SlideShare una empresa de Scribd logo
1 de 3
Descargar para leer sin conexión
1
LIMITES
Soient P et Q deux fonctions polynôme de degré n et m et du monôme de plus haut degré anxn et bnxm
respectivement alors
=
+∞→
)x(Plim
x
n
n
x
xalim
+∞→
; =
−∞→
)x(Plim
x
n
n
x
xalim
−∞→
=
+∞→ )x(Q
)x(P
lim
x m
m
n
n
x xb
xa
lim
+∞→
; =
−∞→ )x(Q
)x(P
lim
x m
m
n
n
x xb
xa
lim
−∞→
Exemple :
1x5x
1xx2x2
lim 2
43
x −+
−+−
−∞→
= 2
4
x x
x2
lim
−
−∞→
= 2
x
x2lim −
−∞→
= −∞
Limites trigonométries
1
x
)xsin(
lim
0x
=
→
; 1
x
)xtan(
lim
0x
=
→
;
2
1
x
)xcos(1
lim 20x
=
−
→
; 0
x
)xcos(1
lim
0x
=
−
→
a
x
)axsin(
lim
0x
=
→
; 1
x
)axtan(
lim
0x
=
→
;
2
a
x
)axcos(1
lim
2
20x
=
−
→
; 0
x
)axcos(1
lim
0x
=
−
→
Exemple :
)xsin(.x
)xcos(1
lim
0x
−
→
=
²x
)xsin(.x
²x
)xcos(1
lim
0x
−
→
=
x
)xsin(
²x
)xcos(1
lim
0x
−
→
=
2
1
1
2
1
=
Théorème d’encadrement
Soit f , g et h trois fonctions telles que :
Si




∈==
≤≤
)Rl(lglimflim
xdesinvoixpour)x(g)x(h)x(f
00 xx
0
alors lhlim
0x
= ( x0 fini on infini )
Exemple : 





+
→ x
1
sinxlim
0x
On a : 1
x
1
sin1 ≤





≤− alors pour tout 0x > : x
x
1
sinxx ≤





≤−
Alors on a :





==−
≤





≤−
++
0xlim)x(lim
0desinvoixpourx
x
1
sin.xx
00
alors 





+
→ x
1
sinxlim
0x
=0
Théorème de comparaison
Soit f et g deux fonctions telles que :
Si




+∞=
≥
glim
xdesinvoixpour)x(g)x(f
0x
0
alors +∞=flim
0x
Si




−∞=
≤
glim
xdesinvoixpour)x(g)x(f
0x
0
alors −∞=flim
0x
( x0 fini on infini )
Exemple : Soit f(x) = x².(2+cos(x) ). Calculer )x(flim
x +∞→
On a : 2 + cosx ≥ 2 + -1 alors 2 + cosx ≥ 1 ainsi f(x) ≥ x²
On a alors




+∞=
≥
∞+
²xlim
xdesinvoixpourx)x(f 0
2
alors )x(flim
x +∞→
= +∞
Théorème ; fonction composé
Soit f et g deux fonctions telles que :
yflim
0x
= et zglim
y
= alors zfglim
0x
= ( x0 , y et z finis ou infinis )
Exemple : 




 +
+∞→ x2
x1
sinlim
x
π
On peut écrire h = fg avec f : x
x2
x1 π+
֏ et g )xsin(֏ et h(x) 




 +
=
x2
x1
sin
π
Fiche de cours 4ème Maths
Continuite et limitesContinuite et limitesContinuite et limitesContinuite et limites
Maths au lyceeMaths au lyceeMaths au lyceeMaths au lycee *** Ali AKIRAli AKIRAli AKIRAli AKIR
Site Web : http://maths-akir.midiblogs.com/
2
On a : =
+∞→
)x(flim
x x2
x1
lim
x
π+
+∞→
=
x2
x
lim
x
π
+∞→
=
22
lim
x
ππ
=
+∞→
et 1)x(glim
2
x
=
→
π
alors =
+∞→
)x(hlim
x
1
ASYMPTOTE
?)x(flim
x
=
∞→
b)x(flim
x
=
∞→
∞=
∞→
)x(flim
x
by:∆ = est un
asymptote
horizontale
?
x
)x(f
lim
x
=
∞→
a
x
)x(f
lim
x
=
∞→
∞=
∞→ x
)x(f
lim
x
0
x
)x(f
lim
x
=
∞→
( ) ?ax)x(flim
x
=−
∞→
Branche
parabolique
de directeur
(y’y)
Branche
parabolique
de directeur
(x’x)
( ) bax)x(flim
x
=−
∞→
( ) ∞=−
∞→
ax)x(flim
x
baxy:∆ += est
un asymptote
oblique
Branche
parabolique de
cœfficient
directeur a.
FONCTION CONTINUE
Définition 1 :
Une fonction f est continue en un point a si )a(f)x(flim
ax
=
→
Définition 2 :
Une fonction f est continue sur un intervalle I, si elle est définie sur cet intervalle et si : pour tout réel a de I
)a(f)x(flim
ax
=
→
La fonction partie entière
*) La fonction Partie entière qui à tout réel x associe le plus grand entier relatif
inférieur à x , noté E(x) , est représentée ci-dessous.
Pour tout réel x , on a 1)x(Ex)x(E +<≤
par exemple : 2)2,2(E = et 3)2,2(E −=−
E est-elle continue en 2 ?
Pour [ [2,1x ∈ , E(x) = 1donc 1)x(Elim
2x
=−
→
Pour [ [3,2x ∈ , E(x)=2 donc 2)x(Elim
2x
=+
→
Ces limites étant différentes, la fonction E n’admet pas de limite en 2.
Donc E n’est pas continue en 2.
*) la fonction Partie entière n’est pas continue sur R. Elle est continue sur
tout intervalle du type [ [1n,n + , où n est un entier relatif quelconque.
3
Théorème
*)L’image d’un intervalle par une fonction continue est un intervalle.
*)les fonctions polynômes sont continues sur R .
*)les fonctions rationnelles sont continues sur leur domaine de définition c’est à dire en tout point où le
dénominateur ne s’annule pas.
*)Si f est continue en x0 et g est continue en f(x0), alors fg est continue en x0
Théorème :
*) Soit f une fonction f définie sur un intervalle de type [ [b,a ( b finie ou infini)
Si la fonction f est croissante et majorée alors f possède une limite finie en b.
Si la fonction f est croissante et non majorée alors f tend vers +∞ en b.
*) Soit f une fonction f définie sur un intervalle de type ] ]b,a (a finie ou infini)
Si la fonction f est décroissante et minorée alors f possède une limite finie en a.
Si la fonction f est décroissante et non minorée alors f tend vers −∞ en a .
Théorème de la valeur intermédiaire
Si f est une fonction continue sur un intervalle [a,b], alors pour tout réel c compris entre f (a) et f (b) , l’équation
f (x) = c admet aux moins une solution α∈ [a,b].
Corollaire 1 de TVI
Si f est continue sur I = [a,b] et telle que f(a) × f(b) < 0 alors il existe au moins un réel x0∈]a,b[ tel que f(x0) = 0 .
Et si de plus f est strictement monotone sur I alors il existe un unique réel x0∈]a,b[ tel que f(x0) = 0 .
Corollaire 2 de TVI
Si f est continue sur I = [a,b] et ne s’annule pas alors elle garde un signe constante sur I
Exemple : I=[1,2] et f(x) = x3 + x – 3
f est dérivable sur I et on a : f’(x) = 3x² +1 0>
f(1)=-1 et f(2)=7
Alors on a : f est continue sur I , f(1) × f(2) < 0 et f est strictement croissante sur I
Alors il existe un unique réel x0∈]1,2[ tel que f(x0) = 0 .
Illustrations graphiques
f est continue et strictement croissante sur
l’intervalle [ a ; b ].
L’équation f (x) = c admet une solution unique.
f est continue et strictement décroissante sur
l’intervalle [ a ; b ] .
L’équation f (x) = c admet une solution unique .
f est continue mais n’est pas monotone sur
l’intervalle [ a ; b ] .
L’équation f (x) = c peut avoir plusieurs solutions
f n’est pas continue sur l’intervalle [ a ; b ] .
L’équation f (x) = c peut ne pas avoir de solutions.
a b
f ( a)
f ( b)
c
y = c
Oa α 1 b
f ( a)
f ( b)
c
y = c
α 2 α 3O
a α b
f ( a)
f ( b)
c
y = c
O
a α b
f ( a)
f ( b)
c y = c
O

Más contenido relacionado

La actualidad más candente

L'Approche Servicielle à l'Hôpital Public (pour Repenser l'Expérience de Serv...
L'Approche Servicielle à l'Hôpital Public (pour Repenser l'Expérience de Serv...L'Approche Servicielle à l'Hôpital Public (pour Repenser l'Expérience de Serv...
L'Approche Servicielle à l'Hôpital Public (pour Repenser l'Expérience de Serv...
Mohamed Amin MOUHANE
 
Exercicescorrigs 130111070052-phpapp01
Exercicescorrigs 130111070052-phpapp01Exercicescorrigs 130111070052-phpapp01
Exercicescorrigs 130111070052-phpapp01
moussking
 
Généralités sur les fonctions
Généralités sur les fonctionsGénéralités sur les fonctions
Généralités sur les fonctions
Ămîʼndǿ TrànCè
 
Les algorithmes d’approximation
Les algorithmes d’approximationLes algorithmes d’approximation
Les algorithmes d’approximation
Wael Ismail
 
Exercices corrigés recherche opérationnelle par www.coursdefsjes.com
Exercices corrigés recherche opérationnelle par www.coursdefsjes.comExercices corrigés recherche opérationnelle par www.coursdefsjes.com
Exercices corrigés recherche opérationnelle par www.coursdefsjes.com
cours fsjes
 

La actualidad más candente (20)

Tp3 matlab
Tp3 matlabTp3 matlab
Tp3 matlab
 
Modèle navigationnel (Mnav)
Modèle navigationnel (Mnav)Modèle navigationnel (Mnav)
Modèle navigationnel (Mnav)
 
Partie i vibrations et oscillateurs
Partie i   vibrations et oscillateursPartie i   vibrations et oscillateurs
Partie i vibrations et oscillateurs
 
Macroéconomie s1
Macroéconomie s1Macroéconomie s1
Macroéconomie s1
 
Projet d'Analyse Numérique
Projet d'Analyse NumériqueProjet d'Analyse Numérique
Projet d'Analyse Numérique
 
Performance systeme de santé
Performance systeme de santéPerformance systeme de santé
Performance systeme de santé
 
Chapitre 4 récursivité
Chapitre 4 récursivitéChapitre 4 récursivité
Chapitre 4 récursivité
 
Tp 2 vecteur et matrice
Tp 2 vecteur et matriceTp 2 vecteur et matrice
Tp 2 vecteur et matrice
 
Arma
ArmaArma
Arma
 
Fiscalité marocaine resumé ir et is
Fiscalité marocaine resumé  ir et isFiscalité marocaine resumé  ir et is
Fiscalité marocaine resumé ir et is
 
Exercices micro s3_biffé
Exercices micro s3_bifféExercices micro s3_biffé
Exercices micro s3_biffé
 
L'Approche Servicielle à l'Hôpital Public (pour Repenser l'Expérience de Serv...
L'Approche Servicielle à l'Hôpital Public (pour Repenser l'Expérience de Serv...L'Approche Servicielle à l'Hôpital Public (pour Repenser l'Expérience de Serv...
L'Approche Servicielle à l'Hôpital Public (pour Repenser l'Expérience de Serv...
 
Exercicescorrigs 130111070052-phpapp01
Exercicescorrigs 130111070052-phpapp01Exercicescorrigs 130111070052-phpapp01
Exercicescorrigs 130111070052-phpapp01
 
Généralités sur les fonctions
Généralités sur les fonctionsGénéralités sur les fonctions
Généralités sur les fonctions
 
Fonctions logarithmes
Fonctions logarithmesFonctions logarithmes
Fonctions logarithmes
 
Recursiviteeeeeeeeee
RecursiviteeeeeeeeeeRecursiviteeeeeeeeee
Recursiviteeeeeeeeee
 
Tp2 matlab
Tp2 matlab Tp2 matlab
Tp2 matlab
 
Métrologie
MétrologieMétrologie
Métrologie
 
Les algorithmes d’approximation
Les algorithmes d’approximationLes algorithmes d’approximation
Les algorithmes d’approximation
 
Exercices corrigés recherche opérationnelle par www.coursdefsjes.com
Exercices corrigés recherche opérationnelle par www.coursdefsjes.comExercices corrigés recherche opérationnelle par www.coursdefsjes.com
Exercices corrigés recherche opérationnelle par www.coursdefsjes.com
 

Similar a Cours continuité et limites

Cours developpements limites
Cours   developpements limitesCours   developpements limites
Cours developpements limites
hassan1488
 
Analyse Numérique Chapitre 1: Équations Non Linéiares
Analyse Numérique Chapitre 1: Équations Non LinéiaresAnalyse Numérique Chapitre 1: Équations Non Linéiares
Analyse Numérique Chapitre 1: Équations Non Linéiares
bilal001
 
Limites de fonctions et de suites
Limites de fonctions et de suitesLimites de fonctions et de suites
Limites de fonctions et de suites
Ămîʼndǿ TrànCè
 
Exercice fonctions réciproques
Exercice fonctions réciproquesExercice fonctions réciproques
Exercice fonctions réciproques
Yessin Abdelhedi
 
Cours series fourier
Cours series fourierCours series fourier
Cours series fourier
Mehdi Maroun
 

Similar a Cours continuité et limites (20)

Mathématiques 1-Gestion.pdf
Mathématiques 1-Gestion.pdfMathématiques 1-Gestion.pdf
Mathématiques 1-Gestion.pdf
 
Cours dérivabilité
Cours dérivabilitéCours dérivabilité
Cours dérivabilité
 
Cours fonctions réciproques
Cours fonctions réciproquesCours fonctions réciproques
Cours fonctions réciproques
 
Cours fourier
Cours fourier Cours fourier
Cours fourier
 
Cours developpements limites
Cours   developpements limitesCours   developpements limites
Cours developpements limites
 
05 exos fonction_exponentielle
05 exos fonction_exponentielle05 exos fonction_exponentielle
05 exos fonction_exponentielle
 
sol_TD4.pdf
sol_TD4.pdfsol_TD4.pdf
sol_TD4.pdf
 
M1_exercices_corriges.pdf
M1_exercices_corriges.pdfM1_exercices_corriges.pdf
M1_exercices_corriges.pdf
 
Analyse Numérique Chapitre 1: Équations Non Linéiares
Analyse Numérique Chapitre 1: Équations Non LinéiaresAnalyse Numérique Chapitre 1: Équations Non Linéiares
Analyse Numérique Chapitre 1: Équations Non Linéiares
 
Limites de fonctions et de suites
Limites de fonctions et de suitesLimites de fonctions et de suites
Limites de fonctions et de suites
 
cours2.pdf
cours2.pdfcours2.pdf
cours2.pdf
 
01 lois-à-densité
01 lois-à-densité01 lois-à-densité
01 lois-à-densité
 
Exercice primitives
Exercice primitivesExercice primitives
Exercice primitives
 
Exercice logarithme
Exercice logarithmeExercice logarithme
Exercice logarithme
 
Exercice fonctions réciproques
Exercice fonctions réciproquesExercice fonctions réciproques
Exercice fonctions réciproques
 
Cours series fourier
Cours series fourierCours series fourier
Cours series fourier
 
Cours series fourier
Cours series fourierCours series fourier
Cours series fourier
 
Fonction-Logarithme-2eme-BAC-PC-1--www.etude-generale.com.pdf
Fonction-Logarithme-2eme-BAC-PC-1--www.etude-generale.com.pdfFonction-Logarithme-2eme-BAC-PC-1--www.etude-generale.com.pdf
Fonction-Logarithme-2eme-BAC-PC-1--www.etude-generale.com.pdf
 
Exercices fonctions numériques
Exercices fonctions numériquesExercices fonctions numériques
Exercices fonctions numériques
 
Courschapitre3complete trinome2nddegre
Courschapitre3complete trinome2nddegreCourschapitre3complete trinome2nddegre
Courschapitre3complete trinome2nddegre
 

Más de Yessin Abdelhedi (20)

Statistiques
StatistiquesStatistiques
Statistiques
 
Similitudes
SimilitudesSimilitudes
Similitudes
 
Série+probabilites++2013
Série+probabilites++2013Série+probabilites++2013
Série+probabilites++2013
 
Exercice suites réelles
Exercice suites réellesExercice suites réelles
Exercice suites réelles
 
Exercice similitudes
Exercice similitudesExercice similitudes
Exercice similitudes
 
Exercice probabilités
Exercice probabilitésExercice probabilités
Exercice probabilités
 
Exercice nombres complexes
Exercice nombres complexesExercice nombres complexes
Exercice nombres complexes
 
Exercice isometrie du plan
Exercice isometrie du planExercice isometrie du plan
Exercice isometrie du plan
 
Exercice intégrales
Exercice intégralesExercice intégrales
Exercice intégrales
 
Exercice exponontielle
Exercice exponontielleExercice exponontielle
Exercice exponontielle
 
Exercice espace
Exercice espaceExercice espace
Exercice espace
 
Exercice dérivabilité
Exercice dérivabilitéExercice dérivabilité
Exercice dérivabilité
 
Exercice coniques
Exercice coniquesExercice coniques
Exercice coniques
 
Exercice arithmétiques
Exercice arithmétiquesExercice arithmétiques
Exercice arithmétiques
 
Espace
EspaceEspace
Espace
 
Divisibilité+
Divisibilité+Divisibilité+
Divisibilité+
 
Devoir de synthèse_n°_02--2008-2009(mr_otay)[lycée__el_aghaliba]
Devoir de synthèse_n°_02--2008-2009(mr_otay)[lycée__el_aghaliba]Devoir de synthèse_n°_02--2008-2009(mr_otay)[lycée__el_aghaliba]
Devoir de synthèse_n°_02--2008-2009(mr_otay)[lycée__el_aghaliba]
 
Cours suites réelles
Cours suites réellesCours suites réelles
Cours suites réelles
 
Cours similitudes
Cours similitudesCours similitudes
Cours similitudes
 
Cours probabilités
Cours probabilitésCours probabilités
Cours probabilités
 

Último

L'ÉVOLUTION DE L'ÉDUCATION AU BRÉSIL À TRAVERS L'HISTOIRE ET LES EXIGENCES DE...
L'ÉVOLUTION DE L'ÉDUCATION AU BRÉSIL À TRAVERS L'HISTOIRE ET LES EXIGENCES DE...L'ÉVOLUTION DE L'ÉDUCATION AU BRÉSIL À TRAVERS L'HISTOIRE ET LES EXIGENCES DE...
L'ÉVOLUTION DE L'ÉDUCATION AU BRÉSIL À TRAVERS L'HISTOIRE ET LES EXIGENCES DE...
Faga1939
 
Bilan énergétique des chambres froides.pdf
Bilan énergétique des chambres froides.pdfBilan énergétique des chambres froides.pdf
Bilan énergétique des chambres froides.pdf
AmgdoulHatim
 
Copie de Engineering Software Marketing Plan by Slidesgo.pptx.pptx
Copie de Engineering Software Marketing Plan by Slidesgo.pptx.pptxCopie de Engineering Software Marketing Plan by Slidesgo.pptx.pptx
Copie de Engineering Software Marketing Plan by Slidesgo.pptx.pptx
ikospam0
 
Cours Préparation à l’ISO 27001 version 2022.pdf
Cours Préparation à l’ISO 27001 version 2022.pdfCours Préparation à l’ISO 27001 version 2022.pdf
Cours Préparation à l’ISO 27001 version 2022.pdf
ssuserc72852
 

Último (18)

Sidonie au Japon . pptx Un film français
Sidonie    au   Japon  .  pptx  Un film françaisSidonie    au   Japon  .  pptx  Un film français
Sidonie au Japon . pptx Un film français
 
L application de la physique classique dans le golf.pptx
L application de la physique classique dans le golf.pptxL application de la physique classique dans le golf.pptx
L application de la physique classique dans le golf.pptx
 
COURS SVT 3 EME ANNEE COLLEGE 2EME SEM.pdf
COURS SVT 3 EME ANNEE COLLEGE 2EME SEM.pdfCOURS SVT 3 EME ANNEE COLLEGE 2EME SEM.pdf
COURS SVT 3 EME ANNEE COLLEGE 2EME SEM.pdf
 
Boléro. pptx Film français réalisé par une femme.
Boléro.  pptx   Film   français   réalisé  par une  femme.Boléro.  pptx   Film   français   réalisé  par une  femme.
Boléro. pptx Film français réalisé par une femme.
 
L'ÉVOLUTION DE L'ÉDUCATION AU BRÉSIL À TRAVERS L'HISTOIRE ET LES EXIGENCES DE...
L'ÉVOLUTION DE L'ÉDUCATION AU BRÉSIL À TRAVERS L'HISTOIRE ET LES EXIGENCES DE...L'ÉVOLUTION DE L'ÉDUCATION AU BRÉSIL À TRAVERS L'HISTOIRE ET LES EXIGENCES DE...
L'ÉVOLUTION DE L'ÉDUCATION AU BRÉSIL À TRAVERS L'HISTOIRE ET LES EXIGENCES DE...
 
Cours ofppt du Trade-Marketing-Présentation.pdf
Cours ofppt du Trade-Marketing-Présentation.pdfCours ofppt du Trade-Marketing-Présentation.pdf
Cours ofppt du Trade-Marketing-Présentation.pdf
 
Apolonia, Apolonia.pptx Film documentaire
Apolonia, Apolonia.pptx         Film documentaireApolonia, Apolonia.pptx         Film documentaire
Apolonia, Apolonia.pptx Film documentaire
 
GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI DẠY BUỔI 2) - TIẾNG ANH 6, 7 GLOBAL SUCCESS (2...
GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI DẠY BUỔI 2) - TIẾNG ANH 6, 7 GLOBAL SUCCESS (2...GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI DẠY BUỔI 2) - TIẾNG ANH 6, 7 GLOBAL SUCCESS (2...
GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI DẠY BUỔI 2) - TIẾNG ANH 6, 7 GLOBAL SUCCESS (2...
 
Bilan énergétique des chambres froides.pdf
Bilan énergétique des chambres froides.pdfBilan énergétique des chambres froides.pdf
Bilan énergétique des chambres froides.pdf
 
Chapitre 2 du cours de JavaScript. Bon Cours
Chapitre 2 du cours de JavaScript. Bon CoursChapitre 2 du cours de JavaScript. Bon Cours
Chapitre 2 du cours de JavaScript. Bon Cours
 
Copie de Engineering Software Marketing Plan by Slidesgo.pptx.pptx
Copie de Engineering Software Marketing Plan by Slidesgo.pptx.pptxCopie de Engineering Software Marketing Plan by Slidesgo.pptx.pptx
Copie de Engineering Software Marketing Plan by Slidesgo.pptx.pptx
 
Formation échiquéenne jwhyCHESS, parallèle avec la planification de projet
Formation échiquéenne jwhyCHESS, parallèle avec la planification de projetFormation échiquéenne jwhyCHESS, parallèle avec la planification de projet
Formation échiquéenne jwhyCHESS, parallèle avec la planification de projet
 
Les roches magmatique géodynamique interne.pptx
Les roches magmatique géodynamique interne.pptxLes roches magmatique géodynamique interne.pptx
Les roches magmatique géodynamique interne.pptx
 
Cours Préparation à l’ISO 27001 version 2022.pdf
Cours Préparation à l’ISO 27001 version 2022.pdfCours Préparation à l’ISO 27001 version 2022.pdf
Cours Préparation à l’ISO 27001 version 2022.pdf
 
La nouvelle femme . pptx Film français
La   nouvelle   femme  . pptx  Film françaisLa   nouvelle   femme  . pptx  Film français
La nouvelle femme . pptx Film français
 
Conférence Sommet de la formation 2024 : Développer des compétences pour la m...
Conférence Sommet de la formation 2024 : Développer des compétences pour la m...Conférence Sommet de la formation 2024 : Développer des compétences pour la m...
Conférence Sommet de la formation 2024 : Développer des compétences pour la m...
 
Computer Parts in French - Les parties de l'ordinateur.pptx
Computer Parts in French - Les parties de l'ordinateur.pptxComputer Parts in French - Les parties de l'ordinateur.pptx
Computer Parts in French - Les parties de l'ordinateur.pptx
 
Formation qhse - GIASE saqit_105135.pptx
Formation qhse - GIASE saqit_105135.pptxFormation qhse - GIASE saqit_105135.pptx
Formation qhse - GIASE saqit_105135.pptx
 

Cours continuité et limites

  • 1. 1 LIMITES Soient P et Q deux fonctions polynôme de degré n et m et du monôme de plus haut degré anxn et bnxm respectivement alors = +∞→ )x(Plim x n n x xalim +∞→ ; = −∞→ )x(Plim x n n x xalim −∞→ = +∞→ )x(Q )x(P lim x m m n n x xb xa lim +∞→ ; = −∞→ )x(Q )x(P lim x m m n n x xb xa lim −∞→ Exemple : 1x5x 1xx2x2 lim 2 43 x −+ −+− −∞→ = 2 4 x x x2 lim − −∞→ = 2 x x2lim − −∞→ = −∞ Limites trigonométries 1 x )xsin( lim 0x = → ; 1 x )xtan( lim 0x = → ; 2 1 x )xcos(1 lim 20x = − → ; 0 x )xcos(1 lim 0x = − → a x )axsin( lim 0x = → ; 1 x )axtan( lim 0x = → ; 2 a x )axcos(1 lim 2 20x = − → ; 0 x )axcos(1 lim 0x = − → Exemple : )xsin(.x )xcos(1 lim 0x − → = ²x )xsin(.x ²x )xcos(1 lim 0x − → = x )xsin( ²x )xcos(1 lim 0x − → = 2 1 1 2 1 = Théorème d’encadrement Soit f , g et h trois fonctions telles que : Si     ∈== ≤≤ )Rl(lglimflim xdesinvoixpour)x(g)x(h)x(f 00 xx 0 alors lhlim 0x = ( x0 fini on infini ) Exemple :       + → x 1 sinxlim 0x On a : 1 x 1 sin1 ≤      ≤− alors pour tout 0x > : x x 1 sinxx ≤      ≤− Alors on a :      ==− ≤      ≤− ++ 0xlim)x(lim 0desinvoixpourx x 1 sin.xx 00 alors       + → x 1 sinxlim 0x =0 Théorème de comparaison Soit f et g deux fonctions telles que : Si     +∞= ≥ glim xdesinvoixpour)x(g)x(f 0x 0 alors +∞=flim 0x Si     −∞= ≤ glim xdesinvoixpour)x(g)x(f 0x 0 alors −∞=flim 0x ( x0 fini on infini ) Exemple : Soit f(x) = x².(2+cos(x) ). Calculer )x(flim x +∞→ On a : 2 + cosx ≥ 2 + -1 alors 2 + cosx ≥ 1 ainsi f(x) ≥ x² On a alors     +∞= ≥ ∞+ ²xlim xdesinvoixpourx)x(f 0 2 alors )x(flim x +∞→ = +∞ Théorème ; fonction composé Soit f et g deux fonctions telles que : yflim 0x = et zglim y = alors zfglim 0x = ( x0 , y et z finis ou infinis ) Exemple :       + +∞→ x2 x1 sinlim x π On peut écrire h = fg avec f : x x2 x1 π+ ֏ et g )xsin(֏ et h(x)       + = x2 x1 sin π Fiche de cours 4ème Maths Continuite et limitesContinuite et limitesContinuite et limitesContinuite et limites Maths au lyceeMaths au lyceeMaths au lyceeMaths au lycee *** Ali AKIRAli AKIRAli AKIRAli AKIR Site Web : http://maths-akir.midiblogs.com/
  • 2. 2 On a : = +∞→ )x(flim x x2 x1 lim x π+ +∞→ = x2 x lim x π +∞→ = 22 lim x ππ = +∞→ et 1)x(glim 2 x = → π alors = +∞→ )x(hlim x 1 ASYMPTOTE ?)x(flim x = ∞→ b)x(flim x = ∞→ ∞= ∞→ )x(flim x by:∆ = est un asymptote horizontale ? x )x(f lim x = ∞→ a x )x(f lim x = ∞→ ∞= ∞→ x )x(f lim x 0 x )x(f lim x = ∞→ ( ) ?ax)x(flim x =− ∞→ Branche parabolique de directeur (y’y) Branche parabolique de directeur (x’x) ( ) bax)x(flim x =− ∞→ ( ) ∞=− ∞→ ax)x(flim x baxy:∆ += est un asymptote oblique Branche parabolique de cœfficient directeur a. FONCTION CONTINUE Définition 1 : Une fonction f est continue en un point a si )a(f)x(flim ax = → Définition 2 : Une fonction f est continue sur un intervalle I, si elle est définie sur cet intervalle et si : pour tout réel a de I )a(f)x(flim ax = → La fonction partie entière *) La fonction Partie entière qui à tout réel x associe le plus grand entier relatif inférieur à x , noté E(x) , est représentée ci-dessous. Pour tout réel x , on a 1)x(Ex)x(E +<≤ par exemple : 2)2,2(E = et 3)2,2(E −=− E est-elle continue en 2 ? Pour [ [2,1x ∈ , E(x) = 1donc 1)x(Elim 2x =− → Pour [ [3,2x ∈ , E(x)=2 donc 2)x(Elim 2x =+ → Ces limites étant différentes, la fonction E n’admet pas de limite en 2. Donc E n’est pas continue en 2. *) la fonction Partie entière n’est pas continue sur R. Elle est continue sur tout intervalle du type [ [1n,n + , où n est un entier relatif quelconque.
  • 3. 3 Théorème *)L’image d’un intervalle par une fonction continue est un intervalle. *)les fonctions polynômes sont continues sur R . *)les fonctions rationnelles sont continues sur leur domaine de définition c’est à dire en tout point où le dénominateur ne s’annule pas. *)Si f est continue en x0 et g est continue en f(x0), alors fg est continue en x0 Théorème : *) Soit f une fonction f définie sur un intervalle de type [ [b,a ( b finie ou infini) Si la fonction f est croissante et majorée alors f possède une limite finie en b. Si la fonction f est croissante et non majorée alors f tend vers +∞ en b. *) Soit f une fonction f définie sur un intervalle de type ] ]b,a (a finie ou infini) Si la fonction f est décroissante et minorée alors f possède une limite finie en a. Si la fonction f est décroissante et non minorée alors f tend vers −∞ en a . Théorème de la valeur intermédiaire Si f est une fonction continue sur un intervalle [a,b], alors pour tout réel c compris entre f (a) et f (b) , l’équation f (x) = c admet aux moins une solution α∈ [a,b]. Corollaire 1 de TVI Si f est continue sur I = [a,b] et telle que f(a) × f(b) < 0 alors il existe au moins un réel x0∈]a,b[ tel que f(x0) = 0 . Et si de plus f est strictement monotone sur I alors il existe un unique réel x0∈]a,b[ tel que f(x0) = 0 . Corollaire 2 de TVI Si f est continue sur I = [a,b] et ne s’annule pas alors elle garde un signe constante sur I Exemple : I=[1,2] et f(x) = x3 + x – 3 f est dérivable sur I et on a : f’(x) = 3x² +1 0> f(1)=-1 et f(2)=7 Alors on a : f est continue sur I , f(1) × f(2) < 0 et f est strictement croissante sur I Alors il existe un unique réel x0∈]1,2[ tel que f(x0) = 0 . Illustrations graphiques f est continue et strictement croissante sur l’intervalle [ a ; b ]. L’équation f (x) = c admet une solution unique. f est continue et strictement décroissante sur l’intervalle [ a ; b ] . L’équation f (x) = c admet une solution unique . f est continue mais n’est pas monotone sur l’intervalle [ a ; b ] . L’équation f (x) = c peut avoir plusieurs solutions f n’est pas continue sur l’intervalle [ a ; b ] . L’équation f (x) = c peut ne pas avoir de solutions. a b f ( a) f ( b) c y = c Oa α 1 b f ( a) f ( b) c y = c α 2 α 3O a α b f ( a) f ( b) c y = c O a α b f ( a) f ( b) c y = c O