SlideShare una empresa de Scribd logo
1 de 102
Descargar para leer sin conexión
Testing as mixture estimation:
the vexing dilemma of Bayes tests
Christian P. Robert
Universit´e Paris-Dauphine, Paris & University of Warwick, Coventry
Joint work with K. Kamary, K. Mengersen & J. Rousseau
CRiSM workshop, Warwick U, 20-22 April, 2016
Estimating Constants
wide range of computational
methods for approximating
normalising constants
wide range of communities
novel challenges associated with
large data and highly complex
models
13 talks, plus two poster
sessions [England in April, where else...?!]
Outline
Bayesian testing of hypotheses
Noninformative solutions
Testing via mixtures
Paradigm shift
Testing issues
Hypothesis testing
central problem of statistical inference
witness the recent ASA’s statement on p-values (Wasserstein,
2016)
dramatically differentiating feature between classical and
Bayesian paradigms
wide open to controversy and divergent opinions, includ.
within the Bayesian community
non-informative Bayesian testing case mostly unresolved,
witness the Jeffreys–Lindley paradox
[Berger (2003), Mayo & Cox (2006), Gelman (2008)]
”proper use and interpretation of the p-value”
”Scientific conclusions and
business or policy decisions
should not be based only on
whether a p-value passes a
specific threshold.”
”By itself, a p-value does not
provide a good measure of
evidence regarding a model or
hypothesis.”
[Wasserstein, 2016]
”proper use and interpretation of the p-value”
”Scientific conclusions and
business or policy decisions
should not be based only on
whether a p-value passes a
specific threshold.”
”By itself, a p-value does not
provide a good measure of
evidence regarding a model or
hypothesis.”
[Wasserstein, 2016]
Bayesian testing of hypotheses
Bayesian model selection as comparison of k potential
statistical models towards the selection of model that fits the
data “best”
mostly accepted perspective: it does not primarily seek to
identify which model is “true”, but compares fits
tools like Bayes factor naturally include a penalisation
addressing model complexity, mimicked by Bayes Information
(BIC) and Deviance Information (DIC) criteria
posterior predictive tools successfully advocated in Gelman et
al. (2013) even though they involve double use of data
Bayesian testing of hypotheses
Bayesian model selection as comparison of k potential
statistical models towards the selection of model that fits the
data “best”
mostly accepted perspective: it does not primarily seek to
identify which model is “true”, but compares fits
tools like Bayes factor naturally include a penalisation
addressing model complexity, mimicked by Bayes Information
(BIC) and Deviance Information (DIC) criteria
posterior predictive tools successfully advocated in Gelman et
al. (2013) even though they involve double use of data
Some difficulties
tension between using (i) posterior probabilities justified by
binary loss function but depending on unnatural prior weights,
and (ii) Bayes factors that eliminate dependence but escape
direct connection with posterior, unless prior weights are
integrated within loss
delicate interpretation (or calibration) of strength of the Bayes
factor towards supporting a given hypothesis or model,
because not a Bayesian decision rule
similar difficulty with posterior probabilities, with tendency to
interpret them as p-values: only report of respective strengths
of fitting data to both models
Some difficulties
tension between using (i) posterior probabilities justified by
binary loss function but depending on unnatural prior weights,
and (ii) Bayes factors that eliminate dependence but escape
direct connection with posterior, unless prior weights are
integrated within loss
referring to a fixed and arbitrary cuttoff value falls into the
same difficulties as regular p-values
no “third way” like opting out from a decision
Some further difficulties
long-lasting impact of prior modeling, i.e., choice of prior
distributions on parameters of both models, despite overall
consistency proof for Bayes factor
discontinuity in valid use of improper priors since they are not
justified in most testing situations, leading to many alternative
and ad hoc solutions, where data is either used twice or split
in artificial ways [or further tortured into confession]
binary (accept vs. reject) outcome more suited for immediate
decision (if any) than for model evaluation, in connection with
rudimentary loss function [atavistic remain of
Neyman-Pearson formalism]
Some additional difficulties
related impossibility to ascertain simultaneous misfit or to
detect outliers
no assessment of uncertainty associated with decision itself
besides posterior probability
difficult computation of marginal likelihoods in most settings
with further controversies about which algorithm to adopt
strong dependence of posterior probabilities on conditioning
statistics (ABC), which undermines their validity for model
assessment
temptation to create pseudo-frequentist equivalents such as
q-values with even less Bayesian justifications
c time for a paradigm shift
back to some solutions
Bayesian tests 101
Associated with the risk
R(θ, δ) = Eθ[L(θ, δ(x))]
=
Pθ(δ(x) = 0) if θ ∈ Θ0,
Pθ(δ(x) = 1) otherwise,
Bayes test
The Bayes estimator associated with π and with the 0 − 1 loss is
δπ
(x) =
1 if P(θ ∈ Θ0|x) > P(θ ∈ Θ0|x),
0 otherwise,
Bayesian tests 101
Associated with the risk
R(θ, δ) = Eθ[L(θ, δ(x))]
=
Pθ(δ(x) = 0) if θ ∈ Θ0,
Pθ(δ(x) = 1) otherwise,
Bayes test
The Bayes estimator associated with π and with the 0 − 1 loss is
δπ
(x) =
1 if P(θ ∈ Θ0|x) > P(θ ∈ Θ0|x),
0 otherwise,
Bayesian tests 102
Weights errors differently under both hypotheses:
Theorem (Optimal Bayes decision)
Under the 0 − 1 loss function
L(θ, d) =



0 if d = IΘ0 (θ)
a0 if d = 1 and θ ∈ Θ0
a1 if d = 0 and θ ∈ Θ0
the Bayes procedure is
δπ
(x) =
1 if P(θ ∈ Θ0|x) a0/(a0 + a1)
0 otherwise
Bayesian tests 102
Weights errors differently under both hypotheses:
Theorem (Optimal Bayes decision)
Under the 0 − 1 loss function
L(θ, d) =



0 if d = IΘ0 (θ)
a0 if d = 1 and θ ∈ Θ0
a1 if d = 0 and θ ∈ Θ0
the Bayes procedure is
δπ
(x) =
1 if P(θ ∈ Θ0|x) a0/(a0 + a1)
0 otherwise
A function of posterior probabilities
Definition (Bayes factors)
For hypotheses H0 : θ ∈ Θ0 vs. Ha : θ ∈ Θ0
B01 =
π(Θ0|x)
π(Θc
0|x)
π(Θ0)
π(Θc
0)
=
Θ0
f (x|θ)π0(θ)dθ
Θc
0
f (x|θ)π1(θ)dθ
[Jeffreys, ToP, 1939, V, §5.01]
Bayes rule under 0 − 1 loss: acceptance if
B01 > {(1 − π(Θ0))/a1}/{π(Θ0)/a0}
self-contained concept
Outside decision-theoretic environment:
eliminates choice of π(Θ0)
but depends on the choice of (π0, π1)
Bayesian/marginal equivalent to the likelihood ratio
Jeffreys’ scale of evidence:
if log10(Bπ
10) between 0 and 0.5, evidence against H0 weak,
if log10(Bπ
10) 0.5 and 1, evidence substantial,
if log10(Bπ
10) 1 and 2, evidence strong and
if log10(Bπ
10) above 2, evidence decisive
[...fairly arbitrary!]
self-contained concept
Outside decision-theoretic environment:
eliminates choice of π(Θ0)
but depends on the choice of (π0, π1)
Bayesian/marginal equivalent to the likelihood ratio
Jeffreys’ scale of evidence:
if log10(Bπ
10) between 0 and 0.5, evidence against H0 weak,
if log10(Bπ
10) 0.5 and 1, evidence substantial,
if log10(Bπ
10) 1 and 2, evidence strong and
if log10(Bπ
10) above 2, evidence decisive
[...fairly arbitrary!]
self-contained concept
Outside decision-theoretic environment:
eliminates choice of π(Θ0)
but depends on the choice of (π0, π1)
Bayesian/marginal equivalent to the likelihood ratio
Jeffreys’ scale of evidence:
if log10(Bπ
10) between 0 and 0.5, evidence against H0 weak,
if log10(Bπ
10) 0.5 and 1, evidence substantial,
if log10(Bπ
10) 1 and 2, evidence strong and
if log10(Bπ
10) above 2, evidence decisive
[...fairly arbitrary!]
self-contained concept
Outside decision-theoretic environment:
eliminates choice of π(Θ0)
but depends on the choice of (π0, π1)
Bayesian/marginal equivalent to the likelihood ratio
Jeffreys’ scale of evidence:
if log10(Bπ
10) between 0 and 0.5, evidence against H0 weak,
if log10(Bπ
10) 0.5 and 1, evidence substantial,
if log10(Bπ
10) 1 and 2, evidence strong and
if log10(Bπ
10) above 2, evidence decisive
[...fairly arbitrary!]
consistency
Example of a normal ¯Xn ∼ N(µ, 1/n) when µ ∼ N(0, 1), leading to
B01 = (1 + n)−1/2
exp{n2
¯x2
n /2(1 + n)}
Point null hypotheses
“Is it of the slightest use to reject a hypothesis until we have some
idea of what to put in its place?” H. Jeffreys, ToP(p.390)
Particular case H0 : θ = θ0
Take ρ0 = Prπ
(θ = θ0) and g1 prior density under Hc
0 .
Posterior probability of H0
π(Θ0|x) =
f (x|θ0)ρ0
f (x|θ)π(θ) dθ
=
f (x|θ0)ρ0
f (x|θ0)ρ0 + (1 − ρ0)m1(x)
and marginal under Hc
0
m1(x) =
Θ1
f (x|θ)g1(θ) dθ.
and
Bπ
01(x) =
f (x|θ0)ρ0
m1(x)(1 − ρ0)
ρ0
1 − ρ0
=
f (x|θ0)
m1(x)
Point null hypotheses
“Is it of the slightest use to reject a hypothesis until we have some
idea of what to put in its place?” H. Jeffreys, ToP(p.390)
Particular case H0 : θ = θ0
Take ρ0 = Prπ
(θ = θ0) and g1 prior density under Hc
0 .
Posterior probability of H0
π(Θ0|x) =
f (x|θ0)ρ0
f (x|θ)π(θ) dθ
=
f (x|θ0)ρ0
f (x|θ0)ρ0 + (1 − ρ0)m1(x)
and marginal under Hc
0
m1(x) =
Θ1
f (x|θ)g1(θ) dθ.
and
Bπ
01(x) =
f (x|θ0)ρ0
m1(x)(1 − ρ0)
ρ0
1 − ρ0
=
f (x|θ0)
m1(x)
regressive illustation
caterpillar dataset from Bayesian Essentials (2013): predicting
density of caterpillar nests from 10 covariates
Estimate Post. Var. log10(BF)
(Intercept) 10.8895 6.8229 2.1873 (****)
X1 -0.0044 2e-06 1.1571 (***)
X2 -0.0533 0.0003 0.6667 (**)
X3 0.0673 0.0072 -0.8585
X4 -1.2808 0.2316 0.4726 (*)
X5 0.2293 0.0079 0.3861 (*)
X6 -0.3532 1.7877 -0.9860
X7 -0.2351 0.7373 -0.9848
X8 0.1793 0.0408 -0.8223
X9 -1.2726 0.5449 -0.3461
X10 -0.4288 0.3934 -0.8949
evidence against H0: (****) decisive, (***) strong,
(**) substantial, (*) poor
Noninformative proposals
Bayesian testing of hypotheses
Noninformative solutions
Testing via mixtures
Paradigm shift
what’s special about the Bayes factor?!
“The priors do not represent substantive knowledge of the
parameters within the model
Using Bayes’ theorem, these priors can then be updated to
posteriors conditioned on the data that were actually observed
In general, the fact that different priors result in different
Bayes factors should not come as a surprise
The Bayes factor (...) balances the tension between parsimony
and goodness of fit, (...) against overfitting the data
In induction there is no harm in being occasionally wrong; it is
inevitable that we shall be”
[Jeffreys, 1939; Ly et al., 2015]
what’s wrong with the Bayes factor?!
(1/2, 1/2) partition between hypotheses has very little to
suggest in terms of extensions
central difficulty stands with issue of picking a prior
probability of a model
unfortunate impossibility of using improper priors in most
settings
Bayes factors lack direct scaling associated with posterior
probability and loss function
twofold dependence on subjective prior measure, first in prior
weights of models and second in lasting impact of prior
modelling on the parameters
Bayes factor offers no window into uncertainty associated with
decision
further reasons in the summary
[Robert, 2016]
Lindley’s paradox
In a normal mean testing problem,
¯xn ∼ N(θ, σ2
/n) , H0 : θ = θ0 ,
under Jeffreys prior, θ ∼ N(θ0, σ2), the Bayes factor
B01(tn) = (1 + n)1/2
exp −nt2
n/2[1 + n] ,
where tn =
√
n|¯xn − θ0|/σ, satisfies
B01(tn)
n−→∞
−→ ∞
[assuming a fixed tn]
[Lindley, 1957]
A strong impropriety
Improper priors not allowed in Bayes factors:
If
Θ1
π1(dθ1) = ∞ or
Θ2
π2(dθ2) = ∞
then π1 or π2 cannot be coherently normalised while the
normalisation matters in the Bayes factor B12
Lack of mathematical justification for “common nuisance
parameter” [and prior of]
[Berger, Pericchi, and Varshavsky, 1998; Marin and Robert, 2013]
A strong impropriety
Improper priors not allowed in Bayes factors:
If
Θ1
π1(dθ1) = ∞ or
Θ2
π2(dθ2) = ∞
then π1 or π2 cannot be coherently normalised while the
normalisation matters in the Bayes factor B12
Lack of mathematical justification for “common nuisance
parameter” [and prior of]
[Berger, Pericchi, and Varshavsky, 1998; Marin and Robert, 2013]
Vague proper priors are not the solution
Taking a proper prior and take a “very large” variance (e.g.,
BUGS) will most often result in an undefined or ill-defined limit
Example (Lindley’s paradox)
If testing H0 : θ = 0 when observing x ∼ N(θ, 1), under a normal
N(0, α) prior π1(θ),
B01(x)
α−→∞
−→ 0
Vague proper priors are not the solution
Taking a proper prior and take a “very large” variance (e.g.,
BUGS) will most often result in an undefined or ill-defined limit
Example (Lindley’s paradox)
If testing H0 : θ = 0 when observing x ∼ N(θ, 1), under a normal
N(0, α) prior π1(θ),
B01(x)
α−→∞
−→ 0
Vague proper priors are not the solution
Taking a proper prior and take a “very large” variance (e.g.,
BUGS) will most often result in an undefined or ill-defined limit
Example (Lindley’s paradox)
If testing H0 : θ = 0 when observing x ∼ N(θ, 1), under a normal
N(0, α) prior π1(θ),
B01(x)
α−→∞
−→ 0
Learning from the sample
Definition (Learning sample)
Given an improper prior π, (x1, . . . , xn) is a learning sample if
π(·|x1, . . . , xn) is proper and a minimal learning sample if none of
its subsamples is a learning sample
There is just enough information in a minimal learning sample to
make inference about θ under the prior π
Learning from the sample
Definition (Learning sample)
Given an improper prior π, (x1, . . . , xn) is a learning sample if
π(·|x1, . . . , xn) is proper and a minimal learning sample if none of
its subsamples is a learning sample
There is just enough information in a minimal learning sample to
make inference about θ under the prior π
Pseudo-Bayes factors
Idea
Use one part x[i] of the data x to make the prior proper:
πi improper but πi (·|x[i]) proper
and
fi (x[n/i]|θi ) πi (θi |x[i])dθi
fj (x[n/i]|θj ) πj (θj |x[i])dθj
independent of normalizing constant
Use remaining x[n/i] to run test as if πj (θj |x[i]) is the true prior
Pseudo-Bayes factors
Idea
Use one part x[i] of the data x to make the prior proper:
πi improper but πi (·|x[i]) proper
and
fi (x[n/i]|θi ) πi (θi |x[i])dθi
fj (x[n/i]|θj ) πj (θj |x[i])dθj
independent of normalizing constant
Use remaining x[n/i] to run test as if πj (θj |x[i]) is the true prior
Pseudo-Bayes factors
Idea
Use one part x[i] of the data x to make the prior proper:
πi improper but πi (·|x[i]) proper
and
fi (x[n/i]|θi ) πi (θi |x[i])dθi
fj (x[n/i]|θj ) πj (θj |x[i])dθj
independent of normalizing constant
Use remaining x[n/i] to run test as if πj (θj |x[i]) is the true prior
Motivation
Provides a working principle for improper priors
Gather enough information from data to achieve properness
and use this properness to run the test on remaining data
does not use x twice as in Aitkin’s (1991)
Motivation
Provides a working principle for improper priors
Gather enough information from data to achieve properness
and use this properness to run the test on remaining data
does not use x twice as in Aitkin’s (1991)
Motivation
Provides a working principle for improper priors
Gather enough information from data to achieve properness
and use this properness to run the test on remaining data
does not use x twice as in Aitkin’s (1991)
Unexpected problems!
depends on the choice of x[i]
many ways of combining pseudo-Bayes factors
AIBF = BN
ji
1
L
Bij (x[ ])
MIBF = BN
ji med[Bij (x[ ])]
GIBF = BN
ji exp
1
L
log Bij (x[ ])
not often an exact Bayes factor
and thus lacking inner coherence
B12 = B10B02 and B01 = 1/B10 .
[Berger & Pericchi, 1996]
Unexpected problems!
depends on the choice of x[i]
many ways of combining pseudo-Bayes factors
AIBF = BN
ji
1
L
Bij (x[ ])
MIBF = BN
ji med[Bij (x[ ])]
GIBF = BN
ji exp
1
L
log Bij (x[ ])
not often an exact Bayes factor
and thus lacking inner coherence
B12 = B10B02 and B01 = 1/B10 .
[Berger & Pericchi, 1996]
Fractional Bayes factor
Idea
use directly the likelihood to separate training sample from testing
sample
BF
12 = B12(x)
Lb
2(θ2)π2(θ2)dθ2
Lb
1(θ1)π1(θ1)dθ1
[O’Hagan, 1995]
Proportion b of the sample used to gain proper-ness
Fractional Bayes factor
Idea
use directly the likelihood to separate training sample from testing
sample
BF
12 = B12(x)
Lb
2(θ2)π2(θ2)dθ2
Lb
1(θ1)π1(θ1)dθ1
[O’Hagan, 1995]
Proportion b of the sample used to gain proper-ness
Fractional Bayes factor (cont’d)
Example (Normal mean)
BF
12 =
1
√
b
en(b−1)¯x2
n /2
corresponds to exact Bayes factor for the prior N 0, 1−b
nb
If b constant, prior variance goes to 0
If b =
1
n
, prior variance stabilises around 1
If b = n−α
, α < 1, prior variance goes to 0 too.
Changing the testing perspective
Bayesian testing of hypotheses
Noninformative solutions
Testing via mixtures
Paradigm shift
Paradigm shift
New proposal for a paradigm shift (!) in the Bayesian processing of
hypothesis testing and of model selection
convergent and naturally interpretable solution
more extended use of improper priors
Simple representation of the testing problem as a
two-component mixture estimation problem where the
weights are formally equal to 0 or 1
Paradigm shift
New proposal for a paradigm shift (!) in the Bayesian processing of
hypothesis testing and of model selection
convergent and naturally interpretable solution
more extended use of improper priors
Simple representation of the testing problem as a
two-component mixture estimation problem where the
weights are formally equal to 0 or 1
Paradigm shift
Simple representation of the testing problem as a
two-component mixture estimation problem where the
weights are formally equal to 0 or 1
Approach inspired from consistency result of Rousseau and
Mengersen (2011) on estimated overfitting mixtures
Mixture representation not directly equivalent to the use of a
posterior probability
Potential of a better approach to testing, while not expanding
number of parameters
Calibration of posterior distribution of the weight of a model,
moving from artificial notion of posterior probability of a
model
Encompassing mixture model
Idea: Given two statistical models,
M1 : x ∼ f1(x|θ1) , θ1 ∈ Θ1 and M2 : x ∼ f2(x|θ2) , θ2 ∈ Θ2 ,
embed both within an encompassing mixture
Mα : x ∼ αf1(x|θ1) + (1 − α)f2(x|θ2) , 0 α 1 (1)
Note: Both models correspond to special cases of (1), one for
α = 1 and one for α = 0
Draw inference on mixture representation (1), as if each
observation was individually and independently produced by the
mixture model
Encompassing mixture model
Idea: Given two statistical models,
M1 : x ∼ f1(x|θ1) , θ1 ∈ Θ1 and M2 : x ∼ f2(x|θ2) , θ2 ∈ Θ2 ,
embed both within an encompassing mixture
Mα : x ∼ αf1(x|θ1) + (1 − α)f2(x|θ2) , 0 α 1 (1)
Note: Both models correspond to special cases of (1), one for
α = 1 and one for α = 0
Draw inference on mixture representation (1), as if each
observation was individually and independently produced by the
mixture model
Encompassing mixture model
Idea: Given two statistical models,
M1 : x ∼ f1(x|θ1) , θ1 ∈ Θ1 and M2 : x ∼ f2(x|θ2) , θ2 ∈ Θ2 ,
embed both within an encompassing mixture
Mα : x ∼ αf1(x|θ1) + (1 − α)f2(x|θ2) , 0 α 1 (1)
Note: Both models correspond to special cases of (1), one for
α = 1 and one for α = 0
Draw inference on mixture representation (1), as if each
observation was individually and independently produced by the
mixture model
Inferential motivations
Sounds like approximation to the real model, but several definitive
advantages to this paradigm shift:
Bayes estimate of the weight α replaces posterior probability
of model M1, equally convergent indicator of which model is
“true”, while avoiding artificial prior probabilities on model
indices, ω1 and ω2
interpretation of estimator of α at least as natural as handling
the posterior probability, while avoiding zero-one loss setting
α and its posterior distribution provide measure of proximity
to the models, while being interpretable as data propensity to
stand within one model
further allows for alternative perspectives on testing and
model choice, like predictive tools, cross-validation, and
information indices like WAIC
Computational motivations
avoids highly problematic computations of the marginal
likelihoods, since standard algorithms are available for
Bayesian mixture estimation
straightforward extension to a finite collection of models, with
a larger number of components, which considers all models at
once and eliminates least likely models by simulation
eliminates difficulty of label switching that plagues both
Bayesian estimation and Bayesian computation, since
components are no longer exchangeable
posterior distribution of α evaluates more thoroughly strength
of support for a given model than the single figure outcome of
a posterior probability
variability of posterior distribution on α allows for a more
thorough assessment of the strength of this support
Noninformative motivations
additional feature missing from traditional Bayesian answers:
a mixture model acknowledges possibility that, for a finite
dataset, both models or none could be acceptable
standard (proper and informative) prior modeling can be
reproduced in this setting, but non-informative (improper)
priors also are manageable therein, provided both models first
reparameterised towards shared parameters, e.g. location and
scale parameters
in special case when all parameters are common
Mα : x ∼ αf1(x|θ) + (1 − α)f2(x|θ) , 0 α 1
if θ is a location parameter, a flat prior π(θ) ∝ 1 is available
Weakly informative motivations
using the same parameters or some identical parameters on
both components highlights that opposition between the two
components is not an issue of enjoying different parameters
those common parameters are nuisance parameters, to be
integrated out [unlike Lindley’s paradox]
prior model weights ωi rarely discussed in classical Bayesian
approach, even though linear impact on posterior probabilities.
Here, prior modeling only involves selecting a prior on α, e.g.,
α ∼ B(a0, a0)
while a0 impacts posterior on α, it always leads to mass
accumulation near 1 or 0, i.e. favours most likely model
sensitivity analysis straightforward to carry
approach easily calibrated by parametric boostrap providing
reference posterior of α under each model
natural Metropolis–Hastings alternative
Poisson/Geometric
choice betwen Poisson P(λ) and Geometric Geo(p)
distribution
mixture with common parameter λ
Mα : αP(λ) + (1 − α)Geo(1/1+λ)
Allows for Jeffreys prior since resulting posterior is proper
independent Metropolis–within–Gibbs with proposal
distribution on λ equal to Poisson posterior (with acceptance
rate larger than 75%)
Poisson/Geometric
choice betwen Poisson P(λ) and Geometric Geo(p)
distribution
mixture with common parameter λ
Mα : αP(λ) + (1 − α)Geo(1/1+λ)
Allows for Jeffreys prior since resulting posterior is proper
independent Metropolis–within–Gibbs with proposal
distribution on λ equal to Poisson posterior (with acceptance
rate larger than 75%)
Poisson/Geometric
choice betwen Poisson P(λ) and Geometric Geo(p)
distribution
mixture with common parameter λ
Mα : αP(λ) + (1 − α)Geo(1/1+λ)
Allows for Jeffreys prior since resulting posterior is proper
independent Metropolis–within–Gibbs with proposal
distribution on λ equal to Poisson posterior (with acceptance
rate larger than 75%)
Beta prior
When α ∼ Be(a0, a0) prior, full conditional posterior
α ∼ Be(n1(ζ) + a0, n2(ζ) + a0)
Exact Bayes factor opposing Poisson and Geometric
B12 = nn¯xn
n
i=1
xi ! Γ n + 2 +
n
i=1
xi Γ(n + 2)
although arbitrary from a purely mathematical viewpoint
Parameter estimation
1e-04 0.001 0.01 0.1 0.2 0.3 0.4 0.5
3.903.954.004.054.10
Posterior means of λ and medians of α for 100 Poisson P(4) datasets of size
n = 1000, for a0 = .0001, .001, .01, .1, .2, .3, .4, .5. Each posterior approximation
is based on 104
Metropolis-Hastings iterations.
Parameter estimation
1e-04 0.001 0.01 0.1 0.2 0.3 0.4 0.5
0.9900.9920.9940.9960.9981.000
Posterior means of λ and medians of α for 100 Poisson P(4) datasets of size
n = 1000, for a0 = .0001, .001, .01, .1, .2, .3, .4, .5. Each posterior approximation
is based on 104
Metropolis-Hastings iterations.
Consistency
0 1 2 3 4 5 6 7
0.00.20.40.60.81.0
a0=.1
log(sample size)
0 1 2 3 4 5 6 7
0.00.20.40.60.81.0
a0=.3
log(sample size)
0 1 2 3 4 5 6 7
0.00.20.40.60.81.0
a0=.5
log(sample size)
Posterior means (sky-blue) and medians (grey-dotted) of α, over 100 Poisson
P(4) datasets for sample sizes from 1 to 1000.
Behaviour of Bayes factor
0 1 2 3 4 5 6 7
0.00.20.40.60.81.0
log(sample size)
0 1 2 3 4 5 6 7
0.00.20.40.60.81.0
log(sample size)
0 1 2 3 4 5 6 7
0.00.20.40.60.81.0
log(sample size)
Comparison between P(M1|x) (red dotted area) and posterior medians of α
(grey zone) for 100 Poisson P(4) datasets with sample sizes n between 1 and
1000, for a0 = .001, .1, .5
Normal-normal comparison
comparison of a normal N(θ1, 1) with a normal N(θ2, 2)
distribution
mixture with identical location parameter θ
αN(θ, 1) + (1 − α)N(θ, 2)
Jeffreys prior π(θ) = 1 can be used, since posterior is proper
Reference (improper) Bayes factor
B12 = 2
n−1/2
exp 1/4
n
i=1
(xi − ¯x)2
,
Normal-normal comparison
comparison of a normal N(θ1, 1) with a normal N(θ2, 2)
distribution
mixture with identical location parameter θ
αN(θ, 1) + (1 − α)N(θ, 2)
Jeffreys prior π(θ) = 1 can be used, since posterior is proper
Reference (improper) Bayes factor
B12 = 2
n−1/2
exp 1/4
n
i=1
(xi − ¯x)2
,
Normal-normal comparison
comparison of a normal N(θ1, 1) with a normal N(θ2, 2)
distribution
mixture with identical location parameter θ
αN(θ, 1) + (1 − α)N(θ, 2)
Jeffreys prior π(θ) = 1 can be used, since posterior is proper
Reference (improper) Bayes factor
B12 = 2
n−1/2
exp 1/4
n
i=1
(xi − ¯x)2
,
Consistency
0.1 0.2 0.3 0.4 0.5 p(M1|x)
0.00.20.40.60.81.0
n=15
0.00.20.40.60.81.0
0.1 0.2 0.3 0.4 0.5 p(M1|x)
0.650.700.750.800.850.900.951.00
n=50
0.650.700.750.800.850.900.951.00
0.1 0.2 0.3 0.4 0.5 p(M1|x)
0.750.800.850.900.951.00
n=100
0.750.800.850.900.951.00
0.1 0.2 0.3 0.4 0.5 p(M1|x)
0.930.940.950.960.970.980.991.00
n=500
0.930.940.950.960.970.980.991.00
Posterior means (wheat) and medians of α (dark wheat), compared with
posterior probabilities of M0 (gray) for a N(0, 1) sample, derived from 100
datasets for sample sizes equal to 15, 50, 100, 500. Each posterior
approximation is based on 104
MCMC iterations.
Comparison with posterior probability
0 100 200 300 400 500
-50-40-30-20-100
a0=.1
sample size
0 100 200 300 400 500
-50-40-30-20-100
a0=.3
sample size
0 100 200 300 400 500
-50-40-30-20-100
a0=.4
sample size
0 100 200 300 400 500
-50-40-30-20-100
a0=.5
sample size
Plots of ranges of log(n) log(1 − E[α|x]) (gray color) and log(1 − p(M1|x)) (red
dotted) over 100 N(0, 1) samples as sample size n grows from 1 to 500. and α
is the weight of N(0, 1) in the mixture model. The shaded areas indicate the
range of the estimations and each plot is based on a Beta prior with
a0 = .1, .2, .3, .4, .5, 1 and each posterior approximation is based on 104
iterations.
Comments
convergence to one boundary value as sample size n grows
impact of hyperarameter a0 slowly vanishes as n increases, but
present for moderate sample sizes
when simulated sample is neither from N(θ1, 1) nor from
N(θ2, 2), behaviour of posterior varies, depending on which
distribution is closest
Logit or Probit?
binary dataset, R dataset about diabetes in 200 Pima Indian
women with body mass index as explanatory variable
comparison of logit and probit fits could be suitable. We are
thus comparing both fits via our method
M1 : yi | xi
, θ1 ∼ B(1, pi ) where pi =
exp(xi θ1)
1 + exp(xi θ1)
M2 : yi | xi
, θ2 ∼ B(1, qi ) where qi = Φ(xi
θ2)
Common parameterisation
Local reparameterisation strategy that rescales parameters of the
probit model M2 so that the MLE’s of both models coincide.
[Choudhuty et al., 2007]
Φ(xi
θ2) ≈
exp(kxi θ2)
1 + exp(kxi θ2)
and use best estimate of k to bring both parameters into coherency
(k0, k1) = (θ01/θ02, θ11/θ12) ,
reparameterise M1 and M2 as
M1 :yi | xi
, θ ∼ B(1, pi ) where pi =
exp(xi θ)
1 + exp(xi θ)
M2 :yi | xi
, θ ∼ B(1, qi ) where qi = Φ(xi
(κ−1
θ)) ,
with κ−1θ = (θ0/k0, θ1/k1).
Prior modelling
Under default g-prior
θ ∼ N2(0, n(XT
X)−1
)
full conditional posterior distributions given allocations
π(θ | y, X, ζ) ∝
exp i Iζi =1yi xi θ
i;ζi =1[1 + exp(xi θ)]
exp −θT
(XT
X)θ 2n
×
i;ζi =2
Φ(xi
(κ−1
θ))yi
(1 − Φ(xi
(κ−1
θ)))(1−yi )
hence posterior distribution clearly defined
Results
Logistic Probit
a0 α θ0 θ1
θ0
k0
θ1
k1
.1 .352 -4.06 .103 -2.51 .064
.2 .427 -4.03 .103 -2.49 .064
.3 .440 -4.02 .102 -2.49 .063
.4 .456 -4.01 .102 -2.48 .063
.5 .449 -4.05 .103 -2.51 .064
Histograms of posteriors of α in favour of logistic model where a0 = .1, .2, .3,
.4, .5 for (a) Pima dataset, (b) Data from logistic model, (c) Data from probit
model
Survival analysis
Testing hypothesis that data comes from a
1. log-Normal(φ, κ2),
2. Weibull(α, λ), or
3. log-Logistic(γ, δ)
distribution
Corresponding mixture given by the density
α1 exp{−(log x − φ)2
/2κ2
}/
√
2πxκ+
α2
α
λ
exp{−(x/λ)α
}((x/λ)α−1
+
α3(δ/γ)(x/γ)δ−1
/(1 + (x/γ)δ
)2
where α1 + α2 + α3 = 1
Survival analysis
Testing hypothesis that data comes from a
1. log-Normal(φ, κ2),
2. Weibull(α, λ), or
3. log-Logistic(γ, δ)
distribution
Corresponding mixture given by the density
α1 exp{−(log x − φ)2
/2κ2
}/
√
2πxκ+
α2
α
λ
exp{−(x/λ)α
}((x/λ)α−1
+
α3(δ/γ)(x/γ)δ−1
/(1 + (x/γ)δ
)2
where α1 + α2 + α3 = 1
Reparameterisation
Looking for common parameter(s):
φ = µ + γβ = ξ
σ2
= π2
β2
/6 = ζ2
π2
/3
where γ ≈ 0.5772 is Euler-Mascheroni constant.
Allows for a noninformative prior on the common location scale
parameter,
π(φ, σ2
) = 1/σ2
Reparameterisation
Looking for common parameter(s):
φ = µ + γβ = ξ
σ2
= π2
β2
/6 = ζ2
π2
/3
where γ ≈ 0.5772 is Euler-Mascheroni constant.
Allows for a noninformative prior on the common location scale
parameter,
π(φ, σ2
) = 1/σ2
Recovery
.01 0.1 1.0 10.0
0.860.880.900.920.940.960.981.00
.01 0.1 1.0 10.00.000.020.040.060.08
Boxplots of the posterior distributions of the Normal weight α1 under the two
scenarii: truth = Normal (left panel), truth = Gumbel (right panel), a0=0.01,
0.1, 1.0, 10.0 (from left to right in each panel) and n = 10, 000 simulated
observations.
Asymptotic consistency
Posterior consistency holds for mixture testing procedure [under
minor conditions]
Two different cases
the two models, M1 and M2, are well separated
model M1 is a submodel of M2.
Asymptotic consistency
Posterior consistency holds for mixture testing procedure [under
minor conditions]
Two different cases
the two models, M1 and M2, are well separated
model M1 is a submodel of M2.
Posterior concentration rate
Let π be the prior and xn = (x1, · · · , xn) a sample with true
density f ∗
proposition
Assume that, for all c > 0, there exist Θn ⊂ Θ1 × Θ2 and B > 0 such that
π [Θc
n] n−c
, Θn ⊂ { θ1 + θ2 nB
}
and that there exist H 0 and L, δ > 0 such that, for j = 1, 2,
sup
θ,θ ∈Θn
fj,θj
− fj,θj
1 LnH
θj − θj , θ = (θ1, θ2), θ = (θ1, θ2) ,
∀ θj − θ∗
j δ; KL(fj,θj
, fj,θ∗
j
) θj − θ∗
j .
Then, when f ∗
= fθ∗,α∗ , with α∗
∈ [0, 1], there exists M > 0 such that
π (α, θ); fθ,α − f ∗
1 > M log n/n|xn
= op(1) .
Separated models
Assumption: Models are separated, i.e. identifiability holds:
∀α, α ∈ [0, 1], ∀θj , θj , j = 1, 2 Pθ,α = Pθ ,α ⇒ α = α , θ = θ
Further
inf
θ1∈Θ1
inf
θ2∈Θ2
f1,θ1
− f2,θ2 1 > 0
and, for θ∗
j ∈ Θj , if Pθj
weakly converges to Pθ∗
j
, then
θj −→ θ∗
j
in the Euclidean topology
Separated models
Assumption: Models are separated, i.e. identifiability holds:
∀α, α ∈ [0, 1], ∀θj , θj , j = 1, 2 Pθ,α = Pθ ,α ⇒ α = α , θ = θ
theorem
Under above assumptions, then for all > 0,
π [|α − α∗
| > |xn
] = op(1)
Separated models
Assumption: Models are separated, i.e. identifiability holds:
∀α, α ∈ [0, 1], ∀θj , θj , j = 1, 2 Pθ,α = Pθ ,α ⇒ α = α , θ = θ
theorem
If
θj → fj,θj
is C2 around θ∗
j , j = 1, 2,
f1,θ∗
1
− f2,θ∗
2
, f1,θ∗
1
, f2,θ∗
2
are linearly independent in y and
there exists δ > 0 such that
f1,θ∗
1
, f2,θ∗
2
, sup
|θ1−θ∗
1 |<δ
|D2
f1,θ1
|, sup
|θ2−θ∗
2 |<δ
|D2
f2,θ2
| ∈ L1
then
π |α − α∗
| > M log n/n xn
= op(1).
Separated models
Assumption: Models are separated, i.e. identifiability holds:
∀α, α ∈ [0, 1], ∀θj , θj , j = 1, 2 Pθ,α = Pθ ,α ⇒ α = α , θ = θ
theorem allows for interpretation of α under the posterior: If data
xn is generated from model M1 then posterior on α concentrates
around α = 1
Embedded case
Here M1 is a submodel of M2, i.e.
θ2 = (θ1, ψ) and θ2 = (θ1, ψ0 = 0)
corresponds to f2,θ2 ∈ M1
Same posterior concentration rate
log n/n
for estimating α when α∗ ∈ (0, 1) and ψ∗ = 0.
Null case
Case where ψ∗ = 0, i.e., f ∗ is in model M1
Two possible paths to approximate f ∗: either α goes to 1
(path 1) or ψ goes to 0 (path 2)
New identifiability condition: Pθ,α = P∗ only if
α = 1, θ1 = θ∗
1, θ2 = (θ∗
1, ψ) or α 1, θ1 = θ∗
1, θ2 = (θ∗
1, 0)
Prior
π(α, θ) = πα(α)π1(θ1)πψ(ψ), θ2 = (θ1, ψ)
with common (prior on) θ1
Null case
Case where ψ∗ = 0, i.e., f ∗ is in model M1
Two possible paths to approximate f ∗: either α goes to 1
(path 1) or ψ goes to 0 (path 2)
New identifiability condition: Pθ,α = P∗ only if
α = 1, θ1 = θ∗
1, θ2 = (θ∗
1, ψ) or α 1, θ1 = θ∗
1, θ2 = (θ∗
1, 0)
Prior
π(α, θ) = πα(α)π1(θ1)πψ(ψ), θ2 = (θ1, ψ)
with common (prior on) θ1
Assumptions
[B1] Regularity: Assume that θ1 → f1,θ1 and θ2 → f2,θ2 are 3
times continuously differentiable and that
F∗
¯f 3
1,θ∗
1
f 3
1,θ∗
1
< +∞, ¯f1,θ∗
1
= sup
|θ1−θ∗
1 |<δ
f1,θ1
, f 1,θ∗
1
= inf
|θ1−θ∗
1 |<δ
f1,θ1
F∗
sup|θ1−θ∗
1 |<δ | f1,θ∗
1
|3
f 3
1,θ∗
1
< +∞, F∗
| f1,θ∗
1
|4
f 4
1,θ∗
1
< +∞,
F∗
sup|θ1−θ∗
1 |<δ |D2
f1,θ∗
1
|2
f 2
1,θ∗
1
< +∞, F∗
sup|θ1−θ∗
1 |<δ |D3
f1,θ∗
1
|
f 1,θ∗
1
< +∞
Assumptions
[B2] Integrability: There exists
S0 ⊂ S ∩ {|ψ| > δ0}
for some positive δ0 and satisfying Leb(S0) > 0, and such that for
all ψ ∈ S0,
F∗
sup|θ1−θ∗
1 |<δ f2,θ1,ψ
f 4
1,θ∗
1
< +∞, F∗
sup|θ1−θ∗
1 |<δ f 3
2,θ1,ψ
f 3
1,θ1∗
< +∞,
Assumptions
[B3] Stronger identifiability: Set
f2,θ∗
1,ψ∗ (x) = θ1 f2,θ∗
1,ψ∗ (x)T
, ψf2,θ∗
1,ψ∗ (x)T T
.
Then for all ψ ∈ S with ψ = 0, if η0 ∈ R, η1 ∈ Rd1
η0(f1,θ∗
1
− f2,θ∗
1,ψ) + ηT
1 θ1 f1,θ∗
1
= 0 ⇔ η1 = 0, η2 = 0
Consistency
theorem
Given the mixture fθ1,ψ,α = αf1,θ1 + (1 − α)f2,θ1,ψ and a sample
xn = (x1, · · · , xn) issued from f1,θ∗
1
, under assumptions B1 − B3,
and an M > 0 such that
π (α, θ); fθ,α − f ∗
1 > M log n/n|xn
= op(1).
If α ∼ B(a1, a2), with a2 < d2, and if the prior πθ1,ψ is absolutely
continuous with positive and continuous density at (θ∗
1, 0), then for
Mn −→ ∞
π |α − α∗
| > Mn(log n)γ
/
√
n|xn
= op(1), γ = max((d1 + a2)/(d2 − a2), 1)/2,
M-open case
When the true model behind the data is neither of the tested
models, what happens?
issue mostly bypassed by classical Bayesian procedures
theoretically produces an α∗ away from both 0 and 1
possible (recommended?) inclusion of a Bayesian
non-parametric model within alternatives
M-open case
When the true model behind the data is neither of the tested
models, what happens?
issue mostly bypassed by classical Bayesian procedures
theoretically produces an α∗ away from both 0 and 1
possible (recommended?) inclusion of a Bayesian
non-parametric model within alternatives
Towards which decision?
And if we have to make a decision?
soft consider behaviour of posterior under prior predictives
or posterior predictive [e.g., prior predictive does not exist]
boostrapping behaviour
comparison with Bayesian non-parametric solution
hard rethink the loss function
Conclusion
many applications of the Bayesian paradigm concentrate on
the comparison of scientific theories and on testing of null
hypotheses
natural tendency to default to Bayes factors
poorly understood sensitivity to prior modeling and posterior
calibration
c Time is ripe for a paradigm shift
Down with Bayes factors!
c Time is ripe for a paradigm shift
original testing problem replaced with a better controlled
estimation target
allow for posterior variability over the component frequency as
opposed to deterministic Bayes factors
range of acceptance, rejection and indecision conclusions
easily calibrated by simulation
posterior medians quickly settling near the boundary values of
0 and 1
potential derivation of a Bayesian b-value by looking at the
posterior area under the tail of the distribution of the weight
Prior modelling
c Time is ripe for a paradigm shift
Partly common parameterisation always feasible and hence
allows for reference priors
removal of the absolute prohibition of improper priors in
hypothesis testing
prior on the weight α shows sensitivity that naturally vanishes
as the sample size increases
default value of a0 = 0.5 in the Beta prior
Computing aspects
c Time is ripe for a paradigm shift
proposal that does not induce additional computational strain
when algorithmic solutions exist for both models, they can be
recycled towards estimating the encompassing mixture
easier than in standard mixture problems due to common
parameters that allow for original MCMC samplers to be
turned into proposals
Gibbs sampling completions useful for assessing potential
outliers but not essential to achieve a conclusion about the
overall problem

Más contenido relacionado

La actualidad más candente

Approximate Bayesian model choice via random forests
Approximate Bayesian model choice via random forestsApproximate Bayesian model choice via random forests
Approximate Bayesian model choice via random forestsChristian Robert
 
Can we estimate a constant?
Can we estimate a constant?Can we estimate a constant?
Can we estimate a constant?Christian Robert
 
Tutorial on testing at O'Bayes 2015, Valencià, June 1, 2015
Tutorial on testing at O'Bayes 2015, Valencià, June 1, 2015Tutorial on testing at O'Bayes 2015, Valencià, June 1, 2015
Tutorial on testing at O'Bayes 2015, Valencià, June 1, 2015Christian Robert
 
An overview of Bayesian testing
An overview of Bayesian testingAn overview of Bayesian testing
An overview of Bayesian testingChristian Robert
 
Reliable ABC model choice via random forests
Reliable ABC model choice via random forestsReliable ABC model choice via random forests
Reliable ABC model choice via random forestsChristian Robert
 
better together? statistical learning in models made of modules
better together? statistical learning in models made of modulesbetter together? statistical learning in models made of modules
better together? statistical learning in models made of modulesChristian Robert
 
accurate ABC Oliver Ratmann
accurate ABC Oliver Ratmannaccurate ABC Oliver Ratmann
accurate ABC Oliver Ratmannolli0601
 
"reflections on the probability space induced by moment conditions with impli...
"reflections on the probability space induced by moment conditions with impli..."reflections on the probability space induced by moment conditions with impli...
"reflections on the probability space induced by moment conditions with impli...Christian Robert
 
Convergence of ABC methods
Convergence of ABC methodsConvergence of ABC methods
Convergence of ABC methodsChristian Robert
 
NBBC15, Reyjavik, June 08, 2015
NBBC15, Reyjavik, June 08, 2015NBBC15, Reyjavik, June 08, 2015
NBBC15, Reyjavik, June 08, 2015Christian Robert
 
Likelihood-free Design: a discussion
Likelihood-free Design: a discussionLikelihood-free Design: a discussion
Likelihood-free Design: a discussionChristian Robert
 
Laplace's Demon: seminar #1
Laplace's Demon: seminar #1Laplace's Demon: seminar #1
Laplace's Demon: seminar #1Christian Robert
 
NCE, GANs & VAEs (and maybe BAC)
NCE, GANs & VAEs (and maybe BAC)NCE, GANs & VAEs (and maybe BAC)
NCE, GANs & VAEs (and maybe BAC)Christian Robert
 
ABC short course: introduction chapters
ABC short course: introduction chaptersABC short course: introduction chapters
ABC short course: introduction chaptersChristian Robert
 
ABC short course: survey chapter
ABC short course: survey chapterABC short course: survey chapter
ABC short course: survey chapterChristian Robert
 
ABC short course: final chapters
ABC short course: final chaptersABC short course: final chapters
ABC short course: final chaptersChristian Robert
 

La actualidad más candente (20)

Approximate Bayesian model choice via random forests
Approximate Bayesian model choice via random forestsApproximate Bayesian model choice via random forests
Approximate Bayesian model choice via random forests
 
Can we estimate a constant?
Can we estimate a constant?Can we estimate a constant?
Can we estimate a constant?
 
Tutorial on testing at O'Bayes 2015, Valencià, June 1, 2015
Tutorial on testing at O'Bayes 2015, Valencià, June 1, 2015Tutorial on testing at O'Bayes 2015, Valencià, June 1, 2015
Tutorial on testing at O'Bayes 2015, Valencià, June 1, 2015
 
An overview of Bayesian testing
An overview of Bayesian testingAn overview of Bayesian testing
An overview of Bayesian testing
 
ABC workshop: 17w5025
ABC workshop: 17w5025ABC workshop: 17w5025
ABC workshop: 17w5025
 
Reliable ABC model choice via random forests
Reliable ABC model choice via random forestsReliable ABC model choice via random forests
Reliable ABC model choice via random forests
 
better together? statistical learning in models made of modules
better together? statistical learning in models made of modulesbetter together? statistical learning in models made of modules
better together? statistical learning in models made of modules
 
accurate ABC Oliver Ratmann
accurate ABC Oliver Ratmannaccurate ABC Oliver Ratmann
accurate ABC Oliver Ratmann
 
"reflections on the probability space induced by moment conditions with impli...
"reflections on the probability space induced by moment conditions with impli..."reflections on the probability space induced by moment conditions with impli...
"reflections on the probability space induced by moment conditions with impli...
 
Convergence of ABC methods
Convergence of ABC methodsConvergence of ABC methods
Convergence of ABC methods
 
NBBC15, Reyjavik, June 08, 2015
NBBC15, Reyjavik, June 08, 2015NBBC15, Reyjavik, June 08, 2015
NBBC15, Reyjavik, June 08, 2015
 
Boston talk
Boston talkBoston talk
Boston talk
 
Likelihood-free Design: a discussion
Likelihood-free Design: a discussionLikelihood-free Design: a discussion
Likelihood-free Design: a discussion
 
Laplace's Demon: seminar #1
Laplace's Demon: seminar #1Laplace's Demon: seminar #1
Laplace's Demon: seminar #1
 
NCE, GANs & VAEs (and maybe BAC)
NCE, GANs & VAEs (and maybe BAC)NCE, GANs & VAEs (and maybe BAC)
NCE, GANs & VAEs (and maybe BAC)
 
ABC short course: introduction chapters
ABC short course: introduction chaptersABC short course: introduction chapters
ABC short course: introduction chapters
 
ABC short course: survey chapter
ABC short course: survey chapterABC short course: survey chapter
ABC short course: survey chapter
 
ABC-Gibbs
ABC-GibbsABC-Gibbs
ABC-Gibbs
 
Big model, big data
Big model, big dataBig model, big data
Big model, big data
 
ABC short course: final chapters
ABC short course: final chaptersABC short course: final chapters
ABC short course: final chapters
 

Destacado

3rd NIPS Workshop on PROBABILISTIC PROGRAMMING
3rd NIPS Workshop on PROBABILISTIC PROGRAMMING3rd NIPS Workshop on PROBABILISTIC PROGRAMMING
3rd NIPS Workshop on PROBABILISTIC PROGRAMMINGChristian Robert
 
ABC and empirical likelihood
ABC and empirical likelihoodABC and empirical likelihood
ABC and empirical likelihoodChristian Robert
 
folding Markov chains: the origaMCMC
folding Markov chains: the origaMCMCfolding Markov chains: the origaMCMC
folding Markov chains: the origaMCMCChristian Robert
 
ABC short course: model choice chapter
ABC short course: model choice chapterABC short course: model choice chapter
ABC short course: model choice chapterChristian Robert
 
Monte carlo
Monte carloMonte carlo
Monte carloIIBM
 
Introducing Monte Carlo Methods with R
Introducing Monte Carlo Methods with RIntroducing Monte Carlo Methods with R
Introducing Monte Carlo Methods with RChristian Robert
 
Simulation (AMSI Public Lecture)
Simulation (AMSI Public Lecture)Simulation (AMSI Public Lecture)
Simulation (AMSI Public Lecture)Christian Robert
 
Introduction to MCMC methods
Introduction to MCMC methodsIntroduction to MCMC methods
Introduction to MCMC methodsChristian Robert
 
Monte Carlo Statistical Methods
Monte Carlo Statistical MethodsMonte Carlo Statistical Methods
Monte Carlo Statistical MethodsChristian Robert
 
Monte carlo simulation
Monte carlo simulationMonte carlo simulation
Monte carlo simulationMissAnam
 
Monte carlo simulation
Monte carlo simulationMonte carlo simulation
Monte carlo simulationRajesh Piryani
 

Destacado (13)

Richard Everitt's slides
Richard Everitt's slidesRichard Everitt's slides
Richard Everitt's slides
 
3rd NIPS Workshop on PROBABILISTIC PROGRAMMING
3rd NIPS Workshop on PROBABILISTIC PROGRAMMING3rd NIPS Workshop on PROBABILISTIC PROGRAMMING
3rd NIPS Workshop on PROBABILISTIC PROGRAMMING
 
ABC and empirical likelihood
ABC and empirical likelihoodABC and empirical likelihood
ABC and empirical likelihood
 
folding Markov chains: the origaMCMC
folding Markov chains: the origaMCMCfolding Markov chains: the origaMCMC
folding Markov chains: the origaMCMC
 
ABC short course: model choice chapter
ABC short course: model choice chapterABC short course: model choice chapter
ABC short course: model choice chapter
 
Monte carlo
Monte carloMonte carlo
Monte carlo
 
Introducing Monte Carlo Methods with R
Introducing Monte Carlo Methods with RIntroducing Monte Carlo Methods with R
Introducing Monte Carlo Methods with R
 
Simulation (AMSI Public Lecture)
Simulation (AMSI Public Lecture)Simulation (AMSI Public Lecture)
Simulation (AMSI Public Lecture)
 
Introduction to MCMC methods
Introduction to MCMC methodsIntroduction to MCMC methods
Introduction to MCMC methods
 
Monte Carlo Statistical Methods
Monte Carlo Statistical MethodsMonte Carlo Statistical Methods
Monte Carlo Statistical Methods
 
Monte carlo
Monte carloMonte carlo
Monte carlo
 
Monte carlo simulation
Monte carlo simulationMonte carlo simulation
Monte carlo simulation
 
Monte carlo simulation
Monte carlo simulationMonte carlo simulation
Monte carlo simulation
 

Similar a Statistics symposium talk, Harvard University

original
originaloriginal
originalbutest
 
Yes III: Computational methods for model choice
Yes III: Computational methods for model choiceYes III: Computational methods for model choice
Yes III: Computational methods for model choiceChristian Robert
 
Course on Bayesian computational methods
Course on Bayesian computational methodsCourse on Bayesian computational methods
Course on Bayesian computational methodsChristian Robert
 
San Antonio short course, March 2010
San Antonio short course, March 2010San Antonio short course, March 2010
San Antonio short course, March 2010Christian Robert
 
Bayesian statistics using r intro
Bayesian statistics using r   introBayesian statistics using r   intro
Bayesian statistics using r introBayesLaplace1
 
Bayes Classification
Bayes ClassificationBayes Classification
Bayes Classificationsathish sak
 
Unit-2 Bayes Decision Theory.pptx
Unit-2 Bayes Decision Theory.pptxUnit-2 Bayes Decision Theory.pptx
Unit-2 Bayes Decision Theory.pptxavinashBajpayee1
 
Bayesian decision making in clinical research
Bayesian decision making in clinical researchBayesian decision making in clinical research
Bayesian decision making in clinical researchBhaswat Chakraborty
 
Elementary Probability and Information Theory
Elementary Probability and Information TheoryElementary Probability and Information Theory
Elementary Probability and Information TheoryKhalidSaghiri2
 
Equational axioms for probability calculus and modelling of Likelihood ratio ...
Equational axioms for probability calculus and modelling of Likelihood ratio ...Equational axioms for probability calculus and modelling of Likelihood ratio ...
Equational axioms for probability calculus and modelling of Likelihood ratio ...Advanced-Concepts-Team
 
Stat451 - Life Distribution
Stat451 - Life DistributionStat451 - Life Distribution
Stat451 - Life Distributionnpxquynh
 
Intro to Model Selection
Intro to Model SelectionIntro to Model Selection
Intro to Model Selectionchenhm
 
“I. Conjugate priors”
“I. Conjugate priors”“I. Conjugate priors”
“I. Conjugate priors”Steven Scott
 
01.conditional prob
01.conditional prob01.conditional prob
01.conditional probSteven Scott
 
01.ConditionalProb.pdf in the Bayes_intro folder
01.ConditionalProb.pdf in the Bayes_intro folder01.ConditionalProb.pdf in the Bayes_intro folder
01.ConditionalProb.pdf in the Bayes_intro folderSteven Scott
 
02.bayesian learning
02.bayesian learning02.bayesian learning
02.bayesian learningSteven Scott
 
02.bayesian learning
02.bayesian learning02.bayesian learning
02.bayesian learningSteven Scott
 
Unit IV UNCERTAINITY AND STATISTICAL REASONING in AI K.Sundar,AP/CSE,VEC
Unit IV UNCERTAINITY AND STATISTICAL REASONING in AI K.Sundar,AP/CSE,VECUnit IV UNCERTAINITY AND STATISTICAL REASONING in AI K.Sundar,AP/CSE,VEC
Unit IV UNCERTAINITY AND STATISTICAL REASONING in AI K.Sundar,AP/CSE,VECsundarKanagaraj1
 

Similar a Statistics symposium talk, Harvard University (20)

original
originaloriginal
original
 
Yes III: Computational methods for model choice
Yes III: Computational methods for model choiceYes III: Computational methods for model choice
Yes III: Computational methods for model choice
 
Course on Bayesian computational methods
Course on Bayesian computational methodsCourse on Bayesian computational methods
Course on Bayesian computational methods
 
San Antonio short course, March 2010
San Antonio short course, March 2010San Antonio short course, March 2010
San Antonio short course, March 2010
 
Bayesian statistics using r intro
Bayesian statistics using r   introBayesian statistics using r   intro
Bayesian statistics using r intro
 
Bayes Classification
Bayes ClassificationBayes Classification
Bayes Classification
 
Unit-2 Bayes Decision Theory.pptx
Unit-2 Bayes Decision Theory.pptxUnit-2 Bayes Decision Theory.pptx
Unit-2 Bayes Decision Theory.pptx
 
Bayesian decision making in clinical research
Bayesian decision making in clinical researchBayesian decision making in clinical research
Bayesian decision making in clinical research
 
Elementary Probability and Information Theory
Elementary Probability and Information TheoryElementary Probability and Information Theory
Elementary Probability and Information Theory
 
Equational axioms for probability calculus and modelling of Likelihood ratio ...
Equational axioms for probability calculus and modelling of Likelihood ratio ...Equational axioms for probability calculus and modelling of Likelihood ratio ...
Equational axioms for probability calculus and modelling of Likelihood ratio ...
 
Stat451 - Life Distribution
Stat451 - Life DistributionStat451 - Life Distribution
Stat451 - Life Distribution
 
2018 MUMS Fall Course - Introduction to statistical and mathematical model un...
2018 MUMS Fall Course - Introduction to statistical and mathematical model un...2018 MUMS Fall Course - Introduction to statistical and mathematical model un...
2018 MUMS Fall Course - Introduction to statistical and mathematical model un...
 
Intro to Model Selection
Intro to Model SelectionIntro to Model Selection
Intro to Model Selection
 
“I. Conjugate priors”
“I. Conjugate priors”“I. Conjugate priors”
“I. Conjugate priors”
 
01.conditional prob
01.conditional prob01.conditional prob
01.conditional prob
 
01.ConditionalProb.pdf in the Bayes_intro folder
01.ConditionalProb.pdf in the Bayes_intro folder01.ConditionalProb.pdf in the Bayes_intro folder
01.ConditionalProb.pdf in the Bayes_intro folder
 
02.bayesian learning
02.bayesian learning02.bayesian learning
02.bayesian learning
 
02.bayesian learning
02.bayesian learning02.bayesian learning
02.bayesian learning
 
bayesian learning
bayesian learningbayesian learning
bayesian learning
 
Unit IV UNCERTAINITY AND STATISTICAL REASONING in AI K.Sundar,AP/CSE,VEC
Unit IV UNCERTAINITY AND STATISTICAL REASONING in AI K.Sundar,AP/CSE,VECUnit IV UNCERTAINITY AND STATISTICAL REASONING in AI K.Sundar,AP/CSE,VEC
Unit IV UNCERTAINITY AND STATISTICAL REASONING in AI K.Sundar,AP/CSE,VEC
 

Más de Christian Robert

Asymptotics of ABC, lecture, Collège de France
Asymptotics of ABC, lecture, Collège de FranceAsymptotics of ABC, lecture, Collège de France
Asymptotics of ABC, lecture, Collège de FranceChristian Robert
 
Workshop in honour of Don Poskitt and Gael Martin
Workshop in honour of Don Poskitt and Gael MartinWorkshop in honour of Don Poskitt and Gael Martin
Workshop in honour of Don Poskitt and Gael MartinChristian Robert
 
How many components in a mixture?
How many components in a mixture?How many components in a mixture?
How many components in a mixture?Christian Robert
 
Testing for mixtures at BNP 13
Testing for mixtures at BNP 13Testing for mixtures at BNP 13
Testing for mixtures at BNP 13Christian Robert
 
Inferring the number of components: dream or reality?
Inferring the number of components: dream or reality?Inferring the number of components: dream or reality?
Inferring the number of components: dream or reality?Christian Robert
 
Testing for mixtures by seeking components
Testing for mixtures by seeking componentsTesting for mixtures by seeking components
Testing for mixtures by seeking componentsChristian Robert
 
discussion on Bayesian restricted likelihood
discussion on Bayesian restricted likelihooddiscussion on Bayesian restricted likelihood
discussion on Bayesian restricted likelihoodChristian Robert
 
Coordinate sampler : A non-reversible Gibbs-like sampler
Coordinate sampler : A non-reversible Gibbs-like samplerCoordinate sampler : A non-reversible Gibbs-like sampler
Coordinate sampler : A non-reversible Gibbs-like samplerChristian Robert
 
CISEA 2019: ABC consistency and convergence
CISEA 2019: ABC consistency and convergenceCISEA 2019: ABC consistency and convergence
CISEA 2019: ABC consistency and convergenceChristian Robert
 
a discussion of Chib, Shin, and Simoni (2017-8) Bayesian moment models
a discussion of Chib, Shin, and Simoni (2017-8) Bayesian moment modelsa discussion of Chib, Shin, and Simoni (2017-8) Bayesian moment models
a discussion of Chib, Shin, and Simoni (2017-8) Bayesian moment modelsChristian Robert
 
ABC based on Wasserstein distances
ABC based on Wasserstein distancesABC based on Wasserstein distances
ABC based on Wasserstein distancesChristian Robert
 
Poster for Bayesian Statistics in the Big Data Era conference
Poster for Bayesian Statistics in the Big Data Era conferencePoster for Bayesian Statistics in the Big Data Era conference
Poster for Bayesian Statistics in the Big Data Era conferenceChristian Robert
 

Más de Christian Robert (20)

Asymptotics of ABC, lecture, Collège de France
Asymptotics of ABC, lecture, Collège de FranceAsymptotics of ABC, lecture, Collège de France
Asymptotics of ABC, lecture, Collège de France
 
Workshop in honour of Don Poskitt and Gael Martin
Workshop in honour of Don Poskitt and Gael MartinWorkshop in honour of Don Poskitt and Gael Martin
Workshop in honour of Don Poskitt and Gael Martin
 
discussion of ICML23.pdf
discussion of ICML23.pdfdiscussion of ICML23.pdf
discussion of ICML23.pdf
 
How many components in a mixture?
How many components in a mixture?How many components in a mixture?
How many components in a mixture?
 
restore.pdf
restore.pdfrestore.pdf
restore.pdf
 
Testing for mixtures at BNP 13
Testing for mixtures at BNP 13Testing for mixtures at BNP 13
Testing for mixtures at BNP 13
 
Inferring the number of components: dream or reality?
Inferring the number of components: dream or reality?Inferring the number of components: dream or reality?
Inferring the number of components: dream or reality?
 
CDT 22 slides.pdf
CDT 22 slides.pdfCDT 22 slides.pdf
CDT 22 slides.pdf
 
Testing for mixtures by seeking components
Testing for mixtures by seeking componentsTesting for mixtures by seeking components
Testing for mixtures by seeking components
 
discussion on Bayesian restricted likelihood
discussion on Bayesian restricted likelihooddiscussion on Bayesian restricted likelihood
discussion on Bayesian restricted likelihood
 
ABC-Gibbs
ABC-GibbsABC-Gibbs
ABC-Gibbs
 
Coordinate sampler : A non-reversible Gibbs-like sampler
Coordinate sampler : A non-reversible Gibbs-like samplerCoordinate sampler : A non-reversible Gibbs-like sampler
Coordinate sampler : A non-reversible Gibbs-like sampler
 
eugenics and statistics
eugenics and statisticseugenics and statistics
eugenics and statistics
 
ABC-Gibbs
ABC-GibbsABC-Gibbs
ABC-Gibbs
 
asymptotics of ABC
asymptotics of ABCasymptotics of ABC
asymptotics of ABC
 
the ABC of ABC
the ABC of ABCthe ABC of ABC
the ABC of ABC
 
CISEA 2019: ABC consistency and convergence
CISEA 2019: ABC consistency and convergenceCISEA 2019: ABC consistency and convergence
CISEA 2019: ABC consistency and convergence
 
a discussion of Chib, Shin, and Simoni (2017-8) Bayesian moment models
a discussion of Chib, Shin, and Simoni (2017-8) Bayesian moment modelsa discussion of Chib, Shin, and Simoni (2017-8) Bayesian moment models
a discussion of Chib, Shin, and Simoni (2017-8) Bayesian moment models
 
ABC based on Wasserstein distances
ABC based on Wasserstein distancesABC based on Wasserstein distances
ABC based on Wasserstein distances
 
Poster for Bayesian Statistics in the Big Data Era conference
Poster for Bayesian Statistics in the Big Data Era conferencePoster for Bayesian Statistics in the Big Data Era conference
Poster for Bayesian Statistics in the Big Data Era conference
 

Último

Fertilization: Sperm and the egg—collectively called the gametes—fuse togethe...
Fertilization: Sperm and the egg—collectively called the gametes—fuse togethe...Fertilization: Sperm and the egg—collectively called the gametes—fuse togethe...
Fertilization: Sperm and the egg—collectively called the gametes—fuse togethe...D. B. S. College Kanpur
 
Environmental Biotechnology Topic:- Microbial Biosensor
Environmental Biotechnology Topic:- Microbial BiosensorEnvironmental Biotechnology Topic:- Microbial Biosensor
Environmental Biotechnology Topic:- Microbial Biosensorsonawaneprad
 
Pests of castor_Binomics_Identification_Dr.UPR.pdf
Pests of castor_Binomics_Identification_Dr.UPR.pdfPests of castor_Binomics_Identification_Dr.UPR.pdf
Pests of castor_Binomics_Identification_Dr.UPR.pdfPirithiRaju
 
RESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptx
RESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptxRESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptx
RESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptxFarihaAbdulRasheed
 
STOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptx
STOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptxSTOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptx
STOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptxMurugaveni B
 
Citronella presentation SlideShare mani upadhyay
Citronella presentation SlideShare mani upadhyayCitronella presentation SlideShare mani upadhyay
Citronella presentation SlideShare mani upadhyayupadhyaymani499
 
BUMI DAN ANTARIKSA PROJEK IPAS SMK KELAS X.pdf
BUMI DAN ANTARIKSA PROJEK IPAS SMK KELAS X.pdfBUMI DAN ANTARIKSA PROJEK IPAS SMK KELAS X.pdf
BUMI DAN ANTARIKSA PROJEK IPAS SMK KELAS X.pdfWildaNurAmalia2
 
Speech, hearing, noise, intelligibility.pptx
Speech, hearing, noise, intelligibility.pptxSpeech, hearing, noise, intelligibility.pptx
Speech, hearing, noise, intelligibility.pptxpriyankatabhane
 
Pests of Blackgram, greengram, cowpea_Dr.UPR.pdf
Pests of Blackgram, greengram, cowpea_Dr.UPR.pdfPests of Blackgram, greengram, cowpea_Dr.UPR.pdf
Pests of Blackgram, greengram, cowpea_Dr.UPR.pdfPirithiRaju
 
User Guide: Orion™ Weather Station (Columbia Weather Systems)
User Guide: Orion™ Weather Station (Columbia Weather Systems)User Guide: Orion™ Weather Station (Columbia Weather Systems)
User Guide: Orion™ Weather Station (Columbia Weather Systems)Columbia Weather Systems
 
Pests of Bengal gram_Identification_Dr.UPR.pdf
Pests of Bengal gram_Identification_Dr.UPR.pdfPests of Bengal gram_Identification_Dr.UPR.pdf
Pests of Bengal gram_Identification_Dr.UPR.pdfPirithiRaju
 
User Guide: Magellan MX™ Weather Station
User Guide: Magellan MX™ Weather StationUser Guide: Magellan MX™ Weather Station
User Guide: Magellan MX™ Weather StationColumbia Weather Systems
 
REVISTA DE BIOLOGIA E CIÊNCIAS DA TERRA ISSN 1519-5228 - Artigo_Bioterra_V24_...
REVISTA DE BIOLOGIA E CIÊNCIAS DA TERRA ISSN 1519-5228 - Artigo_Bioterra_V24_...REVISTA DE BIOLOGIA E CIÊNCIAS DA TERRA ISSN 1519-5228 - Artigo_Bioterra_V24_...
REVISTA DE BIOLOGIA E CIÊNCIAS DA TERRA ISSN 1519-5228 - Artigo_Bioterra_V24_...Universidade Federal de Sergipe - UFS
 
FREE NURSING BUNDLE FOR NURSES.PDF by na
FREE NURSING BUNDLE FOR NURSES.PDF by naFREE NURSING BUNDLE FOR NURSES.PDF by na
FREE NURSING BUNDLE FOR NURSES.PDF by naJASISJULIANOELYNV
 
Pests of safflower_Binomics_Identification_Dr.UPR.pdf
Pests of safflower_Binomics_Identification_Dr.UPR.pdfPests of safflower_Binomics_Identification_Dr.UPR.pdf
Pests of safflower_Binomics_Identification_Dr.UPR.pdfPirithiRaju
 
GenBio2 - Lesson 1 - Introduction to Genetics.pptx
GenBio2 - Lesson 1 - Introduction to Genetics.pptxGenBio2 - Lesson 1 - Introduction to Genetics.pptx
GenBio2 - Lesson 1 - Introduction to Genetics.pptxBerniceCayabyab1
 
Behavioral Disorder: Schizophrenia & it's Case Study.pdf
Behavioral Disorder: Schizophrenia & it's Case Study.pdfBehavioral Disorder: Schizophrenia & it's Case Study.pdf
Behavioral Disorder: Schizophrenia & it's Case Study.pdfSELF-EXPLANATORY
 
User Guide: Pulsar™ Weather Station (Columbia Weather Systems)
User Guide: Pulsar™ Weather Station (Columbia Weather Systems)User Guide: Pulsar™ Weather Station (Columbia Weather Systems)
User Guide: Pulsar™ Weather Station (Columbia Weather Systems)Columbia Weather Systems
 
Topic 9- General Principles of International Law.pptx
Topic 9- General Principles of International Law.pptxTopic 9- General Principles of International Law.pptx
Topic 9- General Principles of International Law.pptxJorenAcuavera1
 

Último (20)

Fertilization: Sperm and the egg—collectively called the gametes—fuse togethe...
Fertilization: Sperm and the egg—collectively called the gametes—fuse togethe...Fertilization: Sperm and the egg—collectively called the gametes—fuse togethe...
Fertilization: Sperm and the egg—collectively called the gametes—fuse togethe...
 
Environmental Biotechnology Topic:- Microbial Biosensor
Environmental Biotechnology Topic:- Microbial BiosensorEnvironmental Biotechnology Topic:- Microbial Biosensor
Environmental Biotechnology Topic:- Microbial Biosensor
 
Volatile Oils Pharmacognosy And Phytochemistry -I
Volatile Oils Pharmacognosy And Phytochemistry -IVolatile Oils Pharmacognosy And Phytochemistry -I
Volatile Oils Pharmacognosy And Phytochemistry -I
 
Pests of castor_Binomics_Identification_Dr.UPR.pdf
Pests of castor_Binomics_Identification_Dr.UPR.pdfPests of castor_Binomics_Identification_Dr.UPR.pdf
Pests of castor_Binomics_Identification_Dr.UPR.pdf
 
RESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptx
RESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptxRESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptx
RESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptx
 
STOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptx
STOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptxSTOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptx
STOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptx
 
Citronella presentation SlideShare mani upadhyay
Citronella presentation SlideShare mani upadhyayCitronella presentation SlideShare mani upadhyay
Citronella presentation SlideShare mani upadhyay
 
BUMI DAN ANTARIKSA PROJEK IPAS SMK KELAS X.pdf
BUMI DAN ANTARIKSA PROJEK IPAS SMK KELAS X.pdfBUMI DAN ANTARIKSA PROJEK IPAS SMK KELAS X.pdf
BUMI DAN ANTARIKSA PROJEK IPAS SMK KELAS X.pdf
 
Speech, hearing, noise, intelligibility.pptx
Speech, hearing, noise, intelligibility.pptxSpeech, hearing, noise, intelligibility.pptx
Speech, hearing, noise, intelligibility.pptx
 
Pests of Blackgram, greengram, cowpea_Dr.UPR.pdf
Pests of Blackgram, greengram, cowpea_Dr.UPR.pdfPests of Blackgram, greengram, cowpea_Dr.UPR.pdf
Pests of Blackgram, greengram, cowpea_Dr.UPR.pdf
 
User Guide: Orion™ Weather Station (Columbia Weather Systems)
User Guide: Orion™ Weather Station (Columbia Weather Systems)User Guide: Orion™ Weather Station (Columbia Weather Systems)
User Guide: Orion™ Weather Station (Columbia Weather Systems)
 
Pests of Bengal gram_Identification_Dr.UPR.pdf
Pests of Bengal gram_Identification_Dr.UPR.pdfPests of Bengal gram_Identification_Dr.UPR.pdf
Pests of Bengal gram_Identification_Dr.UPR.pdf
 
User Guide: Magellan MX™ Weather Station
User Guide: Magellan MX™ Weather StationUser Guide: Magellan MX™ Weather Station
User Guide: Magellan MX™ Weather Station
 
REVISTA DE BIOLOGIA E CIÊNCIAS DA TERRA ISSN 1519-5228 - Artigo_Bioterra_V24_...
REVISTA DE BIOLOGIA E CIÊNCIAS DA TERRA ISSN 1519-5228 - Artigo_Bioterra_V24_...REVISTA DE BIOLOGIA E CIÊNCIAS DA TERRA ISSN 1519-5228 - Artigo_Bioterra_V24_...
REVISTA DE BIOLOGIA E CIÊNCIAS DA TERRA ISSN 1519-5228 - Artigo_Bioterra_V24_...
 
FREE NURSING BUNDLE FOR NURSES.PDF by na
FREE NURSING BUNDLE FOR NURSES.PDF by naFREE NURSING BUNDLE FOR NURSES.PDF by na
FREE NURSING BUNDLE FOR NURSES.PDF by na
 
Pests of safflower_Binomics_Identification_Dr.UPR.pdf
Pests of safflower_Binomics_Identification_Dr.UPR.pdfPests of safflower_Binomics_Identification_Dr.UPR.pdf
Pests of safflower_Binomics_Identification_Dr.UPR.pdf
 
GenBio2 - Lesson 1 - Introduction to Genetics.pptx
GenBio2 - Lesson 1 - Introduction to Genetics.pptxGenBio2 - Lesson 1 - Introduction to Genetics.pptx
GenBio2 - Lesson 1 - Introduction to Genetics.pptx
 
Behavioral Disorder: Schizophrenia & it's Case Study.pdf
Behavioral Disorder: Schizophrenia & it's Case Study.pdfBehavioral Disorder: Schizophrenia & it's Case Study.pdf
Behavioral Disorder: Schizophrenia & it's Case Study.pdf
 
User Guide: Pulsar™ Weather Station (Columbia Weather Systems)
User Guide: Pulsar™ Weather Station (Columbia Weather Systems)User Guide: Pulsar™ Weather Station (Columbia Weather Systems)
User Guide: Pulsar™ Weather Station (Columbia Weather Systems)
 
Topic 9- General Principles of International Law.pptx
Topic 9- General Principles of International Law.pptxTopic 9- General Principles of International Law.pptx
Topic 9- General Principles of International Law.pptx
 

Statistics symposium talk, Harvard University

  • 1. Testing as mixture estimation: the vexing dilemma of Bayes tests Christian P. Robert Universit´e Paris-Dauphine, Paris & University of Warwick, Coventry Joint work with K. Kamary, K. Mengersen & J. Rousseau
  • 2. CRiSM workshop, Warwick U, 20-22 April, 2016 Estimating Constants wide range of computational methods for approximating normalising constants wide range of communities novel challenges associated with large data and highly complex models 13 talks, plus two poster sessions [England in April, where else...?!]
  • 3. Outline Bayesian testing of hypotheses Noninformative solutions Testing via mixtures Paradigm shift
  • 4. Testing issues Hypothesis testing central problem of statistical inference witness the recent ASA’s statement on p-values (Wasserstein, 2016) dramatically differentiating feature between classical and Bayesian paradigms wide open to controversy and divergent opinions, includ. within the Bayesian community non-informative Bayesian testing case mostly unresolved, witness the Jeffreys–Lindley paradox [Berger (2003), Mayo & Cox (2006), Gelman (2008)]
  • 5. ”proper use and interpretation of the p-value” ”Scientific conclusions and business or policy decisions should not be based only on whether a p-value passes a specific threshold.” ”By itself, a p-value does not provide a good measure of evidence regarding a model or hypothesis.” [Wasserstein, 2016]
  • 6. ”proper use and interpretation of the p-value” ”Scientific conclusions and business or policy decisions should not be based only on whether a p-value passes a specific threshold.” ”By itself, a p-value does not provide a good measure of evidence regarding a model or hypothesis.” [Wasserstein, 2016]
  • 7. Bayesian testing of hypotheses Bayesian model selection as comparison of k potential statistical models towards the selection of model that fits the data “best” mostly accepted perspective: it does not primarily seek to identify which model is “true”, but compares fits tools like Bayes factor naturally include a penalisation addressing model complexity, mimicked by Bayes Information (BIC) and Deviance Information (DIC) criteria posterior predictive tools successfully advocated in Gelman et al. (2013) even though they involve double use of data
  • 8. Bayesian testing of hypotheses Bayesian model selection as comparison of k potential statistical models towards the selection of model that fits the data “best” mostly accepted perspective: it does not primarily seek to identify which model is “true”, but compares fits tools like Bayes factor naturally include a penalisation addressing model complexity, mimicked by Bayes Information (BIC) and Deviance Information (DIC) criteria posterior predictive tools successfully advocated in Gelman et al. (2013) even though they involve double use of data
  • 9. Some difficulties tension between using (i) posterior probabilities justified by binary loss function but depending on unnatural prior weights, and (ii) Bayes factors that eliminate dependence but escape direct connection with posterior, unless prior weights are integrated within loss delicate interpretation (or calibration) of strength of the Bayes factor towards supporting a given hypothesis or model, because not a Bayesian decision rule similar difficulty with posterior probabilities, with tendency to interpret them as p-values: only report of respective strengths of fitting data to both models
  • 10. Some difficulties tension between using (i) posterior probabilities justified by binary loss function but depending on unnatural prior weights, and (ii) Bayes factors that eliminate dependence but escape direct connection with posterior, unless prior weights are integrated within loss referring to a fixed and arbitrary cuttoff value falls into the same difficulties as regular p-values no “third way” like opting out from a decision
  • 11. Some further difficulties long-lasting impact of prior modeling, i.e., choice of prior distributions on parameters of both models, despite overall consistency proof for Bayes factor discontinuity in valid use of improper priors since they are not justified in most testing situations, leading to many alternative and ad hoc solutions, where data is either used twice or split in artificial ways [or further tortured into confession] binary (accept vs. reject) outcome more suited for immediate decision (if any) than for model evaluation, in connection with rudimentary loss function [atavistic remain of Neyman-Pearson formalism]
  • 12. Some additional difficulties related impossibility to ascertain simultaneous misfit or to detect outliers no assessment of uncertainty associated with decision itself besides posterior probability difficult computation of marginal likelihoods in most settings with further controversies about which algorithm to adopt strong dependence of posterior probabilities on conditioning statistics (ABC), which undermines their validity for model assessment temptation to create pseudo-frequentist equivalents such as q-values with even less Bayesian justifications c time for a paradigm shift back to some solutions
  • 13. Bayesian tests 101 Associated with the risk R(θ, δ) = Eθ[L(θ, δ(x))] = Pθ(δ(x) = 0) if θ ∈ Θ0, Pθ(δ(x) = 1) otherwise, Bayes test The Bayes estimator associated with π and with the 0 − 1 loss is δπ (x) = 1 if P(θ ∈ Θ0|x) > P(θ ∈ Θ0|x), 0 otherwise,
  • 14. Bayesian tests 101 Associated with the risk R(θ, δ) = Eθ[L(θ, δ(x))] = Pθ(δ(x) = 0) if θ ∈ Θ0, Pθ(δ(x) = 1) otherwise, Bayes test The Bayes estimator associated with π and with the 0 − 1 loss is δπ (x) = 1 if P(θ ∈ Θ0|x) > P(θ ∈ Θ0|x), 0 otherwise,
  • 15. Bayesian tests 102 Weights errors differently under both hypotheses: Theorem (Optimal Bayes decision) Under the 0 − 1 loss function L(θ, d) =    0 if d = IΘ0 (θ) a0 if d = 1 and θ ∈ Θ0 a1 if d = 0 and θ ∈ Θ0 the Bayes procedure is δπ (x) = 1 if P(θ ∈ Θ0|x) a0/(a0 + a1) 0 otherwise
  • 16. Bayesian tests 102 Weights errors differently under both hypotheses: Theorem (Optimal Bayes decision) Under the 0 − 1 loss function L(θ, d) =    0 if d = IΘ0 (θ) a0 if d = 1 and θ ∈ Θ0 a1 if d = 0 and θ ∈ Θ0 the Bayes procedure is δπ (x) = 1 if P(θ ∈ Θ0|x) a0/(a0 + a1) 0 otherwise
  • 17. A function of posterior probabilities Definition (Bayes factors) For hypotheses H0 : θ ∈ Θ0 vs. Ha : θ ∈ Θ0 B01 = π(Θ0|x) π(Θc 0|x) π(Θ0) π(Θc 0) = Θ0 f (x|θ)π0(θ)dθ Θc 0 f (x|θ)π1(θ)dθ [Jeffreys, ToP, 1939, V, §5.01] Bayes rule under 0 − 1 loss: acceptance if B01 > {(1 − π(Θ0))/a1}/{π(Θ0)/a0}
  • 18. self-contained concept Outside decision-theoretic environment: eliminates choice of π(Θ0) but depends on the choice of (π0, π1) Bayesian/marginal equivalent to the likelihood ratio Jeffreys’ scale of evidence: if log10(Bπ 10) between 0 and 0.5, evidence against H0 weak, if log10(Bπ 10) 0.5 and 1, evidence substantial, if log10(Bπ 10) 1 and 2, evidence strong and if log10(Bπ 10) above 2, evidence decisive [...fairly arbitrary!]
  • 19. self-contained concept Outside decision-theoretic environment: eliminates choice of π(Θ0) but depends on the choice of (π0, π1) Bayesian/marginal equivalent to the likelihood ratio Jeffreys’ scale of evidence: if log10(Bπ 10) between 0 and 0.5, evidence against H0 weak, if log10(Bπ 10) 0.5 and 1, evidence substantial, if log10(Bπ 10) 1 and 2, evidence strong and if log10(Bπ 10) above 2, evidence decisive [...fairly arbitrary!]
  • 20. self-contained concept Outside decision-theoretic environment: eliminates choice of π(Θ0) but depends on the choice of (π0, π1) Bayesian/marginal equivalent to the likelihood ratio Jeffreys’ scale of evidence: if log10(Bπ 10) between 0 and 0.5, evidence against H0 weak, if log10(Bπ 10) 0.5 and 1, evidence substantial, if log10(Bπ 10) 1 and 2, evidence strong and if log10(Bπ 10) above 2, evidence decisive [...fairly arbitrary!]
  • 21. self-contained concept Outside decision-theoretic environment: eliminates choice of π(Θ0) but depends on the choice of (π0, π1) Bayesian/marginal equivalent to the likelihood ratio Jeffreys’ scale of evidence: if log10(Bπ 10) between 0 and 0.5, evidence against H0 weak, if log10(Bπ 10) 0.5 and 1, evidence substantial, if log10(Bπ 10) 1 and 2, evidence strong and if log10(Bπ 10) above 2, evidence decisive [...fairly arbitrary!]
  • 22. consistency Example of a normal ¯Xn ∼ N(µ, 1/n) when µ ∼ N(0, 1), leading to B01 = (1 + n)−1/2 exp{n2 ¯x2 n /2(1 + n)}
  • 23. Point null hypotheses “Is it of the slightest use to reject a hypothesis until we have some idea of what to put in its place?” H. Jeffreys, ToP(p.390) Particular case H0 : θ = θ0 Take ρ0 = Prπ (θ = θ0) and g1 prior density under Hc 0 . Posterior probability of H0 π(Θ0|x) = f (x|θ0)ρ0 f (x|θ)π(θ) dθ = f (x|θ0)ρ0 f (x|θ0)ρ0 + (1 − ρ0)m1(x) and marginal under Hc 0 m1(x) = Θ1 f (x|θ)g1(θ) dθ. and Bπ 01(x) = f (x|θ0)ρ0 m1(x)(1 − ρ0) ρ0 1 − ρ0 = f (x|θ0) m1(x)
  • 24. Point null hypotheses “Is it of the slightest use to reject a hypothesis until we have some idea of what to put in its place?” H. Jeffreys, ToP(p.390) Particular case H0 : θ = θ0 Take ρ0 = Prπ (θ = θ0) and g1 prior density under Hc 0 . Posterior probability of H0 π(Θ0|x) = f (x|θ0)ρ0 f (x|θ)π(θ) dθ = f (x|θ0)ρ0 f (x|θ0)ρ0 + (1 − ρ0)m1(x) and marginal under Hc 0 m1(x) = Θ1 f (x|θ)g1(θ) dθ. and Bπ 01(x) = f (x|θ0)ρ0 m1(x)(1 − ρ0) ρ0 1 − ρ0 = f (x|θ0) m1(x)
  • 25. regressive illustation caterpillar dataset from Bayesian Essentials (2013): predicting density of caterpillar nests from 10 covariates Estimate Post. Var. log10(BF) (Intercept) 10.8895 6.8229 2.1873 (****) X1 -0.0044 2e-06 1.1571 (***) X2 -0.0533 0.0003 0.6667 (**) X3 0.0673 0.0072 -0.8585 X4 -1.2808 0.2316 0.4726 (*) X5 0.2293 0.0079 0.3861 (*) X6 -0.3532 1.7877 -0.9860 X7 -0.2351 0.7373 -0.9848 X8 0.1793 0.0408 -0.8223 X9 -1.2726 0.5449 -0.3461 X10 -0.4288 0.3934 -0.8949 evidence against H0: (****) decisive, (***) strong, (**) substantial, (*) poor
  • 26. Noninformative proposals Bayesian testing of hypotheses Noninformative solutions Testing via mixtures Paradigm shift
  • 27. what’s special about the Bayes factor?! “The priors do not represent substantive knowledge of the parameters within the model Using Bayes’ theorem, these priors can then be updated to posteriors conditioned on the data that were actually observed In general, the fact that different priors result in different Bayes factors should not come as a surprise The Bayes factor (...) balances the tension between parsimony and goodness of fit, (...) against overfitting the data In induction there is no harm in being occasionally wrong; it is inevitable that we shall be” [Jeffreys, 1939; Ly et al., 2015]
  • 28. what’s wrong with the Bayes factor?! (1/2, 1/2) partition between hypotheses has very little to suggest in terms of extensions central difficulty stands with issue of picking a prior probability of a model unfortunate impossibility of using improper priors in most settings Bayes factors lack direct scaling associated with posterior probability and loss function twofold dependence on subjective prior measure, first in prior weights of models and second in lasting impact of prior modelling on the parameters Bayes factor offers no window into uncertainty associated with decision further reasons in the summary [Robert, 2016]
  • 29. Lindley’s paradox In a normal mean testing problem, ¯xn ∼ N(θ, σ2 /n) , H0 : θ = θ0 , under Jeffreys prior, θ ∼ N(θ0, σ2), the Bayes factor B01(tn) = (1 + n)1/2 exp −nt2 n/2[1 + n] , where tn = √ n|¯xn − θ0|/σ, satisfies B01(tn) n−→∞ −→ ∞ [assuming a fixed tn] [Lindley, 1957]
  • 30. A strong impropriety Improper priors not allowed in Bayes factors: If Θ1 π1(dθ1) = ∞ or Θ2 π2(dθ2) = ∞ then π1 or π2 cannot be coherently normalised while the normalisation matters in the Bayes factor B12 Lack of mathematical justification for “common nuisance parameter” [and prior of] [Berger, Pericchi, and Varshavsky, 1998; Marin and Robert, 2013]
  • 31. A strong impropriety Improper priors not allowed in Bayes factors: If Θ1 π1(dθ1) = ∞ or Θ2 π2(dθ2) = ∞ then π1 or π2 cannot be coherently normalised while the normalisation matters in the Bayes factor B12 Lack of mathematical justification for “common nuisance parameter” [and prior of] [Berger, Pericchi, and Varshavsky, 1998; Marin and Robert, 2013]
  • 32. Vague proper priors are not the solution Taking a proper prior and take a “very large” variance (e.g., BUGS) will most often result in an undefined or ill-defined limit Example (Lindley’s paradox) If testing H0 : θ = 0 when observing x ∼ N(θ, 1), under a normal N(0, α) prior π1(θ), B01(x) α−→∞ −→ 0
  • 33. Vague proper priors are not the solution Taking a proper prior and take a “very large” variance (e.g., BUGS) will most often result in an undefined or ill-defined limit Example (Lindley’s paradox) If testing H0 : θ = 0 when observing x ∼ N(θ, 1), under a normal N(0, α) prior π1(θ), B01(x) α−→∞ −→ 0
  • 34. Vague proper priors are not the solution Taking a proper prior and take a “very large” variance (e.g., BUGS) will most often result in an undefined or ill-defined limit Example (Lindley’s paradox) If testing H0 : θ = 0 when observing x ∼ N(θ, 1), under a normal N(0, α) prior π1(θ), B01(x) α−→∞ −→ 0
  • 35. Learning from the sample Definition (Learning sample) Given an improper prior π, (x1, . . . , xn) is a learning sample if π(·|x1, . . . , xn) is proper and a minimal learning sample if none of its subsamples is a learning sample There is just enough information in a minimal learning sample to make inference about θ under the prior π
  • 36. Learning from the sample Definition (Learning sample) Given an improper prior π, (x1, . . . , xn) is a learning sample if π(·|x1, . . . , xn) is proper and a minimal learning sample if none of its subsamples is a learning sample There is just enough information in a minimal learning sample to make inference about θ under the prior π
  • 37. Pseudo-Bayes factors Idea Use one part x[i] of the data x to make the prior proper: πi improper but πi (·|x[i]) proper and fi (x[n/i]|θi ) πi (θi |x[i])dθi fj (x[n/i]|θj ) πj (θj |x[i])dθj independent of normalizing constant Use remaining x[n/i] to run test as if πj (θj |x[i]) is the true prior
  • 38. Pseudo-Bayes factors Idea Use one part x[i] of the data x to make the prior proper: πi improper but πi (·|x[i]) proper and fi (x[n/i]|θi ) πi (θi |x[i])dθi fj (x[n/i]|θj ) πj (θj |x[i])dθj independent of normalizing constant Use remaining x[n/i] to run test as if πj (θj |x[i]) is the true prior
  • 39. Pseudo-Bayes factors Idea Use one part x[i] of the data x to make the prior proper: πi improper but πi (·|x[i]) proper and fi (x[n/i]|θi ) πi (θi |x[i])dθi fj (x[n/i]|θj ) πj (θj |x[i])dθj independent of normalizing constant Use remaining x[n/i] to run test as if πj (θj |x[i]) is the true prior
  • 40. Motivation Provides a working principle for improper priors Gather enough information from data to achieve properness and use this properness to run the test on remaining data does not use x twice as in Aitkin’s (1991)
  • 41. Motivation Provides a working principle for improper priors Gather enough information from data to achieve properness and use this properness to run the test on remaining data does not use x twice as in Aitkin’s (1991)
  • 42. Motivation Provides a working principle for improper priors Gather enough information from data to achieve properness and use this properness to run the test on remaining data does not use x twice as in Aitkin’s (1991)
  • 43. Unexpected problems! depends on the choice of x[i] many ways of combining pseudo-Bayes factors AIBF = BN ji 1 L Bij (x[ ]) MIBF = BN ji med[Bij (x[ ])] GIBF = BN ji exp 1 L log Bij (x[ ]) not often an exact Bayes factor and thus lacking inner coherence B12 = B10B02 and B01 = 1/B10 . [Berger & Pericchi, 1996]
  • 44. Unexpected problems! depends on the choice of x[i] many ways of combining pseudo-Bayes factors AIBF = BN ji 1 L Bij (x[ ]) MIBF = BN ji med[Bij (x[ ])] GIBF = BN ji exp 1 L log Bij (x[ ]) not often an exact Bayes factor and thus lacking inner coherence B12 = B10B02 and B01 = 1/B10 . [Berger & Pericchi, 1996]
  • 45. Fractional Bayes factor Idea use directly the likelihood to separate training sample from testing sample BF 12 = B12(x) Lb 2(θ2)π2(θ2)dθ2 Lb 1(θ1)π1(θ1)dθ1 [O’Hagan, 1995] Proportion b of the sample used to gain proper-ness
  • 46. Fractional Bayes factor Idea use directly the likelihood to separate training sample from testing sample BF 12 = B12(x) Lb 2(θ2)π2(θ2)dθ2 Lb 1(θ1)π1(θ1)dθ1 [O’Hagan, 1995] Proportion b of the sample used to gain proper-ness
  • 47. Fractional Bayes factor (cont’d) Example (Normal mean) BF 12 = 1 √ b en(b−1)¯x2 n /2 corresponds to exact Bayes factor for the prior N 0, 1−b nb If b constant, prior variance goes to 0 If b = 1 n , prior variance stabilises around 1 If b = n−α , α < 1, prior variance goes to 0 too.
  • 48. Changing the testing perspective Bayesian testing of hypotheses Noninformative solutions Testing via mixtures Paradigm shift
  • 49. Paradigm shift New proposal for a paradigm shift (!) in the Bayesian processing of hypothesis testing and of model selection convergent and naturally interpretable solution more extended use of improper priors Simple representation of the testing problem as a two-component mixture estimation problem where the weights are formally equal to 0 or 1
  • 50. Paradigm shift New proposal for a paradigm shift (!) in the Bayesian processing of hypothesis testing and of model selection convergent and naturally interpretable solution more extended use of improper priors Simple representation of the testing problem as a two-component mixture estimation problem where the weights are formally equal to 0 or 1
  • 51. Paradigm shift Simple representation of the testing problem as a two-component mixture estimation problem where the weights are formally equal to 0 or 1 Approach inspired from consistency result of Rousseau and Mengersen (2011) on estimated overfitting mixtures Mixture representation not directly equivalent to the use of a posterior probability Potential of a better approach to testing, while not expanding number of parameters Calibration of posterior distribution of the weight of a model, moving from artificial notion of posterior probability of a model
  • 52. Encompassing mixture model Idea: Given two statistical models, M1 : x ∼ f1(x|θ1) , θ1 ∈ Θ1 and M2 : x ∼ f2(x|θ2) , θ2 ∈ Θ2 , embed both within an encompassing mixture Mα : x ∼ αf1(x|θ1) + (1 − α)f2(x|θ2) , 0 α 1 (1) Note: Both models correspond to special cases of (1), one for α = 1 and one for α = 0 Draw inference on mixture representation (1), as if each observation was individually and independently produced by the mixture model
  • 53. Encompassing mixture model Idea: Given two statistical models, M1 : x ∼ f1(x|θ1) , θ1 ∈ Θ1 and M2 : x ∼ f2(x|θ2) , θ2 ∈ Θ2 , embed both within an encompassing mixture Mα : x ∼ αf1(x|θ1) + (1 − α)f2(x|θ2) , 0 α 1 (1) Note: Both models correspond to special cases of (1), one for α = 1 and one for α = 0 Draw inference on mixture representation (1), as if each observation was individually and independently produced by the mixture model
  • 54. Encompassing mixture model Idea: Given two statistical models, M1 : x ∼ f1(x|θ1) , θ1 ∈ Θ1 and M2 : x ∼ f2(x|θ2) , θ2 ∈ Θ2 , embed both within an encompassing mixture Mα : x ∼ αf1(x|θ1) + (1 − α)f2(x|θ2) , 0 α 1 (1) Note: Both models correspond to special cases of (1), one for α = 1 and one for α = 0 Draw inference on mixture representation (1), as if each observation was individually and independently produced by the mixture model
  • 55. Inferential motivations Sounds like approximation to the real model, but several definitive advantages to this paradigm shift: Bayes estimate of the weight α replaces posterior probability of model M1, equally convergent indicator of which model is “true”, while avoiding artificial prior probabilities on model indices, ω1 and ω2 interpretation of estimator of α at least as natural as handling the posterior probability, while avoiding zero-one loss setting α and its posterior distribution provide measure of proximity to the models, while being interpretable as data propensity to stand within one model further allows for alternative perspectives on testing and model choice, like predictive tools, cross-validation, and information indices like WAIC
  • 56. Computational motivations avoids highly problematic computations of the marginal likelihoods, since standard algorithms are available for Bayesian mixture estimation straightforward extension to a finite collection of models, with a larger number of components, which considers all models at once and eliminates least likely models by simulation eliminates difficulty of label switching that plagues both Bayesian estimation and Bayesian computation, since components are no longer exchangeable posterior distribution of α evaluates more thoroughly strength of support for a given model than the single figure outcome of a posterior probability variability of posterior distribution on α allows for a more thorough assessment of the strength of this support
  • 57. Noninformative motivations additional feature missing from traditional Bayesian answers: a mixture model acknowledges possibility that, for a finite dataset, both models or none could be acceptable standard (proper and informative) prior modeling can be reproduced in this setting, but non-informative (improper) priors also are manageable therein, provided both models first reparameterised towards shared parameters, e.g. location and scale parameters in special case when all parameters are common Mα : x ∼ αf1(x|θ) + (1 − α)f2(x|θ) , 0 α 1 if θ is a location parameter, a flat prior π(θ) ∝ 1 is available
  • 58. Weakly informative motivations using the same parameters or some identical parameters on both components highlights that opposition between the two components is not an issue of enjoying different parameters those common parameters are nuisance parameters, to be integrated out [unlike Lindley’s paradox] prior model weights ωi rarely discussed in classical Bayesian approach, even though linear impact on posterior probabilities. Here, prior modeling only involves selecting a prior on α, e.g., α ∼ B(a0, a0) while a0 impacts posterior on α, it always leads to mass accumulation near 1 or 0, i.e. favours most likely model sensitivity analysis straightforward to carry approach easily calibrated by parametric boostrap providing reference posterior of α under each model natural Metropolis–Hastings alternative
  • 59. Poisson/Geometric choice betwen Poisson P(λ) and Geometric Geo(p) distribution mixture with common parameter λ Mα : αP(λ) + (1 − α)Geo(1/1+λ) Allows for Jeffreys prior since resulting posterior is proper independent Metropolis–within–Gibbs with proposal distribution on λ equal to Poisson posterior (with acceptance rate larger than 75%)
  • 60. Poisson/Geometric choice betwen Poisson P(λ) and Geometric Geo(p) distribution mixture with common parameter λ Mα : αP(λ) + (1 − α)Geo(1/1+λ) Allows for Jeffreys prior since resulting posterior is proper independent Metropolis–within–Gibbs with proposal distribution on λ equal to Poisson posterior (with acceptance rate larger than 75%)
  • 61. Poisson/Geometric choice betwen Poisson P(λ) and Geometric Geo(p) distribution mixture with common parameter λ Mα : αP(λ) + (1 − α)Geo(1/1+λ) Allows for Jeffreys prior since resulting posterior is proper independent Metropolis–within–Gibbs with proposal distribution on λ equal to Poisson posterior (with acceptance rate larger than 75%)
  • 62. Beta prior When α ∼ Be(a0, a0) prior, full conditional posterior α ∼ Be(n1(ζ) + a0, n2(ζ) + a0) Exact Bayes factor opposing Poisson and Geometric B12 = nn¯xn n i=1 xi ! Γ n + 2 + n i=1 xi Γ(n + 2) although arbitrary from a purely mathematical viewpoint
  • 63. Parameter estimation 1e-04 0.001 0.01 0.1 0.2 0.3 0.4 0.5 3.903.954.004.054.10 Posterior means of λ and medians of α for 100 Poisson P(4) datasets of size n = 1000, for a0 = .0001, .001, .01, .1, .2, .3, .4, .5. Each posterior approximation is based on 104 Metropolis-Hastings iterations.
  • 64. Parameter estimation 1e-04 0.001 0.01 0.1 0.2 0.3 0.4 0.5 0.9900.9920.9940.9960.9981.000 Posterior means of λ and medians of α for 100 Poisson P(4) datasets of size n = 1000, for a0 = .0001, .001, .01, .1, .2, .3, .4, .5. Each posterior approximation is based on 104 Metropolis-Hastings iterations.
  • 65. Consistency 0 1 2 3 4 5 6 7 0.00.20.40.60.81.0 a0=.1 log(sample size) 0 1 2 3 4 5 6 7 0.00.20.40.60.81.0 a0=.3 log(sample size) 0 1 2 3 4 5 6 7 0.00.20.40.60.81.0 a0=.5 log(sample size) Posterior means (sky-blue) and medians (grey-dotted) of α, over 100 Poisson P(4) datasets for sample sizes from 1 to 1000.
  • 66. Behaviour of Bayes factor 0 1 2 3 4 5 6 7 0.00.20.40.60.81.0 log(sample size) 0 1 2 3 4 5 6 7 0.00.20.40.60.81.0 log(sample size) 0 1 2 3 4 5 6 7 0.00.20.40.60.81.0 log(sample size) Comparison between P(M1|x) (red dotted area) and posterior medians of α (grey zone) for 100 Poisson P(4) datasets with sample sizes n between 1 and 1000, for a0 = .001, .1, .5
  • 67. Normal-normal comparison comparison of a normal N(θ1, 1) with a normal N(θ2, 2) distribution mixture with identical location parameter θ αN(θ, 1) + (1 − α)N(θ, 2) Jeffreys prior π(θ) = 1 can be used, since posterior is proper Reference (improper) Bayes factor B12 = 2 n−1/2 exp 1/4 n i=1 (xi − ¯x)2 ,
  • 68. Normal-normal comparison comparison of a normal N(θ1, 1) with a normal N(θ2, 2) distribution mixture with identical location parameter θ αN(θ, 1) + (1 − α)N(θ, 2) Jeffreys prior π(θ) = 1 can be used, since posterior is proper Reference (improper) Bayes factor B12 = 2 n−1/2 exp 1/4 n i=1 (xi − ¯x)2 ,
  • 69. Normal-normal comparison comparison of a normal N(θ1, 1) with a normal N(θ2, 2) distribution mixture with identical location parameter θ αN(θ, 1) + (1 − α)N(θ, 2) Jeffreys prior π(θ) = 1 can be used, since posterior is proper Reference (improper) Bayes factor B12 = 2 n−1/2 exp 1/4 n i=1 (xi − ¯x)2 ,
  • 70. Consistency 0.1 0.2 0.3 0.4 0.5 p(M1|x) 0.00.20.40.60.81.0 n=15 0.00.20.40.60.81.0 0.1 0.2 0.3 0.4 0.5 p(M1|x) 0.650.700.750.800.850.900.951.00 n=50 0.650.700.750.800.850.900.951.00 0.1 0.2 0.3 0.4 0.5 p(M1|x) 0.750.800.850.900.951.00 n=100 0.750.800.850.900.951.00 0.1 0.2 0.3 0.4 0.5 p(M1|x) 0.930.940.950.960.970.980.991.00 n=500 0.930.940.950.960.970.980.991.00 Posterior means (wheat) and medians of α (dark wheat), compared with posterior probabilities of M0 (gray) for a N(0, 1) sample, derived from 100 datasets for sample sizes equal to 15, 50, 100, 500. Each posterior approximation is based on 104 MCMC iterations.
  • 71. Comparison with posterior probability 0 100 200 300 400 500 -50-40-30-20-100 a0=.1 sample size 0 100 200 300 400 500 -50-40-30-20-100 a0=.3 sample size 0 100 200 300 400 500 -50-40-30-20-100 a0=.4 sample size 0 100 200 300 400 500 -50-40-30-20-100 a0=.5 sample size Plots of ranges of log(n) log(1 − E[α|x]) (gray color) and log(1 − p(M1|x)) (red dotted) over 100 N(0, 1) samples as sample size n grows from 1 to 500. and α is the weight of N(0, 1) in the mixture model. The shaded areas indicate the range of the estimations and each plot is based on a Beta prior with a0 = .1, .2, .3, .4, .5, 1 and each posterior approximation is based on 104 iterations.
  • 72. Comments convergence to one boundary value as sample size n grows impact of hyperarameter a0 slowly vanishes as n increases, but present for moderate sample sizes when simulated sample is neither from N(θ1, 1) nor from N(θ2, 2), behaviour of posterior varies, depending on which distribution is closest
  • 73. Logit or Probit? binary dataset, R dataset about diabetes in 200 Pima Indian women with body mass index as explanatory variable comparison of logit and probit fits could be suitable. We are thus comparing both fits via our method M1 : yi | xi , θ1 ∼ B(1, pi ) where pi = exp(xi θ1) 1 + exp(xi θ1) M2 : yi | xi , θ2 ∼ B(1, qi ) where qi = Φ(xi θ2)
  • 74. Common parameterisation Local reparameterisation strategy that rescales parameters of the probit model M2 so that the MLE’s of both models coincide. [Choudhuty et al., 2007] Φ(xi θ2) ≈ exp(kxi θ2) 1 + exp(kxi θ2) and use best estimate of k to bring both parameters into coherency (k0, k1) = (θ01/θ02, θ11/θ12) , reparameterise M1 and M2 as M1 :yi | xi , θ ∼ B(1, pi ) where pi = exp(xi θ) 1 + exp(xi θ) M2 :yi | xi , θ ∼ B(1, qi ) where qi = Φ(xi (κ−1 θ)) , with κ−1θ = (θ0/k0, θ1/k1).
  • 75. Prior modelling Under default g-prior θ ∼ N2(0, n(XT X)−1 ) full conditional posterior distributions given allocations π(θ | y, X, ζ) ∝ exp i Iζi =1yi xi θ i;ζi =1[1 + exp(xi θ)] exp −θT (XT X)θ 2n × i;ζi =2 Φ(xi (κ−1 θ))yi (1 − Φ(xi (κ−1 θ)))(1−yi ) hence posterior distribution clearly defined
  • 76. Results Logistic Probit a0 α θ0 θ1 θ0 k0 θ1 k1 .1 .352 -4.06 .103 -2.51 .064 .2 .427 -4.03 .103 -2.49 .064 .3 .440 -4.02 .102 -2.49 .063 .4 .456 -4.01 .102 -2.48 .063 .5 .449 -4.05 .103 -2.51 .064 Histograms of posteriors of α in favour of logistic model where a0 = .1, .2, .3, .4, .5 for (a) Pima dataset, (b) Data from logistic model, (c) Data from probit model
  • 77. Survival analysis Testing hypothesis that data comes from a 1. log-Normal(φ, κ2), 2. Weibull(α, λ), or 3. log-Logistic(γ, δ) distribution Corresponding mixture given by the density α1 exp{−(log x − φ)2 /2κ2 }/ √ 2πxκ+ α2 α λ exp{−(x/λ)α }((x/λ)α−1 + α3(δ/γ)(x/γ)δ−1 /(1 + (x/γ)δ )2 where α1 + α2 + α3 = 1
  • 78. Survival analysis Testing hypothesis that data comes from a 1. log-Normal(φ, κ2), 2. Weibull(α, λ), or 3. log-Logistic(γ, δ) distribution Corresponding mixture given by the density α1 exp{−(log x − φ)2 /2κ2 }/ √ 2πxκ+ α2 α λ exp{−(x/λ)α }((x/λ)α−1 + α3(δ/γ)(x/γ)δ−1 /(1 + (x/γ)δ )2 where α1 + α2 + α3 = 1
  • 79. Reparameterisation Looking for common parameter(s): φ = µ + γβ = ξ σ2 = π2 β2 /6 = ζ2 π2 /3 where γ ≈ 0.5772 is Euler-Mascheroni constant. Allows for a noninformative prior on the common location scale parameter, π(φ, σ2 ) = 1/σ2
  • 80. Reparameterisation Looking for common parameter(s): φ = µ + γβ = ξ σ2 = π2 β2 /6 = ζ2 π2 /3 where γ ≈ 0.5772 is Euler-Mascheroni constant. Allows for a noninformative prior on the common location scale parameter, π(φ, σ2 ) = 1/σ2
  • 81. Recovery .01 0.1 1.0 10.0 0.860.880.900.920.940.960.981.00 .01 0.1 1.0 10.00.000.020.040.060.08 Boxplots of the posterior distributions of the Normal weight α1 under the two scenarii: truth = Normal (left panel), truth = Gumbel (right panel), a0=0.01, 0.1, 1.0, 10.0 (from left to right in each panel) and n = 10, 000 simulated observations.
  • 82. Asymptotic consistency Posterior consistency holds for mixture testing procedure [under minor conditions] Two different cases the two models, M1 and M2, are well separated model M1 is a submodel of M2.
  • 83. Asymptotic consistency Posterior consistency holds for mixture testing procedure [under minor conditions] Two different cases the two models, M1 and M2, are well separated model M1 is a submodel of M2.
  • 84. Posterior concentration rate Let π be the prior and xn = (x1, · · · , xn) a sample with true density f ∗ proposition Assume that, for all c > 0, there exist Θn ⊂ Θ1 × Θ2 and B > 0 such that π [Θc n] n−c , Θn ⊂ { θ1 + θ2 nB } and that there exist H 0 and L, δ > 0 such that, for j = 1, 2, sup θ,θ ∈Θn fj,θj − fj,θj 1 LnH θj − θj , θ = (θ1, θ2), θ = (θ1, θ2) , ∀ θj − θ∗ j δ; KL(fj,θj , fj,θ∗ j ) θj − θ∗ j . Then, when f ∗ = fθ∗,α∗ , with α∗ ∈ [0, 1], there exists M > 0 such that π (α, θ); fθ,α − f ∗ 1 > M log n/n|xn = op(1) .
  • 85. Separated models Assumption: Models are separated, i.e. identifiability holds: ∀α, α ∈ [0, 1], ∀θj , θj , j = 1, 2 Pθ,α = Pθ ,α ⇒ α = α , θ = θ Further inf θ1∈Θ1 inf θ2∈Θ2 f1,θ1 − f2,θ2 1 > 0 and, for θ∗ j ∈ Θj , if Pθj weakly converges to Pθ∗ j , then θj −→ θ∗ j in the Euclidean topology
  • 86. Separated models Assumption: Models are separated, i.e. identifiability holds: ∀α, α ∈ [0, 1], ∀θj , θj , j = 1, 2 Pθ,α = Pθ ,α ⇒ α = α , θ = θ theorem Under above assumptions, then for all > 0, π [|α − α∗ | > |xn ] = op(1)
  • 87. Separated models Assumption: Models are separated, i.e. identifiability holds: ∀α, α ∈ [0, 1], ∀θj , θj , j = 1, 2 Pθ,α = Pθ ,α ⇒ α = α , θ = θ theorem If θj → fj,θj is C2 around θ∗ j , j = 1, 2, f1,θ∗ 1 − f2,θ∗ 2 , f1,θ∗ 1 , f2,θ∗ 2 are linearly independent in y and there exists δ > 0 such that f1,θ∗ 1 , f2,θ∗ 2 , sup |θ1−θ∗ 1 |<δ |D2 f1,θ1 |, sup |θ2−θ∗ 2 |<δ |D2 f2,θ2 | ∈ L1 then π |α − α∗ | > M log n/n xn = op(1).
  • 88. Separated models Assumption: Models are separated, i.e. identifiability holds: ∀α, α ∈ [0, 1], ∀θj , θj , j = 1, 2 Pθ,α = Pθ ,α ⇒ α = α , θ = θ theorem allows for interpretation of α under the posterior: If data xn is generated from model M1 then posterior on α concentrates around α = 1
  • 89. Embedded case Here M1 is a submodel of M2, i.e. θ2 = (θ1, ψ) and θ2 = (θ1, ψ0 = 0) corresponds to f2,θ2 ∈ M1 Same posterior concentration rate log n/n for estimating α when α∗ ∈ (0, 1) and ψ∗ = 0.
  • 90. Null case Case where ψ∗ = 0, i.e., f ∗ is in model M1 Two possible paths to approximate f ∗: either α goes to 1 (path 1) or ψ goes to 0 (path 2) New identifiability condition: Pθ,α = P∗ only if α = 1, θ1 = θ∗ 1, θ2 = (θ∗ 1, ψ) or α 1, θ1 = θ∗ 1, θ2 = (θ∗ 1, 0) Prior π(α, θ) = πα(α)π1(θ1)πψ(ψ), θ2 = (θ1, ψ) with common (prior on) θ1
  • 91. Null case Case where ψ∗ = 0, i.e., f ∗ is in model M1 Two possible paths to approximate f ∗: either α goes to 1 (path 1) or ψ goes to 0 (path 2) New identifiability condition: Pθ,α = P∗ only if α = 1, θ1 = θ∗ 1, θ2 = (θ∗ 1, ψ) or α 1, θ1 = θ∗ 1, θ2 = (θ∗ 1, 0) Prior π(α, θ) = πα(α)π1(θ1)πψ(ψ), θ2 = (θ1, ψ) with common (prior on) θ1
  • 92. Assumptions [B1] Regularity: Assume that θ1 → f1,θ1 and θ2 → f2,θ2 are 3 times continuously differentiable and that F∗ ¯f 3 1,θ∗ 1 f 3 1,θ∗ 1 < +∞, ¯f1,θ∗ 1 = sup |θ1−θ∗ 1 |<δ f1,θ1 , f 1,θ∗ 1 = inf |θ1−θ∗ 1 |<δ f1,θ1 F∗ sup|θ1−θ∗ 1 |<δ | f1,θ∗ 1 |3 f 3 1,θ∗ 1 < +∞, F∗ | f1,θ∗ 1 |4 f 4 1,θ∗ 1 < +∞, F∗ sup|θ1−θ∗ 1 |<δ |D2 f1,θ∗ 1 |2 f 2 1,θ∗ 1 < +∞, F∗ sup|θ1−θ∗ 1 |<δ |D3 f1,θ∗ 1 | f 1,θ∗ 1 < +∞
  • 93. Assumptions [B2] Integrability: There exists S0 ⊂ S ∩ {|ψ| > δ0} for some positive δ0 and satisfying Leb(S0) > 0, and such that for all ψ ∈ S0, F∗ sup|θ1−θ∗ 1 |<δ f2,θ1,ψ f 4 1,θ∗ 1 < +∞, F∗ sup|θ1−θ∗ 1 |<δ f 3 2,θ1,ψ f 3 1,θ1∗ < +∞,
  • 94. Assumptions [B3] Stronger identifiability: Set f2,θ∗ 1,ψ∗ (x) = θ1 f2,θ∗ 1,ψ∗ (x)T , ψf2,θ∗ 1,ψ∗ (x)T T . Then for all ψ ∈ S with ψ = 0, if η0 ∈ R, η1 ∈ Rd1 η0(f1,θ∗ 1 − f2,θ∗ 1,ψ) + ηT 1 θ1 f1,θ∗ 1 = 0 ⇔ η1 = 0, η2 = 0
  • 95. Consistency theorem Given the mixture fθ1,ψ,α = αf1,θ1 + (1 − α)f2,θ1,ψ and a sample xn = (x1, · · · , xn) issued from f1,θ∗ 1 , under assumptions B1 − B3, and an M > 0 such that π (α, θ); fθ,α − f ∗ 1 > M log n/n|xn = op(1). If α ∼ B(a1, a2), with a2 < d2, and if the prior πθ1,ψ is absolutely continuous with positive and continuous density at (θ∗ 1, 0), then for Mn −→ ∞ π |α − α∗ | > Mn(log n)γ / √ n|xn = op(1), γ = max((d1 + a2)/(d2 − a2), 1)/2,
  • 96. M-open case When the true model behind the data is neither of the tested models, what happens? issue mostly bypassed by classical Bayesian procedures theoretically produces an α∗ away from both 0 and 1 possible (recommended?) inclusion of a Bayesian non-parametric model within alternatives
  • 97. M-open case When the true model behind the data is neither of the tested models, what happens? issue mostly bypassed by classical Bayesian procedures theoretically produces an α∗ away from both 0 and 1 possible (recommended?) inclusion of a Bayesian non-parametric model within alternatives
  • 98. Towards which decision? And if we have to make a decision? soft consider behaviour of posterior under prior predictives or posterior predictive [e.g., prior predictive does not exist] boostrapping behaviour comparison with Bayesian non-parametric solution hard rethink the loss function
  • 99. Conclusion many applications of the Bayesian paradigm concentrate on the comparison of scientific theories and on testing of null hypotheses natural tendency to default to Bayes factors poorly understood sensitivity to prior modeling and posterior calibration c Time is ripe for a paradigm shift
  • 100. Down with Bayes factors! c Time is ripe for a paradigm shift original testing problem replaced with a better controlled estimation target allow for posterior variability over the component frequency as opposed to deterministic Bayes factors range of acceptance, rejection and indecision conclusions easily calibrated by simulation posterior medians quickly settling near the boundary values of 0 and 1 potential derivation of a Bayesian b-value by looking at the posterior area under the tail of the distribution of the weight
  • 101. Prior modelling c Time is ripe for a paradigm shift Partly common parameterisation always feasible and hence allows for reference priors removal of the absolute prohibition of improper priors in hypothesis testing prior on the weight α shows sensitivity that naturally vanishes as the sample size increases default value of a0 = 0.5 in the Beta prior
  • 102. Computing aspects c Time is ripe for a paradigm shift proposal that does not induce additional computational strain when algorithmic solutions exist for both models, they can be recycled towards estimating the encompassing mixture easier than in standard mixture problems due to common parameters that allow for original MCMC samplers to be turned into proposals Gibbs sampling completions useful for assessing potential outliers but not essential to achieve a conclusion about the overall problem