SlideShare una empresa de Scribd logo
1 de 102
ZIGBEE WIRELESS NETWORKS
• WSN

• IEEE   802.15.4

• ZigBee
WSN
What is WSN?
WSN



• Wireless  Sensor Network (WSN) is a network of small
 spatially distributed devices that can communicate with each
 other over the air
WSN


• to   monitor

• to   control

• both   to monitor and control
WSN


• Application Areas

 • less   expensive

 • more    flexible
WSN
Opportunities
WSN

• Opportunities

 • Unattended     areas

 • Large-scale   networks with many nodes

 • Increase   reliability by rerouting possibility

 • Mobility
Advanced Metering
Asset Tracking
Home Automation
Industrial Automation
WSN
Technology Requirements
WSN

• WSN Technology     Requirements

 • Low   cost and small size devices

 • Low   power consumption

 • Unlicensed   radio bands

 • Scalability: Support   large number of nodes

 • Flexibility: Simple   deployment and network extension
ZigBee       Bluetooth          WiFi
 Standard    IEEE 802.15.4 IEEE 802.15.2     IEEE 802.11
  Radio          DSSS          FHSS             DSSS
Frequency       2.4GHz        2.4GHz          2.4/5GHz
Topology     Star/Mesh/P2P    Piconet         Star/Mesh
Max Nodes    255/65000+          7               30
  Range         ~50m          ~10m             ~100m
Duty Cycle       Low         Moderate      Low to Moderate
Bandwidth      250Kbps        1Mbps           108Mbps
IEEE 802.15.4
!quot;#$%&(PHY)'(%)*+,&(MAC)'-./0&(Data Link)1
             8 ZigBee Alliance 9:,;<=>?'-.@ABCD,'EFGHIJ

                 IEEE 802.15.4
             STIJquot;




• LowRate-Wireless Personal
 Area Network

• Physical
        (PHY) and Medium
 Access Control (MAC)
IEEE 802.15.4

• Type   of network device

• Data   transfer models

• Protocol   stack

• Physical   layer (PHY)

• Medium Access      Control sub-layer (MAC)

• Functional   overview
IEEE 802.15.4
Type of network devices
IEEE 802.15.4


• Types   of network devices

 • RFD    (Reduced Functionality Device)

 • FFD    (Full Functionality Device)
IEEE 802.15.4

• RFD   (Reduced Functionality Device)

 • cancommunicate only to a single FFD in the network and
  no RFDs

 • requires
          little memory, processing and power resource for
  operation

 • e.g., sensor   nodes, actuator nodes
IEEE 802.15.4

• FFD   (Full Functionality Device)

 • capable    to act as network coordinator and as an end-device

 • can   communicate both FFDs and RFDs

 • requires
          extra memory and processing power, consumes
   more energy compared to RFD
IEEE 802.15.4
 Data transfer models
IEEE 802.15.4


• Data   transfer models

 • Star

 • Peer-to-peer

 • *Mesh
IEEE 802.15.4

• Star

  • networkis simple in set up
   and deployment

  • dataforwarding is possible
   only by coordinator (two-
   hop only)

  • coveragearea is limited by
   one-hop transmission
   range
IEEE 802.15.4

• Peer-to-peer

 • data frames can be
   delivered via several
   intermediate node

 • largespatial areas can be
   covered by a single
   network

 • complex  packet routing
   algorithm are required
IEEE 802.15.4
  Protocol Stack
IEEE 802.15.4



• Physical   layer (PHY)

• Medium Access Control
 sub-layer (MAC)
IEEE 802.15.4
   Physical layer
IEEE 802.15.4


• Physical   layer

  • activation   and deactivation of the radio transceiver

  • energy    detection (ED) within the current channel

  • link   quality indicator (LQI) for received packets
IEEE 802.15.4


• channel    frequency selection

• data    transmission and reception

• clear
      channel assessment (CCA) for carrier sense multiple
 access with collision avoidance (CSMA-CA)
IEEE 802.15.4

• Physical   layer (PHY)

  • 802.15.4   PHY communication on 3 frequency bands:
   Frequency Channels Data rates Availability Sensitivity
      2450     16       250      Worldwide >= -85dBm
       915     10      40, 250    US, AUS >= -92dBm
       868      1      20, 100    Europe      >= -92dBm
IEEE 802.15.4


• Physical   layer

  •a transmitter shall be capable of transmitting at least –3 dBm
   (0.5 mW), normally at 0 dBm (1 mW)

  •a receiver shall have a receiver maximum input level greater
   than or equal to –20 dBm (0.01 mW)
IEEE 802.15.4

• Physical    layer

  • 2450MHz is the most commonly used band for WSNs
   because:

    • it’s   available worldwide without need for licensing

    • it   has highest data rate achieved with simplest modulation

  • Sub1-GHz bands (915/868 MHz) provide better signal
   range than 2.4 GHz band
IEEE 802.15.4

• Physical   layer

  • when starting the network the coordinator scans pre-
   configured channels and choose one with least activity
   detected

  • when  joining the WPAN, a device scans through the given
   set of channels and report discovered networks to higher
   layers to permit join
IEEE 802.15.4
   MAC layer
IEEE 802.15.4


• Medium Access    Control sub-layer

 • generating   network beacons if the device is a coordinator

 • synchronizing   to network beacons

 • supporting   PAN association and disassociation
IEEE 802.15.4

• Medium Access    Control sub-layer

 • supporting   device security

 • employing    the CSMA-CA mechanism for channel access

 • handling   and maintaining the GTS mechanism

 • providing   a reliable link between two peer MAC entities
IEEE 802.15.4
 Functional Overview
IEEE 802.15.4
• Functional   Overview

  • Superframe   structure

  • Data   transfer model

  • Frame   structure

  • Improving   probability of successful delivery

  • Power   consumption considerations

  • Security
IEEE 802.15.4
 Superframe structure
IEEE 802.15.4


• Superframe   structure

 • thisstandard allows the optional use of a superframe
   structure. The format of the superframe is defined by the
   coordinator. The superframe is bounded by network
   beacons sent by the coordinator and is divided into 16
   equally sized slots
$* 123)* 4-#* +,* #$('5&6$* +0$* (+57'+75$* ,.* +0$* (78$5.549$(:* 2-/* #$%
$*',-+$-+&,-*4''$((*8$5&,#*=>21?*6$+;$$-*+;,*6$4',-(*',98$+$(*;&
C>2* 9$'04-&(9:* 2@@* +54-(4'+&,-(* 45$* ',98@$+$#* 6/* +0$* +&9$* ,.* +0


           JAKLH&MHKN>OG




            2>O$HO$B>O
           3NNHGG&9HAB>%

                                                                  $BLH

                        JAKLH&MHKN>OG
              Supreframe structure without GTSs
IEEE 802.15.4


                  superframe can have an active and an
• Optionally, the
 inactive portion. During the inactive portion, the
 coordinator may enter a low-power mode. The beacon
 frame is transmitted in the first slot of each superframe. If a
 coordinator does not wish to use a superframe structure, it
 will turn off the beacon transmissions
2>O$HO$B>O
          3NNHGG&9HAB>%

                                                            $BLH

                      JAKLH&MHKN>OG




            3N$BIH&9HAB>%             !OKN$BIH&9HAB>%

                                                           $BLH

   1234(,$56748,(+(&-,$*'(49'4(,$:2';.4'$<=7*
            Superframe structure without GTSs
4+&,-(*,5*488@&'4+&,-(*5$G7&5&-<*(8$'&.&'*#4+4*64-#;&#+0)*+0$*123*',
IEEE 802.15.4


• For low-latency applications or applications requiring specific
 data bandwidth, the PAN coordinator may dedicate portions
 of the active superframe to that application. These portions
 are called guaranteed time slots (GTSs). The GTSs form
 the contention-free period (CFP), which always appears
 at the end of the active superframe starting at a slot boundary
 immediately following the CAP
<* +,* L,&-* +0$* -$+;,5E:* 2@@* ',-+$-+&,-C64($#* +54-(4'+&,-(* &(* ',98@$
$%&'$*+54-(9&++&-<*&-*4*IHA*$-(75$(*+04+*&+(*+54-(4'+&,-*&(*',98@$+$*6$
 *,.*+0$*>F1:*B,5$*&-.,594+&,-*,-*+0$*(78$5.549$*(+57'+75$*'4-*6$*.,


                          JAKLH&MHKN>OG




                                                  2>O$HO$B>O
                   2>O$HO$B>O
                                                  JAHH&9HAB>%
                  3NNHGG&9HAB>%

                                                                    $BLH
         1234(,$!6748,(+(&-,$*'(49'4(,$:2';$<=7*
                 Superframe structure with GTSs
,($-./,0
Superframe structure with GTSs
IEEE 802.15.4
 Data transfer model
IEEE 802.15.4

• Data   transfer models

 • type   of data transfer transactions

   • device   -> coordinator

   • coordinator   -> device

   • device   -> device
G$%*& )& 3%@+(%& 4+,$%,& 0.& 0/)*,-%/& 3)0)& 0.& )& (../3+*)0./& +*& )& 7%)(.*:%*)7;%3& <

                          IEEE 802.15.4
            *%04./5& 7%)(.*8& G$%*& 0$%& 7%)(.*& +,& -.6*3A& 0$%& 3%@+(%& ,1*($/.*+?%,& 0.& 0$%& ,6
            )22/.2/+)0%& 0+'%A& 0$%& 3%@+(%& 0/)*,'+0,& +0,& 3)0)& -/)'%A& 6,+*H& ,;.00%3& BIJ9:B9
            (../3+*)0./& ')1& )(5*.4;%3H%& 0$%& ,6((%,,-6;& /%(%20+.*& .-& 0$%& 3)0)& 71&
            )(5*.4;%3H'%*0&-/)'%8&#$+,&,%>6%*(%&+,&,6'')/+?%3&+*&K+H6/% L8


                                                                                 +H4L>AM'
                                                *>>A5BJK4>A                      ,HIBNH


• device   -> coordinator                                         OHKN>J

  • beacon-enable        PAN
                                                                   ,K4K
  • slotted   CSMA-CA
                                                           )NMJ>LFH5CPHJ4
                                                                MBQ'AHRSHG4H5N
2134)-%567.884*1/'(1.*%(.%'%/..)01*'(.)%1*%'%9-'/.*:-*
                       IEEE 802.15.4
       G$%*&)&3%@+(%&4+,$%,&0.&0/)*,-%/&3)0)&+*&)&*.*7%)(.*:%*)7;%3&<9=A&+0&,+'2;1&0/)*
       6*,;.00%3&BIJ9:B9A&0.&0$%&(../3+*)0./8&#$%&(../3+*)0./&)(5*.4;%3H%,&0$%&,6((%
       71& 0/)*,'+00+*H& )*& .20+.*);& )(5*.4;%3H'%*0& -/)'%8& #$%& 0/)*,)(0+.*& +,& *.4& (.
       ,6'')/+?%3&+*&K+H6/% E8&&


                                                                           +H4L>AM'
                                           *>>A5BJK4>A
                                                                           ,HIBNH
• device   -> coordinator
                                                               ,K4K
  • nonbeacon-enabled         PAN
                                                     )NMJ>LFH5CPHJ4
  • unslotted   CSMA-CA
                                                          MBQ'AHRSHG4H5N



                  2134)-%?67.884*1/'(1.*%(.%'%/..)01*'(.)%1*%'%*.*9-'/.*:
)**+,-&.(*+'.):&*/5%,<%0'($%'0D))%001D5'+%)%=(-*&'*1'($%',.(.'+%CD%0('3@'(+.&
             1+.;%>'?$%'=%&,-&<',.(.'1+.;%'-0'($%&'0%&('D0-&<'05*((%,'BEA74B7'*+9'-1'=*
             .):&*/5%,<;%&(' F0%%' G>H>I>JK>' ?$%' ,%2-)%' ;.@' .):&*/5%,<%' ($%' 0D))%001
                        IEEE 802.15.4
             (+.&0;-((-&<' .&' *=(-*&.5' .):&*/5%,<;%&(' 1+.;%>' ?$%' (+.&0.)(-*&' -0' &*/'
             )*;=5%(-*&'*1'($%',.(.'(+.&0.)(-*&9'($%';%00.<%'-0'+%;*2%,'1+*;'($%'5-0('*1'=%&
             ?$-0'0%CD%&)%'-0'0D;;.+-M%,'-&'N-<D+% O>


                                                                           4H$L>AM&
                                            2>>A%BJK$>A                    5HIBNH

                                                            OHKN>J
• coordinator   -> device

 • beacon-enable       PAN                               5K$K&8HQRHG$
                                                      3NMJ>LFH%CPHJ$
 • slotted   CSMA-CA
                                                               5K$K
                                                        3NMJ>LFH%CPHJ$
.==+*=+-.(%',%2-)%'(*';.:%')*&(.)('.&,'+%CD%0('($%',.(.>'7',%2-)%';.@';.:%')
         )*;;.&,'+%CD%0(-&<'($%',.(.9'D0-&<'D&05*((%,'BEA74B79'(*'-(0')**+,-&.(*+'.
         ?$%' )**+,-&.(*+' .):&*/5%,<%0' ($%' 0D))%001D5' +%)%=(-*&' *1' ($%' ,.(.'
                       IEEE 802.15.4
         .):&*/5%,<;%&('1+.;%>'P1'.',.(.'1+.;%'-0'=%&,-&<9'($%')**+,-&.(*+'(+.&0;-(0'(
         BEA74B79' (*' ($%' ,%2-)%>' P1' .' ,.(.' 1+.;%' -0' &*(' =%&,-&<9' ($%' )**+,-&.(*+' -&
         .):&*/5%,<;%&(' 1+.;%' 1*55*/-&<' ($%' ,.(.' +%CD%0(' *+' -&' .' ,.(.' 1+.;%' /-($
         G>H>I>JK>'P1'+%CD%0(%,9'($%',%2-)%'.):&*/5%,<%0'($%'0D))%001D5'+%)%=(-*&'*1'($%
         .):&*/5%,<;%&('1+.;%>'?$-0'0%CD%&)%'-0'0D;;.+-M%,'-&'N-<D+% Q>''


                                                               4H$L>AM&
                                           2>>A%BJK$>A
                                                                 5HIBNH
• coordinator   -> device                           5K$K&8HQRHG$

                                                      3NMJ>LFH%CPHJ$
 • nonbeacon-enabled          PAN
                                                                5K$K
 • unsloted   CSMA-CA
                                                        3NMJ>LFH%CPHJ$

                  2134(,$>67-..4)1/&'1-)$+(-.$&$/--(01)&'-($1)$&$)-)8,&/
IEEE 802.15.4
• device   -> device (Peer-to-peer)

  • ina peer-to-peer PAN, every device may communicate with
   every other device in its radio sphere of influence. In order
   to do this effectively, the devices wishing to communicate
   will need to either receive constantly or synchronize with
   each other. In the former case, the device can simply
   transmit its data using unslotted CSMA-CA. In the latter
   case, other measures need to be taken in order to achieve
   synchronization. Such measures are beyond the
   scope of this standard
IEEE 802.15.4
  Frame structure
IEEE 802.15.4

• Frame   structure

 • Beacon    frame

 • Data   frame

 • Acknowledgement     frame

 • MAC    Command frame
IEEE 802.15.4
  Beacon frame
,,)34$&+,)% 5&$% +)&$:64+% $(+8,)D% C(&5,$:% 4$% &% C(&5,$*($&C<(3% -./=% E9(% B.@% '&2<,&3% 5,$+&4$:% +9
7'();)&6(%:'(54;45&+4,$0%OEA%;4(<3:0%'($34$>%&33)(::%;4(<3:0%&$3%C(&5,$%'&2<,&3%P:((%Q=!=!=quot;R=%E9(%B.@
&2<,&3% 4:% ')(;4F(3% 84+9% &% B.@% 9(&3()% PBSTR% &$3% &''($3(3% 84+9% &% B.@% ;,,+()% PBMTR=% E9(% BST
,$+&4$:%+9(%B.@%M)&6(%@,$+),<%;4(<30%C(&5,$%:(U7($5(%$76C()%PVA/R0%&33)(::4$>%;4(<3:0%&$3%,'+4,$&<<
9(%&7F4<4&)2%:(57)4+2%9(&3()=%E9(%BMT%5,$+&4$:%&%quot;W*C4+%;)&6(%59(5D%:(U7($5(%PM@AR=%E9(%BST0%B.@
&2<,&30%&$3%BMT%+,>(+9()%;,)6%+9(%B.@%C(&5,$%;)&6(%P4=(=0%B-XYR=


                                                              7';'=':7'>A
                 8'              :'             <'>A':7'                            8'             $quot;                      !quot;       8'
   2L4H4GZ                                                                                                      %quot;
                                                                    :<'
                                                                )U[BFBKA@'                                   -HM5BMC'
  FGH%         0AKSH'       &HWUHMLH'         )55AHGGBMC'                                         Y1&'                  JHKL>M'
                                                                               &U?HAXAKSH'                                         0*&'
                                                                &HLUAB4@'                                    )55AHGG'
04@D.E'('
       %       *>M4A>F'      +USVHA'            0BHF5G'                                          0BHF5G'                -K@F>K5'
                                                                               &?HLBXBLK4B>M'
                                                                .HK5HA'                                       0BHF5G'
       %
                                        (.$'                                                       ()*'-K@F>K5'                    (0$



                  -./'5H?HM5HM4'
                                                :'                                        O'P'Q<'4>'8<Rquot;#quot;$quot;#quot;%quot;#quot;!quot;'
  2L4H4GZ          QGHH'LFKUGH'=R'
             -AHKSVFH'    &4KA4'>X'0AKSH' 0AKSH'%HMC4D'T'
 &AB%                                                                                              -&,N'
             &HWUHMLH'      ,HFBSB4HA'       $HGHAIH5'
 D.E'(%
                                                                                                -./'-K@F>K5'
                         &.$'                 -.$'
                                                        QGHH'LFKUGH'=R'P'6'P'Q<'4>'8<R'P'$'P'S'P'!'


                 2894('%6:;<5='3.*85%>8'?%+1%*='%@'.5+/%1(.3'%./-%*='%&AB%,.5C'*

   Schematic view of the beacon frame and the PHY packet
9(%B.@%C(&5,$%;)&6(%4:%+9($%'&::(3%+,%+9(%-SZ%&:%+9(%-SZ%:()145(%3&+&%7$4+%P-AXYR0%89459%C(5,6(:%+9
SZ%'&2<,&3=%E9(%-SZ%'&2<,&3%4:%')(;4F(3%84+9%&%:2$59),$4?&+4,$%9(&3()%PASTR0%5,$+&4$4$>%+9(%-)(&6C<
(U7($5(%&$3%A+&)+*,;*M)&6(%X(<464+()%PAMXR%;4(<3:0%&$3%&%-SZ%9(&3()%P-STR%5,$+&4$4$>%+9(%<($>+9%,;%+9
SZ%'&2<,&3%4$%,5+(+:=%E9(%AST0%-ST0%&$3%-SZ%'&2<,&3%+,>(+9()%;,)6%+9(%-SZ%'&5D(+%P4=(=0%--XYR=
IEEE 802.15.4
   Data frame
quot;quot;
$%&'()*+,*-.)((/                                                01230&345&6quot;781910!734&38quot;3&4quot;7:18;#<9387&+,*-


quot;!quot;#quot;$%&'('%)*'+,

#$%&' (()*+,-*).+')*.&%/.%&'),0).+')12.2)0&23'4)-+#/+),&#$#52.'*)0&,3).+')%66'&)728'&*9)

                    &
                    &                                                                     ([&,[&/[&+(&>A&
                                                          )&      +&         -&$>&)(&                            !&          )&
                                           1O$H$G=                                              +-&
                                                                                           3MBFBJA@&
                                                        KAJPH& #HLMHNOH&    3%%AHGGBNC&
  C-D%%                                                                                                     5J$J&9J@F>J%&   K2#&
                                                                                           #HOMAB$@&
                                                        2>N$A>F 4MPQHA&       KBHF%G&
E8F3'B,*%                                                                                  RHJ%HA&
                                                                           6R8&                             632&9J@F>J%&    6K8
                9RT&%H?HN%HN$&
                                            +&                                      ,&U&V-&$>&W-X&U&!&
  1O$H$G=        VGHH&OFJMGH&/X&
            9AHJPQFH&   #$JA$&>Z&KAJPH& KAJPH&0HNC$D&
 >?@%
                                                                                          9#5S&
            #HLMHNOH&     5HFBPB$HA&     Y&8HGHAIH%&
 3'B,*%
                    #R8&                  9R8&                                        9RT&9J@F>J%&
                                                          VGHH&OFJMGH&/X&U&/&U&V-&$>&W-X&U&!quot;

                 6758*,%99:;.<,+'(7.%=7,2%1)%(<,%4'('%)*'+,%'04%(<,%>?@%A'./,(

 +')12.2)6287,21)#*)62**'1).,).+');<=)*%>728'&)251)#*)&'0'&&'1).,)2*).+');<=)*'&?#/')12.2)%5#.)@;ABC
      Schematic view of the data frame and the PHY packet
 +');<=)6287,21)#*)6&'0#E'1)-#.+)25);FG)251)266'51'1)-#.+)25);quot;G9):+');FG)/,5.2#5*).+')quot;&23
 ,5.&,7)0#'714)12.2)*'H%'5/')5%3>'&)@BAID4)211&'**#5$)0#'71*4)251),6.#,52778).+')2%E#7#2&8)*'/%&#.8)+'21'
 +');quot;G)#*)/,36,*'1),0)2)(JK>#.)quot;=A9):+');FG4);<=)6287,214)251);quot;G).,$'.+'&)0,&3).+');<=)12
&23'4)@#9'94);LBCD9
IEEE 802.15.4
Acknowledgement frame
FG4) /,5.2#5#5$) .+') L&'23>7') A'H%'5/') 251) Aquot;B) 0#'71*4) 251) .+') LFG
287,21)#5),/.'.*9):+')AFG4)LFG4)251)LFM)6287,21).,$'.+'&)0,&3).+')L


                                       1O$H$G=     )&          +&      )&
        &
  C -D% &                                        KAJPH& #HLMHNOH&     K2#&
                                                 2>N$A>F& 4MPQHA&
E8F3'B,*%
                                                        6R8&          6K8&
                  9RT&%H?HN%HN$&
                                         +&                    ,&
      1O$H$G=      VGHH&OFJMGH&/X
                           #$JA$&>Z&   KAJPH&
   >?@%         9AHJPQFH&
                          KAJPH&    0HNC$D&Y&              9#5S&
                #HLMHNOH 5HFBPB$HA& 8HGHAIH%&
   3'B,*%
                       #R8&             9R8&           9RT&9J@F>J%&
                                       VGHH&OFJMGH&/X&U&/&

      Schematic view of the acknowledgment frame
 ;.<,+'(7.%=7,2%1)%(<,%'./0123,45+,0(%)*'+,%'04%(<,%>?@
                           and the PHY packet
IEEE 802.15.4
MAC Command frame
quot;!quot;#quot;$%&'(%)*++,-.%/0,+1

$%&'( )quot;* +,-.+* /,(* +/'&0/&'(* -1* /,(* 234* 0-55678* 1'65(9* .,$0,* -'$%$76/(+* 1'-5* .$/,$7* /,(* 234
&:;6<('=*>,(*234*?6<;-68*0-7/6$7+*/,(*4-55678*><?(*1$(;8*678*/,(*0-55678*?6<;-68*@+((*A=!=!=BC=*>,
 34*?6<;-68*$+*?'(1$D(8*.$/,*67*2EF*678*6??(78(8*.$/,*67*2#F=*>,(*2EF*0-7/6$7+*/,(*234*#'65(
 -7/'-;*1$(;89*GHI9*688'(++$7%*1$(;8+9*678*-?/$-76;;<*/,(*6&D$;$6'<*+(0&'$/<*,(68('=*>,(*2#F*0-7/6$7+*6*)J
$/*#4H=*>,(*2EF9*234*?6<;-689*678*2#F*/-%(/,('*1-'5*/,(*234*0-55678*1'65(9*@$=(=9*2LGMC=

                 %
                 '                                                                  7[';['=[':7['>A'
                                                    8'        :'       <'4>'87'                        :'       !'       8'
                                       2N4H4GY                                            :<'
                                                                                      )LZBFBJA@'
                                                  0AJOH' &HKLHMNH' )55AHGGBMC'                   *>OOJM5'   *>OOJM5'
  &'(%%                                                                               &HNLAB4@'                         0*&
                                                  *>M4A>F +LOPHA'    0BHF5G'                       1@?H'     -J@F>J5'
                                                                                      .HJ5HA'
;<78,:10%
                                                                   (.$'                                ()*'-J@F>J5'     (0$
                  -./'5H?HM5HM4''
                                         :'                                       ='R'S<'4>'T<U'R'M'
     2N4H4GY       SGHH'NFJLGH'=U''
                           &4JA4'>X'   0AJOH'
               -AHJOPFH'
 DEF%                       0AJOH'    %HMC4D'V'                                        -&,Q'
               &HKLHMNH'
 8,:10%                    ,HFBOB4HA' $HGHAIH5'
                      &.$'             -.$'                                       -./'-J@F>J5'
                                                         SGHH'NFJLGH'=U'R'W'R'S<'4>'T<U'R'!quot;

          A56<01%=#B>)@1+,95)%451C%*/%9@1%&'(%)*++,-.%/0,+1%,-.%9@1%DEF%3,)G19

                Schematic view of the MAC command frame
,(*2LGM*$+*/,(7*?6++(8*/-*/,(*LEN*6+*/,(*LHGM9*.,$0,*:(0-5(+*/,(*LEN*?6<;-68=*>,(*LEN*?6<;-68*$
                            and the PHY packet
'(1$D(8*.$/,*67*HEF9*0-7/6$7$7%*/,(*L'(65:;(*H(O&(70(*678*H#G*1$(;8+9*678*6*LEF*0-7/6$7$7%*/,(*;(7%/,
1* /,(* LEN* ?6<;-68* $7* -0/(/+=* >,(* ?'(65:;(* +(O&(70(* (76:;(+* /,(* '(0($P('* /-* 60,$(P(* +<5:-
<70,'-7$Q6/$-7=*>,(*HEF9*LEF9*678*LEN*?6<;-68*/-%(/,('*1-'5*/,(*LEN*?60R(/9*@$=(=9*LLGMC=
IEEE 802.15.4
Improving probability of successful delivery
IEEE 802.15.4


• Improving   probability of successful delivery

 • CSMA-CA       mechanism

 • Frame   acknowledgement

 • Data   verification
IEEE 802.15.4
CSMA-CA Mechanism
IEEE 802.15.4

• CSMA-CA     mechanism

 • Beacon-enabled   PAN

  • slotted   CSMA-CA

 • Nonbeacon-enabled      PAN

  • Unslotted   CSMA-CA
IEEE 802.15.4
Frame acknowledgement
IEEE 802.15.4


• Frame   acknowledgement

 •a  successful reception and validation of a data or MAC
   command frame can be optionally confirmed with an
   acknowledgment. If the receiving device is unable to handle
   the received data frame for any reason, the message is not
   acknowledged
IEEE 802.15.4

• Frame   acknowledgement

 • ifthe originator does not receive an acknowledgment after
   some period, it assumes that the transmission was
   unsuccessful and retries the frame transmission. If an
   acknowledgment is still not received after several retries, the
   originator can choose either to terminate the transaction or
   to try again. When the acknowledgment is not
   required, the originator assumes the transmission
   was successful
IEEE 802.15.4
  Data verification
IEEE 802.15.4


• Data   verification

 • inorder to detect bit errors, an FCS mechanism employing a
   16-bit International Telecommunication Union—
   Telecommunication Standardization Sector (ITU-T) cyclic
   redundancy check (CRC) is used to detect errors in
   every frame
IEEE 802.15.4
Power consumption considerations
IEEE 802.15.4

• Power   consumption considerations

                     devices will require duty-cycling to
 • Battery-powered
   reduce power consumption. These devices will spend most
   of their operational life in a sleep state; however, each device
   periodically listens to the RF channel in order to
   determine whether a message is pending. This mechanism
   allows the application designer to decide on the balance
   between battery consumption and
IEEE 802.15.4
    Security
IEEE 802.15.4

• Security

  • The cryptographic mechanism in this standard is based on
   symmetric-key cryptography and uses keys that are
   provided by higher layer processes. The establishment and
   maintenance of these keys are outside the scope of this
   standard. The mechanism assumes a secure implementation
   of cryptographic operations and secure and authentic
   storage of keying material
ZIGBEE
ZIGBEE


• Protocol   Stack

• Node Types

• Network    Establishment

• Network Topologies
ZIGBEE
Protocol Stack
ZIGBEE

• Inorder to adopt WSN
 technology for use in real-life
 applications an association of
 industry companies: ZigBee
 Alliance has specified a full
 protocol suite that provide
 efficient high level
 communication in WSNs
ZIGBEE

• ZigBee Alliance

  • http://www.zigbee.org

• ZigBee   Standard

  • PHY & MAC = IEEE
   802.15.4

  • APS   & NWK & APL
ZIGBEE
Node Types
ZIGBEE


• Node Types

 • Coordinator

 • Router

 • End   device
ZIGBEE

• Coordinator

 •

 • configuring    key network parameters

 • network   start

 • admission    of other nodes

 • network   address assignment
ZIGBEE

• Router

 •

 •a   node has IEEE 802.15.4 FFD capability but not act as
     network coordinator is called a router

 • to   extend network coverage area beyond transmission
     range of a single device

 • to   increase network reliability by creating data routing paths
ZIGBEE

• End   device

 •

 • nodes     of this type can directly communication only with a
     single router or coordinator. Among other node types end
     devices consume least processing, memory and power
     resources and usually deployed on batteries in power saving
     mode. Therefore ZigBee end devices correspond to reduced
     functionality devices (RFD) in IEEE 802.15.4 standard
ZIGBEE
Network Establishment
ZIGBEE


• ZigBee   network establishment

 • Network    layer (NWK) in ZigBee protocol stack extends
   802.15.4 functionality in terms of possible node
   interconnections, data transmission and network
   management and provide mechanisms for exchange on the
   level of entire network
ZIGBEE
Parent-child relationship
ZIGBEE


• Parent-child   relationship

  • child
        - the node that has
   entered the network

  • parent- the node that has
   provided network access
ZIGBEE

• Parent-child   relationship

  • only   coordinator and routers can act as parent nodes

  •a   child node can have only one parent at a time

  •a   child node is able to change parent

  • ZigBeenetwork hierarchy can be visualized as a tree with
   coordinator being on top and end devices being tree leaves
ZIGBEE

• Parent-child   relationship

  • Basedon such hierarchical following parameters should be
   specified by user to configure the network:

    • Maximum      number of direct children

    • Maximum      network depth
ZIGBEE


• Node   addressing

 • Each node that joins ZigBee network receives temporary
  16-bit long network address (e.g., 3CB8). Communication
  on network level is performed based on this address while
  direct transmission between two neighboring devices is
  done based on MAC address
ZIGBEE
Network Topologies
ZIGBEE


• Network Topologies

 • Star

 • Tree

 • Mesh
ZIGBEE
• Star

  • onlycoordinator can have
   child nodes

  • network coverage area is
   limited by coordinator
   transmission range

  • networkis simple in setup
   and deployment

  • coordinatoris the only
   node that can route data
   packets
ZIGBEE

• Tree

 • routers are able to have
   child nodes

 • directcommunication is
   possible only in terms of
   parent-child relation

 • hierarchicalrouting
   without alternative paths
ZIGBEE
• Mesh

 • routers   are able have child
   nodes

 • directcommunication is
   possible between any FFD
   devices within
   transmission range of each
   other

 • optimum  and dynamic
   routing with alt paths

Más contenido relacionado

La actualidad más candente

Zigbee wireless control made easy
Zigbee wireless control made easyZigbee wireless control made easy
Zigbee wireless control made easy
rajrayala
 
Voice communication using zigbee
Voice communication using zigbeeVoice communication using zigbee
Voice communication using zigbee
Waqar Memon
 
zigbee technology
zigbee technologyzigbee technology
zigbee technology
Deep Hundal
 

La actualidad más candente (20)

Zigbee 802-15-4
Zigbee 802-15-4Zigbee 802-15-4
Zigbee 802-15-4
 
Zigbee - Building Smart Homes
Zigbee - Building Smart HomesZigbee - Building Smart Homes
Zigbee - Building Smart Homes
 
Zigbee wireless control made easy
Zigbee wireless control made easyZigbee wireless control made easy
Zigbee wireless control made easy
 
Zigbee technology
Zigbee technology Zigbee technology
Zigbee technology
 
ZigBee Technology
ZigBee TechnologyZigBee Technology
ZigBee Technology
 
Tech sem on zig 1
Tech sem on zig 1Tech sem on zig 1
Tech sem on zig 1
 
Zigbee- The Future of Data Communications
Zigbee- The Future of Data CommunicationsZigbee- The Future of Data Communications
Zigbee- The Future of Data Communications
 
Zigbee technology ppt edited
Zigbee technology ppt editedZigbee technology ppt edited
Zigbee technology ppt edited
 
Zigbee technology presentation
Zigbee technology presentationZigbee technology presentation
Zigbee technology presentation
 
Voice communication using zigbee
Voice communication using zigbeeVoice communication using zigbee
Voice communication using zigbee
 
Zigbee intro
Zigbee introZigbee intro
Zigbee intro
 
Zig Bee
Zig BeeZig Bee
Zig Bee
 
Zigbee ppt
Zigbee pptZigbee ppt
Zigbee ppt
 
Zigbee Presentation
Zigbee PresentationZigbee Presentation
Zigbee Presentation
 
zigbee technology
zigbee technology zigbee technology
zigbee technology
 
Dccn ppt
Dccn pptDccn ppt
Dccn ppt
 
COMPARISON OF SHORT RANGE WIRELESS NETWORKS (PAN’ s)
COMPARISON OF SHORT RANGE WIRELESS NETWORKS (PAN’ s) COMPARISON OF SHORT RANGE WIRELESS NETWORKS (PAN’ s)
COMPARISON OF SHORT RANGE WIRELESS NETWORKS (PAN’ s)
 
Zigbee
ZigbeeZigbee
Zigbee
 
zigbee technology
zigbee technologyzigbee technology
zigbee technology
 
Zigbee
 Zigbee    Zigbee
Zigbee
 

Destacado (8)

Wireless standards
Wireless standards Wireless standards
Wireless standards
 
Zig bee
Zig beeZig bee
Zig bee
 
Zigbee technology
Zigbee technologyZigbee technology
Zigbee technology
 
Zig bee
Zig beeZig bee
Zig bee
 
Zigbee ppt
Zigbee pptZigbee ppt
Zigbee ppt
 
zigbee
 zigbee  zigbee
zigbee
 
Zigbee Based Patient Monitoring System
Zigbee Based Patient Monitoring SystemZigbee Based Patient Monitoring System
Zigbee Based Patient Monitoring System
 
Low Power Wireless Technologies and Standards for the Internet of Things
Low Power Wireless Technologies and Standards for the Internet of ThingsLow Power Wireless Technologies and Standards for the Internet of Things
Low Power Wireless Technologies and Standards for the Internet of Things
 

Similar a Wireless Communication And Mobile Network - ZigBee

Bitm2003 802.11g
Bitm2003 802.11gBitm2003 802.11g
Bitm2003 802.11g
Arpan Pal
 
Ccnav5.org ccna 3-chapter_4_v50_2014_exam_answers
Ccnav5.org ccna 3-chapter_4_v50_2014_exam_answersCcnav5.org ccna 3-chapter_4_v50_2014_exam_answers
Ccnav5.org ccna 3-chapter_4_v50_2014_exam_answers
Đồng Quốc Vương
 
Cn data sheet_cn_pilot_e500_e501s_e502s_family
Cn data sheet_cn_pilot_e500_e501s_e502s_familyCn data sheet_cn_pilot_e500_e501s_e502s_family
Cn data sheet_cn_pilot_e500_e501s_e502s_family
Ever Recharte
 

Similar a Wireless Communication And Mobile Network - ZigBee (20)

Final_IoT_Protocol Stack.pptx
Final_IoT_Protocol Stack.pptxFinal_IoT_Protocol Stack.pptx
Final_IoT_Protocol Stack.pptx
 
Ap300 spec sheet
Ap300 spec sheetAp300 spec sheet
Ap300 spec sheet
 
cisco-air-ap2802e-k-k9-datasheet.pdf
cisco-air-ap2802e-k-k9-datasheet.pdfcisco-air-ap2802e-k-k9-datasheet.pdf
cisco-air-ap2802e-k-k9-datasheet.pdf
 
AP 6010DN-AGN
AP 6010DN-AGNAP 6010DN-AGN
AP 6010DN-AGN
 
ZigBee Technology PPT 2.pdf
ZigBee Technology PPT 2.pdfZigBee Technology PPT 2.pdf
ZigBee Technology PPT 2.pdf
 
Bitm2003 802.11g
Bitm2003 802.11gBitm2003 802.11g
Bitm2003 802.11g
 
huawei-ce7850-32q-ei-brochure-datasheet.pdf
huawei-ce7850-32q-ei-brochure-datasheet.pdfhuawei-ce7850-32q-ei-brochure-datasheet.pdf
huawei-ce7850-32q-ei-brochure-datasheet.pdf
 
IRJET- Performance Analysis of IP Over Optical CDMA System based on RD Code
IRJET- Performance Analysis of IP Over Optical CDMA System based on RD CodeIRJET- Performance Analysis of IP Over Optical CDMA System based on RD Code
IRJET- Performance Analysis of IP Over Optical CDMA System based on RD Code
 
cisco-air-cap3702e-e-k9-datasheet.pdf
cisco-air-cap3702e-e-k9-datasheet.pdfcisco-air-cap3702e-e-k9-datasheet.pdf
cisco-air-cap3702e-e-k9-datasheet.pdf
 
Aruba 207 Series Access Point Data Sheet
Aruba 207 Series Access Point Data SheetAruba 207 Series Access Point Data Sheet
Aruba 207 Series Access Point Data Sheet
 
Networking basics
Networking basicsNetworking basics
Networking basics
 
cisco-air-cap3702e-s-k9-datasheet.pdf
cisco-air-cap3702e-s-k9-datasheet.pdfcisco-air-cap3702e-s-k9-datasheet.pdf
cisco-air-cap3702e-s-k9-datasheet.pdf
 
cisco-air-ap3802e-s-k9c-datasheet.pdf
cisco-air-ap3802e-s-k9c-datasheet.pdfcisco-air-ap3802e-s-k9c-datasheet.pdf
cisco-air-ap3802e-s-k9c-datasheet.pdf
 
cisco-air-ap2802e-s-k9-datasheet.pdf
cisco-air-ap2802e-s-k9-datasheet.pdfcisco-air-ap2802e-s-k9-datasheet.pdf
cisco-air-ap2802e-s-k9-datasheet.pdf
 
WPAN According To ZIGBEE
WPAN According To ZIGBEEWPAN According To ZIGBEE
WPAN According To ZIGBEE
 
Bell4GLTE
Bell4GLTEBell4GLTE
Bell4GLTE
 
ความรู้เกี่ยวกับ MikroTik Nstreme Version 2 (Nv2)
ความรู้เกี่ยวกับ MikroTik Nstreme Version 2 (Nv2)ความรู้เกี่ยวกับ MikroTik Nstreme Version 2 (Nv2)
ความรู้เกี่ยวกับ MikroTik Nstreme Version 2 (Nv2)
 
Ccnav5.org ccna 3-chapter_4_v50_2014_exam_answers
Ccnav5.org ccna 3-chapter_4_v50_2014_exam_answersCcnav5.org ccna 3-chapter_4_v50_2014_exam_answers
Ccnav5.org ccna 3-chapter_4_v50_2014_exam_answers
 
Cn data sheet_cn_pilot_e500_e501s_e502s_family
Cn data sheet_cn_pilot_e500_e501s_e502s_familyCn data sheet_cn_pilot_e500_e501s_e502s_family
Cn data sheet_cn_pilot_e500_e501s_e502s_family
 
Рекомендации по настройке контроллеров БЛВС Cisco
Рекомендации по настройке контроллеров БЛВС CiscoРекомендации по настройке контроллеров БЛВС Cisco
Рекомендации по настройке контроллеров БЛВС Cisco
 

Más de Xaver Y.R. Chen

2014-04 Open edX 之緣起與展望@銜接 edX平台 讓課程與國際接軌研討會
2014-04 Open edX 之緣起與展望@銜接 edX平台 讓課程與國際接軌研討會2014-04 Open edX 之緣起與展望@銜接 edX平台 讓課程與國際接軌研討會
2014-04 Open edX 之緣起與展望@銜接 edX平台 讓課程與國際接軌研討會
Xaver Y.R. Chen
 
2014-04 Open edX Studio 與 LMS 功能介紹@銜接 edX平台 讓課程與國際接軌研討會
2014-04 Open edX Studio 與 LMS 功能介紹@銜接 edX平台 讓課程與國際接軌研討會2014-04 Open edX Studio 與 LMS 功能介紹@銜接 edX平台 讓課程與國際接軌研討會
2014-04 Open edX Studio 與 LMS 功能介紹@銜接 edX平台 讓課程與國際接軌研討會
Xaver Y.R. Chen
 
2012S-CE1002 作業繳交格式
2012S-CE1002 作業繳交格式2012S-CE1002 作業繳交格式
2012S-CE1002 作業繳交格式
Xaver Y.R. Chen
 
2012 S CE1002A - Howto Setup Java Programming Environment
2012 S CE1002A - Howto Setup Java Programming Environment2012 S CE1002A - Howto Setup Java Programming Environment
2012 S CE1002A - Howto Setup Java Programming Environment
Xaver Y.R. Chen
 
Howto Make A Linux Boot Disk
Howto Make A Linux Boot DiskHowto Make A Linux Boot Disk
Howto Make A Linux Boot Disk
Xaver Y.R. Chen
 

Más de Xaver Y.R. Chen (9)

A1.1 陳良瑞 能源概論__新_
A1.1 陳良瑞 能源概論__新_A1.1 陳良瑞 能源概論__新_
A1.1 陳良瑞 能源概論__新_
 
2014-04 Open edX 之緣起與展望@銜接 edX平台 讓課程與國際接軌研討會
2014-04 Open edX 之緣起與展望@銜接 edX平台 讓課程與國際接軌研討會2014-04 Open edX 之緣起與展望@銜接 edX平台 讓課程與國際接軌研討會
2014-04 Open edX 之緣起與展望@銜接 edX平台 讓課程與國際接軌研討會
 
2014-04 Open edX Studio 與 LMS 功能介紹@銜接 edX平台 讓課程與國際接軌研討會
2014-04 Open edX Studio 與 LMS 功能介紹@銜接 edX平台 讓課程與國際接軌研討會2014-04 Open edX Studio 與 LMS 功能介紹@銜接 edX平台 讓課程與國際接軌研討會
2014-04 Open edX Studio 與 LMS 功能介紹@銜接 edX平台 讓課程與國際接軌研討會
 
2014-04 Open edX 技術開發與未來發展規劃@銜接 edX平台 讓課程與國際接軌研討會
2014-04 Open edX 技術開發與未來發展規劃@銜接 edX平台 讓課程與國際接軌研討會2014-04 Open edX 技術開發與未來發展規劃@銜接 edX平台 讓課程與國際接軌研討會
2014-04 Open edX 技術開發與未來發展規劃@銜接 edX平台 讓課程與國際接軌研討會
 
2013-11 Open edX 平台簡介以及發展趨勢@磨課師 MOOCs/SPOCs 課程平台研討會
2013-11 Open edX 平台簡介以及發展趨勢@磨課師 MOOCs/SPOCs 課程平台研討會2013-11 Open edX 平台簡介以及發展趨勢@磨課師 MOOCs/SPOCs 課程平台研討會
2013-11 Open edX 平台簡介以及發展趨勢@磨課師 MOOCs/SPOCs 課程平台研討會
 
2012S-CE1002 作業繳交格式
2012S-CE1002 作業繳交格式2012S-CE1002 作業繳交格式
2012S-CE1002 作業繳交格式
 
2012 S CE1002A - Howto Setup Java Programming Environment
2012 S CE1002A - Howto Setup Java Programming Environment2012 S CE1002A - Howto Setup Java Programming Environment
2012 S CE1002A - Howto Setup Java Programming Environment
 
Howto Make A Linux Boot Disk
Howto Make A Linux Boot DiskHowto Make A Linux Boot Disk
Howto Make A Linux Boot Disk
 
2007 青年國是會議北區第二組結論報告
2007 青年國是會議北區第二組結論報告2007 青年國是會議北區第二組結論報告
2007 青年國是會議北區第二組結論報告
 

Último

Último (20)

How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 
Automating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps ScriptAutomating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps Script
 
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot TakeoffStrategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
 
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdfUnderstanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
 
🐬 The future of MySQL is Postgres 🐘
🐬  The future of MySQL is Postgres   🐘🐬  The future of MySQL is Postgres   🐘
🐬 The future of MySQL is Postgres 🐘
 
presentation ICT roal in 21st century education
presentation ICT roal in 21st century educationpresentation ICT roal in 21st century education
presentation ICT roal in 21st century education
 
Scaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationScaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organization
 
Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024
 
Strategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a FresherStrategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a Fresher
 
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
 
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
 
Boost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityBoost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivity
 
Partners Life - Insurer Innovation Award 2024
Partners Life - Insurer Innovation Award 2024Partners Life - Insurer Innovation Award 2024
Partners Life - Insurer Innovation Award 2024
 
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
 
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemkeProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
 
Exploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone ProcessorsExploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone Processors
 
GenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day PresentationGenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day Presentation
 
[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf
 
2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...
 
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationFrom Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
 

Wireless Communication And Mobile Network - ZigBee

  • 2. • WSN • IEEE 802.15.4 • ZigBee
  • 4. WSN • Wireless Sensor Network (WSN) is a network of small spatially distributed devices that can communicate with each other over the air
  • 5. WSN • to monitor • to control • both to monitor and control
  • 6. WSN • Application Areas • less expensive • more flexible
  • 8. WSN • Opportunities • Unattended areas • Large-scale networks with many nodes • Increase reliability by rerouting possibility • Mobility
  • 14. WSN • WSN Technology Requirements • Low cost and small size devices • Low power consumption • Unlicensed radio bands • Scalability: Support large number of nodes • Flexibility: Simple deployment and network extension
  • 15.
  • 16. ZigBee Bluetooth WiFi Standard IEEE 802.15.4 IEEE 802.15.2 IEEE 802.11 Radio DSSS FHSS DSSS Frequency 2.4GHz 2.4GHz 2.4/5GHz Topology Star/Mesh/P2P Piconet Star/Mesh Max Nodes 255/65000+ 7 30 Range ~50m ~10m ~100m Duty Cycle Low Moderate Low to Moderate Bandwidth 250Kbps 1Mbps 108Mbps
  • 18. !quot;#$%&(PHY)'(%)*+,&(MAC)'-./0&(Data Link)1 8 ZigBee Alliance 9:,;<=>?'-.@ABCD,'EFGHIJ IEEE 802.15.4 STIJquot; • LowRate-Wireless Personal Area Network • Physical (PHY) and Medium Access Control (MAC)
  • 19. IEEE 802.15.4 • Type of network device • Data transfer models • Protocol stack • Physical layer (PHY) • Medium Access Control sub-layer (MAC) • Functional overview
  • 20. IEEE 802.15.4 Type of network devices
  • 21. IEEE 802.15.4 • Types of network devices • RFD (Reduced Functionality Device) • FFD (Full Functionality Device)
  • 22. IEEE 802.15.4 • RFD (Reduced Functionality Device) • cancommunicate only to a single FFD in the network and no RFDs • requires little memory, processing and power resource for operation • e.g., sensor nodes, actuator nodes
  • 23. IEEE 802.15.4 • FFD (Full Functionality Device) • capable to act as network coordinator and as an end-device • can communicate both FFDs and RFDs • requires extra memory and processing power, consumes more energy compared to RFD
  • 24. IEEE 802.15.4 Data transfer models
  • 25. IEEE 802.15.4 • Data transfer models • Star • Peer-to-peer • *Mesh
  • 26. IEEE 802.15.4 • Star • networkis simple in set up and deployment • dataforwarding is possible only by coordinator (two- hop only) • coveragearea is limited by one-hop transmission range
  • 27. IEEE 802.15.4 • Peer-to-peer • data frames can be delivered via several intermediate node • largespatial areas can be covered by a single network • complex packet routing algorithm are required
  • 28. IEEE 802.15.4 Protocol Stack
  • 29. IEEE 802.15.4 • Physical layer (PHY) • Medium Access Control sub-layer (MAC)
  • 30. IEEE 802.15.4 Physical layer
  • 31. IEEE 802.15.4 • Physical layer • activation and deactivation of the radio transceiver • energy detection (ED) within the current channel • link quality indicator (LQI) for received packets
  • 32. IEEE 802.15.4 • channel frequency selection • data transmission and reception • clear channel assessment (CCA) for carrier sense multiple access with collision avoidance (CSMA-CA)
  • 33. IEEE 802.15.4 • Physical layer (PHY) • 802.15.4 PHY communication on 3 frequency bands: Frequency Channels Data rates Availability Sensitivity 2450 16 250 Worldwide >= -85dBm 915 10 40, 250 US, AUS >= -92dBm 868 1 20, 100 Europe >= -92dBm
  • 34. IEEE 802.15.4 • Physical layer •a transmitter shall be capable of transmitting at least –3 dBm (0.5 mW), normally at 0 dBm (1 mW) •a receiver shall have a receiver maximum input level greater than or equal to –20 dBm (0.01 mW)
  • 35. IEEE 802.15.4 • Physical layer • 2450MHz is the most commonly used band for WSNs because: • it’s available worldwide without need for licensing • it has highest data rate achieved with simplest modulation • Sub1-GHz bands (915/868 MHz) provide better signal range than 2.4 GHz band
  • 36. IEEE 802.15.4 • Physical layer • when starting the network the coordinator scans pre- configured channels and choose one with least activity detected • when joining the WPAN, a device scans through the given set of channels and report discovered networks to higher layers to permit join
  • 37.
  • 38. IEEE 802.15.4 MAC layer
  • 39. IEEE 802.15.4 • Medium Access Control sub-layer • generating network beacons if the device is a coordinator • synchronizing to network beacons • supporting PAN association and disassociation
  • 40. IEEE 802.15.4 • Medium Access Control sub-layer • supporting device security • employing the CSMA-CA mechanism for channel access • handling and maintaining the GTS mechanism • providing a reliable link between two peer MAC entities
  • 42. IEEE 802.15.4 • Functional Overview • Superframe structure • Data transfer model • Frame structure • Improving probability of successful delivery • Power consumption considerations • Security
  • 44. IEEE 802.15.4 • Superframe structure • thisstandard allows the optional use of a superframe structure. The format of the superframe is defined by the coordinator. The superframe is bounded by network beacons sent by the coordinator and is divided into 16 equally sized slots
  • 45. $* 123)* 4-#* +,* #$('5&6$* +0$* (+57'+75$* ,.* +0$* (78$5.549$(:* 2-/* #$% $*',-+$-+&,-*4''$((*8$5&,#*=>21?*6$+;$$-*+;,*6$4',-(*',98$+$(*;& C>2* 9$'04-&(9:* 2@@* +54-(4'+&,-(* 45$* ',98@$+$#* 6/* +0$* +&9$* ,.* +0 JAKLH&MHKN>OG 2>O$HO$B>O 3NNHGG&9HAB>% $BLH JAKLH&MHKN>OG Supreframe structure without GTSs
  • 46. IEEE 802.15.4 superframe can have an active and an • Optionally, the inactive portion. During the inactive portion, the coordinator may enter a low-power mode. The beacon frame is transmitted in the first slot of each superframe. If a coordinator does not wish to use a superframe structure, it will turn off the beacon transmissions
  • 47. 2>O$HO$B>O 3NNHGG&9HAB>% $BLH JAKLH&MHKN>OG 3N$BIH&9HAB>% !OKN$BIH&9HAB>% $BLH 1234(,$56748,(+(&-,$*'(49'4(,$:2';.4'$<=7* Superframe structure without GTSs 4+&,-(*,5*488@&'4+&,-(*5$G7&5&-<*(8$'&.&'*#4+4*64-#;&#+0)*+0$*123*',
  • 48. IEEE 802.15.4 • For low-latency applications or applications requiring specific data bandwidth, the PAN coordinator may dedicate portions of the active superframe to that application. These portions are called guaranteed time slots (GTSs). The GTSs form the contention-free period (CFP), which always appears at the end of the active superframe starting at a slot boundary immediately following the CAP
  • 49. <* +,* L,&-* +0$* -$+;,5E:* 2@@* ',-+$-+&,-C64($#* +54-(4'+&,-(* &(* ',98@$ $%&'$*+54-(9&++&-<*&-*4*IHA*$-(75$(*+04+*&+(*+54-(4'+&,-*&(*',98@$+$*6$ *,.*+0$*>F1:*B,5$*&-.,594+&,-*,-*+0$*(78$5.549$*(+57'+75$*'4-*6$*., JAKLH&MHKN>OG 2>O$HO$B>O 2>O$HO$B>O JAHH&9HAB>% 3NNHGG&9HAB>% $BLH 1234(,$!6748,(+(&-,$*'(49'4(,$:2';$<=7* Superframe structure with GTSs ,($-./,0
  • 51. IEEE 802.15.4 Data transfer model
  • 52. IEEE 802.15.4 • Data transfer models • type of data transfer transactions • device -> coordinator • coordinator -> device • device -> device
  • 53. G$%*& )& 3%@+(%& 4+,$%,& 0.& 0/)*,-%/& 3)0)& 0.& )& (../3+*)0./& +*& )& 7%)(.*:%*)7;%3& < IEEE 802.15.4 *%04./5& 7%)(.*8& G$%*& 0$%& 7%)(.*& +,& -.6*3A& 0$%& 3%@+(%& ,1*($/.*+?%,& 0.& 0$%& ,6 )22/.2/+)0%& 0+'%A& 0$%& 3%@+(%& 0/)*,'+0,& +0,& 3)0)& -/)'%A& 6,+*H& ,;.00%3& BIJ9:B9 (../3+*)0./& ')1& )(5*.4;%3H%& 0$%& ,6((%,,-6;& /%(%20+.*& .-& 0$%& 3)0)& 71& )(5*.4;%3H'%*0&-/)'%8&#$+,&,%>6%*(%&+,&,6'')/+?%3&+*&K+H6/% L8 +H4L>AM' *>>A5BJK4>A ,HIBNH • device -> coordinator OHKN>J • beacon-enable PAN ,K4K • slotted CSMA-CA )NMJ>LFH5CPHJ4 MBQ'AHRSHG4H5N
  • 54. 2134)-%567.884*1/'(1.*%(.%'%/..)01*'(.)%1*%'%9-'/.*:-* IEEE 802.15.4 G$%*&)&3%@+(%&4+,$%,&0.&0/)*,-%/&3)0)&+*&)&*.*7%)(.*:%*)7;%3&<9=A&+0&,+'2;1&0/)* 6*,;.00%3&BIJ9:B9A&0.&0$%&(../3+*)0./8&#$%&(../3+*)0./&)(5*.4;%3H%,&0$%&,6((% 71& 0/)*,'+00+*H& )*& .20+.*);& )(5*.4;%3H'%*0& -/)'%8& #$%& 0/)*,)(0+.*& +,& *.4& (. ,6'')/+?%3&+*&K+H6/% E8&& +H4L>AM' *>>A5BJK4>A ,HIBNH • device -> coordinator ,K4K • nonbeacon-enabled PAN )NMJ>LFH5CPHJ4 • unslotted CSMA-CA MBQ'AHRSHG4H5N 2134)-%?67.884*1/'(1.*%(.%'%/..)01*'(.)%1*%'%*.*9-'/.*:
  • 55. )**+,-&.(*+'.):&*/5%,<%0'($%'0D))%001D5'+%)%=(-*&'*1'($%',.(.'+%CD%0('3@'(+.& 1+.;%>'?$%'=%&,-&<',.(.'1+.;%'-0'($%&'0%&('D0-&<'05*((%,'BEA74B7'*+9'-1'=* .):&*/5%,<;%&(' F0%%' G>H>I>JK>' ?$%' ,%2-)%' ;.@' .):&*/5%,<%' ($%' 0D))%001 IEEE 802.15.4 (+.&0;-((-&<' .&' *=(-*&.5' .):&*/5%,<;%&(' 1+.;%>' ?$%' (+.&0.)(-*&' -0' &*/' )*;=5%(-*&'*1'($%',.(.'(+.&0.)(-*&9'($%';%00.<%'-0'+%;*2%,'1+*;'($%'5-0('*1'=%& ?$-0'0%CD%&)%'-0'0D;;.+-M%,'-&'N-<D+% O> 4H$L>AM& 2>>A%BJK$>A 5HIBNH OHKN>J • coordinator -> device • beacon-enable PAN 5K$K&8HQRHG$ 3NMJ>LFH%CPHJ$ • slotted CSMA-CA 5K$K 3NMJ>LFH%CPHJ$
  • 56. .==+*=+-.(%',%2-)%'(*';.:%')*&(.)('.&,'+%CD%0('($%',.(.>'7',%2-)%';.@';.:%') )*;;.&,'+%CD%0(-&<'($%',.(.9'D0-&<'D&05*((%,'BEA74B79'(*'-(0')**+,-&.(*+'. ?$%' )**+,-&.(*+' .):&*/5%,<%0' ($%' 0D))%001D5' +%)%=(-*&' *1' ($%' ,.(.' IEEE 802.15.4 .):&*/5%,<;%&('1+.;%>'P1'.',.(.'1+.;%'-0'=%&,-&<9'($%')**+,-&.(*+'(+.&0;-(0'( BEA74B79' (*' ($%' ,%2-)%>' P1' .' ,.(.' 1+.;%' -0' &*(' =%&,-&<9' ($%' )**+,-&.(*+' -& .):&*/5%,<;%&(' 1+.;%' 1*55*/-&<' ($%' ,.(.' +%CD%0(' *+' -&' .' ,.(.' 1+.;%' /-($ G>H>I>JK>'P1'+%CD%0(%,9'($%',%2-)%'.):&*/5%,<%0'($%'0D))%001D5'+%)%=(-*&'*1'($% .):&*/5%,<;%&('1+.;%>'?$-0'0%CD%&)%'-0'0D;;.+-M%,'-&'N-<D+% Q>'' 4H$L>AM& 2>>A%BJK$>A 5HIBNH • coordinator -> device 5K$K&8HQRHG$ 3NMJ>LFH%CPHJ$ • nonbeacon-enabled PAN 5K$K • unsloted CSMA-CA 3NMJ>LFH%CPHJ$ 2134(,$>67-..4)1/&'1-)$+(-.$&$/--(01)&'-($1)$&$)-)8,&/
  • 57. IEEE 802.15.4 • device -> device (Peer-to-peer) • ina peer-to-peer PAN, every device may communicate with every other device in its radio sphere of influence. In order to do this effectively, the devices wishing to communicate will need to either receive constantly or synchronize with each other. In the former case, the device can simply transmit its data using unslotted CSMA-CA. In the latter case, other measures need to be taken in order to achieve synchronization. Such measures are beyond the scope of this standard
  • 58. IEEE 802.15.4 Frame structure
  • 59. IEEE 802.15.4 • Frame structure • Beacon frame • Data frame • Acknowledgement frame • MAC Command frame
  • 60. IEEE 802.15.4 Beacon frame
  • 61. ,,)34$&+,)% 5&$% +)&$:64+% $(+8,)D% C(&5,$:% 4$% &% C(&5,$*($&C<(3% -./=% E9(% B.@% '&2<,&3% 5,$+&4$:% +9 7'();)&6(%:'(54;45&+4,$0%OEA%;4(<3:0%'($34$>%&33)(::%;4(<3:0%&$3%C(&5,$%'&2<,&3%P:((%Q=!=!=quot;R=%E9(%B.@ &2<,&3% 4:% ')(;4F(3% 84+9% &% B.@% 9(&3()% PBSTR% &$3% &''($3(3% 84+9% &% B.@% ;,,+()% PBMTR=% E9(% BST ,$+&4$:%+9(%B.@%M)&6(%@,$+),<%;4(<30%C(&5,$%:(U7($5(%$76C()%PVA/R0%&33)(::4$>%;4(<3:0%&$3%,'+4,$&<< 9(%&7F4<4&)2%:(57)4+2%9(&3()=%E9(%BMT%5,$+&4$:%&%quot;W*C4+%;)&6(%59(5D%:(U7($5(%PM@AR=%E9(%BST0%B.@ &2<,&30%&$3%BMT%+,>(+9()%;,)6%+9(%B.@%C(&5,$%;)&6(%P4=(=0%B-XYR= 7';'=':7'>A 8' :' <'>A':7' 8' $quot; !quot; 8' 2L4H4GZ %quot; :<' )U[BFBKA@' -HM5BMC' FGH% 0AKSH' &HWUHMLH' )55AHGGBMC' Y1&' JHKL>M' &U?HAXAKSH' 0*&' &HLUAB4@' )55AHGG' 04@D.E'(' % *>M4A>F' +USVHA' 0BHF5G' 0BHF5G' -K@F>K5' &?HLBXBLK4B>M' .HK5HA' 0BHF5G' % (.$' ()*'-K@F>K5' (0$ -./'5H?HM5HM4' :' O'P'Q<'4>'8<Rquot;#quot;$quot;#quot;%quot;#quot;!quot;' 2L4H4GZ QGHH'LFKUGH'=R' -AHKSVFH' &4KA4'>X'0AKSH' 0AKSH'%HMC4D'T' &AB% -&,N' &HWUHMLH' ,HFBSB4HA' $HGHAIH5' D.E'(% -./'-K@F>K5' &.$' -.$' QGHH'LFKUGH'=R'P'6'P'Q<'4>'8<R'P'$'P'S'P'!' 2894('%6:;<5='3.*85%>8'?%+1%*='%@'.5+/%1(.3'%./-%*='%&AB%,.5C'* Schematic view of the beacon frame and the PHY packet 9(%B.@%C(&5,$%;)&6(%4:%+9($%'&::(3%+,%+9(%-SZ%&:%+9(%-SZ%:()145(%3&+&%7$4+%P-AXYR0%89459%C(5,6(:%+9 SZ%'&2<,&3=%E9(%-SZ%'&2<,&3%4:%')(;4F(3%84+9%&%:2$59),$4?&+4,$%9(&3()%PASTR0%5,$+&4$4$>%+9(%-)(&6C< (U7($5(%&$3%A+&)+*,;*M)&6(%X(<464+()%PAMXR%;4(<3:0%&$3%&%-SZ%9(&3()%P-STR%5,$+&4$4$>%+9(%<($>+9%,;%+9 SZ%'&2<,&3%4$%,5+(+:=%E9(%AST0%-ST0%&$3%-SZ%'&2<,&3%+,>(+9()%;,)6%+9(%-SZ%'&5D(+%P4=(=0%--XYR=
  • 62. IEEE 802.15.4 Data frame
  • 63. quot;quot; $%&'()*+,*-.)((/ 01230&345&6quot;781910!734&38quot;3&4quot;7:18;#<9387&+,*- quot;!quot;#quot;$%&'('%)*'+, #$%&' (()*+,-*).+')*.&%/.%&'),0).+')12.2)0&23'4)-+#/+),&#$#52.'*)0&,3).+')%66'&)728'&*9) & & ([&,[&/[&+(&>A& )& +& -&$>&)(& !& )& 1O$H$G= +-& 3MBFBJA@& KAJPH& #HLMHNOH& 3%%AHGGBNC& C-D%% 5J$J&9J@F>J%& K2#& #HOMAB$@& 2>N$A>F 4MPQHA& KBHF%G& E8F3'B,*% RHJ%HA& 6R8& 632&9J@F>J%& 6K8 9RT&%H?HN%HN$& +& ,&U&V-&$>&W-X&U&!& 1O$H$G= VGHH&OFJMGH&/X& 9AHJPQFH& #$JA$&>Z&KAJPH& KAJPH&0HNC$D& >?@% 9#5S& #HLMHNOH& 5HFBPB$HA& Y&8HGHAIH%& 3'B,*% #R8& 9R8& 9RT&9J@F>J%& VGHH&OFJMGH&/X&U&/&U&V-&$>&W-X&U&!quot; 6758*,%99:;.<,+'(7.%=7,2%1)%(<,%4'('%)*'+,%'04%(<,%>?@%A'./,( +')12.2)6287,21)#*)62**'1).,).+');<=)*%>728'&)251)#*)&'0'&&'1).,)2*).+');<=)*'&?#/')12.2)%5#.)@;ABC Schematic view of the data frame and the PHY packet +');<=)6287,21)#*)6&'0#E'1)-#.+)25);FG)251)266'51'1)-#.+)25);quot;G9):+');FG)/,5.2#5*).+')quot;&23 ,5.&,7)0#'714)12.2)*'H%'5/')5%3>'&)@BAID4)211&'**#5$)0#'71*4)251),6.#,52778).+')2%E#7#2&8)*'/%&#.8)+'21' +');quot;G)#*)/,36,*'1),0)2)(JK>#.)quot;=A9):+');FG4);<=)6287,214)251);quot;G).,$'.+'&)0,&3).+');<=)12 &23'4)@#9'94);LBCD9
  • 65. FG4) /,5.2#5#5$) .+') L&'23>7') A'H%'5/') 251) Aquot;B) 0#'71*4) 251) .+') LFG 287,21)#5),/.'.*9):+')AFG4)LFG4)251)LFM)6287,21).,$'.+'&)0,&3).+')L 1O$H$G= )& +& )& & C -D% & KAJPH& #HLMHNOH& K2#& 2>N$A>F& 4MPQHA& E8F3'B,*% 6R8& 6K8& 9RT&%H?HN%HN$& +& ,& 1O$H$G= VGHH&OFJMGH&/X #$JA$&>Z& KAJPH& >?@% 9AHJPQFH& KAJPH& 0HNC$D&Y& 9#5S& #HLMHNOH 5HFBPB$HA& 8HGHAIH%& 3'B,*% #R8& 9R8& 9RT&9J@F>J%& VGHH&OFJMGH&/X&U&/& Schematic view of the acknowledgment frame ;.<,+'(7.%=7,2%1)%(<,%'./0123,45+,0(%)*'+,%'04%(<,%>?@ and the PHY packet
  • 67. quot;!quot;#quot;$%&'(%)*++,-.%/0,+1 $%&'( )quot;* +,-.+* /,(* +/'&0/&'(* -1* /,(* 234* 0-55678* 1'65(9* .,$0,* -'$%$76/(+* 1'-5* .$/,$7* /,(* 234 &:;6<('=*>,(*234*?6<;-68*0-7/6$7+*/,(*4-55678*><?(*1$(;8*678*/,(*0-55678*?6<;-68*@+((*A=!=!=BC=*>, 34*?6<;-68*$+*?'(1$D(8*.$/,*67*2EF*678*6??(78(8*.$/,*67*2#F=*>,(*2EF*0-7/6$7+*/,(*234*#'65( -7/'-;*1$(;89*GHI9*688'(++$7%*1$(;8+9*678*-?/$-76;;<*/,(*6&D$;$6'<*+(0&'$/<*,(68('=*>,(*2#F*0-7/6$7+*6*)J $/*#4H=*>,(*2EF9*234*?6<;-689*678*2#F*/-%(/,('*1-'5*/,(*234*0-55678*1'65(9*@$=(=9*2LGMC= % ' 7[';['=[':7['>A' 8' :' <'4>'87' :' !' 8' 2N4H4GY :<' )LZBFBJA@' 0AJOH' &HKLHMNH' )55AHGGBMC' *>OOJM5' *>OOJM5' &'(%% &HNLAB4@' 0*& *>M4A>F +LOPHA' 0BHF5G' 1@?H' -J@F>J5' .HJ5HA' ;<78,:10% (.$' ()*'-J@F>J5' (0$ -./'5H?HM5HM4'' :' ='R'S<'4>'T<U'R'M' 2N4H4GY SGHH'NFJLGH'=U'' &4JA4'>X' 0AJOH' -AHJOPFH' DEF% 0AJOH' %HMC4D'V' -&,Q' &HKLHMNH' 8,:10% ,HFBOB4HA' $HGHAIH5' &.$' -.$' -./'-J@F>J5' SGHH'NFJLGH'=U'R'W'R'S<'4>'T<U'R'!quot; A56<01%=#B>)@1+,95)%451C%*/%9@1%&'(%)*++,-.%/0,+1%,-.%9@1%DEF%3,)G19 Schematic view of the MAC command frame ,(*2LGM*$+*/,(7*?6++(8*/-*/,(*LEN*6+*/,(*LHGM9*.,$0,*:(0-5(+*/,(*LEN*?6<;-68=*>,(*LEN*?6<;-68*$ and the PHY packet '(1$D(8*.$/,*67*HEF9*0-7/6$7$7%*/,(*L'(65:;(*H(O&(70(*678*H#G*1$(;8+9*678*6*LEF*0-7/6$7$7%*/,(*;(7%/, 1* /,(* LEN* ?6<;-68* $7* -0/(/+=* >,(* ?'(65:;(* +(O&(70(* (76:;(+* /,(* '(0($P('* /-* 60,$(P(* +<5:- <70,'-7$Q6/$-7=*>,(*HEF9*LEF9*678*LEN*?6<;-68*/-%(/,('*1-'5*/,(*LEN*?60R(/9*@$=(=9*LLGMC=
  • 68. IEEE 802.15.4 Improving probability of successful delivery
  • 69. IEEE 802.15.4 • Improving probability of successful delivery • CSMA-CA mechanism • Frame acknowledgement • Data verification
  • 71. IEEE 802.15.4 • CSMA-CA mechanism • Beacon-enabled PAN • slotted CSMA-CA • Nonbeacon-enabled PAN • Unslotted CSMA-CA
  • 73. IEEE 802.15.4 • Frame acknowledgement •a successful reception and validation of a data or MAC command frame can be optionally confirmed with an acknowledgment. If the receiving device is unable to handle the received data frame for any reason, the message is not acknowledged
  • 74. IEEE 802.15.4 • Frame acknowledgement • ifthe originator does not receive an acknowledgment after some period, it assumes that the transmission was unsuccessful and retries the frame transmission. If an acknowledgment is still not received after several retries, the originator can choose either to terminate the transaction or to try again. When the acknowledgment is not required, the originator assumes the transmission was successful
  • 75. IEEE 802.15.4 Data verification
  • 76. IEEE 802.15.4 • Data verification • inorder to detect bit errors, an FCS mechanism employing a 16-bit International Telecommunication Union— Telecommunication Standardization Sector (ITU-T) cyclic redundancy check (CRC) is used to detect errors in every frame
  • 78. IEEE 802.15.4 • Power consumption considerations devices will require duty-cycling to • Battery-powered reduce power consumption. These devices will spend most of their operational life in a sleep state; however, each device periodically listens to the RF channel in order to determine whether a message is pending. This mechanism allows the application designer to decide on the balance between battery consumption and
  • 79. IEEE 802.15.4 Security
  • 80. IEEE 802.15.4 • Security • The cryptographic mechanism in this standard is based on symmetric-key cryptography and uses keys that are provided by higher layer processes. The establishment and maintenance of these keys are outside the scope of this standard. The mechanism assumes a secure implementation of cryptographic operations and secure and authentic storage of keying material
  • 82. ZIGBEE • Protocol Stack • Node Types • Network Establishment • Network Topologies
  • 84. ZIGBEE • Inorder to adopt WSN technology for use in real-life applications an association of industry companies: ZigBee Alliance has specified a full protocol suite that provide efficient high level communication in WSNs
  • 85. ZIGBEE • ZigBee Alliance • http://www.zigbee.org • ZigBee Standard • PHY & MAC = IEEE 802.15.4 • APS & NWK & APL
  • 87. ZIGBEE • Node Types • Coordinator • Router • End device
  • 88. ZIGBEE • Coordinator • • configuring key network parameters • network start • admission of other nodes • network address assignment
  • 89. ZIGBEE • Router • •a node has IEEE 802.15.4 FFD capability but not act as network coordinator is called a router • to extend network coverage area beyond transmission range of a single device • to increase network reliability by creating data routing paths
  • 90. ZIGBEE • End device • • nodes of this type can directly communication only with a single router or coordinator. Among other node types end devices consume least processing, memory and power resources and usually deployed on batteries in power saving mode. Therefore ZigBee end devices correspond to reduced functionality devices (RFD) in IEEE 802.15.4 standard
  • 92. ZIGBEE • ZigBee network establishment • Network layer (NWK) in ZigBee protocol stack extends 802.15.4 functionality in terms of possible node interconnections, data transmission and network management and provide mechanisms for exchange on the level of entire network
  • 94. ZIGBEE • Parent-child relationship • child - the node that has entered the network • parent- the node that has provided network access
  • 95. ZIGBEE • Parent-child relationship • only coordinator and routers can act as parent nodes •a child node can have only one parent at a time •a child node is able to change parent • ZigBeenetwork hierarchy can be visualized as a tree with coordinator being on top and end devices being tree leaves
  • 96. ZIGBEE • Parent-child relationship • Basedon such hierarchical following parameters should be specified by user to configure the network: • Maximum number of direct children • Maximum network depth
  • 97. ZIGBEE • Node addressing • Each node that joins ZigBee network receives temporary 16-bit long network address (e.g., 3CB8). Communication on network level is performed based on this address while direct transmission between two neighboring devices is done based on MAC address
  • 99. ZIGBEE • Network Topologies • Star • Tree • Mesh
  • 100. ZIGBEE • Star • onlycoordinator can have child nodes • network coverage area is limited by coordinator transmission range • networkis simple in setup and deployment • coordinatoris the only node that can route data packets
  • 101. ZIGBEE • Tree • routers are able to have child nodes • directcommunication is possible only in terms of parent-child relation • hierarchicalrouting without alternative paths
  • 102. ZIGBEE • Mesh • routers are able have child nodes • directcommunication is possible between any FFD devices within transmission range of each other • optimum and dynamic routing with alt paths

Notas del editor