SlideShare una empresa de Scribd logo
1 de 11
Descargar para leer sin conexión
10. Design of Singly Reinforced Beams
A. Concrete Stress Distribution
In actual distribution
Resultant C α f'c c b=
Location β c
In equivalent distribution
Location β c
a
2
=
Resultant C α f'c c b= γ f'c a b=
Thus, a 2 β c= β1 c= where β1 2 β=
γ α
c
a
=
α
β1
=
f'c 4000psi 5000psi 6000psi 7000psi 8000psi
α 0.72 0.68 0.64 0.60 0.56
β 0.425 0.400 0.375 0.350 0.325
β1 2 β= 0.85 0.80 0.75 0.70 0.65
γ
α
β1
=
0.72
0.85
0.847
0.68
0.80
0.85
0.64
0.75
0.853
0.60
0.70
0.857
0.56
0.65
0.862
Page 28
Conclusion: γ 0.85=
β1 0.85 f'c 4000psiif
0.65 f'c 8000psiif
0.85 0.05
f'c 4000psi
1000psi
 otherwise
= 4000psi 27.6 MPa
8000psi 55.2 MPa
1000psi 6.9 MPa
B. Strength Analysis
Equilibrium in forces
X
 0=
C T=
0.85 f'c a b As fs= (1)
Equilibrium in moments
M
 0=
Mn C d
a
2






= T d
a
2






=
Mn 0.85 f'c a b d
a
2






= (2.1)
Mn As fs d
a
2






= (2.2)
Conditions of strain compatibility
εs
εu
d c
c
=
εs εu
d c
c
= or εt εu
dt c
c
= (3.1)
c d
εu
εu εs
= or c dt
εu
εu εt
= (3.2)
Unknowns = 3 a As fs
Equations = 2 X
 0= M
 0=
Additional condition fs fy= (From economic criteria)
Page 29
C. Steel Ratios
ρ
As
b d
=
As fy
b d fy
=
0.85 f'c a b
b d fy
= 0.85 β1
f'c
fy

c
d
= 0.85 β1
f'c
fy

c
dt

dt
d
=
ρ 0.85 β1
f'c
fy

εu
εu εs
= 0.85 β1
f'c
fy

εu
εu εt

dt
d
=
Balanced steel ratio
fc f'c= fs fy= εs εy=
fy
Es
=
ρb 0.85 β1
f'c
fy

εu
εu εy
= 0.85 β1
f'c
fy

600MPa
600MPa fy
=
εu 0.003 Es 2 10
5
MPa εu Es 600 MPa
Maximum steel ratio
ACI 318-99 ρmax 0.75 ρb=
ACI 318-02 and later ρmax 0.85 β1
f'c
fy

εu
εu εt
= with εt 0.004
For fy 390MPa εs
fy
Es
0.002
For εt 0.004
ρmax
ρb
εu εy
εu 0.004
=
5
7
= 0.714=
For εt 0.005
ρmax
ρb
εu εy
εu 0.005
=
5
8
= 0.625=
Minimum steel ratio
ρmin
3 f'c
fy
200
fy
= (in psi)
ρmin
0.249 f'c
fy
1.379
fy
= (in MPa)
Page 30
D. Determination of Flexural Strength
Given: b d As f'c fy
Find: ϕMn
Step 1. Checking for steel ratio
ρ
As
b d
=
ρ ρmin : Steel reinforcement is not enough
ρmin ρ ρmax : the beam is singly reinforced
ρ ρmax : the beam is doubly reinforced
ρ ρmax= As ρ b d=
Step 2. Calculation of flexural strength
a
As fy
0.85 f'c b
= c
a
β1
=
Mn As fy d
a
2






=
εt εu
dt c
c
= ϕ ϕ εt =
The design flexural strength is ϕ Mn
Example 10.1
Page 31
Concrete dimension b 200mm h 350mm
Steel reinforcements As 5
π 16mm( )
2

4
 10.053 cm
2

d h 30mm 6mm 16mm
40mm
2






 278 mm
dt h 30mm 6mm
16mm
2






 306 mm
Materials f'c 25MPa fy 390MPa
Solution
Checking for steel ratios
β1 0.65 max 0.85 0.05
f'c 27.6MPa
6.9MPa







min 0.85






0.85
εu 0.003
ρmax 0.85 β1
f'c
fy

εu
εu 0.004
 0.02
ρmin max
0.249MPa
f'c
MPa

fy
1.379MPa
fy











0.00354
ρ
As
b d
0.018
Steel_Reinforcement "is Enough" ρ ρminif
"is not Enough" otherwise

Steel_Reinforcement "is Enough"
As min ρ ρmax  b d 10.053 cm
2

Calculation of flexural strength
a
As fy
0.85 f'c b
92.252 mm c
a
β1
108.532 mm
Mn As fy d
a
2






 90.911 kN m
Page 32
εt εu
dt c
c
 0.00546
ϕ 0.65 max
1.45 250 εt
3






min 0.9






0.9
The design flexural strength is ϕ Mn 81.82 kN m
E. Determination of Steel Area
Given: Mu b d f'c fy
Find: As
Relative depth of compression concrete
w
a
d
=
0.85 f'c a b
0.85 f'c b d
=
As fy
0.85 f'c b d
=
ρ fy
0.85 f'c
1=
Flexural resistance factor
R
Mn
b d
2

=
As fy d
a
2







b d
2

=
As
b d
fy
d
a
2

d
= ρ fy 1
1
2
w





=
R ρ fy 1
ρ fy
1.7 f'c







= 0.85 f'c w 1
1
2
w





=
Quadratic equation relative w
R
0.85 f'c
w 1
1
2
w





=
w
2
2 w 2
R
0.85 f'c
 0=
w1 1 1 2
R
0.85 f'c
 1= w2 1 1 2
R
0.85 f'c
 1=
w 1 1 2
R
0.85 f'c
=
ρ 0.85
f'c
fy
 w= 0.85
f'c
fy
 1 1 2
R
0.85 f'c







=
Page 33
Step 1. Assume ϕ 0.9=
Mn
Mu
ϕ
=
Step 2. Calculation of steel area
R
Mn
b d
2

=
ρ 0.85
f'c
fy
 1 1 2
R
0.85 f'c







=
ρ ρmax : the beam is doubly reinforced
(concrete is not enough)
ρ ρmax : the beam is singly reinforced
As max ρ ρmin  b d= (this is a required steel area)
Step 3. Checking for flexural strength
a
As fy
0.85 f'c b
= (As is a provided steel area)
Mn As fy d
a
2






=
c
a
β1
= εt εu
dt c
c
= ϕ ϕ εt =
FS
Mu
ϕ Mn
= (usage percentage)
FS 1 : the beam is safe
FS 1 : the beam is not safe
Example 10.2
Required strength Mu 153kN m
Concrete section b 200mm h 500mm
d h 30mm 8mm 18mm
40mm
2






 424 mm
Page 34
dt h 30mm 8mm
18mm
2






 453 mm
Materials f'c 25MPa fy 390MPa
Solution
Steel ratios
β1 0.65 max 0.85 0.05
f'c 27.6MPa
6.9MPa







min 0.85






0.85
εu 0.003
ρmax 0.85 β1
f'c
fy

εu
εu 0.004
 0.02
ρmin max
0.249MPa
f'c
MPa

fy
1.379MPa
fy











0.00354
Assume ϕ 0.9
Mn
Mu
ϕ
170 kN m
Steel area
R
Mn
b d
2

4.728 MPa
ρ 0.85
f'c
fy
 1 1 2
R
0.85 f'c







 0.014
ρmin ρ ρmax 1
As ρ b d 11.783 cm
2

As 6
π 16mm( )
2

4
 12.064 cm
2

Checking for flexural strength
a
As fy
0.85 f'c b
110.702 mm c
a
β1
130.238 mm
Mn As fy d
a
2






 173.444 kN m
Page 35
εt εu
dt c
c
 0.00743
ϕ 0.65 max
1.45 250 εt
3






min 0.9






0.9
FS
Mu
ϕ Mn
0.98
The_beam "is safe" FS 1if
"is not safe" otherwise
 The_beam "is safe"
F. Determination of Concrete Dimension and Steel Area
Given: Mu f'c fy
Find: b d As
Step 1. Determination of concrete dimension
Assume εt 0.004 (Usually εt 0.005 )
ρ 0.85 β1
f'c
fy

εu
εu εt
= R ρ fy 1
ρ fy
1.7 f'c







=
ϕ ϕ εt = Mn
Mu
ϕ
=
bd
2
Mn
R
=
Option 1: b
Mn
R
d
2
=
Option 2: d
Mn
R
b
=
Option 3: k
b
d
= d
3
Mn
R
k
= b k d=
Step 2. Calculation of steel area
R
Mn
b d
2

=
Page 36
ρ 0.85
f'c
fy
 1 1 2
R
0.85 f'c







=
As max ρ ρmin  b d=
Step 3. Checking for flexural strength
a
As fy
0.85 f'c b
= c
a
β1
=
Mn As fy d
a
2






=
εt εu
dt c
c
= ϕ ϕ εt =
FS
Mu
ϕ Mn
=
Example 10.3
Required strength Mu 700kN m
Materials f'c 25MPa fy 390MPa
Solution
Steel ratios
β1 0.65 max 0.85 0.05
f'c 27.6MPa
6.9MPa







min 0.85






0.85
εu 0.003
ρmax 0.85 β1
f'c
fy

εu
εu 0.004
 0.02
ρmin max
0.249MPa
f'c
MPa

fy
1.379MPa
fy











0.00354
Assume εt 0.007
ρ 0.85 β1
f'c
fy

εu
εu εt
 0.014 R ρ fy 1
ρ fy
1.7 f'c







 4.728 MPa
Page 37
ϕ 0.65 max
1.45 250 εt
3






min 0.9






0.9 Mn
Mu
ϕ
777.778 kN m
Concrete dimension
k
b
d
= k
400
600
 Cover 30mm 10mm 25mm
40mm
2

Cover 85 mm
d
3
Mn
R
k
627.231 mm b k d 418.154 mm
h Round d Cover 50mm( ) 700 mm b Round b 50mm( ) 400 mm
d h Cover 615 mm
b
h






400
700






mm
Steel area
R
Mn
b d
2

5.141 MPa
ρ 0.85
f'c
fy
 1 1 2
R
0.85 f'c







 0.015
As max ρ ρmin  b d 37.741 cm
2

As 8
π 25mm( )
2

4
 39.27 cm
2
 dt h 30mm 10mm
25mm
2







dt 647.5 mm
Checking for flexural strength
a
As fy
0.85 f'c b
180.18 mm c
a
β1
211.976 mm
Mn As fy d
a
2






 803.914 kN m
εt εu
dt c
c
 0.00616
ϕ 0.65 max
1.45 250 εt
3






min 0.9






0.9
FS
Mu
ϕ Mn
96.749 %
Page 38

Más contenido relacionado

La actualidad más candente

Analysis of portal frame by direct stiffness method
Analysis of  portal frame by direct stiffness methodAnalysis of  portal frame by direct stiffness method
Analysis of portal frame by direct stiffness methodkasirekha
 
13-Effective Length of Columns (Steel Structural Design & Prof. Shehab Mourad)
13-Effective Length of Columns (Steel Structural Design & Prof. Shehab Mourad)13-Effective Length of Columns (Steel Structural Design & Prof. Shehab Mourad)
13-Effective Length of Columns (Steel Structural Design & Prof. Shehab Mourad)Hossam Shafiq II
 
Development Length Hook Splice Of Reinforcements
Development Length Hook Splice Of ReinforcementsDevelopment Length Hook Splice Of Reinforcements
Development Length Hook Splice Of ReinforcementsSHERAZ HAMEED
 
Flexural design of beam...PRC-I
Flexural design of beam...PRC-IFlexural design of beam...PRC-I
Flexural design of beam...PRC-IIrfan Malik
 
Chapter 4-internal loadings developed in structural members
Chapter 4-internal loadings developed in structural membersChapter 4-internal loadings developed in structural members
Chapter 4-internal loadings developed in structural membersISET NABEUL
 
Ch08 10 combined loads transformations
Ch08 10 combined loads   transformationsCh08 10 combined loads   transformations
Ch08 10 combined loads transformationsCarolina Retairo Noama
 
Lec.5 strength design method rectangular sections 1
Lec.5   strength design method rectangular sections  1Lec.5   strength design method rectangular sections  1
Lec.5 strength design method rectangular sections 1Muthanna Abbu
 
Lec.6 strength design method rectangular sections 2
Lec.6   strength design method rectangular sections  2Lec.6   strength design method rectangular sections  2
Lec.6 strength design method rectangular sections 2Muthanna Abbu
 
Lec.9 strength design method doubly reinforced beams
Lec.9   strength design method doubly reinforced beamsLec.9   strength design method doubly reinforced beams
Lec.9 strength design method doubly reinforced beamsMuthanna Abbu
 
Dalles 05. poinçonnement
Dalles 05. poinçonnementDalles 05. poinçonnement
Dalles 05. poinçonnementSami Sahli
 
Design of isolated footing by ACI code
Design of isolated footing by ACI codeDesign of isolated footing by ACI code
Design of isolated footing by ACI codeMahmoud Al-Sharawi
 
Lec.4 working stress 2
Lec.4   working stress 2Lec.4   working stress 2
Lec.4 working stress 2Muthanna Abbu
 
Baf Shaheen College (B+12) ETABS Dynamic Analysis.pptx
Baf Shaheen College (B+12) ETABS Dynamic Analysis.pptxBaf Shaheen College (B+12) ETABS Dynamic Analysis.pptx
Baf Shaheen College (B+12) ETABS Dynamic Analysis.pptxDES Engineers Ltd
 
Chapter 6-structural-analysis-8th-edition-solution
Chapter 6-structural-analysis-8th-edition-solutionChapter 6-structural-analysis-8th-edition-solution
Chapter 6-structural-analysis-8th-edition-solutionDaniel Nunes
 
Deflection 2
Deflection 2Deflection 2
Deflection 2anashalim
 

La actualidad más candente (20)

Analysis of portal frame by direct stiffness method
Analysis of  portal frame by direct stiffness methodAnalysis of  portal frame by direct stiffness method
Analysis of portal frame by direct stiffness method
 
6. safe users-guide
6.  safe users-guide6.  safe users-guide
6. safe users-guide
 
13-Effective Length of Columns (Steel Structural Design & Prof. Shehab Mourad)
13-Effective Length of Columns (Steel Structural Design & Prof. Shehab Mourad)13-Effective Length of Columns (Steel Structural Design & Prof. Shehab Mourad)
13-Effective Length of Columns (Steel Structural Design & Prof. Shehab Mourad)
 
Development Length Hook Splice Of Reinforcements
Development Length Hook Splice Of ReinforcementsDevelopment Length Hook Splice Of Reinforcements
Development Length Hook Splice Of Reinforcements
 
Flexural design of beam...PRC-I
Flexural design of beam...PRC-IFlexural design of beam...PRC-I
Flexural design of beam...PRC-I
 
Chapter 4-internal loadings developed in structural members
Chapter 4-internal loadings developed in structural membersChapter 4-internal loadings developed in structural members
Chapter 4-internal loadings developed in structural members
 
Ch08 10 combined loads transformations
Ch08 10 combined loads   transformationsCh08 10 combined loads   transformations
Ch08 10 combined loads transformations
 
Lec.5 strength design method rectangular sections 1
Lec.5   strength design method rectangular sections  1Lec.5   strength design method rectangular sections  1
Lec.5 strength design method rectangular sections 1
 
Lec.6 strength design method rectangular sections 2
Lec.6   strength design method rectangular sections  2Lec.6   strength design method rectangular sections  2
Lec.6 strength design method rectangular sections 2
 
Lec.9 strength design method doubly reinforced beams
Lec.9   strength design method doubly reinforced beamsLec.9   strength design method doubly reinforced beams
Lec.9 strength design method doubly reinforced beams
 
Column
ColumnColumn
Column
 
Dalles 05. poinçonnement
Dalles 05. poinçonnementDalles 05. poinçonnement
Dalles 05. poinçonnement
 
Design of isolated footing by ACI code
Design of isolated footing by ACI codeDesign of isolated footing by ACI code
Design of isolated footing by ACI code
 
Lec.4 working stress 2
Lec.4   working stress 2Lec.4   working stress 2
Lec.4 working stress 2
 
Singly R.C beam
Singly R.C beamSingly R.C beam
Singly R.C beam
 
Baf Shaheen College (B+12) ETABS Dynamic Analysis.pptx
Baf Shaheen College (B+12) ETABS Dynamic Analysis.pptxBaf Shaheen College (B+12) ETABS Dynamic Analysis.pptx
Baf Shaheen College (B+12) ETABS Dynamic Analysis.pptx
 
Chapter 6-structural-analysis-8th-edition-solution
Chapter 6-structural-analysis-8th-edition-solutionChapter 6-structural-analysis-8th-edition-solution
Chapter 6-structural-analysis-8th-edition-solution
 
Chapter 12
Chapter 12Chapter 12
Chapter 12
 
Slender columnn and two-way slabs
Slender columnn and two-way slabsSlender columnn and two-way slabs
Slender columnn and two-way slabs
 
Deflection 2
Deflection 2Deflection 2
Deflection 2
 

Similar a 10-design of singly reinforced beams

21-Design of Simple Shear Connections (Steel Structural Design & Prof. Shehab...
21-Design of Simple Shear Connections (Steel Structural Design & Prof. Shehab...21-Design of Simple Shear Connections (Steel Structural Design & Prof. Shehab...
21-Design of Simple Shear Connections (Steel Structural Design & Prof. Shehab...Hossam Shafiq II
 
Analysis of T-Beam
Analysis of T-BeamAnalysis of T-Beam
Analysis of T-Beam01008828934
 
Steel strucure lec # (8)
Steel strucure lec #  (8)Steel strucure lec #  (8)
Steel strucure lec # (8)Civil Zone
 
Foundation Reinforcement Calcs & Connection Calcs
Foundation Reinforcement Calcs & Connection CalcsFoundation Reinforcement Calcs & Connection Calcs
Foundation Reinforcement Calcs & Connection CalcsMagdel Kotze
 
Flexural design of Beam...PRC-I
Flexural design of Beam...PRC-IFlexural design of Beam...PRC-I
Flexural design of Beam...PRC-IIrfan Malik
 
10346 07 08 examination paper
10346 07 08 examination paper10346 07 08 examination paper
10346 07 08 examination paperEddy Ching
 
Shallow Foundations ( Combined, Strap, Raft foundation)
Shallow Foundations ( Combined, Strap, Raft foundation)Shallow Foundations ( Combined, Strap, Raft foundation)
Shallow Foundations ( Combined, Strap, Raft foundation)Mohammed Zakaria
 
Design of SR Framed str beam.ppt
Design of SR Framed str beam.pptDesign of SR Framed str beam.ppt
Design of SR Framed str beam.pptProfKaushalParikh
 
Lec 11 12 -flexural analysis and design of beams
Lec 11 12 -flexural analysis and design of beamsLec 11 12 -flexural analysis and design of beams
Lec 11 12 -flexural analysis and design of beamsMUST,Mirpur AJK,Pakistan
 
02 influenceline inde_3
02 influenceline inde_302 influenceline inde_3
02 influenceline inde_3Khaja Mohiddin
 
Design Procedure of Singly,Doubly & T-Beam(As Per ACI code)
Design Procedure of Singly,Doubly & T-Beam(As Per ACI code)Design Procedure of Singly,Doubly & T-Beam(As Per ACI code)
Design Procedure of Singly,Doubly & T-Beam(As Per ACI code)Jahidur Rahman
 
Gate 2017 me 1 solutions with explanations
Gate 2017 me 1 solutions with explanationsGate 2017 me 1 solutions with explanations
Gate 2017 me 1 solutions with explanationskulkarni Academy
 

Similar a 10-design of singly reinforced beams (20)

RCC BMD
RCC BMDRCC BMD
RCC BMD
 
21-Design of Simple Shear Connections (Steel Structural Design & Prof. Shehab...
21-Design of Simple Shear Connections (Steel Structural Design & Prof. Shehab...21-Design of Simple Shear Connections (Steel Structural Design & Prof. Shehab...
21-Design of Simple Shear Connections (Steel Structural Design & Prof. Shehab...
 
Analysis of T-Beam
Analysis of T-BeamAnalysis of T-Beam
Analysis of T-Beam
 
Ch 8.pdf
Ch 8.pdfCh 8.pdf
Ch 8.pdf
 
Steel strucure lec # (8)
Steel strucure lec #  (8)Steel strucure lec #  (8)
Steel strucure lec # (8)
 
psad 1.pdf
psad 1.pdfpsad 1.pdf
psad 1.pdf
 
Foundation Reinforcement Calcs & Connection Calcs
Foundation Reinforcement Calcs & Connection CalcsFoundation Reinforcement Calcs & Connection Calcs
Foundation Reinforcement Calcs & Connection Calcs
 
Flexural design of Beam...PRC-I
Flexural design of Beam...PRC-IFlexural design of Beam...PRC-I
Flexural design of Beam...PRC-I
 
10346 07 08 examination paper
10346 07 08 examination paper10346 07 08 examination paper
10346 07 08 examination paper
 
Shallow Foundations ( Combined, Strap, Raft foundation)
Shallow Foundations ( Combined, Strap, Raft foundation)Shallow Foundations ( Combined, Strap, Raft foundation)
Shallow Foundations ( Combined, Strap, Raft foundation)
 
Ch 3-a.pdf
Ch 3-a.pdfCh 3-a.pdf
Ch 3-a.pdf
 
Design of SR Framed str beam.ppt
Design of SR Framed str beam.pptDesign of SR Framed str beam.ppt
Design of SR Framed str beam.ppt
 
Lec 11 12 -flexural analysis and design of beams
Lec 11 12 -flexural analysis and design of beamsLec 11 12 -flexural analysis and design of beams
Lec 11 12 -flexural analysis and design of beams
 
2 compression
2  compression2  compression
2 compression
 
singly-reinforced-beam.ppt
singly-reinforced-beam.pptsingly-reinforced-beam.ppt
singly-reinforced-beam.ppt
 
Rcc Beams
Rcc BeamsRcc Beams
Rcc Beams
 
02 influenceline inde_3
02 influenceline inde_302 influenceline inde_3
02 influenceline inde_3
 
Design Procedure of Singly,Doubly & T-Beam(As Per ACI code)
Design Procedure of Singly,Doubly & T-Beam(As Per ACI code)Design Procedure of Singly,Doubly & T-Beam(As Per ACI code)
Design Procedure of Singly,Doubly & T-Beam(As Per ACI code)
 
طه
طهطه
طه
 
Gate 2017 me 1 solutions with explanations
Gate 2017 me 1 solutions with explanationsGate 2017 me 1 solutions with explanations
Gate 2017 me 1 solutions with explanations
 

Último

Unit 2- Effective stress & Permeability.pdf
Unit 2- Effective stress & Permeability.pdfUnit 2- Effective stress & Permeability.pdf
Unit 2- Effective stress & Permeability.pdfRagavanV2
 
Unleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leapUnleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leapRishantSharmaFr
 
Top Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoor
Top Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoorTop Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoor
Top Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoordharasingh5698
 
chapter 5.pptx: drainage and irrigation engineering
chapter 5.pptx: drainage and irrigation engineeringchapter 5.pptx: drainage and irrigation engineering
chapter 5.pptx: drainage and irrigation engineeringmulugeta48
 
Hostel management system project report..pdf
Hostel management system project report..pdfHostel management system project report..pdf
Hostel management system project report..pdfKamal Acharya
 
Block diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.pptBlock diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.pptNANDHAKUMARA10
 
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance Bookingroncy bisnoi
 
KubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlyKubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlysanyuktamishra911
 
Thermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.pptThermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.pptDineshKumar4165
 
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
COST-EFFETIVE  and Energy Efficient BUILDINGS ptxCOST-EFFETIVE  and Energy Efficient BUILDINGS ptx
COST-EFFETIVE and Energy Efficient BUILDINGS ptxJIT KUMAR GUPTA
 
Generative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPTGenerative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPTbhaskargani46
 
Bhosari ( Call Girls ) Pune 6297143586 Hot Model With Sexy Bhabi Ready For ...
Bhosari ( Call Girls ) Pune  6297143586  Hot Model With Sexy Bhabi Ready For ...Bhosari ( Call Girls ) Pune  6297143586  Hot Model With Sexy Bhabi Ready For ...
Bhosari ( Call Girls ) Pune 6297143586 Hot Model With Sexy Bhabi Ready For ...tanu pandey
 
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...roncy bisnoi
 
University management System project report..pdf
University management System project report..pdfUniversity management System project report..pdf
University management System project report..pdfKamal Acharya
 
notes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.pptnotes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.pptMsecMca
 
22-prompt engineering noted slide shown.pdf
22-prompt engineering noted slide shown.pdf22-prompt engineering noted slide shown.pdf
22-prompt engineering noted slide shown.pdf203318pmpc
 

Último (20)

Unit 2- Effective stress & Permeability.pdf
Unit 2- Effective stress & Permeability.pdfUnit 2- Effective stress & Permeability.pdf
Unit 2- Effective stress & Permeability.pdf
 
Unleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leapUnleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leap
 
Call Girls in Netaji Nagar, Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Netaji Nagar, Delhi 💯 Call Us 🔝9953056974 🔝 Escort ServiceCall Girls in Netaji Nagar, Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Netaji Nagar, Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
 
Top Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoor
Top Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoorTop Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoor
Top Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoor
 
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
 
chapter 5.pptx: drainage and irrigation engineering
chapter 5.pptx: drainage and irrigation engineeringchapter 5.pptx: drainage and irrigation engineering
chapter 5.pptx: drainage and irrigation engineering
 
Integrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - NeometrixIntegrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - Neometrix
 
Hostel management system project report..pdf
Hostel management system project report..pdfHostel management system project report..pdf
Hostel management system project report..pdf
 
Block diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.pptBlock diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.ppt
 
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
 
KubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlyKubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghly
 
Thermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.pptThermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.ppt
 
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
COST-EFFETIVE  and Energy Efficient BUILDINGS ptxCOST-EFFETIVE  and Energy Efficient BUILDINGS ptx
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
 
Generative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPTGenerative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPT
 
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar ≼🔝 Delhi door step de...
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar  ≼🔝 Delhi door step de...Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar  ≼🔝 Delhi door step de...
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar ≼🔝 Delhi door step de...
 
Bhosari ( Call Girls ) Pune 6297143586 Hot Model With Sexy Bhabi Ready For ...
Bhosari ( Call Girls ) Pune  6297143586  Hot Model With Sexy Bhabi Ready For ...Bhosari ( Call Girls ) Pune  6297143586  Hot Model With Sexy Bhabi Ready For ...
Bhosari ( Call Girls ) Pune 6297143586 Hot Model With Sexy Bhabi Ready For ...
 
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
 
University management System project report..pdf
University management System project report..pdfUniversity management System project report..pdf
University management System project report..pdf
 
notes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.pptnotes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.ppt
 
22-prompt engineering noted slide shown.pdf
22-prompt engineering noted slide shown.pdf22-prompt engineering noted slide shown.pdf
22-prompt engineering noted slide shown.pdf
 

10-design of singly reinforced beams

  • 1. 10. Design of Singly Reinforced Beams A. Concrete Stress Distribution In actual distribution Resultant C α f'c c b= Location β c In equivalent distribution Location β c a 2 = Resultant C α f'c c b= γ f'c a b= Thus, a 2 β c= β1 c= where β1 2 β= γ α c a = α β1 = f'c 4000psi 5000psi 6000psi 7000psi 8000psi α 0.72 0.68 0.64 0.60 0.56 β 0.425 0.400 0.375 0.350 0.325 β1 2 β= 0.85 0.80 0.75 0.70 0.65 γ α β1 = 0.72 0.85 0.847 0.68 0.80 0.85 0.64 0.75 0.853 0.60 0.70 0.857 0.56 0.65 0.862 Page 28
  • 2. Conclusion: γ 0.85= β1 0.85 f'c 4000psiif 0.65 f'c 8000psiif 0.85 0.05 f'c 4000psi 1000psi  otherwise = 4000psi 27.6 MPa 8000psi 55.2 MPa 1000psi 6.9 MPa B. Strength Analysis Equilibrium in forces X  0= C T= 0.85 f'c a b As fs= (1) Equilibrium in moments M  0= Mn C d a 2       = T d a 2       = Mn 0.85 f'c a b d a 2       = (2.1) Mn As fs d a 2       = (2.2) Conditions of strain compatibility εs εu d c c = εs εu d c c = or εt εu dt c c = (3.1) c d εu εu εs = or c dt εu εu εt = (3.2) Unknowns = 3 a As fs Equations = 2 X  0= M  0= Additional condition fs fy= (From economic criteria) Page 29
  • 3. C. Steel Ratios ρ As b d = As fy b d fy = 0.85 f'c a b b d fy = 0.85 β1 f'c fy  c d = 0.85 β1 f'c fy  c dt  dt d = ρ 0.85 β1 f'c fy  εu εu εs = 0.85 β1 f'c fy  εu εu εt  dt d = Balanced steel ratio fc f'c= fs fy= εs εy= fy Es = ρb 0.85 β1 f'c fy  εu εu εy = 0.85 β1 f'c fy  600MPa 600MPa fy = εu 0.003 Es 2 10 5 MPa εu Es 600 MPa Maximum steel ratio ACI 318-99 ρmax 0.75 ρb= ACI 318-02 and later ρmax 0.85 β1 f'c fy  εu εu εt = with εt 0.004 For fy 390MPa εs fy Es 0.002 For εt 0.004 ρmax ρb εu εy εu 0.004 = 5 7 = 0.714= For εt 0.005 ρmax ρb εu εy εu 0.005 = 5 8 = 0.625= Minimum steel ratio ρmin 3 f'c fy 200 fy = (in psi) ρmin 0.249 f'c fy 1.379 fy = (in MPa) Page 30
  • 4. D. Determination of Flexural Strength Given: b d As f'c fy Find: ϕMn Step 1. Checking for steel ratio ρ As b d = ρ ρmin : Steel reinforcement is not enough ρmin ρ ρmax : the beam is singly reinforced ρ ρmax : the beam is doubly reinforced ρ ρmax= As ρ b d= Step 2. Calculation of flexural strength a As fy 0.85 f'c b = c a β1 = Mn As fy d a 2       = εt εu dt c c = ϕ ϕ εt = The design flexural strength is ϕ Mn Example 10.1 Page 31
  • 5. Concrete dimension b 200mm h 350mm Steel reinforcements As 5 π 16mm( ) 2  4  10.053 cm 2  d h 30mm 6mm 16mm 40mm 2        278 mm dt h 30mm 6mm 16mm 2        306 mm Materials f'c 25MPa fy 390MPa Solution Checking for steel ratios β1 0.65 max 0.85 0.05 f'c 27.6MPa 6.9MPa        min 0.85       0.85 εu 0.003 ρmax 0.85 β1 f'c fy  εu εu 0.004  0.02 ρmin max 0.249MPa f'c MPa  fy 1.379MPa fy            0.00354 ρ As b d 0.018 Steel_Reinforcement "is Enough" ρ ρminif "is not Enough" otherwise  Steel_Reinforcement "is Enough" As min ρ ρmax  b d 10.053 cm 2  Calculation of flexural strength a As fy 0.85 f'c b 92.252 mm c a β1 108.532 mm Mn As fy d a 2        90.911 kN m Page 32
  • 6. εt εu dt c c  0.00546 ϕ 0.65 max 1.45 250 εt 3       min 0.9       0.9 The design flexural strength is ϕ Mn 81.82 kN m E. Determination of Steel Area Given: Mu b d f'c fy Find: As Relative depth of compression concrete w a d = 0.85 f'c a b 0.85 f'c b d = As fy 0.85 f'c b d = ρ fy 0.85 f'c 1= Flexural resistance factor R Mn b d 2  = As fy d a 2        b d 2  = As b d fy d a 2  d = ρ fy 1 1 2 w      = R ρ fy 1 ρ fy 1.7 f'c        = 0.85 f'c w 1 1 2 w      = Quadratic equation relative w R 0.85 f'c w 1 1 2 w      = w 2 2 w 2 R 0.85 f'c  0= w1 1 1 2 R 0.85 f'c  1= w2 1 1 2 R 0.85 f'c  1= w 1 1 2 R 0.85 f'c = ρ 0.85 f'c fy  w= 0.85 f'c fy  1 1 2 R 0.85 f'c        = Page 33
  • 7. Step 1. Assume ϕ 0.9= Mn Mu ϕ = Step 2. Calculation of steel area R Mn b d 2  = ρ 0.85 f'c fy  1 1 2 R 0.85 f'c        = ρ ρmax : the beam is doubly reinforced (concrete is not enough) ρ ρmax : the beam is singly reinforced As max ρ ρmin  b d= (this is a required steel area) Step 3. Checking for flexural strength a As fy 0.85 f'c b = (As is a provided steel area) Mn As fy d a 2       = c a β1 = εt εu dt c c = ϕ ϕ εt = FS Mu ϕ Mn = (usage percentage) FS 1 : the beam is safe FS 1 : the beam is not safe Example 10.2 Required strength Mu 153kN m Concrete section b 200mm h 500mm d h 30mm 8mm 18mm 40mm 2        424 mm Page 34
  • 8. dt h 30mm 8mm 18mm 2        453 mm Materials f'c 25MPa fy 390MPa Solution Steel ratios β1 0.65 max 0.85 0.05 f'c 27.6MPa 6.9MPa        min 0.85       0.85 εu 0.003 ρmax 0.85 β1 f'c fy  εu εu 0.004  0.02 ρmin max 0.249MPa f'c MPa  fy 1.379MPa fy            0.00354 Assume ϕ 0.9 Mn Mu ϕ 170 kN m Steel area R Mn b d 2  4.728 MPa ρ 0.85 f'c fy  1 1 2 R 0.85 f'c         0.014 ρmin ρ ρmax 1 As ρ b d 11.783 cm 2  As 6 π 16mm( ) 2  4  12.064 cm 2  Checking for flexural strength a As fy 0.85 f'c b 110.702 mm c a β1 130.238 mm Mn As fy d a 2        173.444 kN m Page 35
  • 9. εt εu dt c c  0.00743 ϕ 0.65 max 1.45 250 εt 3       min 0.9       0.9 FS Mu ϕ Mn 0.98 The_beam "is safe" FS 1if "is not safe" otherwise  The_beam "is safe" F. Determination of Concrete Dimension and Steel Area Given: Mu f'c fy Find: b d As Step 1. Determination of concrete dimension Assume εt 0.004 (Usually εt 0.005 ) ρ 0.85 β1 f'c fy  εu εu εt = R ρ fy 1 ρ fy 1.7 f'c        = ϕ ϕ εt = Mn Mu ϕ = bd 2 Mn R = Option 1: b Mn R d 2 = Option 2: d Mn R b = Option 3: k b d = d 3 Mn R k = b k d= Step 2. Calculation of steel area R Mn b d 2  = Page 36
  • 10. ρ 0.85 f'c fy  1 1 2 R 0.85 f'c        = As max ρ ρmin  b d= Step 3. Checking for flexural strength a As fy 0.85 f'c b = c a β1 = Mn As fy d a 2       = εt εu dt c c = ϕ ϕ εt = FS Mu ϕ Mn = Example 10.3 Required strength Mu 700kN m Materials f'c 25MPa fy 390MPa Solution Steel ratios β1 0.65 max 0.85 0.05 f'c 27.6MPa 6.9MPa        min 0.85       0.85 εu 0.003 ρmax 0.85 β1 f'c fy  εu εu 0.004  0.02 ρmin max 0.249MPa f'c MPa  fy 1.379MPa fy            0.00354 Assume εt 0.007 ρ 0.85 β1 f'c fy  εu εu εt  0.014 R ρ fy 1 ρ fy 1.7 f'c         4.728 MPa Page 37
  • 11. ϕ 0.65 max 1.45 250 εt 3       min 0.9       0.9 Mn Mu ϕ 777.778 kN m Concrete dimension k b d = k 400 600  Cover 30mm 10mm 25mm 40mm 2  Cover 85 mm d 3 Mn R k 627.231 mm b k d 418.154 mm h Round d Cover 50mm( ) 700 mm b Round b 50mm( ) 400 mm d h Cover 615 mm b h       400 700       mm Steel area R Mn b d 2  5.141 MPa ρ 0.85 f'c fy  1 1 2 R 0.85 f'c         0.015 As max ρ ρmin  b d 37.741 cm 2  As 8 π 25mm( ) 2  4  39.27 cm 2  dt h 30mm 10mm 25mm 2        dt 647.5 mm Checking for flexural strength a As fy 0.85 f'c b 180.18 mm c a β1 211.976 mm Mn As fy d a 2        803.914 kN m εt εu dt c c  0.00616 ϕ 0.65 max 1.45 250 εt 3       min 0.9       0.9 FS Mu ϕ Mn 96.749 % Page 38