SlideShare una empresa de Scribd logo
1 de 3
Descargar para leer sin conexión
IOSR Journal of VLSI and Signal Processing (IOSR-JVSP)
e-ISSN: 2319 – 4200, p-ISSN No. : 2319 – 4197 Volume 1, Issue 6 (Mar. - Apr 2013), PP 07-09
www.iosrjournals.org
www.iosrjournals.org 7 | Page
2.5v 900 MHz 0.13µm CMOS cascode low noise amplifier for
wireless application
Rupesh P.Raghatate1
,
1
(M-tech SEM-I (B.D.college of engineering,wardha)
Abstract : This paper presents low noise amplifier (LNA) for wireless application as RF front end which has
been implemented in 0.13µ RF CMOS technology. The LNA was designed using inductive source degeneration
cascode topology which produces better gain and good stability. From the simulation results, the LNA exhibits a
gain of 26.46 dB, noise figure (NF) of 1.16 dB at 115µW , output return loss (S22) of −6.55dB, input return loss
(S11) of −14.46dB, reverse isolation (S12) of −39.76 dB, and a power consumption is 7 mA from a 2.5V power
supply.
Keywords - Low noise amplifier; RF front-end, cascode, CMOS, inductive source degeneration.
I. INTRODUCTION
Nowadays ,there have been many extensive studies and efforts to improve the noise figure in RF
transceiver also CMOS integrated circuit for wireless application is receiving much attention, due to their
potential for low cost . A key building block for the RF front-end is the low noise amplifier (LNA) which
precedes a high noise stage plays a critical role in determining the over-all noise figure (NIF) of the transceiver.
From a cost standpoint, the LNA is implemented in 0.13µm RF CMOS technology. Recent works in designing
LNA have there have been a difficulty in attaining both low noise figure and low power consumption
simultaneously. This paper describes the implementation of LNA using 0.13µm CMOS technology which meets
low noise figure, higher gain and low power consumption simultaneously at 900 MHz frequency. Following text
is divided into three sections; section II describes LNA design section III gives simulation results, section IV
presents the conclusion.
II. LNA DESIGN
1) Circuit Topology
A fig (1) shows a cascode topology, A single-stage cascode amplifier topology with inductive
degeneration at the source is used. A cascode topology is chosen to minimize the power dissipation and to
improve 1-dB compression point. Here a cascode transistor M2 provides high impedance which improves
isolation between input and output that increases stability of amplifier. The work is focused on developing the
LNA circuit for 900 MHz application. The use of inductive degeneration provides input matching and noise
matching with better gain and stability along with low power consumption simultaneously.
Fig.1: Schematic of LNA
2) Low noise amplifier:
Low noise amplifier is an important block in wireless receiver .it determines the receiver performance
.the figure (1) shows schematic of LNA .circuit shown in dashed box both at input and output side are matching
components of LNA while rest of the circuit is actual LNA.
2.5v 900 MHz 0.13µm CMOS cascode low noise amplifier for wireless application
www.iosrjournals.org 8 | Page
The LNA is full of trade off between optimum gains, optimum input matching, low power consumption, lowest
noise figure and linearity. The gain of LNA should be high enough to reduce noise contribution of subsequent
stages; also noise must be as low as possible to minimize the impact on receiver noise performance. The input
impedance of LNA is matched to 50Ω(characteristic impedance of antenna ).The transistor M1 and M2 are
depletion mode devices .resistor R2 and V2 are used to set voltage condition at M1 gate .RG is used to provide
voltage at M2 while CG is used to eliminate any noise from the bias network .LS is used for stability. The input
is coupled to gate of M1 with coupling capacitor Cs .the input is matched to 50 Ω using matching network and
inductor LS .In this LNA design transistor M1 have gate width of 10 µm and 20 fingers ,transistor M2 has gate
width of 5 µm and 1 finger. The transistor M1 is biased at 0.5 v and M2 is biased at 2.5v respectively, CF forms
feedback network for M1 .The feedback degrades noise while improves linearity and offers easy input matching
for LNA. A simple gain equation of LNA is given by following equation,
AV=RF OUT /RF IN
Feedback network affects gain of LNAQ but provides better stability.
III. SIMULATION RESULTS
All simulation for this LNA has been performed using Agilent’s ADS-2009 using TSMC 0.13µm
CMOS .a fully integrated 900 MHz LNA in 0.13µm RF CMOS has been designed, LNA employ lumped
inductor and capacitor for matching input and output .fig (2) shows gain (S21) and (S12) of LNA .the S21 is -26
dB at 900 MHz, the S12 is -40 dB at 900 MHz.fig(3)shows input and output reflection co-efficient (S11) and
(S22) of LNA .the S11 is lower than -10dB while S22 is -6dB at 900 MHz .fig (4)shows stability of LNA which
is greater than 1 for all frequencies.fig(5)shows noise figure of LNA .the noise figure is 1.04 dB at 900 MHz .
The LNA is biased with VDD 2.5v and consumes 7mA current.
Fig2: gain and isolation of LNA Fig3: input and output reflection co-efficient
Fig 3: stability factor fig 4: noise figure
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.50.0 5.0
-100
-80
-60
-40
-20
0
20
-120
40
freq, GHz
dB(S(2,1))
m1
dB(S(1,2))
m2
m1
freq=
dB(S(2,1))=26.153
900.0MHz
m2
freq=
dB(S(1,2))=-40.074
900.0MHz
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.50.0 5.0
-10
-8
-6
-4
-2
-12
0
freq, GHz
dB(S(1,1))
m5
dB(S(2,2))
m6
m5
freq=
dB(S(1,1))=-10.410
900.0MHz
m6
freq=
dB(S(2,2))=-6.647
900.0MHz
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.50.0 5.0
2
4
6
8
0
10
freq, GHz
StabFact1
m4
m4
freq=
StabFact1=1.784
900.0MHz
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.50.0 5.0
5
10
15
20
25
0
30
freq, GHz
nf(2)
m3
m3
freq=
nf(2)=1.044
900.0MHz
2.5v 900 MHz 0.13µm CMOS cascode low noise amplifier for wireless application
www.iosrjournals.org 9 | Page
Table 1: summary of LNA parameters
LNA Measured parameter
Supply voltage 2.5v
Technology used TSMC 0.13 µm CMOS
RF frequency 900 MHz
Voltage gain (S21) 26 dB
Noise FIGURE 1.04dB
S11 -14 dB
S22 -6 dB
Power dissipation 115µW
Current consumption 7 mA
Reverse isolation -40 dB
IV. CONCLUSION
The TSMC 0.13 µm CMOS high frequency model is used to design 900 MHz receiver front end. This
paper presents 900 MHz LNA with noise figure 1.04 dB with power consumption of 115 µW from 2.5v power
supply .the LNA exhibits gain of 26 dB. From both performance standpoint and cost standpoint, these results
show that CMOS is very competitive with available technologies.
REFERENCES
JOURNAL PAPERS:
[1] Brian A. Floyd, Jesal Mehta, Carlos Gamero, and Kenneth K. O, A 900-MHz, 0.8-pm CMOS Low Noise Amplifier with 1.2-dB Noise
Figure, Silicon Microwave Integrated Circuits and Systems Research Group (SiMICS) Dept. of' Electrical and Computer Engineering,
University of Florida, Gainesville.
[2] Andrew N. Karanicolas, A 2.7-V 900-MHz CMOS LNA and Mixer, Member, IEEE
[3] Arjuna Marzuki, GaAs pHEMT cascode LNA for wireless application, International journal of computer and electrical engineering
,vol.1,No.2,June 2009,1793-8163.
[4] Jon Guerber,Design of an 2.4GHz CMOS LNA, ECE 621,winter 2010.

Más contenido relacionado

La actualidad más candente

A 2.4 ghz cmos lna input matching design using resistive feedback topology in...
A 2.4 ghz cmos lna input matching design using resistive feedback topology in...A 2.4 ghz cmos lna input matching design using resistive feedback topology in...
A 2.4 ghz cmos lna input matching design using resistive feedback topology in...eSAT Publishing House
 
A 2.4 ghz cmos lna input matching design using resistive feedback topology in...
A 2.4 ghz cmos lna input matching design using resistive feedback topology in...A 2.4 ghz cmos lna input matching design using resistive feedback topology in...
A 2.4 ghz cmos lna input matching design using resistive feedback topology in...eSAT Journals
 
Why Ferrite Beads Aggravates ACLR
Why Ferrite Beads Aggravates ACLRWhy Ferrite Beads Aggravates ACLR
Why Ferrite Beads Aggravates ACLRcriterion123
 
Design of a Low Noise Amplifier using 0.18μm CMOS technology
Design of a Low Noise Amplifier using 0.18μm CMOS technologyDesign of a Low Noise Amplifier using 0.18μm CMOS technology
Design of a Low Noise Amplifier using 0.18μm CMOS technologytheijes
 
A 3-10 GHz SiGe LNA for Ultrawideband Applications
A 3-10 GHz SiGe LNA for Ultrawideband ApplicationsA 3-10 GHz SiGe LNA for Ultrawideband Applications
A 3-10 GHz SiGe LNA for Ultrawideband ApplicationsRFIC-IUMA
 
A Wide Band Low-Power Variable Gain Lna for Multi-Standard Applications
A Wide Band Low-Power Variable Gain Lna for Multi-Standard ApplicationsA Wide Band Low-Power Variable Gain Lna for Multi-Standard Applications
A Wide Band Low-Power Variable Gain Lna for Multi-Standard ApplicationsRFIC-IUMA
 
DESIGN AND NOISE OPTIMIZATION OF RF LOW NOISE AMPLIFIER FOR IEEE STANDARD 802...
DESIGN AND NOISE OPTIMIZATION OF RF LOW NOISE AMPLIFIER FOR IEEE STANDARD 802...DESIGN AND NOISE OPTIMIZATION OF RF LOW NOISE AMPLIFIER FOR IEEE STANDARD 802...
DESIGN AND NOISE OPTIMIZATION OF RF LOW NOISE AMPLIFIER FOR IEEE STANDARD 802...VLSICS Design
 
CDMA Zero-IF Receiver Consideration
CDMA  Zero-IF Receiver ConsiderationCDMA  Zero-IF Receiver Consideration
CDMA Zero-IF Receiver Considerationcriterion123
 
Ece593 project1 chien_chun_yao_and_karthikvel_rathinavel
Ece593 project1 chien_chun_yao_and_karthikvel_rathinavelEce593 project1 chien_chun_yao_and_karthikvel_rathinavel
Ece593 project1 chien_chun_yao_and_karthikvel_rathinavelKarthik Rathinavel
 
WIFI Spectrum Emission Mask Issue
WIFI Spectrum Emission Mask IssueWIFI Spectrum Emission Mask Issue
WIFI Spectrum Emission Mask Issuecriterion123
 
Wireless/Wired Automatic Switched Plasma Tweeter & Speaker System
Wireless/Wired Automatic Switched Plasma Tweeter & Speaker SystemWireless/Wired Automatic Switched Plasma Tweeter & Speaker System
Wireless/Wired Automatic Switched Plasma Tweeter & Speaker SystemIOSRJECE
 
Low Power Consumption Mixer Based on Current
Low Power Consumption Mixer Based on CurrentLow Power Consumption Mixer Based on Current
Low Power Consumption Mixer Based on CurrentRFIC-IUMA
 
An operational amplifier with recycling folded cascode topology and adaptive ...
An operational amplifier with recycling folded cascode topology and adaptive ...An operational amplifier with recycling folded cascode topology and adaptive ...
An operational amplifier with recycling folded cascode topology and adaptive ...VLSICS Design
 
A high efficiency BPSK receiver for short range wireless network
A high efficiency BPSK receiver for short range wireless networkA high efficiency BPSK receiver for short range wireless network
A high efficiency BPSK receiver for short range wireless networkTELKOMNIKA JOURNAL
 

La actualidad más candente (20)

Mk2420552059
Mk2420552059Mk2420552059
Mk2420552059
 
A 2.4 ghz cmos lna input matching design using resistive feedback topology in...
A 2.4 ghz cmos lna input matching design using resistive feedback topology in...A 2.4 ghz cmos lna input matching design using resistive feedback topology in...
A 2.4 ghz cmos lna input matching design using resistive feedback topology in...
 
A 2.4 ghz cmos lna input matching design using resistive feedback topology in...
A 2.4 ghz cmos lna input matching design using resistive feedback topology in...A 2.4 ghz cmos lna input matching design using resistive feedback topology in...
A 2.4 ghz cmos lna input matching design using resistive feedback topology in...
 
Why Ferrite Beads Aggravates ACLR
Why Ferrite Beads Aggravates ACLRWhy Ferrite Beads Aggravates ACLR
Why Ferrite Beads Aggravates ACLR
 
54
5454
54
 
Design of a Low Noise Amplifier using 0.18μm CMOS technology
Design of a Low Noise Amplifier using 0.18μm CMOS technologyDesign of a Low Noise Amplifier using 0.18μm CMOS technology
Design of a Low Noise Amplifier using 0.18μm CMOS technology
 
Bh31403408
Bh31403408Bh31403408
Bh31403408
 
July 24, 2003
July 24, 2003July 24, 2003
July 24, 2003
 
A 3-10 GHz SiGe LNA for Ultrawideband Applications
A 3-10 GHz SiGe LNA for Ultrawideband ApplicationsA 3-10 GHz SiGe LNA for Ultrawideband Applications
A 3-10 GHz SiGe LNA for Ultrawideband Applications
 
Ar044280284
Ar044280284Ar044280284
Ar044280284
 
227 230
227 230227 230
227 230
 
A Wide Band Low-Power Variable Gain Lna for Multi-Standard Applications
A Wide Band Low-Power Variable Gain Lna for Multi-Standard ApplicationsA Wide Band Low-Power Variable Gain Lna for Multi-Standard Applications
A Wide Band Low-Power Variable Gain Lna for Multi-Standard Applications
 
DESIGN AND NOISE OPTIMIZATION OF RF LOW NOISE AMPLIFIER FOR IEEE STANDARD 802...
DESIGN AND NOISE OPTIMIZATION OF RF LOW NOISE AMPLIFIER FOR IEEE STANDARD 802...DESIGN AND NOISE OPTIMIZATION OF RF LOW NOISE AMPLIFIER FOR IEEE STANDARD 802...
DESIGN AND NOISE OPTIMIZATION OF RF LOW NOISE AMPLIFIER FOR IEEE STANDARD 802...
 
CDMA Zero-IF Receiver Consideration
CDMA  Zero-IF Receiver ConsiderationCDMA  Zero-IF Receiver Consideration
CDMA Zero-IF Receiver Consideration
 
Ece593 project1 chien_chun_yao_and_karthikvel_rathinavel
Ece593 project1 chien_chun_yao_and_karthikvel_rathinavelEce593 project1 chien_chun_yao_and_karthikvel_rathinavel
Ece593 project1 chien_chun_yao_and_karthikvel_rathinavel
 
WIFI Spectrum Emission Mask Issue
WIFI Spectrum Emission Mask IssueWIFI Spectrum Emission Mask Issue
WIFI Spectrum Emission Mask Issue
 
Wireless/Wired Automatic Switched Plasma Tweeter & Speaker System
Wireless/Wired Automatic Switched Plasma Tweeter & Speaker SystemWireless/Wired Automatic Switched Plasma Tweeter & Speaker System
Wireless/Wired Automatic Switched Plasma Tweeter & Speaker System
 
Low Power Consumption Mixer Based on Current
Low Power Consumption Mixer Based on CurrentLow Power Consumption Mixer Based on Current
Low Power Consumption Mixer Based on Current
 
An operational amplifier with recycling folded cascode topology and adaptive ...
An operational amplifier with recycling folded cascode topology and adaptive ...An operational amplifier with recycling folded cascode topology and adaptive ...
An operational amplifier with recycling folded cascode topology and adaptive ...
 
A high efficiency BPSK receiver for short range wireless network
A high efficiency BPSK receiver for short range wireless networkA high efficiency BPSK receiver for short range wireless network
A high efficiency BPSK receiver for short range wireless network
 

Destacado

MATLAB Based Model for Analysis of the Effect of Equivalent Circuit Parameter...
MATLAB Based Model for Analysis of the Effect of Equivalent Circuit Parameter...MATLAB Based Model for Analysis of the Effect of Equivalent Circuit Parameter...
MATLAB Based Model for Analysis of the Effect of Equivalent Circuit Parameter...IOSR Journals
 
Novel Battery Charging Control System for Batteries Using On/Off and Pwm Cont...
Novel Battery Charging Control System for Batteries Using On/Off and Pwm Cont...Novel Battery Charging Control System for Batteries Using On/Off and Pwm Cont...
Novel Battery Charging Control System for Batteries Using On/Off and Pwm Cont...IOSR Journals
 
Annunciator for Hazard Prevention & Temperature Control
Annunciator for Hazard Prevention & Temperature ControlAnnunciator for Hazard Prevention & Temperature Control
Annunciator for Hazard Prevention & Temperature ControlIOSR Journals
 
Studies On The Effectiveness of Mixed Diet of Garden Egg, Groundnut And Garli...
Studies On The Effectiveness of Mixed Diet of Garden Egg, Groundnut And Garli...Studies On The Effectiveness of Mixed Diet of Garden Egg, Groundnut And Garli...
Studies On The Effectiveness of Mixed Diet of Garden Egg, Groundnut And Garli...IOSR Journals
 
Review on security issues of AODV routing protocol for MANETs
Review on security issues of AODV routing protocol for MANETsReview on security issues of AODV routing protocol for MANETs
Review on security issues of AODV routing protocol for MANETsIOSR Journals
 
Heuristic Searching: A* Search
Heuristic Searching: A* SearchHeuristic Searching: A* Search
Heuristic Searching: A* SearchIOSR Journals
 
Efficient design of feedforward network for pattern classification
Efficient design of feedforward network for pattern classificationEfficient design of feedforward network for pattern classification
Efficient design of feedforward network for pattern classificationIOSR Journals
 
Efficient Design of Transceiver for Wireless Body Area Networks
Efficient Design of Transceiver for Wireless Body Area NetworksEfficient Design of Transceiver for Wireless Body Area Networks
Efficient Design of Transceiver for Wireless Body Area NetworksIOSR Journals
 
Analysis Of NACA 6412 Airfoil (Purpose: Propeller For Flying Bike)
Analysis Of NACA 6412 Airfoil (Purpose: Propeller For Flying Bike)Analysis Of NACA 6412 Airfoil (Purpose: Propeller For Flying Bike)
Analysis Of NACA 6412 Airfoil (Purpose: Propeller For Flying Bike)IOSR Journals
 
Bringing Consistency in the Websites of Higher Educational Institutes (HEIs)...
Bringing Consistency in the Websites of Higher Educational  Institutes (HEIs)...Bringing Consistency in the Websites of Higher Educational  Institutes (HEIs)...
Bringing Consistency in the Websites of Higher Educational Institutes (HEIs)...IOSR Journals
 
A comparative study of various diagnostic techniques for Cryptosporidiosis
A comparative study of various diagnostic techniques for CryptosporidiosisA comparative study of various diagnostic techniques for Cryptosporidiosis
A comparative study of various diagnostic techniques for CryptosporidiosisIOSR Journals
 
Development and Characterization of Adsorbent from Rice Husk Ash to Bleach Ve...
Development and Characterization of Adsorbent from Rice Husk Ash to Bleach Ve...Development and Characterization of Adsorbent from Rice Husk Ash to Bleach Ve...
Development and Characterization of Adsorbent from Rice Husk Ash to Bleach Ve...IOSR Journals
 
Yours Advance Security Hood (Yash)
Yours Advance Security Hood (Yash)Yours Advance Security Hood (Yash)
Yours Advance Security Hood (Yash)IOSR Journals
 

Destacado (20)

L1803027588
L1803027588L1803027588
L1803027588
 
C011122428
C011122428C011122428
C011122428
 
F1803013034
F1803013034F1803013034
F1803013034
 
I01115660
I01115660I01115660
I01115660
 
MATLAB Based Model for Analysis of the Effect of Equivalent Circuit Parameter...
MATLAB Based Model for Analysis of the Effect of Equivalent Circuit Parameter...MATLAB Based Model for Analysis of the Effect of Equivalent Circuit Parameter...
MATLAB Based Model for Analysis of the Effect of Equivalent Circuit Parameter...
 
Novel Battery Charging Control System for Batteries Using On/Off and Pwm Cont...
Novel Battery Charging Control System for Batteries Using On/Off and Pwm Cont...Novel Battery Charging Control System for Batteries Using On/Off and Pwm Cont...
Novel Battery Charging Control System for Batteries Using On/Off and Pwm Cont...
 
Annunciator for Hazard Prevention & Temperature Control
Annunciator for Hazard Prevention & Temperature ControlAnnunciator for Hazard Prevention & Temperature Control
Annunciator for Hazard Prevention & Temperature Control
 
Studies On The Effectiveness of Mixed Diet of Garden Egg, Groundnut And Garli...
Studies On The Effectiveness of Mixed Diet of Garden Egg, Groundnut And Garli...Studies On The Effectiveness of Mixed Diet of Garden Egg, Groundnut And Garli...
Studies On The Effectiveness of Mixed Diet of Garden Egg, Groundnut And Garli...
 
Review on security issues of AODV routing protocol for MANETs
Review on security issues of AODV routing protocol for MANETsReview on security issues of AODV routing protocol for MANETs
Review on security issues of AODV routing protocol for MANETs
 
Heuristic Searching: A* Search
Heuristic Searching: A* SearchHeuristic Searching: A* Search
Heuristic Searching: A* Search
 
Efficient design of feedforward network for pattern classification
Efficient design of feedforward network for pattern classificationEfficient design of feedforward network for pattern classification
Efficient design of feedforward network for pattern classification
 
Efficient Design of Transceiver for Wireless Body Area Networks
Efficient Design of Transceiver for Wireless Body Area NetworksEfficient Design of Transceiver for Wireless Body Area Networks
Efficient Design of Transceiver for Wireless Body Area Networks
 
Analysis Of NACA 6412 Airfoil (Purpose: Propeller For Flying Bike)
Analysis Of NACA 6412 Airfoil (Purpose: Propeller For Flying Bike)Analysis Of NACA 6412 Airfoil (Purpose: Propeller For Flying Bike)
Analysis Of NACA 6412 Airfoil (Purpose: Propeller For Flying Bike)
 
Bringing Consistency in the Websites of Higher Educational Institutes (HEIs)...
Bringing Consistency in the Websites of Higher Educational  Institutes (HEIs)...Bringing Consistency in the Websites of Higher Educational  Institutes (HEIs)...
Bringing Consistency in the Websites of Higher Educational Institutes (HEIs)...
 
A comparative study of various diagnostic techniques for Cryptosporidiosis
A comparative study of various diagnostic techniques for CryptosporidiosisA comparative study of various diagnostic techniques for Cryptosporidiosis
A comparative study of various diagnostic techniques for Cryptosporidiosis
 
E017512630
E017512630E017512630
E017512630
 
Development and Characterization of Adsorbent from Rice Husk Ash to Bleach Ve...
Development and Characterization of Adsorbent from Rice Husk Ash to Bleach Ve...Development and Characterization of Adsorbent from Rice Husk Ash to Bleach Ve...
Development and Characterization of Adsorbent from Rice Husk Ash to Bleach Ve...
 
Yours Advance Security Hood (Yash)
Yours Advance Security Hood (Yash)Yours Advance Security Hood (Yash)
Yours Advance Security Hood (Yash)
 
I017635355
I017635355I017635355
I017635355
 
I010336070
I010336070I010336070
I010336070
 

Similar a B0160709

Ultra-low power 0.45 mW 2.4 GHz CMOS low noise amplifier for wireless sensor ...
Ultra-low power 0.45 mW 2.4 GHz CMOS low noise amplifier for wireless sensor ...Ultra-low power 0.45 mW 2.4 GHz CMOS low noise amplifier for wireless sensor ...
Ultra-low power 0.45 mW 2.4 GHz CMOS low noise amplifier for wireless sensor ...journalBEEI
 
Design and Implementation of LNA at 900MHz for GSM applications
Design and Implementation of LNA at 900MHz for GSM applicationsDesign and Implementation of LNA at 900MHz for GSM applications
Design and Implementation of LNA at 900MHz for GSM applicationsAbdus Sami
 
LOW POWER, LOW NOISE AMPLIFIERS DESIGN AND ANALYSIS FOR RF RECEIVER FRONT END...
LOW POWER, LOW NOISE AMPLIFIERS DESIGN AND ANALYSIS FOR RF RECEIVER FRONT END...LOW POWER, LOW NOISE AMPLIFIERS DESIGN AND ANALYSIS FOR RF RECEIVER FRONT END...
LOW POWER, LOW NOISE AMPLIFIERS DESIGN AND ANALYSIS FOR RF RECEIVER FRONT END...VLSICS Design
 
Design and Implementation of a Low Noise Amplifier for Ultra Wideband Applica...
Design and Implementation of a Low Noise Amplifier for Ultra Wideband Applica...Design and Implementation of a Low Noise Amplifier for Ultra Wideband Applica...
Design and Implementation of a Low Noise Amplifier for Ultra Wideband Applica...IOSRJVSP
 
Design of Low Noise Amplifier for Wimax Application
Design of Low Noise Amplifier for Wimax ApplicationDesign of Low Noise Amplifier for Wimax Application
Design of Low Noise Amplifier for Wimax ApplicationIOSR Journals
 
Paper id 312201516
Paper id 312201516Paper id 312201516
Paper id 312201516IJRAT
 
Optimization of Cmos 0.18 µM Low Noise Amplifier Using Nsga-Ii for UWB Applic...
Optimization of Cmos 0.18 µM Low Noise Amplifier Using Nsga-Ii for UWB Applic...Optimization of Cmos 0.18 µM Low Noise Amplifier Using Nsga-Ii for UWB Applic...
Optimization of Cmos 0.18 µM Low Noise Amplifier Using Nsga-Ii for UWB Applic...VLSICS Design
 
Design of 10 to 12 GHz Low Noise Amplifier for Ultrawideband (UWB) System
Design of 10 to 12 GHz Low Noise Amplifier for Ultrawideband (UWB) SystemDesign of 10 to 12 GHz Low Noise Amplifier for Ultrawideband (UWB) System
Design of 10 to 12 GHz Low Noise Amplifier for Ultrawideband (UWB) SystemIJECEIAES
 
A novel cmos model design for 2 6 g hz wideband lna input matching using resi...
A novel cmos model design for 2 6 g hz wideband lna input matching using resi...A novel cmos model design for 2 6 g hz wideband lna input matching using resi...
A novel cmos model design for 2 6 g hz wideband lna input matching using resi...IAEME Publication
 
Performance Comparison of RF CMOS Low Noise Amplifiers in 0.18-µm technology ...
Performance Comparison of RF CMOS Low Noise Amplifiers in 0.18-µm technology ...Performance Comparison of RF CMOS Low Noise Amplifiers in 0.18-µm technology ...
Performance Comparison of RF CMOS Low Noise Amplifiers in 0.18-µm technology ...VLSICS Design
 
PARASITIC-AWARE FULL PHYSICAL CHIP DESIGN OF LNA RFIC AT 2.45GHZ USING IBM 13...
PARASITIC-AWARE FULL PHYSICAL CHIP DESIGN OF LNA RFIC AT 2.45GHZ USING IBM 13...PARASITIC-AWARE FULL PHYSICAL CHIP DESIGN OF LNA RFIC AT 2.45GHZ USING IBM 13...
PARASITIC-AWARE FULL PHYSICAL CHIP DESIGN OF LNA RFIC AT 2.45GHZ USING IBM 13...Ilango Jeyasubramanian
 
A Review on Wide Bandwidth Low Noise Amplifier for Modern Wireless Communication
A Review on Wide Bandwidth Low Noise Amplifier for Modern Wireless CommunicationA Review on Wide Bandwidth Low Noise Amplifier for Modern Wireless Communication
A Review on Wide Bandwidth Low Noise Amplifier for Modern Wireless CommunicationIRJET Journal
 
A New CMOS Fully Differential Low Noise Amplifier for Wideband Applications
A New CMOS Fully Differential Low Noise Amplifier for Wideband ApplicationsA New CMOS Fully Differential Low Noise Amplifier for Wideband Applications
A New CMOS Fully Differential Low Noise Amplifier for Wideband ApplicationsTELKOMNIKA JOURNAL
 
First order sigma delta modulator with low-power consumption implemented in a...
First order sigma delta modulator with low-power consumption implemented in a...First order sigma delta modulator with low-power consumption implemented in a...
First order sigma delta modulator with low-power consumption implemented in a...eSAT Journals
 
First order sigma delta modulator with low-power
First order sigma delta modulator with low-powerFirst order sigma delta modulator with low-power
First order sigma delta modulator with low-powereSAT Publishing House
 

Similar a B0160709 (20)

Ultra-low power 0.45 mW 2.4 GHz CMOS low noise amplifier for wireless sensor ...
Ultra-low power 0.45 mW 2.4 GHz CMOS low noise amplifier for wireless sensor ...Ultra-low power 0.45 mW 2.4 GHz CMOS low noise amplifier for wireless sensor ...
Ultra-low power 0.45 mW 2.4 GHz CMOS low noise amplifier for wireless sensor ...
 
D010522934
D010522934D010522934
D010522934
 
Design and Implementation of LNA at 900MHz for GSM applications
Design and Implementation of LNA at 900MHz for GSM applicationsDesign and Implementation of LNA at 900MHz for GSM applications
Design and Implementation of LNA at 900MHz for GSM applications
 
LOW POWER, LOW NOISE AMPLIFIERS DESIGN AND ANALYSIS FOR RF RECEIVER FRONT END...
LOW POWER, LOW NOISE AMPLIFIERS DESIGN AND ANALYSIS FOR RF RECEIVER FRONT END...LOW POWER, LOW NOISE AMPLIFIERS DESIGN AND ANALYSIS FOR RF RECEIVER FRONT END...
LOW POWER, LOW NOISE AMPLIFIERS DESIGN AND ANALYSIS FOR RF RECEIVER FRONT END...
 
Design and Implementation of a Low Noise Amplifier for Ultra Wideband Applica...
Design and Implementation of a Low Noise Amplifier for Ultra Wideband Applica...Design and Implementation of a Low Noise Amplifier for Ultra Wideband Applica...
Design and Implementation of a Low Noise Amplifier for Ultra Wideband Applica...
 
Design of Low Noise Amplifier for Wimax Application
Design of Low Noise Amplifier for Wimax ApplicationDesign of Low Noise Amplifier for Wimax Application
Design of Low Noise Amplifier for Wimax Application
 
Paper id 312201516
Paper id 312201516Paper id 312201516
Paper id 312201516
 
O01052126130
O01052126130O01052126130
O01052126130
 
Cw35552557
Cw35552557Cw35552557
Cw35552557
 
Optimization of Cmos 0.18 µM Low Noise Amplifier Using Nsga-Ii for UWB Applic...
Optimization of Cmos 0.18 µM Low Noise Amplifier Using Nsga-Ii for UWB Applic...Optimization of Cmos 0.18 µM Low Noise Amplifier Using Nsga-Ii for UWB Applic...
Optimization of Cmos 0.18 µM Low Noise Amplifier Using Nsga-Ii for UWB Applic...
 
Design of 10 to 12 GHz Low Noise Amplifier for Ultrawideband (UWB) System
Design of 10 to 12 GHz Low Noise Amplifier for Ultrawideband (UWB) SystemDesign of 10 to 12 GHz Low Noise Amplifier for Ultrawideband (UWB) System
Design of 10 to 12 GHz Low Noise Amplifier for Ultrawideband (UWB) System
 
A novel cmos model design for 2 6 g hz wideband lna input matching using resi...
A novel cmos model design for 2 6 g hz wideband lna input matching using resi...A novel cmos model design for 2 6 g hz wideband lna input matching using resi...
A novel cmos model design for 2 6 g hz wideband lna input matching using resi...
 
Performance Comparison of RF CMOS Low Noise Amplifiers in 0.18-µm technology ...
Performance Comparison of RF CMOS Low Noise Amplifiers in 0.18-µm technology ...Performance Comparison of RF CMOS Low Noise Amplifiers in 0.18-µm technology ...
Performance Comparison of RF CMOS Low Noise Amplifiers in 0.18-µm technology ...
 
PARASITIC-AWARE FULL PHYSICAL CHIP DESIGN OF LNA RFIC AT 2.45GHZ USING IBM 13...
PARASITIC-AWARE FULL PHYSICAL CHIP DESIGN OF LNA RFIC AT 2.45GHZ USING IBM 13...PARASITIC-AWARE FULL PHYSICAL CHIP DESIGN OF LNA RFIC AT 2.45GHZ USING IBM 13...
PARASITIC-AWARE FULL PHYSICAL CHIP DESIGN OF LNA RFIC AT 2.45GHZ USING IBM 13...
 
A Review on Wide Bandwidth Low Noise Amplifier for Modern Wireless Communication
A Review on Wide Bandwidth Low Noise Amplifier for Modern Wireless CommunicationA Review on Wide Bandwidth Low Noise Amplifier for Modern Wireless Communication
A Review on Wide Bandwidth Low Noise Amplifier for Modern Wireless Communication
 
A New CMOS Fully Differential Low Noise Amplifier for Wideband Applications
A New CMOS Fully Differential Low Noise Amplifier for Wideband ApplicationsA New CMOS Fully Differential Low Noise Amplifier for Wideband Applications
A New CMOS Fully Differential Low Noise Amplifier for Wideband Applications
 
17
1717
17
 
K0536569
K0536569K0536569
K0536569
 
First order sigma delta modulator with low-power consumption implemented in a...
First order sigma delta modulator with low-power consumption implemented in a...First order sigma delta modulator with low-power consumption implemented in a...
First order sigma delta modulator with low-power consumption implemented in a...
 
First order sigma delta modulator with low-power
First order sigma delta modulator with low-powerFirst order sigma delta modulator with low-power
First order sigma delta modulator with low-power
 

Más de IOSR Journals (20)

A011140104
A011140104A011140104
A011140104
 
M0111397100
M0111397100M0111397100
M0111397100
 
L011138596
L011138596L011138596
L011138596
 
K011138084
K011138084K011138084
K011138084
 
J011137479
J011137479J011137479
J011137479
 
I011136673
I011136673I011136673
I011136673
 
G011134454
G011134454G011134454
G011134454
 
H011135565
H011135565H011135565
H011135565
 
F011134043
F011134043F011134043
F011134043
 
E011133639
E011133639E011133639
E011133639
 
D011132635
D011132635D011132635
D011132635
 
C011131925
C011131925C011131925
C011131925
 
B011130918
B011130918B011130918
B011130918
 
A011130108
A011130108A011130108
A011130108
 
I011125160
I011125160I011125160
I011125160
 
H011124050
H011124050H011124050
H011124050
 
G011123539
G011123539G011123539
G011123539
 
F011123134
F011123134F011123134
F011123134
 
E011122530
E011122530E011122530
E011122530
 
D011121524
D011121524D011121524
D011121524
 

Último

Monthly Social Media Update April 2024 pptx.pptx
Monthly Social Media Update April 2024 pptx.pptxMonthly Social Media Update April 2024 pptx.pptx
Monthly Social Media Update April 2024 pptx.pptxAndy Lambert
 
Call Girls Hebbal Just Call 👗 7737669865 👗 Top Class Call Girl Service Bangalore
Call Girls Hebbal Just Call 👗 7737669865 👗 Top Class Call Girl Service BangaloreCall Girls Hebbal Just Call 👗 7737669865 👗 Top Class Call Girl Service Bangalore
Call Girls Hebbal Just Call 👗 7737669865 👗 Top Class Call Girl Service Bangaloreamitlee9823
 
Enhancing and Restoring Safety & Quality Cultures - Dave Litwiller - May 2024...
Enhancing and Restoring Safety & Quality Cultures - Dave Litwiller - May 2024...Enhancing and Restoring Safety & Quality Cultures - Dave Litwiller - May 2024...
Enhancing and Restoring Safety & Quality Cultures - Dave Litwiller - May 2024...Dave Litwiller
 
The Path to Product Excellence: Avoiding Common Pitfalls and Enhancing Commun...
The Path to Product Excellence: Avoiding Common Pitfalls and Enhancing Commun...The Path to Product Excellence: Avoiding Common Pitfalls and Enhancing Commun...
The Path to Product Excellence: Avoiding Common Pitfalls and Enhancing Commun...Aggregage
 
Call Girls In DLf Gurgaon ➥99902@11544 ( Best price)100% Genuine Escort In 24...
Call Girls In DLf Gurgaon ➥99902@11544 ( Best price)100% Genuine Escort In 24...Call Girls In DLf Gurgaon ➥99902@11544 ( Best price)100% Genuine Escort In 24...
Call Girls In DLf Gurgaon ➥99902@11544 ( Best price)100% Genuine Escort In 24...lizamodels9
 
RSA Conference Exhibitor List 2024 - Exhibitors Data
RSA Conference Exhibitor List 2024 - Exhibitors DataRSA Conference Exhibitor List 2024 - Exhibitors Data
RSA Conference Exhibitor List 2024 - Exhibitors DataExhibitors Data
 
A DAY IN THE LIFE OF A SALESMAN / WOMAN
A DAY IN THE LIFE OF A  SALESMAN / WOMANA DAY IN THE LIFE OF A  SALESMAN / WOMAN
A DAY IN THE LIFE OF A SALESMAN / WOMANIlamathiKannappan
 
John Halpern sued for sexual assault.pdf
John Halpern sued for sexual assault.pdfJohn Halpern sued for sexual assault.pdf
John Halpern sued for sexual assault.pdfAmzadHosen3
 
Insurers' journeys to build a mastery in the IoT usage
Insurers' journeys to build a mastery in the IoT usageInsurers' journeys to build a mastery in the IoT usage
Insurers' journeys to build a mastery in the IoT usageMatteo Carbone
 
Call Girls in Gomti Nagar - 7388211116 - With room Service
Call Girls in Gomti Nagar - 7388211116  - With room ServiceCall Girls in Gomti Nagar - 7388211116  - With room Service
Call Girls in Gomti Nagar - 7388211116 - With room Servicediscovermytutordmt
 
Grateful 7 speech thanking everyone that has helped.pdf
Grateful 7 speech thanking everyone that has helped.pdfGrateful 7 speech thanking everyone that has helped.pdf
Grateful 7 speech thanking everyone that has helped.pdfPaul Menig
 
Boost the utilization of your HCL environment by reevaluating use cases and f...
Boost the utilization of your HCL environment by reevaluating use cases and f...Boost the utilization of your HCL environment by reevaluating use cases and f...
Boost the utilization of your HCL environment by reevaluating use cases and f...Roland Driesen
 
Call Girls Navi Mumbai Just Call 9907093804 Top Class Call Girl Service Avail...
Call Girls Navi Mumbai Just Call 9907093804 Top Class Call Girl Service Avail...Call Girls Navi Mumbai Just Call 9907093804 Top Class Call Girl Service Avail...
Call Girls Navi Mumbai Just Call 9907093804 Top Class Call Girl Service Avail...Dipal Arora
 
FULL ENJOY Call Girls In Majnu Ka Tilla, Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Majnu Ka Tilla, Delhi Contact Us 8377877756FULL ENJOY Call Girls In Majnu Ka Tilla, Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Majnu Ka Tilla, Delhi Contact Us 8377877756dollysharma2066
 
Call Girls Pune Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Pune Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Pune Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Pune Just Call 9907093804 Top Class Call Girl Service AvailableDipal Arora
 
It will be International Nurses' Day on 12 May
It will be International Nurses' Day on 12 MayIt will be International Nurses' Day on 12 May
It will be International Nurses' Day on 12 MayNZSG
 
Organizational Transformation Lead with Culture
Organizational Transformation Lead with CultureOrganizational Transformation Lead with Culture
Organizational Transformation Lead with CultureSeta Wicaksana
 
KYC-Verified Accounts: Helping Companies Handle Challenging Regulatory Enviro...
KYC-Verified Accounts: Helping Companies Handle Challenging Regulatory Enviro...KYC-Verified Accounts: Helping Companies Handle Challenging Regulatory Enviro...
KYC-Verified Accounts: Helping Companies Handle Challenging Regulatory Enviro...Any kyc Account
 
Call Girls Electronic City Just Call 👗 7737669865 👗 Top Class Call Girl Servi...
Call Girls Electronic City Just Call 👗 7737669865 👗 Top Class Call Girl Servi...Call Girls Electronic City Just Call 👗 7737669865 👗 Top Class Call Girl Servi...
Call Girls Electronic City Just Call 👗 7737669865 👗 Top Class Call Girl Servi...amitlee9823
 

Último (20)

Monthly Social Media Update April 2024 pptx.pptx
Monthly Social Media Update April 2024 pptx.pptxMonthly Social Media Update April 2024 pptx.pptx
Monthly Social Media Update April 2024 pptx.pptx
 
Call Girls Hebbal Just Call 👗 7737669865 👗 Top Class Call Girl Service Bangalore
Call Girls Hebbal Just Call 👗 7737669865 👗 Top Class Call Girl Service BangaloreCall Girls Hebbal Just Call 👗 7737669865 👗 Top Class Call Girl Service Bangalore
Call Girls Hebbal Just Call 👗 7737669865 👗 Top Class Call Girl Service Bangalore
 
Enhancing and Restoring Safety & Quality Cultures - Dave Litwiller - May 2024...
Enhancing and Restoring Safety & Quality Cultures - Dave Litwiller - May 2024...Enhancing and Restoring Safety & Quality Cultures - Dave Litwiller - May 2024...
Enhancing and Restoring Safety & Quality Cultures - Dave Litwiller - May 2024...
 
The Path to Product Excellence: Avoiding Common Pitfalls and Enhancing Commun...
The Path to Product Excellence: Avoiding Common Pitfalls and Enhancing Commun...The Path to Product Excellence: Avoiding Common Pitfalls and Enhancing Commun...
The Path to Product Excellence: Avoiding Common Pitfalls and Enhancing Commun...
 
Call Girls In DLf Gurgaon ➥99902@11544 ( Best price)100% Genuine Escort In 24...
Call Girls In DLf Gurgaon ➥99902@11544 ( Best price)100% Genuine Escort In 24...Call Girls In DLf Gurgaon ➥99902@11544 ( Best price)100% Genuine Escort In 24...
Call Girls In DLf Gurgaon ➥99902@11544 ( Best price)100% Genuine Escort In 24...
 
RSA Conference Exhibitor List 2024 - Exhibitors Data
RSA Conference Exhibitor List 2024 - Exhibitors DataRSA Conference Exhibitor List 2024 - Exhibitors Data
RSA Conference Exhibitor List 2024 - Exhibitors Data
 
A DAY IN THE LIFE OF A SALESMAN / WOMAN
A DAY IN THE LIFE OF A  SALESMAN / WOMANA DAY IN THE LIFE OF A  SALESMAN / WOMAN
A DAY IN THE LIFE OF A SALESMAN / WOMAN
 
John Halpern sued for sexual assault.pdf
John Halpern sued for sexual assault.pdfJohn Halpern sued for sexual assault.pdf
John Halpern sued for sexual assault.pdf
 
Insurers' journeys to build a mastery in the IoT usage
Insurers' journeys to build a mastery in the IoT usageInsurers' journeys to build a mastery in the IoT usage
Insurers' journeys to build a mastery in the IoT usage
 
Mifty kit IN Salmiya (+918133066128) Abortion pills IN Salmiyah Cytotec pills
Mifty kit IN Salmiya (+918133066128) Abortion pills IN Salmiyah Cytotec pillsMifty kit IN Salmiya (+918133066128) Abortion pills IN Salmiyah Cytotec pills
Mifty kit IN Salmiya (+918133066128) Abortion pills IN Salmiyah Cytotec pills
 
Call Girls in Gomti Nagar - 7388211116 - With room Service
Call Girls in Gomti Nagar - 7388211116  - With room ServiceCall Girls in Gomti Nagar - 7388211116  - With room Service
Call Girls in Gomti Nagar - 7388211116 - With room Service
 
Grateful 7 speech thanking everyone that has helped.pdf
Grateful 7 speech thanking everyone that has helped.pdfGrateful 7 speech thanking everyone that has helped.pdf
Grateful 7 speech thanking everyone that has helped.pdf
 
Boost the utilization of your HCL environment by reevaluating use cases and f...
Boost the utilization of your HCL environment by reevaluating use cases and f...Boost the utilization of your HCL environment by reevaluating use cases and f...
Boost the utilization of your HCL environment by reevaluating use cases and f...
 
Call Girls Navi Mumbai Just Call 9907093804 Top Class Call Girl Service Avail...
Call Girls Navi Mumbai Just Call 9907093804 Top Class Call Girl Service Avail...Call Girls Navi Mumbai Just Call 9907093804 Top Class Call Girl Service Avail...
Call Girls Navi Mumbai Just Call 9907093804 Top Class Call Girl Service Avail...
 
FULL ENJOY Call Girls In Majnu Ka Tilla, Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Majnu Ka Tilla, Delhi Contact Us 8377877756FULL ENJOY Call Girls In Majnu Ka Tilla, Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Majnu Ka Tilla, Delhi Contact Us 8377877756
 
Call Girls Pune Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Pune Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Pune Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Pune Just Call 9907093804 Top Class Call Girl Service Available
 
It will be International Nurses' Day on 12 May
It will be International Nurses' Day on 12 MayIt will be International Nurses' Day on 12 May
It will be International Nurses' Day on 12 May
 
Organizational Transformation Lead with Culture
Organizational Transformation Lead with CultureOrganizational Transformation Lead with Culture
Organizational Transformation Lead with Culture
 
KYC-Verified Accounts: Helping Companies Handle Challenging Regulatory Enviro...
KYC-Verified Accounts: Helping Companies Handle Challenging Regulatory Enviro...KYC-Verified Accounts: Helping Companies Handle Challenging Regulatory Enviro...
KYC-Verified Accounts: Helping Companies Handle Challenging Regulatory Enviro...
 
Call Girls Electronic City Just Call 👗 7737669865 👗 Top Class Call Girl Servi...
Call Girls Electronic City Just Call 👗 7737669865 👗 Top Class Call Girl Servi...Call Girls Electronic City Just Call 👗 7737669865 👗 Top Class Call Girl Servi...
Call Girls Electronic City Just Call 👗 7737669865 👗 Top Class Call Girl Servi...
 

B0160709

  • 1. IOSR Journal of VLSI and Signal Processing (IOSR-JVSP) e-ISSN: 2319 – 4200, p-ISSN No. : 2319 – 4197 Volume 1, Issue 6 (Mar. - Apr 2013), PP 07-09 www.iosrjournals.org www.iosrjournals.org 7 | Page 2.5v 900 MHz 0.13µm CMOS cascode low noise amplifier for wireless application Rupesh P.Raghatate1 , 1 (M-tech SEM-I (B.D.college of engineering,wardha) Abstract : This paper presents low noise amplifier (LNA) for wireless application as RF front end which has been implemented in 0.13µ RF CMOS technology. The LNA was designed using inductive source degeneration cascode topology which produces better gain and good stability. From the simulation results, the LNA exhibits a gain of 26.46 dB, noise figure (NF) of 1.16 dB at 115µW , output return loss (S22) of −6.55dB, input return loss (S11) of −14.46dB, reverse isolation (S12) of −39.76 dB, and a power consumption is 7 mA from a 2.5V power supply. Keywords - Low noise amplifier; RF front-end, cascode, CMOS, inductive source degeneration. I. INTRODUCTION Nowadays ,there have been many extensive studies and efforts to improve the noise figure in RF transceiver also CMOS integrated circuit for wireless application is receiving much attention, due to their potential for low cost . A key building block for the RF front-end is the low noise amplifier (LNA) which precedes a high noise stage plays a critical role in determining the over-all noise figure (NIF) of the transceiver. From a cost standpoint, the LNA is implemented in 0.13µm RF CMOS technology. Recent works in designing LNA have there have been a difficulty in attaining both low noise figure and low power consumption simultaneously. This paper describes the implementation of LNA using 0.13µm CMOS technology which meets low noise figure, higher gain and low power consumption simultaneously at 900 MHz frequency. Following text is divided into three sections; section II describes LNA design section III gives simulation results, section IV presents the conclusion. II. LNA DESIGN 1) Circuit Topology A fig (1) shows a cascode topology, A single-stage cascode amplifier topology with inductive degeneration at the source is used. A cascode topology is chosen to minimize the power dissipation and to improve 1-dB compression point. Here a cascode transistor M2 provides high impedance which improves isolation between input and output that increases stability of amplifier. The work is focused on developing the LNA circuit for 900 MHz application. The use of inductive degeneration provides input matching and noise matching with better gain and stability along with low power consumption simultaneously. Fig.1: Schematic of LNA 2) Low noise amplifier: Low noise amplifier is an important block in wireless receiver .it determines the receiver performance .the figure (1) shows schematic of LNA .circuit shown in dashed box both at input and output side are matching components of LNA while rest of the circuit is actual LNA.
  • 2. 2.5v 900 MHz 0.13µm CMOS cascode low noise amplifier for wireless application www.iosrjournals.org 8 | Page The LNA is full of trade off between optimum gains, optimum input matching, low power consumption, lowest noise figure and linearity. The gain of LNA should be high enough to reduce noise contribution of subsequent stages; also noise must be as low as possible to minimize the impact on receiver noise performance. The input impedance of LNA is matched to 50Ω(characteristic impedance of antenna ).The transistor M1 and M2 are depletion mode devices .resistor R2 and V2 are used to set voltage condition at M1 gate .RG is used to provide voltage at M2 while CG is used to eliminate any noise from the bias network .LS is used for stability. The input is coupled to gate of M1 with coupling capacitor Cs .the input is matched to 50 Ω using matching network and inductor LS .In this LNA design transistor M1 have gate width of 10 µm and 20 fingers ,transistor M2 has gate width of 5 µm and 1 finger. The transistor M1 is biased at 0.5 v and M2 is biased at 2.5v respectively, CF forms feedback network for M1 .The feedback degrades noise while improves linearity and offers easy input matching for LNA. A simple gain equation of LNA is given by following equation, AV=RF OUT /RF IN Feedback network affects gain of LNAQ but provides better stability. III. SIMULATION RESULTS All simulation for this LNA has been performed using Agilent’s ADS-2009 using TSMC 0.13µm CMOS .a fully integrated 900 MHz LNA in 0.13µm RF CMOS has been designed, LNA employ lumped inductor and capacitor for matching input and output .fig (2) shows gain (S21) and (S12) of LNA .the S21 is -26 dB at 900 MHz, the S12 is -40 dB at 900 MHz.fig(3)shows input and output reflection co-efficient (S11) and (S22) of LNA .the S11 is lower than -10dB while S22 is -6dB at 900 MHz .fig (4)shows stability of LNA which is greater than 1 for all frequencies.fig(5)shows noise figure of LNA .the noise figure is 1.04 dB at 900 MHz . The LNA is biased with VDD 2.5v and consumes 7mA current. Fig2: gain and isolation of LNA Fig3: input and output reflection co-efficient Fig 3: stability factor fig 4: noise figure 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.50.0 5.0 -100 -80 -60 -40 -20 0 20 -120 40 freq, GHz dB(S(2,1)) m1 dB(S(1,2)) m2 m1 freq= dB(S(2,1))=26.153 900.0MHz m2 freq= dB(S(1,2))=-40.074 900.0MHz 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.50.0 5.0 -10 -8 -6 -4 -2 -12 0 freq, GHz dB(S(1,1)) m5 dB(S(2,2)) m6 m5 freq= dB(S(1,1))=-10.410 900.0MHz m6 freq= dB(S(2,2))=-6.647 900.0MHz 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.50.0 5.0 2 4 6 8 0 10 freq, GHz StabFact1 m4 m4 freq= StabFact1=1.784 900.0MHz 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.50.0 5.0 5 10 15 20 25 0 30 freq, GHz nf(2) m3 m3 freq= nf(2)=1.044 900.0MHz
  • 3. 2.5v 900 MHz 0.13µm CMOS cascode low noise amplifier for wireless application www.iosrjournals.org 9 | Page Table 1: summary of LNA parameters LNA Measured parameter Supply voltage 2.5v Technology used TSMC 0.13 µm CMOS RF frequency 900 MHz Voltage gain (S21) 26 dB Noise FIGURE 1.04dB S11 -14 dB S22 -6 dB Power dissipation 115µW Current consumption 7 mA Reverse isolation -40 dB IV. CONCLUSION The TSMC 0.13 µm CMOS high frequency model is used to design 900 MHz receiver front end. This paper presents 900 MHz LNA with noise figure 1.04 dB with power consumption of 115 µW from 2.5v power supply .the LNA exhibits gain of 26 dB. From both performance standpoint and cost standpoint, these results show that CMOS is very competitive with available technologies. REFERENCES JOURNAL PAPERS: [1] Brian A. Floyd, Jesal Mehta, Carlos Gamero, and Kenneth K. O, A 900-MHz, 0.8-pm CMOS Low Noise Amplifier with 1.2-dB Noise Figure, Silicon Microwave Integrated Circuits and Systems Research Group (SiMICS) Dept. of' Electrical and Computer Engineering, University of Florida, Gainesville. [2] Andrew N. Karanicolas, A 2.7-V 900-MHz CMOS LNA and Mixer, Member, IEEE [3] Arjuna Marzuki, GaAs pHEMT cascode LNA for wireless application, International journal of computer and electrical engineering ,vol.1,No.2,June 2009,1793-8163. [4] Jon Guerber,Design of an 2.4GHz CMOS LNA, ECE 621,winter 2010.