levels of protein structure
0,1,2,3,4
X-ray / NMR
The Protein Database (PDB)
Protein Modeling
Bioinformatics & Proteomics
Weblems
Modeling
Protein Stucture
Molecular Modeling:
building a 3D protein structure
from its sequence
• Finding a structural homologue
• Blast
–versus PDB database or PSI-
blast (E<0.005)
–Domain coverage at least 60%
• Avoid Gaps
–Choose for few gaps and
reasonable similarity scores
instead of lots of gaps and high
similarity scores
Modeling
• Extract “template” sequences and align with query
• Whatch out for missing data (PDB file) and complement with additonal
templates
• Try to get as much information as possible, X/NMR
• Sequence alignment from structure comparson of templates (SSA) can be
different from a simple sequence aligment
• >40% identity, any aligment method is OK
• <40%, checks are essential
– Residue conservation checks in functional regions (patterns/motifs)
– Indels: combine gaps separted by few resides
– Manual editing: Move gaps from secondary elements to loops
– Within loops, move gaps to loop ends, i.e. turnaround point of backbone
• Align templates structurally, extract the corresponding SSA or QTA
(Query/template alignment)
Modeling
Input for model building
• Query sequence (the one you want the 3D
model for)
• Template sequences and structures
• Query/Template(s) (structure) sequence
aligment
Modeling
• Methods (details on these see paper):
– WHATIF,
– SWISS-MODEL,
– MODELLER,
– ICM,
– 3D-JIGSAW,
– CPH-models,
– SDC1
Modeling
• Model evaluation (How good is the prediction,
how much can the algorithm rely/extract on
the provided templates)
– PROCHECK
– WHATIF
– ERRAT
• CASP (Critical Assessment of Structure
Prediction)
– Beste method is manual alignment editing !
Modeling
CASP4: overall model accuracy ranging from 1 Å to 6 Å for 50-10% sequence identity
**T112/dhso – 4.9 Å (348 residues; 24%) **T92/yeco – 5.6 Å (104 residues; 12%)
**T128/sodm – 1.0 Å (198 residues; 50%)
**T125/sp18 – 4.4 Å (137 residues; 24%)
**T111/eno – 1.7 Å (430 residues; 51%) **T122/trpa – 2.9 Å (241 residues; 33%)
Comparative modelling at CASP
CASP2
fair
~ 75%
~ 1.0 Å
~ 3.0 Å
CASP3
fair
~75%
~ 1.0 Å
~ 2.5 Å
CASP4
fair
~75%
~ 1.0 Å
~ 2.0 Å
CASP1
poor
~ 50%
~ 3.0 Å
> 5.0 Å
BC
excellent
~ 80%
1.0 Å
2.0 Å
alignment
side chain
short loops
longer loops
Protein Engineering / Protein Design

Más contenido relacionado

La actualidad más candente

ASBMB Poster_16April2014_Draft5
ASBMB Poster_16April2014_Draft5ASBMB Poster_16April2014_Draft5
ASBMB Poster_16April2014_Draft5Kaitlin Hart
 
Special Stain.pptx
Special Stain.pptxSpecial Stain.pptx
Special Stain.pptxVnesh Raj
 
Session 1 part 2
Session 1 part 2Session 1 part 2
Session 1 part 2plmiami
 
Causal reasoning using the Relation Ontology
Causal reasoning using the Relation OntologyCausal reasoning using the Relation Ontology
Causal reasoning using the Relation OntologyChris Mungall
 
IRSAE aquatic ecology 28 June 2018 metabolomics
IRSAE aquatic ecology 28 June 2018 metabolomicsIRSAE aquatic ecology 28 June 2018 metabolomics
IRSAE aquatic ecology 28 June 2018 metabolomicsPanagiotis Arapitsas
 
ChEMBL US tour December 2014
ChEMBL US tour December 2014ChEMBL US tour December 2014
ChEMBL US tour December 2014John Overington
 

La actualidad más candente (7)

ASBMB Poster_16April2014_Draft5
ASBMB Poster_16April2014_Draft5ASBMB Poster_16April2014_Draft5
ASBMB Poster_16April2014_Draft5
 
Special Stain.pptx
Special Stain.pptxSpecial Stain.pptx
Special Stain.pptx
 
Session 1 part 2
Session 1 part 2Session 1 part 2
Session 1 part 2
 
Causal reasoning using the Relation Ontology
Causal reasoning using the Relation OntologyCausal reasoning using the Relation Ontology
Causal reasoning using the Relation Ontology
 
IRSAE aquatic ecology 28 June 2018 metabolomics
IRSAE aquatic ecology 28 June 2018 metabolomicsIRSAE aquatic ecology 28 June 2018 metabolomics
IRSAE aquatic ecology 28 June 2018 metabolomics
 
ChEMBL US tour December 2014
ChEMBL US tour December 2014ChEMBL US tour December 2014
ChEMBL US tour December 2014
 
ASMS_2011
ASMS_2011ASMS_2011
ASMS_2011
 

Destacado

2016 bioinformatics i_io_wim_vancriekinge
2016 bioinformatics i_io_wim_vancriekinge2016 bioinformatics i_io_wim_vancriekinge
2016 bioinformatics i_io_wim_vancriekingeProf. Wim Van Criekinge
 
2016 bioinformatics i_phylogenetics_wim_vancriekinge
2016 bioinformatics i_phylogenetics_wim_vancriekinge2016 bioinformatics i_phylogenetics_wim_vancriekinge
2016 bioinformatics i_phylogenetics_wim_vancriekingeProf. Wim Van Criekinge
 
2016 bioinformatics i_bio_python_ii_wimvancriekinge
2016 bioinformatics i_bio_python_ii_wimvancriekinge2016 bioinformatics i_bio_python_ii_wimvancriekinge
2016 bioinformatics i_bio_python_ii_wimvancriekingeProf. Wim Van Criekinge
 
2016 bioinformatics i_bio_cheminformatics_wimvancriekinge
2016 bioinformatics i_bio_cheminformatics_wimvancriekinge2016 bioinformatics i_bio_cheminformatics_wimvancriekinge
2016 bioinformatics i_bio_cheminformatics_wimvancriekingeProf. Wim Van Criekinge
 
2016 bioinformatics i_bio_python_wimvancriekinge
2016 bioinformatics i_bio_python_wimvancriekinge2016 bioinformatics i_bio_python_wimvancriekinge
2016 bioinformatics i_bio_python_wimvancriekingeProf. Wim Van Criekinge
 
2016 bioinformatics i_database_searching_wimvancriekinge
2016 bioinformatics i_database_searching_wimvancriekinge2016 bioinformatics i_database_searching_wimvancriekinge
2016 bioinformatics i_database_searching_wimvancriekingeProf. Wim Van Criekinge
 
2016 bioinformatics i_python_part_2_strings_wim_vancriekinge
2016 bioinformatics i_python_part_2_strings_wim_vancriekinge2016 bioinformatics i_python_part_2_strings_wim_vancriekinge
2016 bioinformatics i_python_part_2_strings_wim_vancriekingeProf. Wim Van Criekinge
 
2016 bioinformatics i_alignments_wim_vancriekinge
2016 bioinformatics i_alignments_wim_vancriekinge2016 bioinformatics i_alignments_wim_vancriekinge
2016 bioinformatics i_alignments_wim_vancriekingeProf. Wim Van Criekinge
 
2016 bioinformatics i_python_part_1_wim_vancriekinge
2016 bioinformatics i_python_part_1_wim_vancriekinge2016 bioinformatics i_python_part_1_wim_vancriekinge
2016 bioinformatics i_python_part_1_wim_vancriekingeProf. Wim Van Criekinge
 
2016 bioinformatics i_python_part_3_io_and_strings_wim_vancriekinge
2016 bioinformatics i_python_part_3_io_and_strings_wim_vancriekinge2016 bioinformatics i_python_part_3_io_and_strings_wim_vancriekinge
2016 bioinformatics i_python_part_3_io_and_strings_wim_vancriekingeProf. Wim Van Criekinge
 
2016 bioinformatics i_databases_wim_vancriekinge
2016 bioinformatics i_databases_wim_vancriekinge2016 bioinformatics i_databases_wim_vancriekinge
2016 bioinformatics i_databases_wim_vancriekingeProf. Wim Van Criekinge
 
2016 bioinformatics i_score_matrices_wim_vancriekinge
2016 bioinformatics i_score_matrices_wim_vancriekinge2016 bioinformatics i_score_matrices_wim_vancriekinge
2016 bioinformatics i_score_matrices_wim_vancriekingeProf. Wim Van Criekinge
 
Introducing SMCR from an HR perspective
Introducing SMCR from an HR perspectiveIntroducing SMCR from an HR perspective
Introducing SMCR from an HR perspectiveHeath Buck
 
2016 bioinformatics i_wim_vancriekinge_vupload
2016 bioinformatics i_wim_vancriekinge_vupload2016 bioinformatics i_wim_vancriekinge_vupload
2016 bioinformatics i_wim_vancriekinge_vuploadProf. Wim Van Criekinge
 
نمونه آثار آقای علی عابدینی
نمونه آثار آقای علی عابدینینمونه آثار آقای علی عابدینی
نمونه آثار آقای علی عابدینیleila Abedi
 
بازدید از شهرک علمی تحقیقاتی
بازدید از شهرک علمی تحقیقاتیبازدید از شهرک علمی تحقیقاتی
بازدید از شهرک علمی تحقیقاتیleila Abedi
 
Beyond the Gig Economy
Beyond the Gig EconomyBeyond the Gig Economy
Beyond the Gig EconomyJon Lieber
 

Destacado (20)

2016 bioinformatics i_io_wim_vancriekinge
2016 bioinformatics i_io_wim_vancriekinge2016 bioinformatics i_io_wim_vancriekinge
2016 bioinformatics i_io_wim_vancriekinge
 
2016 bioinformatics i_phylogenetics_wim_vancriekinge
2016 bioinformatics i_phylogenetics_wim_vancriekinge2016 bioinformatics i_phylogenetics_wim_vancriekinge
2016 bioinformatics i_phylogenetics_wim_vancriekinge
 
2016 bioinformatics i_bio_python_ii_wimvancriekinge
2016 bioinformatics i_bio_python_ii_wimvancriekinge2016 bioinformatics i_bio_python_ii_wimvancriekinge
2016 bioinformatics i_bio_python_ii_wimvancriekinge
 
2016 bioinformatics i_bio_cheminformatics_wimvancriekinge
2016 bioinformatics i_bio_cheminformatics_wimvancriekinge2016 bioinformatics i_bio_cheminformatics_wimvancriekinge
2016 bioinformatics i_bio_cheminformatics_wimvancriekinge
 
2016 bioinformatics i_bio_python_wimvancriekinge
2016 bioinformatics i_bio_python_wimvancriekinge2016 bioinformatics i_bio_python_wimvancriekinge
2016 bioinformatics i_bio_python_wimvancriekinge
 
2017 biological databases_part1_vupload
2017 biological databases_part1_vupload2017 biological databases_part1_vupload
2017 biological databases_part1_vupload
 
2017 biological databasespart2
2017 biological databasespart22017 biological databasespart2
2017 biological databasespart2
 
Mysql introduction
Mysql introduction Mysql introduction
Mysql introduction
 
2016 bioinformatics i_database_searching_wimvancriekinge
2016 bioinformatics i_database_searching_wimvancriekinge2016 bioinformatics i_database_searching_wimvancriekinge
2016 bioinformatics i_database_searching_wimvancriekinge
 
2016 bioinformatics i_python_part_2_strings_wim_vancriekinge
2016 bioinformatics i_python_part_2_strings_wim_vancriekinge2016 bioinformatics i_python_part_2_strings_wim_vancriekinge
2016 bioinformatics i_python_part_2_strings_wim_vancriekinge
 
2016 bioinformatics i_alignments_wim_vancriekinge
2016 bioinformatics i_alignments_wim_vancriekinge2016 bioinformatics i_alignments_wim_vancriekinge
2016 bioinformatics i_alignments_wim_vancriekinge
 
2016 bioinformatics i_python_part_1_wim_vancriekinge
2016 bioinformatics i_python_part_1_wim_vancriekinge2016 bioinformatics i_python_part_1_wim_vancriekinge
2016 bioinformatics i_python_part_1_wim_vancriekinge
 
2016 bioinformatics i_python_part_3_io_and_strings_wim_vancriekinge
2016 bioinformatics i_python_part_3_io_and_strings_wim_vancriekinge2016 bioinformatics i_python_part_3_io_and_strings_wim_vancriekinge
2016 bioinformatics i_python_part_3_io_and_strings_wim_vancriekinge
 
2016 bioinformatics i_databases_wim_vancriekinge
2016 bioinformatics i_databases_wim_vancriekinge2016 bioinformatics i_databases_wim_vancriekinge
2016 bioinformatics i_databases_wim_vancriekinge
 
2016 bioinformatics i_score_matrices_wim_vancriekinge
2016 bioinformatics i_score_matrices_wim_vancriekinge2016 bioinformatics i_score_matrices_wim_vancriekinge
2016 bioinformatics i_score_matrices_wim_vancriekinge
 
Introducing SMCR from an HR perspective
Introducing SMCR from an HR perspectiveIntroducing SMCR from an HR perspective
Introducing SMCR from an HR perspective
 
2016 bioinformatics i_wim_vancriekinge_vupload
2016 bioinformatics i_wim_vancriekinge_vupload2016 bioinformatics i_wim_vancriekinge_vupload
2016 bioinformatics i_wim_vancriekinge_vupload
 
نمونه آثار آقای علی عابدینی
نمونه آثار آقای علی عابدینینمونه آثار آقای علی عابدینی
نمونه آثار آقای علی عابدینی
 
بازدید از شهرک علمی تحقیقاتی
بازدید از شهرک علمی تحقیقاتیبازدید از شهرک علمی تحقیقاتی
بازدید از شهرک علمی تحقیقاتی
 
Beyond the Gig Economy
Beyond the Gig EconomyBeyond the Gig Economy
Beyond the Gig Economy
 

Similar a 2016 bioinformatics i_proteins_wim_vancriekinge

Bioinformatics t7-protein structure-v2013_wim_vancriekinge
Bioinformatics t7-protein structure-v2013_wim_vancriekingeBioinformatics t7-protein structure-v2013_wim_vancriekinge
Bioinformatics t7-protein structure-v2013_wim_vancriekingeProf. Wim Van Criekinge
 
Computational Prediction Of Protein-1.pptx
Computational Prediction Of Protein-1.pptxComputational Prediction Of Protein-1.pptx
Computational Prediction Of Protein-1.pptxashharnomani
 
Cross Product Extensions to the Gene Ontology
Cross Product Extensions to the Gene OntologyCross Product Extensions to the Gene Ontology
Cross Product Extensions to the Gene OntologyChris Mungall
 
lehninger(sixth edition) Ch 03: Amino acids, peptides and proteins
lehninger(sixth edition) Ch 03: Amino acids, peptides and proteinslehninger(sixth edition) Ch 03: Amino acids, peptides and proteins
lehninger(sixth edition) Ch 03: Amino acids, peptides and proteinskrupal parmar
 
Structure, functions and folding problems of protein
Structure, functions and folding problems of proteinStructure, functions and folding problems of protein
Structure, functions and folding problems of proteinRawat DA Greatt
 
PomBase conventions for improving annotation depth, breadth, consistency and ...
PomBase conventions for improving annotation depth, breadth, consistency and ...PomBase conventions for improving annotation depth, breadth, consistency and ...
PomBase conventions for improving annotation depth, breadth, consistency and ...Valerie Wood
 
Protein Structural predection
Protein Structural predectionProtein Structural predection
Protein Structural predectionSantu Chall
 
Proteomics a search tool for vaccines
Proteomics a search tool for vaccinesProteomics a search tool for vaccines
Proteomics a search tool for vaccinesLawrence Okoror
 
Biomolecules: Peptides and Proteins
Biomolecules: Peptides and ProteinsBiomolecules: Peptides and Proteins
Biomolecules: Peptides and ProteinsHamid Ur-Rahman
 
Protein Chromatography
Protein ChromatographyProtein Chromatography
Protein ChromatographyNicole Gomez
 

Similar a 2016 bioinformatics i_proteins_wim_vancriekinge (20)

Bioinformatics t7-protein structure-v2013_wim_vancriekinge
Bioinformatics t7-protein structure-v2013_wim_vancriekingeBioinformatics t7-protein structure-v2013_wim_vancriekinge
Bioinformatics t7-protein structure-v2013_wim_vancriekinge
 
Bioinformatica 01-12-2011-t7-protein
Bioinformatica 01-12-2011-t7-proteinBioinformatica 01-12-2011-t7-protein
Bioinformatica 01-12-2011-t7-protein
 
Bioinformatica t7-protein structure
Bioinformatica t7-protein structureBioinformatica t7-protein structure
Bioinformatica t7-protein structure
 
Proteins
ProteinsProteins
Proteins
 
Computational Prediction Of Protein-1.pptx
Computational Prediction Of Protein-1.pptxComputational Prediction Of Protein-1.pptx
Computational Prediction Of Protein-1.pptx
 
P7 2017 biopython3
P7 2017 biopython3P7 2017 biopython3
P7 2017 biopython3
 
Cross Product Extensions to the Gene Ontology
Cross Product Extensions to the Gene OntologyCross Product Extensions to the Gene Ontology
Cross Product Extensions to the Gene Ontology
 
lehninger(sixth edition) Ch 03: Amino acids, peptides and proteins
lehninger(sixth edition) Ch 03: Amino acids, peptides and proteinslehninger(sixth edition) Ch 03: Amino acids, peptides and proteins
lehninger(sixth edition) Ch 03: Amino acids, peptides and proteins
 
Structure, functions and folding problems of protein
Structure, functions and folding problems of proteinStructure, functions and folding problems of protein
Structure, functions and folding problems of protein
 
Lecture 14 2013.ppt
Lecture 14 2013.pptLecture 14 2013.ppt
Lecture 14 2013.ppt
 
PomBase conventions for improving annotation depth, breadth, consistency and ...
PomBase conventions for improving annotation depth, breadth, consistency and ...PomBase conventions for improving annotation depth, breadth, consistency and ...
PomBase conventions for improving annotation depth, breadth, consistency and ...
 
08_Annotation_2022.pdf
08_Annotation_2022.pdf08_Annotation_2022.pdf
08_Annotation_2022.pdf
 
Protein Structural predection
Protein Structural predectionProtein Structural predection
Protein Structural predection
 
Proteomics a search tool for vaccines
Proteomics a search tool for vaccinesProteomics a search tool for vaccines
Proteomics a search tool for vaccines
 
Cs273 structure prediction
Cs273 structure predictionCs273 structure prediction
Cs273 structure prediction
 
Biomolecules: Peptides and Proteins
Biomolecules: Peptides and ProteinsBiomolecules: Peptides and Proteins
Biomolecules: Peptides and Proteins
 
P7 2018 biopython3
P7 2018 biopython3P7 2018 biopython3
P7 2018 biopython3
 
Protein Chromatography
Protein ChromatographyProtein Chromatography
Protein Chromatography
 
Protein structure
Protein structureProtein structure
Protein structure
 
Proteins
ProteinsProteins
Proteins
 

Más de Prof. Wim Van Criekinge

2019 03 05_biological_databases_part5_v_upload
2019 03 05_biological_databases_part5_v_upload2019 03 05_biological_databases_part5_v_upload
2019 03 05_biological_databases_part5_v_uploadProf. Wim Van Criekinge
 
2019 03 05_biological_databases_part4_v_upload
2019 03 05_biological_databases_part4_v_upload2019 03 05_biological_databases_part4_v_upload
2019 03 05_biological_databases_part4_v_uploadProf. Wim Van Criekinge
 
2019 03 05_biological_databases_part3_v_upload
2019 03 05_biological_databases_part3_v_upload2019 03 05_biological_databases_part3_v_upload
2019 03 05_biological_databases_part3_v_uploadProf. Wim Van Criekinge
 
2019 02 21_biological_databases_part2_v_upload
2019 02 21_biological_databases_part2_v_upload2019 02 21_biological_databases_part2_v_upload
2019 02 21_biological_databases_part2_v_uploadProf. Wim Van Criekinge
 
2019 02 12_biological_databases_part1_v_upload
2019 02 12_biological_databases_part1_v_upload2019 02 12_biological_databases_part1_v_upload
2019 02 12_biological_databases_part1_v_uploadProf. Wim Van Criekinge
 
Bio ontologies and semantic technologies[2]
Bio ontologies and semantic technologies[2]Bio ontologies and semantic technologies[2]
Bio ontologies and semantic technologies[2]Prof. Wim Van Criekinge
 
2018 03 27_biological_databases_part4_v_upload
2018 03 27_biological_databases_part4_v_upload2018 03 27_biological_databases_part4_v_upload
2018 03 27_biological_databases_part4_v_uploadProf. Wim Van Criekinge
 
2018 02 20_biological_databases_part2_v_upload
2018 02 20_biological_databases_part2_v_upload2018 02 20_biological_databases_part2_v_upload
2018 02 20_biological_databases_part2_v_uploadProf. Wim Van Criekinge
 
2018 02 20_biological_databases_part1_v_upload
2018 02 20_biological_databases_part1_v_upload2018 02 20_biological_databases_part1_v_upload
2018 02 20_biological_databases_part1_v_uploadProf. Wim Van Criekinge
 

Más de Prof. Wim Van Criekinge (20)

2020 02 11_biological_databases_part1
2020 02 11_biological_databases_part12020 02 11_biological_databases_part1
2020 02 11_biological_databases_part1
 
2019 03 05_biological_databases_part5_v_upload
2019 03 05_biological_databases_part5_v_upload2019 03 05_biological_databases_part5_v_upload
2019 03 05_biological_databases_part5_v_upload
 
2019 03 05_biological_databases_part4_v_upload
2019 03 05_biological_databases_part4_v_upload2019 03 05_biological_databases_part4_v_upload
2019 03 05_biological_databases_part4_v_upload
 
2019 03 05_biological_databases_part3_v_upload
2019 03 05_biological_databases_part3_v_upload2019 03 05_biological_databases_part3_v_upload
2019 03 05_biological_databases_part3_v_upload
 
2019 02 21_biological_databases_part2_v_upload
2019 02 21_biological_databases_part2_v_upload2019 02 21_biological_databases_part2_v_upload
2019 02 21_biological_databases_part2_v_upload
 
2019 02 12_biological_databases_part1_v_upload
2019 02 12_biological_databases_part1_v_upload2019 02 12_biological_databases_part1_v_upload
2019 02 12_biological_databases_part1_v_upload
 
P6 2018 biopython2b
P6 2018 biopython2bP6 2018 biopython2b
P6 2018 biopython2b
 
P4 2018 io_functions
P4 2018 io_functionsP4 2018 io_functions
P4 2018 io_functions
 
P3 2018 python_regexes
P3 2018 python_regexesP3 2018 python_regexes
P3 2018 python_regexes
 
T1 2018 bioinformatics
T1 2018 bioinformaticsT1 2018 bioinformatics
T1 2018 bioinformatics
 
P1 2018 python
P1 2018 pythonP1 2018 python
P1 2018 python
 
Bio ontologies and semantic technologies[2]
Bio ontologies and semantic technologies[2]Bio ontologies and semantic technologies[2]
Bio ontologies and semantic technologies[2]
 
2018 05 08_biological_databases_no_sql
2018 05 08_biological_databases_no_sql2018 05 08_biological_databases_no_sql
2018 05 08_biological_databases_no_sql
 
2018 03 27_biological_databases_part4_v_upload
2018 03 27_biological_databases_part4_v_upload2018 03 27_biological_databases_part4_v_upload
2018 03 27_biological_databases_part4_v_upload
 
2018 03 20_biological_databases_part3
2018 03 20_biological_databases_part32018 03 20_biological_databases_part3
2018 03 20_biological_databases_part3
 
2018 02 20_biological_databases_part2_v_upload
2018 02 20_biological_databases_part2_v_upload2018 02 20_biological_databases_part2_v_upload
2018 02 20_biological_databases_part2_v_upload
 
2018 02 20_biological_databases_part1_v_upload
2018 02 20_biological_databases_part1_v_upload2018 02 20_biological_databases_part1_v_upload
2018 02 20_biological_databases_part1_v_upload
 
P6 2017 biopython2
P6 2017 biopython2P6 2017 biopython2
P6 2017 biopython2
 
Van criekinge 2017_11_13_rodebiotech
Van criekinge 2017_11_13_rodebiotechVan criekinge 2017_11_13_rodebiotech
Van criekinge 2017_11_13_rodebiotech
 
P4 2017 io
P4 2017 ioP4 2017 io
P4 2017 io
 

Último

APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAssociation for Project Management
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformChameera Dedduwage
 
URLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppURLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppCeline George
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdfssuser54595a
 
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991RKavithamani
 
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting DataJhengPantaleon
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxSayali Powar
 
Separation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesSeparation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesFatimaKhan178732
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdfSoniaTolstoy
 
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxContemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxRoyAbrique
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...Marc Dusseiller Dusjagr
 
Micromeritics - Fundamental and Derived Properties of Powders
Micromeritics - Fundamental and Derived Properties of PowdersMicromeritics - Fundamental and Derived Properties of Powders
Micromeritics - Fundamental and Derived Properties of PowdersChitralekhaTherkar
 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxmanuelaromero2013
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxiammrhaywood
 
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Celine George
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfchloefrazer622
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxpboyjonauth
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionSafetyChain Software
 

Último (20)

APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across Sectors
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy Reform
 
Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
 
URLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppURLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website App
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
 
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
 
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
 
Separation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesSeparation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and Actinides
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
 
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxContemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
 
Micromeritics - Fundamental and Derived Properties of Powders
Micromeritics - Fundamental and Derived Properties of PowdersMicromeritics - Fundamental and Derived Properties of Powders
Micromeritics - Fundamental and Derived Properties of Powders
 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptx
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
 
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdf
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptx
 
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory Inspection
 

2016 bioinformatics i_proteins_wim_vancriekinge

  • 1.
  • 4.
  • 6. BPC 2015 *** ERGRO *** 1. Longest English word where first three letters are identical to the last three 2. English word where longest stretch of letters are identical at beginning and at the end 3. In Dutch ? 4. Any other language 5. Biological relevance ? Send before 1st of december to wim.vancriekinge@gmail.com Longest one wins, if same size first to submit
  • 7.
  • 8.
  • 9.
  • 10.
  • 11.
  • 12.
  • 13.
  • 14.
  • 15.
  • 16.
  • 17.
  • 18.
  • 19.
  • 20.
  • 21.
  • 22.
  • 23.
  • 24.
  • 25.
  • 26.
  • 27.
  • 28. The reason for “bioinformatics” to exist ? • empirical finding: if two biological sequences are sufficiently similar, almost invariably they have similar biological functions and will be descended from a common ancestor. • (i) function is encoded into sequence, this means: the sequence provides the syntax and • (ii) there is a redundancy in the encoding, many positions in the sequence may be changed without perceptible changes in the function, thus the semantics of the encoding is robust.
  • 29. Protein Structure Introduction Why ? How do proteins fold ? Levels of protein structure 0,1,2,3,4 X-ray / NMR The Protein Database (PDB) Protein Modeling Bioinformatics & Proteomics Weblems
  • 30. • Proteins perform a variety of cellular tasks in the living cells • Each protein adopts a particular folding that determines its function • The 3D structure of a protein can bring into close proximity residues that are far apart in the amino acid sequence • Catalytic site: Business End of the molecule Why protein structure ?
  • 31. Rationale for understanding protein structure and function Protein sequence -large numbers of sequences, including whole genomes Protein function - rational drug design and treatment of disease - protein and genetic engineering - build networks to model cellular pathways - study organismal function and evolution ? structure determination structure prediction homology rational mutagenesis biochemical analysis model studies Protein structure - three dimensional - complicated - mediates function
  • 32. About the use of protein models (Peitch) • Structure is preserved under evolution when sequence is not – Interpreting the impact of mutations/SNPs and conserved residues on protein function. Potential link to disease • Function ? – Biochemical: the chemical interactions occerring in a protein – Biological: role within the cell – Phenotypic: the role in the organism • Gene Ontology functional classification ! – Priorisation of residues to mutate to determine protein function – Providing hints for protein function:Catalytic mechanisms of enzymes often require key residues to be close together in 3D space – (protein-ligand complexes, rational drug design, putative interaction interfaces)
  • 33. MIS-SENSE MUTATION e.g. Sickle Cell Anaemia Cause: defective haemoglobin due to mutation in β- globin gene Symptoms: severe anaemia and death in homozygote
  • 34. Normal β-globin - 146 amino acids val - his - leu - thr - pro - glu - glu - --------- 1 2 3 4 5 6 7 Normal gene (aa 6) Mutant gene DNA CTC CAC mRNA GAG GUG Product Glu Valine Mutant β-globin val - his - leu - thr - pro - val - glu - ---------
  • 35. Protein Conformation • Christian Anfinsen Studies on reversible denaturation “Sequence specifies conformation” • Chaperones and disulfide interchange enzymes: involved but not controlling final state, they provide environment to refold if misfolded • Structure implies function: The amino acid sequence encodes the protein’s structural information
  • 36. • by itself: – Anfinsen had developed what he called his "thermodynamic hypothesis" of protein folding to explain the native conformation of amino acid structures. He theorized that the native or natural conformation occurs because this particular shape is thermodynamically the most stable in the intracellular environment. That is, it takes this shape as a result of the constraints of the peptide bonds as modified by the other chemical and physical properties of the amino acids. – To test this hypothesis, Anfinsen unfolded the RNase enzyme under extreme chemical conditions and observed that the enzyme's amino acid structure refolded spontaneously back into its original form when he returned the chemical environment to natural cellular conditions. – "The native conformation is determined by the totality of interatomic interactions and hence by the amino acid sequence, in a given environment." How does a protein fold ?
  • 37. Protein Structure Introduction Why ? How do proteins fold ? Levels of protein structure 0,1,2,3,4 X-ray / NMR The Protein Database (PDB) Protein Modeling Bioinformatics & Proteomics Weblems
  • 38. • Proteins are linear heteropolymers: one or more polypeptide chains • Below about 40 residues the term peptide is frequently used. • A certain number of residues is necessary to perform a particular biochemical function, and around 40-50 residues appears to be the lower limit for a functional domain size. • Protein sizes range from this lower limit to several hundred residues in multi-functional proteins. • Three-dimentional shapes (folds) adopted vary enormously • Experimental methods: – X-ray crystallography – NMR (nuclear magnetic resonance) – Electron microscopy – Ab initio calculations … The Basics
  • 39. • Zeroth: amino acid composition (proteomics, %cysteine, %glycine) Levels of protein structure
  • 40. The basic structure of an a-amino acid is quite simple. R denotes any one of the 20 possible side chains (see table below). We notice that the Ca-atom has 4 different ligands (the H is omitted in the drawing) and is thus chiral. An easy trick to remember the correct L-form is the CORN-rule: when the Ca-atom is viewed with the H in front, the residues read "CO-R-N" in a clockwise direction. Amino Acid Residues
  • 41.
  • 46. • Primary: This is simply the order of covalent linkages along the polypeptide chain, I.e. the sequence itself Levels of protein structure
  • 49. • Secondary – Local organization of the protein backbone: alpha- helix, Beta-strand (which assemble into Beta- sheets) turn and interconnecting loop. Levels of protein structure
  • 52. • Residues with hydrophobic properties conserved at i, i+2, i+4 separated by unconserved or hydrophilic residues suggest surface beta- strands.  A short run of hydrophobic amino acids (4 residues) suggests a buried beta- strand.  Pairs of conserved hydrophobic amino acids separated by pairs of unconserved, or hydrophilic residues suggests an alfa-helix with one face packing in the protein core. Likewise, an i, i+3, i+4, i+7 pattern of conserved hydrophobic residues. A Practical Approach: Interpretation
  • 56. • Chou, P.Y. and Fasman, G.D. (1974). Conformational parameters for amino acids in helical, b- sheet, and random coil regions calculated from proteins. Biochemistry 13, 211-221. • Chou, P.Y. and Fasman, G.D. (1974). Prediction of protein conformation. Biochemistry 13, 222-245. Secondary structure prediction:CHOU-FASMAN
  • 57. •Method •Assigning a set of prediction values to a residue, based on statistic analysis of 15 proteins • Applying a simple algorithm to those numbers Secondary structure prediction:CHOU-FASMAN
  • 58. Calculation of preference parameters observed counts • P = Log --------------------- + 1.0 expected counts • Preference parameter > 1.0  specific residue has a preference for the specific secondary structure. • Preference parameter = 1.0  specific residue does not have a preference for, nor dislikes the specific secondary structure. • Preference parameter < 1.0  specific residue dislikes the specific secondary structure. For each of the 20 residues and each secondary structure (a- helix, b-sheet and b-turn): Secondary structure prediction:CHOU-FASMAN
  • 59. Preference parameters Residue P(a) P(b) P(t) f(i) f(i+1) f(i+2) f(i+3) Ala 1.45 0.97 0.57 0.049 0.049 0.034 0.029 Arg 0.79 0.90 1.00 0.051 0.127 0.025 0.101 Asn 0.73 0.65 1.68 0.101 0.086 0.216 0.065 Asp 0.98 0.80 1.26 0.137 0.088 0.069 0.059 Cys 0.77 1.30 1.17 0.089 0.022 0.111 0.089 Gln 1.17 1.23 0.56 0.050 0.089 0.030 0.089 Glu 1.53 0.26 0.44 0.011 0.032 0.053 0.021 Gly 0.53 0.81 1.68 0.104 0.090 0.158 0.113 His 1.24 0.71 0.69 0.083 0.050 0.033 0.033 Ile 1.00 1.60 0.58 0.068 0.034 0.017 0.051 Leu 1.34 1.22 0.53 0.038 0.019 0.032 0.051 Lys 1.07 0.74 1.01 0.060 0.080 0.067 0.073 Met 1.20 1.67 0.67 0.070 0.070 0.036 0.070 Phe 1.12 1.28 0.71 0.031 0.047 0.063 0.063 Pro 0.59 0.62 1.54 0.074 0.272 0.012 0.062 Ser 0.79 0.72 1.56 0.100 0.095 0.095 0.104 Thr 0.82 1.20 1.00 0.062 0.093 0.056 0.068 Trp 1.14 1.19 1.11 0.045 0.000 0.045 0.205 Tyr 0.61 1.29 1.25 0.136 0.025 0.110 0.102 Val 1.14 1.65 0.30 0.023 0.029 0.011 0.029 Secondary structure prediction:CHOU-FASMAN
  • 60. Applying algorithm 1. Assign parameters to residue. 2. Identify regions where 4 out of 6 residues have P(a)>100: a-helix. Extend helix in both directions until four contiguous residues have an average P(a)<100: end of a-helix. If segment is longer than 5 residues and P(a)>P(b): a-helix. 3. Repeat this procedure to locate all of the helical regions. 4. Identify regions where 3 out of 5 residues have P(b)>100: b-sheet. Extend sheet in both directions until four contiguous residues have an average P(b)<100: end of b-sheet. If P(b)>105 and P(b)>P(a): a-helix. 5. Rest: P(a)>P(b)  a-helix. P(b)>P(a)  b-sheet. 6. To identify a bend at residue number i, calculate the following value: p(t) = f(i)f(i+1)f(i+2)f(i+3) If: (1) p(t) > 0.000075; (2) average P(t)>1.00 in the tetrapeptide; and (3) averages for tetrapeptide obey P(a)<P(t)>P(b): b-turn. Secondary structure prediction:CHOU-FASMAN
  • 61. Successful method? 19 proteins evaluated: • Successful in locating 88% of helical and 95% of b regions • Correctly predicting 80% of helical and 86% of b- sheet residues • Accuracy of predicting the three conformational states for all residues, helix, b, and coil, is 77% Chou & Fasman:successful method After 1974:improvement of preference parameters Secondary structure prediction:CHOU-FASMAN
  • 62.
  • 63. Sander-Schneider: Evolution of overall structure • Naturally occurring sequences with more than 20% sequence identity over 80 or more residues always adopt the same basic structure (Sander and Schneider 1991)
  • 64. Sander-Schneider • HSSP: homology derived secondary structure
  • 65. • SCOP: – Structural Classification of Proteins • FSSP: – Family of Structurally Similar Proteins • CATH: – Class, Architecture, Topology, Homology Structural Family Databases
  • 66. Levels of protein structure • Tertiary – Packing of secondary structure elements into a compact spatial unit – Fold or domain – this is the level to which structure is currently possible
  • 69. • Protein Dissection into domain • Conserved Domain Architecture Retrieval Tool (CDART) uses information in Pfam and SMART to assign domains along a sequence • (automatic when blasting) Domains
  • 70. • From the analysis of alignment of protein families • Conserved sequence features, usually associate with a specific function • PROSITE database for protein “signature” protein (large amount of FP & FN) • From aligment of homologous sequences (PRINTS/PRODOM) • From Hidden Markov Models (PFAM) • Meta approach: INTERPRO Domains
  • 72. Levels of protein structure: Topology
  • 73. Hydrophobicity Plot P53_HUMAN (P04637) human cellular tumor antigen p53 Kyte-Doolittle hydrophilicty, window=19
  • 74.
  • 75. The ‘positive inside’ rule (EMBO J. 5:3021; EJB 174:671,205:1207; FEBS lett. 282:41) Bacterial IM In: 16% KR out: 4% KR Eukaryotic PM In: 17% KR out: 7% KR Thylakoid membrane In: 13% KR out: 5% KR Mitochondrial IM In: 10% KR out: 3% KR
  • 76.
  • 77. • Membrane-bound receptors • A very large number of different domains both to bind their ligand and to activate G proteins. • 6 different families • Transducing messages as photons, organic odorants, nucleotides, nucleosides, peptides, lipids and proteins. GPCR Topology • Pharmaceutically the most important class • Challenge: Methods to find novel GCPRs in human genome …
  • 79. • Seven transmembrane regions GPCR Structure • Conserved residues and motifs (i.e. NPXXY) • Hydrophobic/ hydrophilic domains GPCR Topology
  • 80. GPCR Topology Eg. Plot conserverd residues (or multiple alignement: MSA to SSA)
  • 81. Levels of protein structure • Difficult to predict • Functional units: Apoptosome, proteasome
  • 82. Protein Structure Introduction Why ? How do proteins fold ? Levels of protein structure 0,1,2,3,4 X-ray / NMR The Protein Database (PDB) Protein Modeling Bioinformatics & Proteomics Weblems
  • 83. • X-ray crystallography is an experimental technique that exploits the fact that X-rays are diffracted by crystals. • X-rays have the proper wavelength (in the Ångström range, ~10-8 cm) to be scattered by the electron cloud of an atom of comparable size. • Based on the diffraction pattern obtained from X-ray scattering off the periodic assembly of molecules or atoms in the crystal, the electron density can be reconstructed. • A model is then progressively built into the experimental electron density, refined against the data and the result is a quite accurate molecular structure. What is X-ray Crystallography
  • 84. • NMR uses protein in solution – Can look at the dynamic properties of the protein structure – Can look at the interactions between the protein and ligands, substrates or other proteins – Can look at protein folding – Sample is not damaged in any way – The maximum size of a protein for NMR structure determination is ~30 kDa.This elliminates ~50% of all proteins – High solubility is a requirement • X-ray crystallography uses protein crystals – No size limit: As long as you can crystallise it – Solubility requirement is less stringent – Simple definition of resolution – Direct calculation from data to electron density and back again – Crystallisation is the process bottleneck, Binary (all or nothing) – Phase problem Relies on heavy atom soaks or SeMet incorporation • Both techniques require large amounts of pure protein and require expensive equipment! NMR or Crystallography ?
  • 85. Protein Structure Introduction Why ? How do proteins fold ? Levels of protein structure 0,1,2,3,4 X-ray / NMR The Protein Database (PDB) Protein Modeling Bioinformatics & Proteomics Weblems
  • 86. PDB
  • 87. PDB
  • 88. PDB
  • 89. PDB
  • 91. Ball: Van der Waals radius Stick: length joins center N, blue/O, red/S, yellow/C, gray (green) Visualizing Structures
  • 92. From N to C Visualizing Structures
  • 93. • Demonstration of Protein explorer • PDB, install Chime • Search helicase (select structure where DNA is present) • Stop spinning, hide water molecules • Show basic residues, interact with negatively charged backbone • RASMOL / Cn3D Visualizing Structures
  • 94. Protein Structure Introduction Why ? How do proteins fold ? Levels of protein structure 0,1,2,3,4 X-ray / NMR The Protein Database (PDB) Protein Modeling Bioinformatics & Proteomics Weblems
  • 96. Protein Stucture Molecular Modeling: building a 3D protein structure from its sequence
  • 97. • Finding a structural homologue • Blast –versus PDB database or PSI- blast (E<0.005) –Domain coverage at least 60% • Avoid Gaps –Choose for few gaps and reasonable similarity scores instead of lots of gaps and high similarity scores Modeling
  • 98. • Extract “template” sequences and align with query • Whatch out for missing data (PDB file) and complement with additonal templates • Try to get as much information as possible, X/NMR • Sequence alignment from structure comparson of templates (SSA) can be different from a simple sequence aligment • >40% identity, any aligment method is OK • <40%, checks are essential – Residue conservation checks in functional regions (patterns/motifs) – Indels: combine gaps separted by few resides – Manual editing: Move gaps from secondary elements to loops – Within loops, move gaps to loop ends, i.e. turnaround point of backbone • Align templates structurally, extract the corresponding SSA or QTA (Query/template alignment) Modeling
  • 99. Input for model building • Query sequence (the one you want the 3D model for) • Template sequences and structures • Query/Template(s) (structure) sequence aligment Modeling
  • 100. • Methods (details on these see paper): – WHATIF, – SWISS-MODEL, – MODELLER, – ICM, – 3D-JIGSAW, – CPH-models, – SDC1 Modeling
  • 101. • Model evaluation (How good is the prediction, how much can the algorithm rely/extract on the provided templates) – PROCHECK – WHATIF – ERRAT • CASP (Critical Assessment of Structure Prediction) – Beste method is manual alignment editing ! Modeling
  • 102. CASP4: overall model accuracy ranging from 1 Å to 6 Å for 50-10% sequence identity **T112/dhso – 4.9 Å (348 residues; 24%) **T92/yeco – 5.6 Å (104 residues; 12%) **T128/sodm – 1.0 Å (198 residues; 50%) **T125/sp18 – 4.4 Å (137 residues; 24%) **T111/eno – 1.7 Å (430 residues; 51%) **T122/trpa – 2.9 Å (241 residues; 33%) Comparative modelling at CASP CASP2 fair ~ 75% ~ 1.0 Å ~ 3.0 Å CASP3 fair ~75% ~ 1.0 Å ~ 2.5 Å CASP4 fair ~75% ~ 1.0 Å ~ 2.0 Å CASP1 poor ~ 50% ~ 3.0 Å > 5.0 Å BC excellent ~ 80% 1.0 Å 2.0 Å alignment side chain short loops longer loops
  • 103.
  • 104. Protein Engineering / Protein Design