SlideShare una empresa de Scribd logo
1 de 94
Outline




   Entanglement Dynamics of a Two-qubit
    System in a Spin Star Configuration

       Y. Hamdouni1                M. Fannes2          F. Petruccione1
                                  1 School of Physics

                              University of KwaZulu-Natal
2 Institute   of Theoretical Physics, University of Leuven, Celestijnenlaan 200D
                              B-3001 Heverlee, Belgium


                                     SAIP, 2006


              Hamdouni, Fannes, Petruccione   Entanglement Dynamics...
Introduction
                                   The Model
                     Exact reduced dynamics
                             The limit N → ∞
                      Entanglement evolution
                                  Conclusion


Outline
   1   Introduction
   2   The Model
          The two-qubit system
          The environment
          The Hamiltonian
   3   Exact reduced dynamics
          Initial conditions
          Time evolution
   3   The limit N → ∞
          Correlation functions
          Time evolution
   4   Entanglement evolution
          concurrence
          Main results
   5   Conclusion
               Hamdouni, Fannes, Petruccione    Entanglement Dynamics...
Introduction
                                  The Model
                    Exact reduced dynamics
                            The limit N → ∞
                     Entanglement evolution
                                 Conclusion


Introduction

   Classical bit
       The canonical building block of classical Information
       Processing (IP) is the bit.
        A bit can be put into two possible states, ”0” or ”1”.

   Examples
    1   Two different voltages across a transistor on a chip.
    2   Two different orientations of the magnetic domain on a disc
    3   Two different classical light pulses traveling down an
        optical fibre

              Hamdouni, Fannes, Petruccione    Entanglement Dynamics...
Introduction
                                  The Model
                    Exact reduced dynamics
                            The limit N → ∞
                     Entanglement evolution
                                 Conclusion


Introduction

   Classical bit
       The canonical building block of classical Information
       Processing (IP) is the bit.
        A bit can be put into two possible states, ”0” or ”1”.

   Examples
    1   Two different voltages across a transistor on a chip.
    2   Two different orientations of the magnetic domain on a disc
    3   Two different classical light pulses traveling down an
        optical fibre

              Hamdouni, Fannes, Petruccione    Entanglement Dynamics...
Introduction
                                  The Model
                    Exact reduced dynamics
                            The limit N → ∞
                     Entanglement evolution
                                 Conclusion


Introduction

   Classical bit
       The canonical building block of classical Information
       Processing (IP) is the bit.
        A bit can be put into two possible states, ”0” or ”1”.

   Examples
    1   Two different voltages across a transistor on a chip.
    2   Two different orientations of the magnetic domain on a disc
    3   Two different classical light pulses traveling down an
        optical fibre

              Hamdouni, Fannes, Petruccione    Entanglement Dynamics...
Introduction
                                  The Model
                    Exact reduced dynamics
                            The limit N → ∞
                     Entanglement evolution
                                 Conclusion


Introduction

   Classical bit
       The canonical building block of classical Information
       Processing (IP) is the bit.
        A bit can be put into two possible states, ”0” or ”1”.

   Examples
    1   Two different voltages across a transistor on a chip.
    2   Two different orientations of the magnetic domain on a disc
    3   Two different classical light pulses traveling down an
        optical fibre

              Hamdouni, Fannes, Petruccione    Entanglement Dynamics...
Introduction
                                  The Model
                    Exact reduced dynamics
                            The limit N → ∞
                     Entanglement evolution
                                 Conclusion


Introduction

   Classical bit
       The canonical building block of classical Information
       Processing (IP) is the bit.
        A bit can be put into two possible states, ”0” or ”1”.

   Examples
    1   Two different voltages across a transistor on a chip.
    2   Two different orientations of the magnetic domain on a disc
    3   Two different classical light pulses traveling down an
        optical fibre

              Hamdouni, Fannes, Petruccione    Entanglement Dynamics...
Introduction
                              The Model
                Exact reduced dynamics
                        The limit N → ∞
                 Entanglement evolution
                             Conclusion




Nowdays, components of electronic devices are shrinking
(Moore’s first law!). Inevitably, we are led to deal with new
materials, nano-devices and molecular electronics ⇒ scales
where quantum phenomena predominate:
    particle-wave duality
    the superposition principle
    probabilistic nature of quantum measurement outcomes
    entanglement...etc.
The unification of classical information theory and quantum
mechanics gave rise to a new field of physics called quantum
information theory.


          Hamdouni, Fannes, Petruccione    Entanglement Dynamics...
Introduction
                              The Model
                Exact reduced dynamics
                        The limit N → ∞
                 Entanglement evolution
                             Conclusion




Nowdays, components of electronic devices are shrinking
(Moore’s first law!). Inevitably, we are led to deal with new
materials, nano-devices and molecular electronics ⇒ scales
where quantum phenomena predominate:
    particle-wave duality
    the superposition principle
    probabilistic nature of quantum measurement outcomes
    entanglement...etc.
The unification of classical information theory and quantum
mechanics gave rise to a new field of physics called quantum
information theory.


          Hamdouni, Fannes, Petruccione    Entanglement Dynamics...
Introduction
                              The Model
                Exact reduced dynamics
                        The limit N → ∞
                 Entanglement evolution
                             Conclusion




Nowdays, components of electronic devices are shrinking
(Moore’s first law!). Inevitably, we are led to deal with new
materials, nano-devices and molecular electronics ⇒ scales
where quantum phenomena predominate:
    particle-wave duality
    the superposition principle
    probabilistic nature of quantum measurement outcomes
    entanglement...etc.
The unification of classical information theory and quantum
mechanics gave rise to a new field of physics called quantum
information theory.


          Hamdouni, Fannes, Petruccione    Entanglement Dynamics...
Introduction
                              The Model
                Exact reduced dynamics
                        The limit N → ∞
                 Entanglement evolution
                             Conclusion




Nowdays, components of electronic devices are shrinking
(Moore’s first law!). Inevitably, we are led to deal with new
materials, nano-devices and molecular electronics ⇒ scales
where quantum phenomena predominate:
    particle-wave duality
    the superposition principle
    probabilistic nature of quantum measurement outcomes
    entanglement...etc.
The unification of classical information theory and quantum
mechanics gave rise to a new field of physics called quantum
information theory.


          Hamdouni, Fannes, Petruccione    Entanglement Dynamics...
Introduction
                              The Model
                Exact reduced dynamics
                        The limit N → ∞
                 Entanglement evolution
                             Conclusion




Nowdays, components of electronic devices are shrinking
(Moore’s first law!). Inevitably, we are led to deal with new
materials, nano-devices and molecular electronics ⇒ scales
where quantum phenomena predominate:
    particle-wave duality
    the superposition principle
    probabilistic nature of quantum measurement outcomes
    entanglement...etc.
The unification of classical information theory and quantum
mechanics gave rise to a new field of physics called quantum
information theory.


          Hamdouni, Fannes, Petruccione    Entanglement Dynamics...
Introduction
                              The Model
                Exact reduced dynamics
                        The limit N → ∞
                 Entanglement evolution
                             Conclusion




Nowdays, components of electronic devices are shrinking
(Moore’s first law!). Inevitably, we are led to deal with new
materials, nano-devices and molecular electronics ⇒ scales
where quantum phenomena predominate:
    particle-wave duality
    the superposition principle
    probabilistic nature of quantum measurement outcomes
    entanglement...etc.
The unification of classical information theory and quantum
mechanics gave rise to a new field of physics called quantum
information theory.


          Hamdouni, Fannes, Petruccione    Entanglement Dynamics...
Introduction
                              The Model
                Exact reduced dynamics
                        The limit N → ∞
                 Entanglement evolution
                             Conclusion




Nowdays, components of electronic devices are shrinking
(Moore’s first law!). Inevitably, we are led to deal with new
materials, nano-devices and molecular electronics ⇒ scales
where quantum phenomena predominate:
    particle-wave duality
    the superposition principle
    probabilistic nature of quantum measurement outcomes
    entanglement...etc.
The unification of classical information theory and quantum
mechanics gave rise to a new field of physics called quantum
information theory.


          Hamdouni, Fannes, Petruccione    Entanglement Dynamics...
Introduction
                              The Model
                Exact reduced dynamics
                        The limit N → ∞
                 Entanglement evolution
                             Conclusion




Nowdays, components of electronic devices are shrinking
(Moore’s first law!). Inevitably, we are led to deal with new
materials, nano-devices and molecular electronics ⇒ scales
where quantum phenomena predominate:
    particle-wave duality
    the superposition principle
    probabilistic nature of quantum measurement outcomes
    entanglement...etc.
The unification of classical information theory and quantum
mechanics gave rise to a new field of physics called quantum
information theory.


          Hamdouni, Fannes, Petruccione    Entanglement Dynamics...
Introduction
                              The Model
                Exact reduced dynamics
                        The limit N → ∞
                 Entanglement evolution
                             Conclusion




Nowdays, components of electronic devices are shrinking
(Moore’s first law!). Inevitably, we are led to deal with new
materials, nano-devices and molecular electronics ⇒ scales
where quantum phenomena predominate:
    particle-wave duality
    the superposition principle
    probabilistic nature of quantum measurement outcomes
    entanglement...etc.
The unification of classical information theory and quantum
mechanics gave rise to a new field of physics called quantum
information theory.


          Hamdouni, Fannes, Petruccione    Entanglement Dynamics...
Introduction
                              The Model
                Exact reduced dynamics
                        The limit N → ∞
                 Entanglement evolution
                             Conclusion




Nowdays, components of electronic devices are shrinking
(Moore’s first law!). Inevitably, we are led to deal with new
materials, nano-devices and molecular electronics ⇒ scales
where quantum phenomena predominate:
    particle-wave duality
    the superposition principle
    probabilistic nature of quantum measurement outcomes
    entanglement...etc.
The unification of classical information theory and quantum
mechanics gave rise to a new field of physics called quantum
information theory.


          Hamdouni, Fannes, Petruccione    Entanglement Dynamics...
Introduction
                                   The Model
                     Exact reduced dynamics
                             The limit N → ∞
                      Entanglement evolution
                                  Conclusion


The quantum bit
  The Building block
        The fundamental unit of information in the quntum theory
        of information processing is the quantum bit or the qubit,
        the quantum counterpart of the classical bit.
        It is a two-level system living in a two-dimensional Hilbert
        space spaned by the basis state vectors {|+ , |− }.
        The qubit enjoys more freedom: its state is a linear
        combination of the basis state vectors.

  Examples
    1   spin- 1 particle
              2
    2   two-level atom
    3   photon polarization states
               Hamdouni, Fannes, Petruccione    Entanglement Dynamics...
Introduction
                                   The Model
                     Exact reduced dynamics
                             The limit N → ∞
                      Entanglement evolution
                                  Conclusion


The quantum bit
  The Building block
        The fundamental unit of information in the quntum theory
        of information processing is the quantum bit or the qubit,
        the quantum counterpart of the classical bit.
        It is a two-level system living in a two-dimensional Hilbert
        space spaned by the basis state vectors {|+ , |− }.
        The qubit enjoys more freedom: its state is a linear
        combination of the basis state vectors.

  Examples
    1   spin- 1 particle
              2
    2   two-level atom
    3   photon polarization states
               Hamdouni, Fannes, Petruccione    Entanglement Dynamics...
Introduction
                                   The Model
                     Exact reduced dynamics
                             The limit N → ∞
                      Entanglement evolution
                                  Conclusion


The quantum bit
  The Building block
        The fundamental unit of information in the quntum theory
        of information processing is the quantum bit or the qubit,
        the quantum counterpart of the classical bit.
        It is a two-level system living in a two-dimensional Hilbert
        space spaned by the basis state vectors {|+ , |− }.
        The qubit enjoys more freedom: its state is a linear
        combination of the basis state vectors.

  Examples
    1   spin- 1 particle
              2
    2   two-level atom
    3   photon polarization states
               Hamdouni, Fannes, Petruccione    Entanglement Dynamics...
Introduction
                                   The Model
                     Exact reduced dynamics
                             The limit N → ∞
                      Entanglement evolution
                                  Conclusion


The quantum bit
  The Building block
        The fundamental unit of information in the quntum theory
        of information processing is the quantum bit or the qubit,
        the quantum counterpart of the classical bit.
        It is a two-level system living in a two-dimensional Hilbert
        space spaned by the basis state vectors {|+ , |− }.
        The qubit enjoys more freedom: its state is a linear
        combination of the basis state vectors.

  Examples
    1   spin- 1 particle
              2
    2   two-level atom
    3   photon polarization states
               Hamdouni, Fannes, Petruccione    Entanglement Dynamics...
Introduction
                                   The Model
                     Exact reduced dynamics
                             The limit N → ∞
                      Entanglement evolution
                                  Conclusion


The quantum bit
  The Building block
        The fundamental unit of information in the quntum theory
        of information processing is the quantum bit or the qubit,
        the quantum counterpart of the classical bit.
        It is a two-level system living in a two-dimensional Hilbert
        space spaned by the basis state vectors {|+ , |− }.
        The qubit enjoys more freedom: its state is a linear
        combination of the basis state vectors.

  Examples
    1   spin- 1 particle
              2
    2   two-level atom
    3   photon polarization states
               Hamdouni, Fannes, Petruccione    Entanglement Dynamics...
Introduction
                                   The Model
                     Exact reduced dynamics
                             The limit N → ∞
                      Entanglement evolution
                                  Conclusion


The quantum bit
  The Building block
        The fundamental unit of information in the quntum theory
        of information processing is the quantum bit or the qubit,
        the quantum counterpart of the classical bit.
        It is a two-level system living in a two-dimensional Hilbert
        space spaned by the basis state vectors {|+ , |− }.
        The qubit enjoys more freedom: its state is a linear
        combination of the basis state vectors.

  Examples
    1   spin- 1 particle
              2
    2   two-level atom
    3   photon polarization states
               Hamdouni, Fannes, Petruccione    Entanglement Dynamics...
Introduction
                                The Model
                  Exact reduced dynamics
                          The limit N → ∞
                   Entanglement evolution
                               Conclusion


                                                        prepare

operations on qubits                                     evolve

                                                       measure
!!
Leakage away of quantum information by decoherence (due to
uncontroled interactions with the surounding environment).


                                    ⇓


            experimetal and theoretical challenge



            Hamdouni, Fannes, Petruccione    Entanglement Dynamics...
Introduction
                                The Model
                  Exact reduced dynamics
                          The limit N → ∞
                   Entanglement evolution
                               Conclusion


                                                        prepare

operations on qubits                                     evolve

                                                       measure
!!
Leakage away of quantum information by decoherence (due to
uncontroled interactions with the surounding environment).


                                    ⇓


            experimetal and theoretical challenge



            Hamdouni, Fannes, Petruccione    Entanglement Dynamics...
Introduction
                                The Model
                  Exact reduced dynamics
                          The limit N → ∞
                   Entanglement evolution
                               Conclusion


                                                        prepare
                                 −→
operations on qubits                                     evolve

                                                       measure
!!
Leakage away of quantum information by decoherence (due to
uncontroled interactions with the surounding environment).


                                    ⇓


            experimetal and theoretical challenge



            Hamdouni, Fannes, Petruccione    Entanglement Dynamics...
Introduction
                                The Model
                  Exact reduced dynamics
                          The limit N → ∞
                   Entanglement evolution
                               Conclusion


                                                        prepare

operations on qubits                                     evolve

                                                       measure
!!
Leakage away of quantum information by decoherence (due to
uncontroled interactions with the surounding environment).


                                    ⇓


            experimetal and theoretical challenge



            Hamdouni, Fannes, Petruccione    Entanglement Dynamics...
Introduction
                                The Model
                  Exact reduced dynamics
                          The limit N → ∞
                   Entanglement evolution
                               Conclusion


                                                        prepare

operations on qubits                                     evolve

                                                       measure
!!
Leakage away of quantum information by decoherence (due to
uncontroled interactions with the surounding environment).


                                    ⇓


            experimetal and theoretical challenge



            Hamdouni, Fannes, Petruccione    Entanglement Dynamics...
Introduction
                                 The Model
                                              The two-qubit system
                   Exact reduced dynamics
                                              The environment
                           The limit N → ∞
                                              The Hamiltonian
                    Entanglement evolution
                                Conclusion


The model

  We consider a pair of two spin- 1 particles (our qubits) in a spin
                                  2
                                                       1
  star configuration: a structure composed of N spin- 2 particles
  located on a the surface of a sphere whose center is occupied
  by the qubits.
      We assume that the central spins do not interact with
      each other and we neglect mutual interactions between
      the outer spins
      The main contribution to the total Hamiltonian comes from
      the coupling of the qubits to the spin star configuration.
      The qubits are treated as an open system coupled to an
      environment of many degrees of freedom.
             Hamdouni, Fannes, Petruccione    Entanglement Dynamics...
Introduction
                                 The Model
                                              The two-qubit system
                   Exact reduced dynamics
                                              The environment
                           The limit N → ∞
                                              The Hamiltonian
                    Entanglement evolution
                                Conclusion


The model

  We consider a pair of two spin- 1 particles (our qubits) in a spin
                                  2
                                                       1
  star configuration: a structure composed of N spin- 2 particles
  located on a the surface of a sphere whose center is occupied
  by the qubits.
      We assume that the central spins do not interact with
      each other and we neglect mutual interactions between
      the outer spins
      The main contribution to the total Hamiltonian comes from
      the coupling of the qubits to the spin star configuration.
      The qubits are treated as an open system coupled to an
      environment of many degrees of freedom.
             Hamdouni, Fannes, Petruccione    Entanglement Dynamics...
Introduction
                                 The Model
                                              The two-qubit system
                   Exact reduced dynamics
                                              The environment
                           The limit N → ∞
                                              The Hamiltonian
                    Entanglement evolution
                                Conclusion


The model

  We consider a pair of two spin- 1 particles (our qubits) in a spin
                                  2
                                                       1
  star configuration: a structure composed of N spin- 2 particles
  located on a the surface of a sphere whose center is occupied
  by the qubits.
      We assume that the central spins do not interact with
      each other and we neglect mutual interactions between
      the outer spins
      The main contribution to the total Hamiltonian comes from
      the coupling of the qubits to the spin star configuration.
      The qubits are treated as an open system coupled to an
      environment of many degrees of freedom.
             Hamdouni, Fannes, Petruccione    Entanglement Dynamics...
Introduction
                                 The Model
                                              The two-qubit system
                   Exact reduced dynamics
                                              The environment
                           The limit N → ∞
                                              The Hamiltonian
                    Entanglement evolution
                                Conclusion


The model

  We consider a pair of two spin- 1 particles (our qubits) in a spin
                                  2
                                                       1
  star configuration: a structure composed of N spin- 2 particles
  located on a the surface of a sphere whose center is occupied
  by the qubits.
      We assume that the central spins do not interact with
      each other and we neglect mutual interactions between
      the outer spins
      The main contribution to the total Hamiltonian comes from
      the coupling of the qubits to the spin star configuration.
      The qubits are treated as an open system coupled to an
      environment of many degrees of freedom.
             Hamdouni, Fannes, Petruccione    Entanglement Dynamics...
Introduction
                    The Model
                                 The two-qubit system
      Exact reduced dynamics
                                 The environment
              The limit N → ∞
                                 The Hamiltonian
       Entanglement evolution
                   Conclusion




                         Figure: 1

             Spin star configuration.

Hamdouni, Fannes, Petruccione    Entanglement Dynamics...
Introduction
                                  The Model
                                               The two-qubit system
                    Exact reduced dynamics
                                               The environment
                            The limit N → ∞
                                               The Hamiltonian
                     Entanglement evolution
                                 Conclusion


The qubits

  The total spin operator of the two-qubit system is

                               ˆ ˆ      I I ˆ
                               S = S1 ⊗ ˆ + ˆ ⊗ S2                                 (1)
  The corresponding spin state is given

                                C2 ⊗ C2 = C ⊕ C3 .                                 (2)

    eigenbasis vectors
                                                   eigenbasis vectors
    {| + + , | + − , | − + , | − − }
                                                   {|0, 0 , |1, 1 , |1, 0 , |1, −1 }
    where | 1 2 = | 1 ⊗ | 2

              Hamdouni, Fannes, Petruccione    Entanglement Dynamics...
Introduction
                                  The Model
                                               The two-qubit system
                    Exact reduced dynamics
                                               The environment
                            The limit N → ∞
                                               The Hamiltonian
                     Entanglement evolution
                                 Conclusion


The qubits

  The total spin operator of the two-qubit system is

                               ˆ ˆ      I I ˆ
                               S = S1 ⊗ ˆ + ˆ ⊗ S2                                 (1)
  The corresponding spin state is given

                                C2 ⊗ C2 = C ⊕ C3 .                                 (2)

    eigenbasis vectors
                                                   eigenbasis vectors
    {| + + , | + − , | − + , | − − }
                                                   {|0, 0 , |1, 1 , |1, 0 , |1, −1 }
    where | 1 2 = | 1 ⊗ | 2

              Hamdouni, Fannes, Petruccione    Entanglement Dynamics...
Introduction
                                  The Model
                                               The two-qubit system
                    Exact reduced dynamics
                                               The environment
                            The limit N → ∞
                                               The Hamiltonian
                     Entanglement evolution
                                 Conclusion


The qubits

  The total spin operator of the two-qubit system is

                               ˆ ˆ      I I ˆ
                               S = S1 ⊗ ˆ + ˆ ⊗ S2                                 (1)
  The corresponding spin state is given

                                C2 ⊗ C2 = C ⊕ C3 .                                 (2)

    eigenbasis vectors
                                                   eigenbasis vectors
    {| + + , | + − , | − + , | − − }
                                                   {|0, 0 , |1, 1 , |1, 0 , |1, −1 }
    where | 1 2 = | 1 ⊗ | 2

              Hamdouni, Fannes, Petruccione    Entanglement Dynamics...
Introduction
                                  The Model
                                               The two-qubit system
                    Exact reduced dynamics
                                               The environment
                            The limit N → ∞
                                               The Hamiltonian
                     Entanglement evolution
                                 Conclusion


The qubits

  The total spin operator of the two-qubit system is

                               ˆ ˆ      I I ˆ
                               S = S1 ⊗ ˆ + ˆ ⊗ S2                                 (1)
  The corresponding spin state is given

                                C2 ⊗ C2 = C ⊕ C3 .                                 (2)

    eigenbasis vectors
                                                   eigenbasis vectors
    {| + + , | + − , | − + , | − − }
                                                   {|0, 0 , |1, 1 , |1, 0 , |1, −1 }
    where | 1 2 = | 1 ⊗ | 2

              Hamdouni, Fannes, Petruccione    Entanglement Dynamics...
Introduction
                                  The Model
                                               The two-qubit system
                    Exact reduced dynamics
                                               The environment
                            The limit N → ∞
                                               The Hamiltonian
                     Entanglement evolution
                                 Conclusion


The qubits

  The total spin operator of the two-qubit system is

                               ˆ ˆ      I I ˆ
                               S = S1 ⊗ ˆ + ˆ ⊗ S2                                 (1)
  The corresponding spin state is given

                                C2 ⊗ C2 = C ⊕ C3 .                                 (2)

    eigenbasis vectors
                                                   eigenbasis vectors
    {| + + , | + − , | − + , | − − }
                                                   {|0, 0 , |1, 1 , |1, 0 , |1, −1 }
    where | 1 2 = | 1 ⊗ | 2

              Hamdouni, Fannes, Petruccione    Entanglement Dynamics...
Introduction
                                   The Model
                                                    The two-qubit system
                     Exact reduced dynamics
                                                    The environment
                             The limit N → ∞
                                                    The Hamiltonian
                      Entanglement evolution
                                  Conclusion


The environment
  Spin space of the environment:

                                                N
                                                2
                                2 ⊗N
                            (C )        =           ν(j, N ) Cdj .
                                            j =0

                                                               N
                              dj = 2j + 1, 0             j     2

  and the degeneracy


                                                               N /2
                  N            N
  ν(j, N ) =            −                                             ν(j, N )(2j + 1) = 2N
               N /2 − j   N /2 − j − 1
                                                               j =0
               Hamdouni, Fannes, Petruccione        Entanglement Dynamics...
Introduction
                                   The Model
                                                    The two-qubit system
                     Exact reduced dynamics
                                                    The environment
                             The limit N → ∞
                                                    The Hamiltonian
                      Entanglement evolution
                                  Conclusion


The environment
  Spin space of the environment:

                                                N
                                                2
                                2 ⊗N
                            (C )        =           ν(j, N ) Cdj .
                                            j =0

                                                               N
                              dj = 2j + 1, 0             j     2

  and the degeneracy


                                                               N /2
                  N            N
  ν(j, N ) =            −                                             ν(j, N )(2j + 1) = 2N
               N /2 − j   N /2 − j − 1
                                                               j =0
               Hamdouni, Fannes, Petruccione        Entanglement Dynamics...
Introduction
                                   The Model
                                                    The two-qubit system
                     Exact reduced dynamics
                                                    The environment
                             The limit N → ∞
                                                    The Hamiltonian
                      Entanglement evolution
                                  Conclusion


The environment
  Spin space of the environment:

                                                N
                                                2
                                2 ⊗N
                            (C )        =           ν(j, N ) Cdj .
                                            j =0

                                                               N
                              dj = 2j + 1, 0             j     2

  and the degeneracy


                                                               N /2
                  N            N
  ν(j, N ) =            −                                             ν(j, N )(2j + 1) = 2N
               N /2 − j   N /2 − j − 1
                                                               j =0
               Hamdouni, Fannes, Petruccione        Entanglement Dynamics...
Introduction
                                   The Model
                                                    The two-qubit system
                     Exact reduced dynamics
                                                    The environment
                             The limit N → ∞
                                                    The Hamiltonian
                      Entanglement evolution
                                  Conclusion


The environment
  Spin space of the environment:

                                                N
                                                2
                                2 ⊗N
                            (C )        =           ν(j, N ) Cdj .
                                            j =0

                                                               N
                              dj = 2j + 1, 0             j     2

  and the degeneracy


                                                               N /2
                  N            N
  ν(j, N ) =            −                                             ν(j, N )(2j + 1) = 2N
               N /2 − j   N /2 − j − 1
                                                               j =0
               Hamdouni, Fannes, Petruccione        Entanglement Dynamics...
Introduction
                                   The Model
                                                    The two-qubit system
                     Exact reduced dynamics
                                                    The environment
                             The limit N → ∞
                                                    The Hamiltonian
                      Entanglement evolution
                                  Conclusion


The environment
  Spin space of the environment:

                                                N
                                                2
                                2 ⊗N
                            (C )        =           ν(j, N ) Cdj .
                                            j =0

                                                               N
                              dj = 2j + 1, 0             j     2

  and the degeneracy


                                                               N /2
                  N            N
  ν(j, N ) =            −                                             ν(j, N )(2j + 1) = 2N
               N /2 − j   N /2 − j − 1
                                                               j =0
               Hamdouni, Fannes, Petruccione        Entanglement Dynamics...
Introduction
                                 The Model
                                                 The two-qubit system
                   Exact reduced dynamics
                                                 The environment
                           The limit N → ∞
                                                 The Hamiltonian
                    Entanglement evolution
                                Conclusion


Heisenberg XY interaction
  The interaction between the central qubits and the environment
  is described by the Heisenberg XY interaction:

                                        N                                   N
           H = α[(σ1 + σ2 ) ⊗
                   x    x                     σix + (σ1 + σ2 ) ⊗
                                                      y    y                    σiy ].
                                        i                                   i

  α is the coupling constant.
  Defining the lowering and raising operators

                                                              N
                   σ1,2 = σ1,2 ± i σ1,2 ,
                    ±      x        y               J± =            σi± .
                                                             i =1


             Hamdouni, Fannes, Petruccione       Entanglement Dynamics...
Introduction
                              The Model
                                           The two-qubit system
                Exact reduced dynamics
                                           The environment
                        The limit N → ∞
                                           The Hamiltonian
                 Entanglement evolution
                             Conclusion




we can write


           H = α[(σ1 + σ2 ) ⊗ J− + (σ1 + σ2 ) ⊗ J+ ]
                   +    +            −    −
               = α[σ+ ⊗ J− + σ− ⊗ J+ ].                               (3)

where σ± = σ1 + σ2 .
            ±    ±


Due to symmetry, we can restrict ourselves to the subspace
C ⊗N ⊗ C 3

                           H (|00 ⊗ |ΦB ) = 0.



          Hamdouni, Fannes, Petruccione    Entanglement Dynamics...
Introduction
                              The Model
                                           The two-qubit system
                Exact reduced dynamics
                                           The environment
                        The limit N → ∞
                                           The Hamiltonian
                 Entanglement evolution
                             Conclusion




we can write


           H = α[(σ1 + σ2 ) ⊗ J− + (σ1 + σ2 ) ⊗ J+ ]
                   +    +            −    −
               = α[σ+ ⊗ J− + σ− ⊗ J+ ].                               (3)

where σ± = σ1 + σ2 .
            ±    ±


Due to symmetry, we can restrict ourselves to the subspace
C ⊗N ⊗ C 3

                           H (|00 ⊗ |ΦB ) = 0.



          Hamdouni, Fannes, Petruccione    Entanglement Dynamics...
Introduction
                                 The Model
                                              The two-qubit system
                   Exact reduced dynamics
                                              The environment
                           The limit N → ∞
                                              The Hamiltonian
                    Entanglement evolution
                                Conclusion


Hamiltonian


                                                           
           0 0 0                                        0 1 0
     σ+ = 1 0 0                                 σ− = 0 0 1
           0 1 0                                        0 0 0

                                        
                                  0 J+ 0
                          H = α J− 0 J+  .                             (4)
                                  0 J− 0




             Hamdouni, Fannes, Petruccione    Entanglement Dynamics...
Introduction
                                 The Model
                                              The two-qubit system
                   Exact reduced dynamics
                                              The environment
                           The limit N → ∞
                                              The Hamiltonian
                    Entanglement evolution
                                Conclusion


Hamiltonian


                                                           
           0 0 0                                        0 1 0
     σ+ = 1 0 0                                 σ− = 0 0 1
           0 1 0                                        0 0 0

                                        
                                  0 J+ 0
                          H = α J− 0 J+  .                             (4)
                                  0 J− 0




             Hamdouni, Fannes, Petruccione    Entanglement Dynamics...
Introduction
                                 The Model
                                              The two-qubit system
                   Exact reduced dynamics
                                              The environment
                           The limit N → ∞
                                              The Hamiltonian
                    Entanglement evolution
                                Conclusion


Hamiltonian


                                                           
           0 0 0                                        0 1 0
     σ+ = 1 0 0                                 σ− = 0 0 1
           0 1 0                                        0 0 0

                                        
                                  0 J+ 0
                          H = α J− 0 J+  .                             (4)
                                  0 J− 0




             Hamdouni, Fannes, Petruccione    Entanglement Dynamics...
Introduction
                            The Model
                                         The two-qubit system
              Exact reduced dynamics
                                         The environment
                      The limit N → ∞
                                         The Hamiltonian
               Entanglement evolution
                           Conclusion




                     J+ K n−1 J− 0 J+ K n−1 J+
                                               

        H2n   = α2n      0      Kn     0       ,
                     J− K n−1 J  0 J− K n−1 J
                               −              +



                                  J+ K n
                                               
                             0             0
         H 2n+1   = α2n+1 K n J−   0    K n J+  ,
                             0    J− K n   0

where

               K = J+ J− + J− J+ = 2(J 2 − Jz ).
                                            2




        Hamdouni, Fannes, Petruccione    Entanglement Dynamics...
Introduction
                            The Model
                                         The two-qubit system
              Exact reduced dynamics
                                         The environment
                      The limit N → ∞
                                         The Hamiltonian
               Entanglement evolution
                           Conclusion




                     J+ K n−1 J− 0 J+ K n−1 J+
                                               

        H2n   = α2n      0      Kn     0       ,
                     J− K n−1 J  0 J− K n−1 J
                               −              +



                                  J+ K n
                                               
                             0             0
         H 2n+1   = α2n+1 K n J−   0    K n J+  ,
                             0    J− K n   0

where

               K = J+ J− + J− J+ = 2(J 2 − Jz ).
                                            2




        Hamdouni, Fannes, Petruccione    Entanglement Dynamics...
Introduction
                            The Model
                                         The two-qubit system
              Exact reduced dynamics
                                         The environment
                      The limit N → ∞
                                         The Hamiltonian
               Entanglement evolution
                           Conclusion




                     J+ K n−1 J− 0 J+ K n−1 J+
                                               

        H2n   = α2n      0      Kn     0       ,
                     J− K n−1 J  0 J− K n−1 J
                               −              +



                                  J+ K n
                                               
                             0             0
         H 2n+1   = α2n+1 K n J−   0    K n J+  ,
                             0    J− K n   0

where

               K = J+ J− + J− J+ = 2(J 2 − Jz ).
                                            2




        Hamdouni, Fannes, Petruccione    Entanglement Dynamics...
Introduction
                            The Model
                                         The two-qubit system
              Exact reduced dynamics
                                         The environment
                      The limit N → ∞
                                         The Hamiltonian
               Entanglement evolution
                           Conclusion




                     J+ K n−1 J− 0 J+ K n−1 J+
                                               

        H2n   = α2n      0      Kn     0       ,
                     J− K n−1 J  0 J− K n−1 J
                               −              +



                                  J+ K n
                                               
                             0             0
         H 2n+1   = α2n+1 K n J−   0    K n J+  ,
                             0    J− K n   0

where

               K = J+ J− + J− J+ = 2(J 2 − Jz ).
                                            2




        Hamdouni, Fannes, Petruccione    Entanglement Dynamics...
Introduction
                                   The Model
                                                  The two-qubit system
                     Exact reduced dynamics
                                                  The environment
                             The limit N → ∞
                                                  The Hamiltonian
                      Entanglement evolution
                                  Conclusion




                              √                              √                       √         
             1 + J+ cos(αtK     K )−1
                                        J− −iJ+ sin(αtK K )
                                                    √                        J+ cos(αtK
                                                                                      K )−1
                                                                                            J+
                           √                       √                                √           
U (t ) =       −i sin(αt
                       √     J−K)
                                            cos(αt K )                      −i sin(αt K ) J+
                                                                                   √
                                                                                                
                                                                                                 
                          K
                           √                                  √                     K√           
                  cos(αt K )−1
               J−       K      J−               −iJ− sin(αt
                                                         √
                                                                 K)
                                                                         1 + J− cos(αt K )−1
                                                                                      K       J+
                                                             K
                                                                                          (5)




               Hamdouni, Fannes, Petruccione      Entanglement Dynamics...
Introduction
                                   The Model
                     Exact reduced dynamics     Initial conditions
                             The limit N → ∞    Time evolution
                      Entanglement evolution
                                  Conclusion


The Liouvillian
   The state of the composite system is fully described by its total
   density matrix ρ. The evolution in time of ρ is given by

                                ρ(t ) = exp(Lt )ρ(0).                      (6)
   ρ(0) is the initial density matrix.

                                Lρ(t ) = −i [H, ρ(t )].                    (7)

   The dynamics of the reduced system is obtained by tracing
   over the environment degrees of freedom:

                                  ρS (t ) = trB {ρ(t )}.                   (8)

               Hamdouni, Fannes, Petruccione    Entanglement Dynamics...
Introduction
                                   The Model
                     Exact reduced dynamics       Initial conditions
                             The limit N → ∞      Time evolution
                      Entanglement evolution
                                  Conclusion


Initial condition
   Initial state factorizes:

                              ρ(0) = ρS (0) ⊗ ρB (0),                         (9)

                                    0
                                                  ρ0        ρ0
                                                                
                                    ρ11            12        13
                          ρS (0) = ρ0∗
                                     12           ρ0
                                                   22       ρ0  .
                                                             23              (10)
                                    ρ0∗
                                     13           ρ0∗
                                                   23       ρ0
                                                             33



                   ρB (0) = 2−N IB = lim (e−HB /kB T )/Z .                   (11)
                                                T →∞

   Z = trB e−HB /kB T is the partition function.

               Hamdouni, Fannes, Petruccione      Entanglement Dynamics...
Introduction
                                    The Model
                      Exact reduced dynamics         Initial conditions
                              The limit N → ∞        Time evolution
                       Entanglement evolution
                                   Conclusion


Time evolution of ρS

                                 ∞
                                        tk
                    ρS (t ) =              tr {Lk ρS (0) ⊗ 2−N IB }.                        (12)
                                        k! B
                                k =1


                                        n
                          n        n
                       L ρ=i                  (−1)          H ρH n − .                      (13)
                                                       n
                                        =0



                         trB {L2n+1 ρS (0) ⊗ 2−N IB } = 0.
                                       n−1                  n−1
                                               2n                     2n
   trB {L2n ρS (0) ⊗ 2−N IB } =                2k   S2n −
                                                     2k              2k +1   S2n +1 + F2n
                                                                              2k
                                       k =1                 k =0

                Hamdouni, Fannes, Petruccione        Entanglement Dynamics...
Introduction
                                    The Model
                      Exact reduced dynamics         Initial conditions
                              The limit N → ∞        Time evolution
                       Entanglement evolution
                                   Conclusion


Time evolution of ρS

                                 ∞
                                        tk
                    ρS (t ) =              tr {Lk ρS (0) ⊗ 2−N IB }.                        (12)
                                        k! B
                                k =1


                                        n
                          n        n
                       L ρ=i                  (−1)          H ρH n − .                      (13)
                                                       n
                                        =0



                         trB {L2n+1 ρS (0) ⊗ 2−N IB } = 0.
                                       n−1                  n−1
                                               2n                     2n
   trB {L2n ρS (0) ⊗ 2−N IB } =                2k   S2n −
                                                     2k              2k +1   S2n +1 + F2n
                                                                              2k
                                       k =1                 k =0

                Hamdouni, Fannes, Petruccione        Entanglement Dynamics...
Introduction
                                    The Model
                      Exact reduced dynamics         Initial conditions
                              The limit N → ∞        Time evolution
                       Entanglement evolution
                                   Conclusion


Time evolution of ρS

                                 ∞
                                        tk
                    ρS (t ) =              tr {Lk ρS (0) ⊗ 2−N IB }.                        (12)
                                        k! B
                                k =1


                                        n
                          n        n
                       L ρ=i                  (−1)          H ρH n − .                      (13)
                                                       n
                                        =0



                         trB {L2n+1 ρS (0) ⊗ 2−N IB } = 0.
                                       n−1                  n−1
                                               2n                     2n
   trB {L2n ρS (0) ⊗ 2−N IB } =                2k   S2n −
                                                     2k              2k +1   S2n +1 + F2n
                                                                              2k
                                       k =1                 k =0

                Hamdouni, Fannes, Petruccione        Entanglement Dynamics...
Introduction
                                    The Model
                      Exact reduced dynamics         Initial conditions
                              The limit N → ∞        Time evolution
                       Entanglement evolution
                                   Conclusion


Time evolution of ρS

                                 ∞
                                        tk
                    ρS (t ) =              tr {Lk ρS (0) ⊗ 2−N IB }.                        (12)
                                        k! B
                                k =1


                                        n
                          n        n
                       L ρ=i                  (−1)          H ρH n − .                      (13)
                                                       n
                                        =0



                         trB {L2n+1 ρS (0) ⊗ 2−N IB } = 0.
                                       n−1                  n−1
                                               2n                     2n
   trB {L2n ρS (0) ⊗ 2−N IB } =                2k   S2n −
                                                     2k              2k +1   S2n +1 + F2n
                                                                              2k
                                       k =1                 k =0

                Hamdouni, Fannes, Petruccione        Entanglement Dynamics...
Introduction
                                    The Model
                      Exact reduced dynamics         Initial conditions
                              The limit N → ∞        Time evolution
                       Entanglement evolution
                                   Conclusion


Time evolution of ρS

                                 ∞
                                        tk
                    ρS (t ) =              tr {Lk ρS (0) ⊗ 2−N IB }.                        (12)
                                        k! B
                                k =1


                                        n
                          n        n
                       L ρ=i                  (−1)          H ρH n − .                      (13)
                                                       n
                                        =0



                         trB {L2n+1 ρS (0) ⊗ 2−N IB } = 0.
                                       n−1                  n−1
                                               2n                     2n
   trB {L2n ρS (0) ⊗ 2−N IB } =                2k   S2n −
                                                     2k              2k +1   S2n +1 + F2n
                                                                              2k
                                       k =1                 k =0

                Hamdouni, Fannes, Petruccione        Entanglement Dynamics...
Introduction
                                The Model
                  Exact reduced dynamics     Initial conditions
                          The limit N → ∞    Time evolution
                   Entanglement evolution
                               Conclusion




where

               0
               (ρ11 − ρ0 )Rn−2 + ρ33 Pn
                       33                                     ρ0 Qk
                                                               12
                                                                   n       ρ0 O k
                                                                            13
                                                                                 n 

S2n
 2k   = (−α)n         ρ0∗ Qn−k
                        12
                             n                               ρ0 Fn
                                                              22          ρ0 Qk +1 
                                                                           23
                                                                               n
                        0∗ O n
                       ρ13 n−k                           ρ0∗ Qn−k +1
                                                              n              ∆n
                                                          23

∆n = −(ρ0 − ρ0 )Rn−2 + ρ0 Fn + (ρ0 − 2ρ0 )Pn
        11   33         33       11    33



                     ρ0 Pn                ρ0 Qk +1
                                               n                               0
                                                                                    
                      22                   23
S2n +1 = (−α)n ρ0∗ Qn−k
 2k              23
                     n                0 − ρ0 )P + ρ0 F
                                    (ρ11   33 n    33 n                   ρ0 Qk +1 
                                                                            12
                                                                                 n

                         0                ρ0∗ Qn−k
                                           12
                                               n                        ρ0 (Fn − Pn )
                                                                         22



            Hamdouni, Fannes, Petruccione    Entanglement Dynamics...
Introduction
                                The Model
                  Exact reduced dynamics     Initial conditions
                          The limit N → ∞    Time evolution
                   Entanglement evolution
                               Conclusion




                   2ρ0 Pn       ρ0 (Fn + Pn )      ρ0 Fn
                                                            
                      11         12                 13
 F2n   = (−α)n ρ0∗ (Fn + Pn )
                 12                2ρ0 Fn
                                     22        ρ0 (2Fn − Pn )
                                                23
                    ρ0 Fn
                     13        ρ0∗ (2Fn − Pn ) 2ρ0 (Fn − Pn )
                                23               33

with the environment correlation functions
Correlation functions

               Rn = 2−N trB {(J− J+ )2 K n−2 },
              Qk = 2−N trB {J+ K k −1 J− K n−k },
               n

              Ok = 2−N trB {J+ J+ K k −1 J− J− K n−k −1 },
               n
                                                                        (14)
                         −N                  n−1
               Pn = 2         trB {J− J+ K         },
               Fn = 2−N trB {K n }.
            Hamdouni, Fannes, Petruccione    Entanglement Dynamics...
Introduction
                                      The Model
                        Exact reduced dynamics     Initial conditions
                                The limit N → ∞    Time evolution
                         Entanglement evolution
                                     Conclusion


Exact solution


   Diagonal elements


     ρ11 (t ) = ρ0 (1 + 2g (t )) + (ρ0 − ρ0 )f (t ) + ρ0 e(t ) + ρ0 h(t ),
                 11                  11   33           33         22
     ρ22 (t ) = ρ0 + (ρ0 − ρ0 )h(t ) + (ρ0 − ρ0 ) (t ),
                 22    11   33           33   22                              (15)
     ρ33 (t ) =   ρ0 (1 − 2g (t )) − (ρ0 − ρ0 )f (t ) − ρ0 h(t )
                   33                  11    33           22
                      0       0            0     0
                  + (ρ11 − 2ρ33 )e(t ) + (ρ22 − ρ33 ) (t ).




                  Hamdouni, Fannes, Petruccione    Entanglement Dynamics...
Introduction
                              The Model
                Exact reduced dynamics     Initial conditions
                        The limit N → ∞    Time evolution
                 Entanglement evolution
                             Conclusion




Off-diagonal elements


               ρ12 (t ) = ρ0 [ (t ) + e1 (t )] + ρ0 h(t ),
                           12                     23
               ρ13 (t ) = ρ0 [ (t ) + f (t )],
                           13
               ρ23 (t ) = ρ0 [ (t ) + e2 (t )] + ρ0 h(t ),
                           23                     12                  (16)
               ρ14 (t ) =    ρ0 (1 + g (t )),
                              14
               ρ24 (t ) =    ρ0 (t ),
                              24
               ρ34 (t ) =    ρ0 (1 + g (t )).
                              34




          Hamdouni, Fannes, Petruccione    Entanglement Dynamics...
Introduction
                           The Model
             Exact reduced dynamics     Initial conditions
                     The limit N → ∞    Time evolution
              Entanglement evolution
                          Conclusion


with

                                               √
                     −N                cos(αt K ) − 1 2
        f (t ) = 2        trB   J− J+                    ,         (17)
                                               K
                                               √
                                       cos(αt K ) − 1
       g (t ) = 2−N trB         J− J+                  ,           (18)
                                               K
                                               √
                                       sin2 (αt K )
       h(t ) = 2−N trB          J− J+               ,              (19)
                                             K √
                                       (cos(αt K ) − 1)2
       e(t ) = 2−N trB          J− J+                      ,       (20)
                                                K
                                         √
         (t ) = 2−N trB         sin2 (αt K ) ,                     (21)
                                        √
         (t ) = 2−N trB         cos(αt K ) ,                       (22)

       Hamdouni, Fannes, Petruccione    Entanglement Dynamics...
Introduction
                              The Model
                Exact reduced dynamics     Initial conditions
                        The limit N → ∞    Time evolution
                 Entanglement evolution
                             Conclusion




                                    √                           √
          −N        2 cos(αt           K) − 1    2 cos(αt        K) − 1
 f (t ) = 2    trB J−                           J+                        ,   (23)
                              K
                              √                 K
                        cos(αt K ) − 1          √
e1 (t ) = 2−N trB    J+                J− cos(αt K ) ,                        (24)
                              K
                              √
                        cos(αt K ) − 1          √
e2 (t ) = 2−N trB    J−                J+ cos(αt K ) ,                        (25)
                              K
                              √             √
                        sin(αt K ) sin(αt K )
 h(t ) = 2−N trB     J+     √     J−    √        .                            (26)
                             K             K




          Hamdouni, Fannes, Petruccione    Entanglement Dynamics...
Introduction
                                  The Model
                    Exact reduced dynamics     Correlation functions
                            The limit N → ∞    Time evolution
                     Entanglement evolution
                                 Conclusion


The limit of infinite number of spins
   As N → ∞

                trB (J+ J− )n ∼ trB (J+ J− )n− (J− J+ )
                                         2N N n n!
                                     ≈             .
                                            2n

   Then

                                 n          N n n!
                                Ok ∼ Rn ≈          ,                      (27)
                                              4
                                 n         N n n!
                                Qk ∼ Pn ≈          ,                      (28)
                                             2
                                Fn ≈ N n n!.                              (29)
              Hamdouni, Fannes, Petruccione    Entanglement Dynamics...
Introduction
                                  The Model
                    Exact reduced dynamics     Correlation functions
                            The limit N → ∞    Time evolution
                     Entanglement evolution
                                 Conclusion


The limit of infinite number of spins
   As N → ∞

                trB (J+ J− )n ∼ trB (J+ J− )n− (J− J+ )
                                         2N N n n!
                                     ≈             .
                                            2n

   Then

                                 n          N n n!
                                Ok ∼ Rn ≈          ,                      (27)
                                              4
                                 n         N n n!
                                Qk ∼ Pn ≈          ,                      (28)
                                             2
                                Fn ≈ N n n!.                              (29)
              Hamdouni, Fannes, Petruccione    Entanglement Dynamics...
Introduction
                                       The Model
                         Exact reduced dynamics     Correlation functions
                                 The limit N → ∞    Time evolution
                          Entanglement evolution
                                      Conclusion


Time evolution

   Rescaling!
                                                α
                                            α→ √ .                                      (30)
                                                    N


                         1
     f (t ) = f (t ) =     ζ(2t ) − ζ(t ),                         (t ) = 1 + 2ζ(t ),
                         4
     g (t ) = ζ(t ),                                                    1
                                                                 e (t ) = ζ(2t ) − 2ζ(t ),
                      1                                                 2
     h(t ) = h(t ) = − ζ(2t ),                                          1
                      2                                      e1,2 (t ) = ζ(2t ) − ζ(t ).
      (t ) = −ζ(2t ),                                                   2

                 Hamdouni, Fannes, Petruccione      Entanglement Dynamics...
Introduction
                                        The Model
                          Exact reduced dynamics     Correlation functions
                                  The limit N → ∞    Time evolution
                           Entanglement evolution
                                       Conclusion


Time evolution

   Rescaling!
                                                 α
                                             α→ √ .                                      (30)
                                                     N


                          1
      f (t ) = f (t ) =     ζ(2t ) − ζ(t ),                         (t ) = 1 + 2ζ(t ),
                          4
     g (t ) = ζ(t ),                                                     1
                                                                  e (t ) = ζ(2t ) − 2ζ(t ),
                      1                                                  2
     h(t ) = h(t ) = − ζ(2t ),                                           1
                      2                                       e1,2 (t ) = ζ(2t ) − ζ(t ).
      (t ) = −ζ(2t ),                                                    2

                 Hamdouni, Fannes, Petruccione       Entanglement Dynamics...
Introduction
                                       The Model
                         Exact reduced dynamics     Correlation functions
                                 The limit N → ∞    Time evolution
                          Entanglement evolution
                                      Conclusion


Time evolution

   Rescaling!
                                                α
                                            α→ √ .                                      (30)
                                                    N


                         1
     f (t ) = f (t ) =     ζ(2t ) − ζ(t ),                         (t ) = 1 + 2ζ(t ),
                         4
     g (t ) = ζ(t ),                                                    1
                                                                 e (t ) = ζ(2t ) − 2ζ(t ),
                      1                                                 2
     h(t ) = h(t ) = − ζ(2t ),                                          1
                      2                                      e1,2 (t ) = ζ(2t ) − ζ(t ).
      (t ) = −ζ(2t ),                                                   2

                 Hamdouni, Fannes, Petruccione      Entanglement Dynamics...
Introduction
                                       The Model
                         Exact reduced dynamics     Correlation functions
                                 The limit N → ∞    Time evolution
                          Entanglement evolution
                                      Conclusion


Time evolution

   Rescaling!
                                                α
                                            α→ √ .                                      (30)
                                                    N


                         1
     f (t ) = f (t ) =     ζ(2t ) − ζ(t ),                         (t ) = 1 + 2ζ(t ),
                         4
     g (t ) = ζ(t ),                                                    1
                                                                 e (t ) = ζ(2t ) − 2ζ(t ),
                      1                                                 2
     h(t ) = h(t ) = − ζ(2t ),                                          1
                      2                                      e1,2 (t ) = ζ(2t ) − ζ(t ).
      (t ) = −ζ(2t ),                                                   2

                 Hamdouni, Fannes, Petruccione      Entanglement Dynamics...
Introduction
                               The Model
                 Exact reduced dynamics              Correlation functions
                         The limit N → ∞             Time evolution
                  Entanglement evolution
                              Conclusion



The function ζ is given by
                                            αt               αt
                           ζ(t ) = −             D+ (−              )
                                            2                   2
                                                           1
                                 lim ζ(t ) = −
                                t →∞                       2
where we have introduced the Dawson function
Dawson function

                                                       x
                                                 2          2
                        D+ (x ) = e−x    et dt
                                       0
                                  √
                                    π −x 2
                                =     e erfi(x ).
                                   2
           Hamdouni, Fannes, Petruccione             Entanglement Dynamics...
Introduction
                               The Model
                 Exact reduced dynamics              Correlation functions
                         The limit N → ∞             Time evolution
                  Entanglement evolution
                              Conclusion



The function ζ is given by
                                            αt               αt
                           ζ(t ) = −             D+ (−              )
                                            2                   2
                                                           1
                                 lim ζ(t ) = −
                                t →∞                       2
where we have introduced the Dawson function
Dawson function

                                                       x
                                                 2          2
                        D+ (x ) = e−x    et dt
                                       0
                                  √
                                    π −x 2
                                =     e erfi(x ).
                                   2
           Hamdouni, Fannes, Petruccione             Entanglement Dynamics...
Introduction
                               The Model
                 Exact reduced dynamics              Correlation functions
                         The limit N → ∞             Time evolution
                  Entanglement evolution
                              Conclusion



The function ζ is given by
                                            αt               αt
                           ζ(t ) = −             D+ (−              )
                                            2                   2
                                                           1
                                 lim ζ(t ) = −
                                t →∞                       2
where we have introduced the Dawson function
Dawson function

                                                       x
                                                 2          2
                        D+ (x ) = e−x    et dt
                                       0
                                  √
                                    π −x 2
                                =     e erfi(x ).
                                   2
           Hamdouni, Fannes, Petruccione             Entanglement Dynamics...
Introduction
                                 The Model
                   Exact reduced dynamics     Correlation functions
                           The limit N → ∞    Time evolution
                    Entanglement evolution
                                Conclusion



                                              1
                                      ρ∞ =
                                       S        ×
                                              4
3      0 + ρ0 + 2 ρ0 )       ρ0 + ρ0                                    3 0
                                                                                   2ρ0
                                                                                        
    2 (ρ11   33     3 22       12    23                                  2 ρ13       14

        ρ0∗ + ρ0∗
          12     23      (ρ0 + ρ0 + 2ρ0 )
                           11     33    22                         ρ0 + ρ0
                                                                    23     12       0  
           3 0∗                                              3 0       0 + 2 ρ0 ) 2ρ0 

           2 ρ13              ρ0∗ + ρ0∗
                               23    12                      2 (ρ11 + ρ33     3 22   34
           2ρ0∗
              14                  0                                  2ρ0∗
                                                                        34         4ρ0
                                                                                     44




                            Partial decoherence




             Hamdouni, Fannes, Petruccione    Entanglement Dynamics...
Introduction
                                 The Model
                   Exact reduced dynamics     Correlation functions
                           The limit N → ∞    Time evolution
                    Entanglement evolution
                                Conclusion




                               Figure: 2

   The time evolution of the density matrix element ρ11 . Initial
state of the two-qubit system is the pure state | − − . The figure
  shows the plots obtained for N = 100, N = 400 and the limit
                             N → ∞.

             Hamdouni, Fannes, Petruccione    Entanglement Dynamics...
Introduction
                                 The Model
                   Exact reduced dynamics     Correlation functions
                           The limit N → ∞    Time evolution
                    Entanglement evolution
                                Conclusion




                               Figure: 3

  The evolution in time of the density matrix element ρ22 as a
function of time. The initial condition of the two-qubit system is
 the pure state | − − . The figure shows the plots obtained for
             N = 100, N = 400 and the limit N → ∞.

             Hamdouni, Fannes, Petruccione    Entanglement Dynamics...
Introduction
                                The Model
                  Exact reduced dynamics     Correlation functions
                          The limit N → ∞    Time evolution
                   Entanglement evolution
                               Conclusion




                              Figure: 4

 The evolution in time of the density matrix element ρ13 . The
initial condition of the two-qubit system is the entangled state
  √ (| + + + | − − ). The figure shows the plots obtained for
   1
    2
            N = 100, N = 400 and the limit N → ∞.

            Hamdouni, Fannes, Petruccione    Entanglement Dynamics...
Introduction
                                 The Model
                   Exact reduced dynamics        concurrence
                           The limit N → ∞       Main results
                    Entanglement evolution
                                Conclusion


Entanglement

  Definition
  By definition, entanglementrefers to nonlocal correlations that
  exist between quantum systems.
  A quantum state ρ describing a bipartite system A + B and
  living in the finite Hilbert space HA ⊗ HB is said to be entangled
  (or not separable) if it cannot be written as a convex
  combination of product states:

                               ρ=             ck ρk ⊗ ρk
                                                  A    B
                                        k

  A state which is not entangled is called separable.
             Hamdouni, Fannes, Petruccione       Entanglement Dynamics...
Introduction
                                 The Model
                   Exact reduced dynamics        concurrence
                           The limit N → ∞       Main results
                    Entanglement evolution
                                Conclusion


Entanglement

  Definition
  By definition, entanglementrefers to nonlocal correlations that
  exist between quantum systems.
  A quantum state ρ describing a bipartite system A + B and
  living in the finite Hilbert space HA ⊗ HB is said to be entangled
  (or not separable) if it cannot be written as a convex
  combination of product states:

                               ρ=             ck ρk ⊗ ρk
                                                  A    B
                                        k

  A state which is not entangled is called separable.
             Hamdouni, Fannes, Petruccione       Entanglement Dynamics...
Introduction
                                 The Model
                   Exact reduced dynamics     concurrence
                           The limit N → ∞    Main results
                    Entanglement evolution
                                Conclusion


Concurrence

  There exist many entanglement measures which quantify the
  amount of entanglement in a given state. For mixed states, the
  concurrence is used:

             C (ρ) = max{0,            λ1 −     λ2 −         λ3 −    λ4 }.   (31)

  λ1   λ2   λ3     λ4 are the eigenvalues of the operator

                            ρ(σy ⊗ σy )ρ∗ (σy ⊗ σy )
  C (ρ) ranges from 0 for separable states to 1 for maximally
  entangled states.

             Hamdouni, Fannes, Petruccione    Entanglement Dynamics...
Introduction
                                 The Model
                   Exact reduced dynamics     concurrence
                           The limit N → ∞    Main results
                    Entanglement evolution
                                Conclusion


Concurrence evolution


  The operator V = σy ⊗ σy is a linear skew-adjoint operator in
  C2 ⊗ C2 , i.e., VV = −I. In C ⊕ C3 it reads

                               0 0                  1        0
                                                             
                              0 −1                 0        0
                        V ⊗V =
                              1 0
                                                              .         (32)
                                                    0        0
                               0 0                  0        1




             Hamdouni, Fannes, Petruccione    Entanglement Dynamics...
Introduction
                                 The Model
                   Exact reduced dynamics     concurrence
                           The limit N → ∞    Main results
                    Entanglement evolution
                                Conclusion


Results
     The concurrence corresponding to the initial separable
     state | − − is equal to

                    C (ρ) = max{0, −ρ22 (t )} = 0.
     the initial state is the maximally entangled state |Ψ =
     √ (| + − + | − + ), then the concurrence takes the form
      1
       2


            C (ρ) = max{0, ρ22 (t ) − 2 ρ11 (t )ρ33 (t )}.
     the maximally entangled state |Φ =          1
                                                 √
                                                   2
                                                       (| − − + | + + ) has
     the concurrence

                 C (ρ) = max{0, 2ρ13 (t ) − ρ22 (t )}.

             Hamdouni, Fannes, Petruccione    Entanglement Dynamics...
Introduction
                                 The Model
                   Exact reduced dynamics     concurrence
                           The limit N → ∞    Main results
                    Entanglement evolution
                                Conclusion


Results
     The concurrence corresponding to the initial separable
     state | − − is equal to

                    C (ρ) = max{0, −ρ22 (t )} = 0.
     the initial state is the maximally entangled state |Ψ =
     √ (| + − + | − + ), then the concurrence takes the form
      1
       2


            C (ρ) = max{0, ρ22 (t ) − 2 ρ11 (t )ρ33 (t )}.
     the maximally entangled state |Φ =          1
                                                 √
                                                   2
                                                       (| − − + | + + ) has
     the concurrence

                 C (ρ) = max{0, 2ρ13 (t ) − ρ22 (t )}.

             Hamdouni, Fannes, Petruccione    Entanglement Dynamics...
Introduction
                                 The Model
                   Exact reduced dynamics     concurrence
                           The limit N → ∞    Main results
                    Entanglement evolution
                                Conclusion


Results
     The concurrence corresponding to the initial separable
     state | − − is equal to

                    C (ρ) = max{0, −ρ22 (t )} = 0.
     the initial state is the maximally entangled state |Ψ =
     √ (| + − + | − + ), then the concurrence takes the form
      1
       2


            C (ρ) = max{0, ρ22 (t ) − 2 ρ11 (t )ρ33 (t )}.
     the maximally entangled state |Φ =          1
                                                 √
                                                   2
                                                       (| − − + | + + ) has
     the concurrence

                 C (ρ) = max{0, 2ρ13 (t ) − ρ22 (t )}.

             Hamdouni, Fannes, Petruccione    Entanglement Dynamics...
Introduction
                                  The Model
                    Exact reduced dynamics     concurrence
                            The limit N → ∞    Main results
                     Entanglement evolution
                                 Conclusion




                                  Figure: 5

        Concurrence as a function of time for initial states
1
√   (| + − + | − + ) (solid curve) and
                                     √ (| − − + | + + ) (dashed
                                      1
2                                      2
                            curve).

              Hamdouni, Fannes, Petruccione    Entanglement Dynamics...
Introduction
                                 The Model
                   Exact reduced dynamics
                           The limit N → ∞
                    Entanglement evolution
                                Conclusion


Conclusion


     Any pure state of the two-qubit system evolves into a
     mixed state.
     The pure entangled state √2 (| + − − | − + ) of the two
                                1

     qubits is a decoherence-free state.
     The environment has no effect on the separability of pure
     separable states.
     The environment has the tendency to decrease the degree
     of entanglement of initially entangled states of the qubits.



             Hamdouni, Fannes, Petruccione    Entanglement Dynamics...
Introduction
                                 The Model
                   Exact reduced dynamics
                           The limit N → ∞
                    Entanglement evolution
                                Conclusion


Conclusion


     Any pure state of the two-qubit system evolves into a
     mixed state.
     The pure entangled state √2 (| + − − | − + ) of the two
                                1

     qubits is a decoherence-free state.
     The environment has no effect on the separability of pure
     separable states.
     The environment has the tendency to decrease the degree
     of entanglement of initially entangled states of the qubits.



             Hamdouni, Fannes, Petruccione    Entanglement Dynamics...
Introduction
                                 The Model
                   Exact reduced dynamics
                           The limit N → ∞
                    Entanglement evolution
                                Conclusion


Conclusion


     Any pure state of the two-qubit system evolves into a
     mixed state.
     The pure entangled state √2 (| + − − | − + ) of the two
                                1

     qubits is a decoherence-free state.
     The environment has no effect on the separability of pure
     separable states.
     The environment has the tendency to decrease the degree
     of entanglement of initially entangled states of the qubits.



             Hamdouni, Fannes, Petruccione    Entanglement Dynamics...
Introduction
                                 The Model
                   Exact reduced dynamics
                           The limit N → ∞
                    Entanglement evolution
                                Conclusion


Conclusion


     Any pure state of the two-qubit system evolves into a
     mixed state.
     The pure entangled state √2 (| + − − | − + ) of the two
                                1

     qubits is a decoherence-free state.
     The environment has no effect on the separability of pure
     separable states.
     The environment has the tendency to decrease the degree
     of entanglement of initially entangled states of the qubits.



             Hamdouni, Fannes, Petruccione    Entanglement Dynamics...
Introduction
                                 The Model
                   Exact reduced dynamics
                           The limit N → ∞
                    Entanglement evolution
                                Conclusion


Conclusion


     Any pure state of the two-qubit system evolves into a
     mixed state.
     The pure entangled state √2 (| + − − | − + ) of the two
                                1

     qubits is a decoherence-free state.
     The environment has no effect on the separability of pure
     separable states.
     The environment has the tendency to decrease the degree
     of entanglement of initially entangled states of the qubits.



             Hamdouni, Fannes, Petruccione    Entanglement Dynamics...
Introduction
                    The Model
      Exact reduced dynamics
              The limit N → ∞
       Entanglement evolution
                   Conclusion




                     THANK YOU




Hamdouni, Fannes, Petruccione    Entanglement Dynamics...

Más contenido relacionado

La actualidad más candente

Fundamentals of Quantum Computing
Fundamentals of Quantum ComputingFundamentals of Quantum Computing
Fundamentals of Quantum Computingachakracu
 
Quantum Computing Lecture 2: Advanced Concepts
Quantum Computing Lecture 2: Advanced ConceptsQuantum Computing Lecture 2: Advanced Concepts
Quantum Computing Lecture 2: Advanced ConceptsMelanie Swan
 
Quantum computation: EPR Paradox and Bell's Inequality
Quantum computation: EPR Paradox and Bell's InequalityQuantum computation: EPR Paradox and Bell's Inequality
Quantum computation: EPR Paradox and Bell's InequalityStefano Franco
 
Quantum Computing Lecture 1: Basic Concepts
Quantum Computing Lecture 1: Basic ConceptsQuantum Computing Lecture 1: Basic Concepts
Quantum Computing Lecture 1: Basic ConceptsMelanie Swan
 
Seminar report on quantum computing
Seminar report on quantum computingSeminar report on quantum computing
Seminar report on quantum computingSavita Sharma
 
Introduction to quantum computing
Introduction to quantum computingIntroduction to quantum computing
Introduction to quantum computingIqra Naz
 
Be2419772016
Be2419772016Be2419772016
Be2419772016IJMER
 
Quantum communication in space
Quantum communication in spaceQuantum communication in space
Quantum communication in spaceSwapnil Gourkar
 
Breaking the 49 qubit barrier in the simulation of quantum circuits
Breaking the 49 qubit barrier in the simulation of quantum circuitsBreaking the 49 qubit barrier in the simulation of quantum circuits
Breaking the 49 qubit barrier in the simulation of quantum circuitshquynh
 
Quantum information technology
Quantum information technologyQuantum information technology
Quantum information technologymitchellwalls1
 
Book chapter-5
Book chapter-5Book chapter-5
Book chapter-5Hung Le
 
The symbiosis of the grid pattern extra dimensions
The symbiosis of the  grid pattern extra dimensionsThe symbiosis of the  grid pattern extra dimensions
The symbiosis of the grid pattern extra dimensionsEran Sinbar
 
The grid extra dimensions theory
The grid extra dimensions theoryThe grid extra dimensions theory
The grid extra dimensions theoryEran Sinbar
 
What quantum computers may tell us about quantum mechanics
What quantum computers may tell us about quantum mechanicsWhat quantum computers may tell us about quantum mechanics
What quantum computers may tell us about quantum mechanicsMaria Jane Poncardas
 
Quantum computers by Emran
Quantum computers by EmranQuantum computers by Emran
Quantum computers by EmranEmran Hossain
 
Neural Networks: Rosenblatt's Perceptron
Neural Networks: Rosenblatt's PerceptronNeural Networks: Rosenblatt's Perceptron
Neural Networks: Rosenblatt's PerceptronMostafa G. M. Mostafa
 

La actualidad más candente (20)

Fundamentals of Quantum Computing
Fundamentals of Quantum ComputingFundamentals of Quantum Computing
Fundamentals of Quantum Computing
 
Quantum Computing Lecture 2: Advanced Concepts
Quantum Computing Lecture 2: Advanced ConceptsQuantum Computing Lecture 2: Advanced Concepts
Quantum Computing Lecture 2: Advanced Concepts
 
Quantum computation: EPR Paradox and Bell's Inequality
Quantum computation: EPR Paradox and Bell's InequalityQuantum computation: EPR Paradox and Bell's Inequality
Quantum computation: EPR Paradox and Bell's Inequality
 
Quantum Computing Lecture 1: Basic Concepts
Quantum Computing Lecture 1: Basic ConceptsQuantum Computing Lecture 1: Basic Concepts
Quantum Computing Lecture 1: Basic Concepts
 
Seminar report on quantum computing
Seminar report on quantum computingSeminar report on quantum computing
Seminar report on quantum computing
 
Introduction to quantum computing
Introduction to quantum computingIntroduction to quantum computing
Introduction to quantum computing
 
Be2419772016
Be2419772016Be2419772016
Be2419772016
 
Quantum Computing
Quantum ComputingQuantum Computing
Quantum Computing
 
Quantum communication in space
Quantum communication in spaceQuantum communication in space
Quantum communication in space
 
Breaking the 49 qubit barrier in the simulation of quantum circuits
Breaking the 49 qubit barrier in the simulation of quantum circuitsBreaking the 49 qubit barrier in the simulation of quantum circuits
Breaking the 49 qubit barrier in the simulation of quantum circuits
 
Quantum information technology
Quantum information technologyQuantum information technology
Quantum information technology
 
Quantum computing1
Quantum computing1Quantum computing1
Quantum computing1
 
Quantum comput ing
Quantum comput ingQuantum comput ing
Quantum comput ing
 
Book chapter-5
Book chapter-5Book chapter-5
Book chapter-5
 
The symbiosis of the grid pattern extra dimensions
The symbiosis of the  grid pattern extra dimensionsThe symbiosis of the  grid pattern extra dimensions
The symbiosis of the grid pattern extra dimensions
 
The grid extra dimensions theory
The grid extra dimensions theoryThe grid extra dimensions theory
The grid extra dimensions theory
 
What quantum computers may tell us about quantum mechanics
What quantum computers may tell us about quantum mechanicsWhat quantum computers may tell us about quantum mechanics
What quantum computers may tell us about quantum mechanics
 
Quantum computers by Emran
Quantum computers by EmranQuantum computers by Emran
Quantum computers by Emran
 
Neural Networks: Rosenblatt's Perceptron
Neural Networks: Rosenblatt's PerceptronNeural Networks: Rosenblatt's Perceptron
Neural Networks: Rosenblatt's Perceptron
 
CA_final_paper
CA_final_paperCA_final_paper
CA_final_paper
 

Destacado

Akrati Jewels Inc - Introduction
Akrati Jewels Inc - IntroductionAkrati Jewels Inc - Introduction
Akrati Jewels Inc - IntroductionAkrati Jewels Inc.
 
Votacions primer projecte
Votacions primer projecteVotacions primer projecte
Votacions primer projectetavilam
 
CV in English Ramona Munteanu
CV in English Ramona MunteanuCV in English Ramona Munteanu
CV in English Ramona MunteanuRamona Munteanu
 
Start ups| Συγκριτική μελέτη Aegean & Coursera
Start ups| Συγκριτική μελέτη Aegean & CourseraStart ups| Συγκριτική μελέτη Aegean & Coursera
Start ups| Συγκριτική μελέτη Aegean & CourseraAli Pan
 
Jason Abbatiello - Software Engineer
Jason Abbatiello - Software EngineerJason Abbatiello - Software Engineer
Jason Abbatiello - Software EngineerJason Abbatiello
 
Rob Venable - Developer
Rob Venable - DeveloperRob Venable - Developer
Rob Venable - DeveloperRob Venable
 
Two-Dimensional Fine Art Media
Two-Dimensional Fine Art MediaTwo-Dimensional Fine Art Media
Two-Dimensional Fine Art MediaGary Freeman
 
анализ анкетирования школы методистов 2015
анализ анкетирования школы методистов 2015анализ анкетирования школы методистов 2015
анализ анкетирования школы методистов 2015supportfranco
 

Destacado (15)

Lessons From Uk Rail Privatization Germany
Lessons From Uk Rail Privatization GermanyLessons From Uk Rail Privatization Germany
Lessons From Uk Rail Privatization Germany
 
Akrati Jewels Inc - Introduction
Akrati Jewels Inc - IntroductionAkrati Jewels Inc - Introduction
Akrati Jewels Inc - Introduction
 
Abinash
AbinashAbinash
Abinash
 
Votacions primer projecte
Votacions primer projecteVotacions primer projecte
Votacions primer projecte
 
CV in English Ramona Munteanu
CV in English Ramona MunteanuCV in English Ramona Munteanu
CV in English Ramona Munteanu
 
Caso clinico montse
Caso clinico montseCaso clinico montse
Caso clinico montse
 
Start ups| Συγκριτική μελέτη Aegean & Coursera
Start ups| Συγκριτική μελέτη Aegean & CourseraStart ups| Συγκριτική μελέτη Aegean & Coursera
Start ups| Συγκριτική μελέτη Aegean & Coursera
 
CV Europass
CV EuropassCV Europass
CV Europass
 
OM BEWA
OM BEWAOM BEWA
OM BEWA
 
What is art ans art forms
What is art ans art formsWhat is art ans art forms
What is art ans art forms
 
Jason Abbatiello - Software Engineer
Jason Abbatiello - Software EngineerJason Abbatiello - Software Engineer
Jason Abbatiello - Software Engineer
 
Rob Venable - Developer
Rob Venable - DeveloperRob Venable - Developer
Rob Venable - Developer
 
Two-Dimensional Fine Art Media
Two-Dimensional Fine Art MediaTwo-Dimensional Fine Art Media
Two-Dimensional Fine Art Media
 
анализ анкетирования школы методистов 2015
анализ анкетирования школы методистов 2015анализ анкетирования школы методистов 2015
анализ анкетирования школы методистов 2015
 
Resume_Pankaj
Resume_PankajResume_Pankaj
Resume_Pankaj
 

Similar a Y. H. Presentation

Quantum Information Science and Quantum Neuroscience.ppt
Quantum Information Science and Quantum Neuroscience.pptQuantum Information Science and Quantum Neuroscience.ppt
Quantum Information Science and Quantum Neuroscience.pptMelanie Swan
 
The birth of quantum mechanics canvas
The birth of quantum mechanics canvasThe birth of quantum mechanics canvas
The birth of quantum mechanics canvasGabriel O'Brien
 
Quantum Blockchains
Quantum BlockchainsQuantum Blockchains
Quantum BlockchainsMelanie Swan
 
Quantum mechanics a brief
Quantum mechanics a briefQuantum mechanics a brief
Quantum mechanics a briefChaitanya Areti
 
History of Quantum Mechanics
History of Quantum MechanicsHistory of Quantum Mechanics
History of Quantum MechanicsChad Orzel
 
History of Quantum Mechanics
History of Quantum MechanicsHistory of Quantum Mechanics
History of Quantum MechanicsChad Orzel
 
Effect of electric field on filamentation in counterstreaming beams
Effect of electric field on filamentation in counterstreaming beamsEffect of electric field on filamentation in counterstreaming beams
Effect of electric field on filamentation in counterstreaming beamsGareth Murphy
 
Quantum-phenomena.ppt
Quantum-phenomena.pptQuantum-phenomena.ppt
Quantum-phenomena.pptPritamjit3
 
News from Quantum Gravity Phenomenology
News from Quantum Gravity PhenomenologyNews from Quantum Gravity Phenomenology
News from Quantum Gravity PhenomenologySabine Hossenfelder
 
Fano kondo spin_filter_new_version
Fano kondo spin_filter_new_versionFano kondo spin_filter_new_version
Fano kondo spin_filter_new_versionAna Seridonio
 
Quantum entanglement is one of the most intriguing and counterintuitive pheno...
Quantum entanglement is one of the most intriguing and counterintuitive pheno...Quantum entanglement is one of the most intriguing and counterintuitive pheno...
Quantum entanglement is one of the most intriguing and counterintuitive pheno...NishaJaiswal34
 
Lattice Energy LLC- Collective Many-body Q-M Neutrino Antennas-Jan 10 2012
Lattice Energy LLC- Collective Many-body Q-M Neutrino Antennas-Jan 10 2012Lattice Energy LLC- Collective Many-body Q-M Neutrino Antennas-Jan 10 2012
Lattice Energy LLC- Collective Many-body Q-M Neutrino Antennas-Jan 10 2012Lewis Larsen
 

Similar a Y. H. Presentation (20)

CompMatScience.pdf
CompMatScience.pdfCompMatScience.pdf
CompMatScience.pdf
 
Quantum Information Science and Quantum Neuroscience.ppt
Quantum Information Science and Quantum Neuroscience.pptQuantum Information Science and Quantum Neuroscience.ppt
Quantum Information Science and Quantum Neuroscience.ppt
 
The birth of quantum mechanics canvas
The birth of quantum mechanics canvasThe birth of quantum mechanics canvas
The birth of quantum mechanics canvas
 
Quantum Blockchains
Quantum BlockchainsQuantum Blockchains
Quantum Blockchains
 
Quantum mechanics a brief
Quantum mechanics a briefQuantum mechanics a brief
Quantum mechanics a brief
 
Quantum Computing
Quantum ComputingQuantum Computing
Quantum Computing
 
History of Quantum Mechanics
History of Quantum MechanicsHistory of Quantum Mechanics
History of Quantum Mechanics
 
History of Quantum Mechanics
History of Quantum MechanicsHistory of Quantum Mechanics
History of Quantum Mechanics
 
Effect of electric field on filamentation in counterstreaming beams
Effect of electric field on filamentation in counterstreaming beamsEffect of electric field on filamentation in counterstreaming beams
Effect of electric field on filamentation in counterstreaming beams
 
Quantum-phenomena.ppt
Quantum-phenomena.pptQuantum-phenomena.ppt
Quantum-phenomena.ppt
 
Quantum-phenomena.ppt
Quantum-phenomena.pptQuantum-phenomena.ppt
Quantum-phenomena.ppt
 
Quantum mechanics
Quantum mechanicsQuantum mechanics
Quantum mechanics
 
News from Quantum Gravity Phenomenology
News from Quantum Gravity PhenomenologyNews from Quantum Gravity Phenomenology
News from Quantum Gravity Phenomenology
 
Part III - Quantum Mechanics
Part III - Quantum MechanicsPart III - Quantum Mechanics
Part III - Quantum Mechanics
 
Fano kondo spin_filter_new_version
Fano kondo spin_filter_new_versionFano kondo spin_filter_new_version
Fano kondo spin_filter_new_version
 
Econopysics
EconopysicsEconopysics
Econopysics
 
lezione_3.ppt
lezione_3.pptlezione_3.ppt
lezione_3.ppt
 
Tachyon
TachyonTachyon
Tachyon
 
Quantum entanglement is one of the most intriguing and counterintuitive pheno...
Quantum entanglement is one of the most intriguing and counterintuitive pheno...Quantum entanglement is one of the most intriguing and counterintuitive pheno...
Quantum entanglement is one of the most intriguing and counterintuitive pheno...
 
Lattice Energy LLC- Collective Many-body Q-M Neutrino Antennas-Jan 10 2012
Lattice Energy LLC- Collective Many-body Q-M Neutrino Antennas-Jan 10 2012Lattice Energy LLC- Collective Many-body Q-M Neutrino Antennas-Jan 10 2012
Lattice Energy LLC- Collective Many-body Q-M Neutrino Antennas-Jan 10 2012
 

Último

On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsMebane Rash
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfAdmir Softic
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdfQucHHunhnh
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introductionMaksud Ahmed
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxheathfieldcps1
 
Food Chain and Food Web (Ecosystem) EVS, B. Pharmacy 1st Year, Sem-II
Food Chain and Food Web (Ecosystem) EVS, B. Pharmacy 1st Year, Sem-IIFood Chain and Food Web (Ecosystem) EVS, B. Pharmacy 1st Year, Sem-II
Food Chain and Food Web (Ecosystem) EVS, B. Pharmacy 1st Year, Sem-IIShubhangi Sonawane
 
Class 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfClass 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfAyushMahapatra5
 
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...christianmathematics
 
psychiatric nursing HISTORY COLLECTION .docx
psychiatric  nursing HISTORY  COLLECTION  .docxpsychiatric  nursing HISTORY  COLLECTION  .docx
psychiatric nursing HISTORY COLLECTION .docxPoojaSen20
 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxRamakrishna Reddy Bijjam
 
Unit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxUnit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxVishalSingh1417
 
ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701bronxfugly43
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...EduSkills OECD
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17Celine George
 
General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...Poonam Aher Patil
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsTechSoup
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdfQucHHunhnh
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactPECB
 
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptxMaritesTamaniVerdade
 

Último (20)

On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan Fellows
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdf
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
Asian American Pacific Islander Month DDSD 2024.pptx
Asian American Pacific Islander Month DDSD 2024.pptxAsian American Pacific Islander Month DDSD 2024.pptx
Asian American Pacific Islander Month DDSD 2024.pptx
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
 
Food Chain and Food Web (Ecosystem) EVS, B. Pharmacy 1st Year, Sem-II
Food Chain and Food Web (Ecosystem) EVS, B. Pharmacy 1st Year, Sem-IIFood Chain and Food Web (Ecosystem) EVS, B. Pharmacy 1st Year, Sem-II
Food Chain and Food Web (Ecosystem) EVS, B. Pharmacy 1st Year, Sem-II
 
Class 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfClass 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdf
 
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
 
psychiatric nursing HISTORY COLLECTION .docx
psychiatric  nursing HISTORY  COLLECTION  .docxpsychiatric  nursing HISTORY  COLLECTION  .docx
psychiatric nursing HISTORY COLLECTION .docx
 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docx
 
Unit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxUnit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptx
 
ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17
 
General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The Basics
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
 
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
 

Y. H. Presentation

  • 1. Outline Entanglement Dynamics of a Two-qubit System in a Spin Star Configuration Y. Hamdouni1 M. Fannes2 F. Petruccione1 1 School of Physics University of KwaZulu-Natal 2 Institute of Theoretical Physics, University of Leuven, Celestijnenlaan 200D B-3001 Heverlee, Belgium SAIP, 2006 Hamdouni, Fannes, Petruccione Entanglement Dynamics...
  • 2. Introduction The Model Exact reduced dynamics The limit N → ∞ Entanglement evolution Conclusion Outline 1 Introduction 2 The Model The two-qubit system The environment The Hamiltonian 3 Exact reduced dynamics Initial conditions Time evolution 3 The limit N → ∞ Correlation functions Time evolution 4 Entanglement evolution concurrence Main results 5 Conclusion Hamdouni, Fannes, Petruccione Entanglement Dynamics...
  • 3. Introduction The Model Exact reduced dynamics The limit N → ∞ Entanglement evolution Conclusion Introduction Classical bit The canonical building block of classical Information Processing (IP) is the bit. A bit can be put into two possible states, ”0” or ”1”. Examples 1 Two different voltages across a transistor on a chip. 2 Two different orientations of the magnetic domain on a disc 3 Two different classical light pulses traveling down an optical fibre Hamdouni, Fannes, Petruccione Entanglement Dynamics...
  • 4. Introduction The Model Exact reduced dynamics The limit N → ∞ Entanglement evolution Conclusion Introduction Classical bit The canonical building block of classical Information Processing (IP) is the bit. A bit can be put into two possible states, ”0” or ”1”. Examples 1 Two different voltages across a transistor on a chip. 2 Two different orientations of the magnetic domain on a disc 3 Two different classical light pulses traveling down an optical fibre Hamdouni, Fannes, Petruccione Entanglement Dynamics...
  • 5. Introduction The Model Exact reduced dynamics The limit N → ∞ Entanglement evolution Conclusion Introduction Classical bit The canonical building block of classical Information Processing (IP) is the bit. A bit can be put into two possible states, ”0” or ”1”. Examples 1 Two different voltages across a transistor on a chip. 2 Two different orientations of the magnetic domain on a disc 3 Two different classical light pulses traveling down an optical fibre Hamdouni, Fannes, Petruccione Entanglement Dynamics...
  • 6. Introduction The Model Exact reduced dynamics The limit N → ∞ Entanglement evolution Conclusion Introduction Classical bit The canonical building block of classical Information Processing (IP) is the bit. A bit can be put into two possible states, ”0” or ”1”. Examples 1 Two different voltages across a transistor on a chip. 2 Two different orientations of the magnetic domain on a disc 3 Two different classical light pulses traveling down an optical fibre Hamdouni, Fannes, Petruccione Entanglement Dynamics...
  • 7. Introduction The Model Exact reduced dynamics The limit N → ∞ Entanglement evolution Conclusion Introduction Classical bit The canonical building block of classical Information Processing (IP) is the bit. A bit can be put into two possible states, ”0” or ”1”. Examples 1 Two different voltages across a transistor on a chip. 2 Two different orientations of the magnetic domain on a disc 3 Two different classical light pulses traveling down an optical fibre Hamdouni, Fannes, Petruccione Entanglement Dynamics...
  • 8. Introduction The Model Exact reduced dynamics The limit N → ∞ Entanglement evolution Conclusion Nowdays, components of electronic devices are shrinking (Moore’s first law!). Inevitably, we are led to deal with new materials, nano-devices and molecular electronics ⇒ scales where quantum phenomena predominate: particle-wave duality the superposition principle probabilistic nature of quantum measurement outcomes entanglement...etc. The unification of classical information theory and quantum mechanics gave rise to a new field of physics called quantum information theory. Hamdouni, Fannes, Petruccione Entanglement Dynamics...
  • 9. Introduction The Model Exact reduced dynamics The limit N → ∞ Entanglement evolution Conclusion Nowdays, components of electronic devices are shrinking (Moore’s first law!). Inevitably, we are led to deal with new materials, nano-devices and molecular electronics ⇒ scales where quantum phenomena predominate: particle-wave duality the superposition principle probabilistic nature of quantum measurement outcomes entanglement...etc. The unification of classical information theory and quantum mechanics gave rise to a new field of physics called quantum information theory. Hamdouni, Fannes, Petruccione Entanglement Dynamics...
  • 10. Introduction The Model Exact reduced dynamics The limit N → ∞ Entanglement evolution Conclusion Nowdays, components of electronic devices are shrinking (Moore’s first law!). Inevitably, we are led to deal with new materials, nano-devices and molecular electronics ⇒ scales where quantum phenomena predominate: particle-wave duality the superposition principle probabilistic nature of quantum measurement outcomes entanglement...etc. The unification of classical information theory and quantum mechanics gave rise to a new field of physics called quantum information theory. Hamdouni, Fannes, Petruccione Entanglement Dynamics...
  • 11. Introduction The Model Exact reduced dynamics The limit N → ∞ Entanglement evolution Conclusion Nowdays, components of electronic devices are shrinking (Moore’s first law!). Inevitably, we are led to deal with new materials, nano-devices and molecular electronics ⇒ scales where quantum phenomena predominate: particle-wave duality the superposition principle probabilistic nature of quantum measurement outcomes entanglement...etc. The unification of classical information theory and quantum mechanics gave rise to a new field of physics called quantum information theory. Hamdouni, Fannes, Petruccione Entanglement Dynamics...
  • 12. Introduction The Model Exact reduced dynamics The limit N → ∞ Entanglement evolution Conclusion Nowdays, components of electronic devices are shrinking (Moore’s first law!). Inevitably, we are led to deal with new materials, nano-devices and molecular electronics ⇒ scales where quantum phenomena predominate: particle-wave duality the superposition principle probabilistic nature of quantum measurement outcomes entanglement...etc. The unification of classical information theory and quantum mechanics gave rise to a new field of physics called quantum information theory. Hamdouni, Fannes, Petruccione Entanglement Dynamics...
  • 13. Introduction The Model Exact reduced dynamics The limit N → ∞ Entanglement evolution Conclusion Nowdays, components of electronic devices are shrinking (Moore’s first law!). Inevitably, we are led to deal with new materials, nano-devices and molecular electronics ⇒ scales where quantum phenomena predominate: particle-wave duality the superposition principle probabilistic nature of quantum measurement outcomes entanglement...etc. The unification of classical information theory and quantum mechanics gave rise to a new field of physics called quantum information theory. Hamdouni, Fannes, Petruccione Entanglement Dynamics...
  • 14. Introduction The Model Exact reduced dynamics The limit N → ∞ Entanglement evolution Conclusion Nowdays, components of electronic devices are shrinking (Moore’s first law!). Inevitably, we are led to deal with new materials, nano-devices and molecular electronics ⇒ scales where quantum phenomena predominate: particle-wave duality the superposition principle probabilistic nature of quantum measurement outcomes entanglement...etc. The unification of classical information theory and quantum mechanics gave rise to a new field of physics called quantum information theory. Hamdouni, Fannes, Petruccione Entanglement Dynamics...
  • 15. Introduction The Model Exact reduced dynamics The limit N → ∞ Entanglement evolution Conclusion Nowdays, components of electronic devices are shrinking (Moore’s first law!). Inevitably, we are led to deal with new materials, nano-devices and molecular electronics ⇒ scales where quantum phenomena predominate: particle-wave duality the superposition principle probabilistic nature of quantum measurement outcomes entanglement...etc. The unification of classical information theory and quantum mechanics gave rise to a new field of physics called quantum information theory. Hamdouni, Fannes, Petruccione Entanglement Dynamics...
  • 16. Introduction The Model Exact reduced dynamics The limit N → ∞ Entanglement evolution Conclusion Nowdays, components of electronic devices are shrinking (Moore’s first law!). Inevitably, we are led to deal with new materials, nano-devices and molecular electronics ⇒ scales where quantum phenomena predominate: particle-wave duality the superposition principle probabilistic nature of quantum measurement outcomes entanglement...etc. The unification of classical information theory and quantum mechanics gave rise to a new field of physics called quantum information theory. Hamdouni, Fannes, Petruccione Entanglement Dynamics...
  • 17. Introduction The Model Exact reduced dynamics The limit N → ∞ Entanglement evolution Conclusion Nowdays, components of electronic devices are shrinking (Moore’s first law!). Inevitably, we are led to deal with new materials, nano-devices and molecular electronics ⇒ scales where quantum phenomena predominate: particle-wave duality the superposition principle probabilistic nature of quantum measurement outcomes entanglement...etc. The unification of classical information theory and quantum mechanics gave rise to a new field of physics called quantum information theory. Hamdouni, Fannes, Petruccione Entanglement Dynamics...
  • 18. Introduction The Model Exact reduced dynamics The limit N → ∞ Entanglement evolution Conclusion The quantum bit The Building block The fundamental unit of information in the quntum theory of information processing is the quantum bit or the qubit, the quantum counterpart of the classical bit. It is a two-level system living in a two-dimensional Hilbert space spaned by the basis state vectors {|+ , |− }. The qubit enjoys more freedom: its state is a linear combination of the basis state vectors. Examples 1 spin- 1 particle 2 2 two-level atom 3 photon polarization states Hamdouni, Fannes, Petruccione Entanglement Dynamics...
  • 19. Introduction The Model Exact reduced dynamics The limit N → ∞ Entanglement evolution Conclusion The quantum bit The Building block The fundamental unit of information in the quntum theory of information processing is the quantum bit or the qubit, the quantum counterpart of the classical bit. It is a two-level system living in a two-dimensional Hilbert space spaned by the basis state vectors {|+ , |− }. The qubit enjoys more freedom: its state is a linear combination of the basis state vectors. Examples 1 spin- 1 particle 2 2 two-level atom 3 photon polarization states Hamdouni, Fannes, Petruccione Entanglement Dynamics...
  • 20. Introduction The Model Exact reduced dynamics The limit N → ∞ Entanglement evolution Conclusion The quantum bit The Building block The fundamental unit of information in the quntum theory of information processing is the quantum bit or the qubit, the quantum counterpart of the classical bit. It is a two-level system living in a two-dimensional Hilbert space spaned by the basis state vectors {|+ , |− }. The qubit enjoys more freedom: its state is a linear combination of the basis state vectors. Examples 1 spin- 1 particle 2 2 two-level atom 3 photon polarization states Hamdouni, Fannes, Petruccione Entanglement Dynamics...
  • 21. Introduction The Model Exact reduced dynamics The limit N → ∞ Entanglement evolution Conclusion The quantum bit The Building block The fundamental unit of information in the quntum theory of information processing is the quantum bit or the qubit, the quantum counterpart of the classical bit. It is a two-level system living in a two-dimensional Hilbert space spaned by the basis state vectors {|+ , |− }. The qubit enjoys more freedom: its state is a linear combination of the basis state vectors. Examples 1 spin- 1 particle 2 2 two-level atom 3 photon polarization states Hamdouni, Fannes, Petruccione Entanglement Dynamics...
  • 22. Introduction The Model Exact reduced dynamics The limit N → ∞ Entanglement evolution Conclusion The quantum bit The Building block The fundamental unit of information in the quntum theory of information processing is the quantum bit or the qubit, the quantum counterpart of the classical bit. It is a two-level system living in a two-dimensional Hilbert space spaned by the basis state vectors {|+ , |− }. The qubit enjoys more freedom: its state is a linear combination of the basis state vectors. Examples 1 spin- 1 particle 2 2 two-level atom 3 photon polarization states Hamdouni, Fannes, Petruccione Entanglement Dynamics...
  • 23. Introduction The Model Exact reduced dynamics The limit N → ∞ Entanglement evolution Conclusion The quantum bit The Building block The fundamental unit of information in the quntum theory of information processing is the quantum bit or the qubit, the quantum counterpart of the classical bit. It is a two-level system living in a two-dimensional Hilbert space spaned by the basis state vectors {|+ , |− }. The qubit enjoys more freedom: its state is a linear combination of the basis state vectors. Examples 1 spin- 1 particle 2 2 two-level atom 3 photon polarization states Hamdouni, Fannes, Petruccione Entanglement Dynamics...
  • 24. Introduction The Model Exact reduced dynamics The limit N → ∞ Entanglement evolution Conclusion prepare operations on qubits evolve measure !! Leakage away of quantum information by decoherence (due to uncontroled interactions with the surounding environment). ⇓ experimetal and theoretical challenge Hamdouni, Fannes, Petruccione Entanglement Dynamics...
  • 25. Introduction The Model Exact reduced dynamics The limit N → ∞ Entanglement evolution Conclusion prepare operations on qubits evolve measure !! Leakage away of quantum information by decoherence (due to uncontroled interactions with the surounding environment). ⇓ experimetal and theoretical challenge Hamdouni, Fannes, Petruccione Entanglement Dynamics...
  • 26. Introduction The Model Exact reduced dynamics The limit N → ∞ Entanglement evolution Conclusion prepare −→ operations on qubits evolve measure !! Leakage away of quantum information by decoherence (due to uncontroled interactions with the surounding environment). ⇓ experimetal and theoretical challenge Hamdouni, Fannes, Petruccione Entanglement Dynamics...
  • 27. Introduction The Model Exact reduced dynamics The limit N → ∞ Entanglement evolution Conclusion prepare operations on qubits evolve measure !! Leakage away of quantum information by decoherence (due to uncontroled interactions with the surounding environment). ⇓ experimetal and theoretical challenge Hamdouni, Fannes, Petruccione Entanglement Dynamics...
  • 28. Introduction The Model Exact reduced dynamics The limit N → ∞ Entanglement evolution Conclusion prepare operations on qubits evolve measure !! Leakage away of quantum information by decoherence (due to uncontroled interactions with the surounding environment). ⇓ experimetal and theoretical challenge Hamdouni, Fannes, Petruccione Entanglement Dynamics...
  • 29. Introduction The Model The two-qubit system Exact reduced dynamics The environment The limit N → ∞ The Hamiltonian Entanglement evolution Conclusion The model We consider a pair of two spin- 1 particles (our qubits) in a spin 2 1 star configuration: a structure composed of N spin- 2 particles located on a the surface of a sphere whose center is occupied by the qubits. We assume that the central spins do not interact with each other and we neglect mutual interactions between the outer spins The main contribution to the total Hamiltonian comes from the coupling of the qubits to the spin star configuration. The qubits are treated as an open system coupled to an environment of many degrees of freedom. Hamdouni, Fannes, Petruccione Entanglement Dynamics...
  • 30. Introduction The Model The two-qubit system Exact reduced dynamics The environment The limit N → ∞ The Hamiltonian Entanglement evolution Conclusion The model We consider a pair of two spin- 1 particles (our qubits) in a spin 2 1 star configuration: a structure composed of N spin- 2 particles located on a the surface of a sphere whose center is occupied by the qubits. We assume that the central spins do not interact with each other and we neglect mutual interactions between the outer spins The main contribution to the total Hamiltonian comes from the coupling of the qubits to the spin star configuration. The qubits are treated as an open system coupled to an environment of many degrees of freedom. Hamdouni, Fannes, Petruccione Entanglement Dynamics...
  • 31. Introduction The Model The two-qubit system Exact reduced dynamics The environment The limit N → ∞ The Hamiltonian Entanglement evolution Conclusion The model We consider a pair of two spin- 1 particles (our qubits) in a spin 2 1 star configuration: a structure composed of N spin- 2 particles located on a the surface of a sphere whose center is occupied by the qubits. We assume that the central spins do not interact with each other and we neglect mutual interactions between the outer spins The main contribution to the total Hamiltonian comes from the coupling of the qubits to the spin star configuration. The qubits are treated as an open system coupled to an environment of many degrees of freedom. Hamdouni, Fannes, Petruccione Entanglement Dynamics...
  • 32. Introduction The Model The two-qubit system Exact reduced dynamics The environment The limit N → ∞ The Hamiltonian Entanglement evolution Conclusion The model We consider a pair of two spin- 1 particles (our qubits) in a spin 2 1 star configuration: a structure composed of N spin- 2 particles located on a the surface of a sphere whose center is occupied by the qubits. We assume that the central spins do not interact with each other and we neglect mutual interactions between the outer spins The main contribution to the total Hamiltonian comes from the coupling of the qubits to the spin star configuration. The qubits are treated as an open system coupled to an environment of many degrees of freedom. Hamdouni, Fannes, Petruccione Entanglement Dynamics...
  • 33. Introduction The Model The two-qubit system Exact reduced dynamics The environment The limit N → ∞ The Hamiltonian Entanglement evolution Conclusion Figure: 1 Spin star configuration. Hamdouni, Fannes, Petruccione Entanglement Dynamics...
  • 34. Introduction The Model The two-qubit system Exact reduced dynamics The environment The limit N → ∞ The Hamiltonian Entanglement evolution Conclusion The qubits The total spin operator of the two-qubit system is ˆ ˆ I I ˆ S = S1 ⊗ ˆ + ˆ ⊗ S2 (1) The corresponding spin state is given C2 ⊗ C2 = C ⊕ C3 . (2) eigenbasis vectors eigenbasis vectors {| + + , | + − , | − + , | − − } {|0, 0 , |1, 1 , |1, 0 , |1, −1 } where | 1 2 = | 1 ⊗ | 2 Hamdouni, Fannes, Petruccione Entanglement Dynamics...
  • 35. Introduction The Model The two-qubit system Exact reduced dynamics The environment The limit N → ∞ The Hamiltonian Entanglement evolution Conclusion The qubits The total spin operator of the two-qubit system is ˆ ˆ I I ˆ S = S1 ⊗ ˆ + ˆ ⊗ S2 (1) The corresponding spin state is given C2 ⊗ C2 = C ⊕ C3 . (2) eigenbasis vectors eigenbasis vectors {| + + , | + − , | − + , | − − } {|0, 0 , |1, 1 , |1, 0 , |1, −1 } where | 1 2 = | 1 ⊗ | 2 Hamdouni, Fannes, Petruccione Entanglement Dynamics...
  • 36. Introduction The Model The two-qubit system Exact reduced dynamics The environment The limit N → ∞ The Hamiltonian Entanglement evolution Conclusion The qubits The total spin operator of the two-qubit system is ˆ ˆ I I ˆ S = S1 ⊗ ˆ + ˆ ⊗ S2 (1) The corresponding spin state is given C2 ⊗ C2 = C ⊕ C3 . (2) eigenbasis vectors eigenbasis vectors {| + + , | + − , | − + , | − − } {|0, 0 , |1, 1 , |1, 0 , |1, −1 } where | 1 2 = | 1 ⊗ | 2 Hamdouni, Fannes, Petruccione Entanglement Dynamics...
  • 37. Introduction The Model The two-qubit system Exact reduced dynamics The environment The limit N → ∞ The Hamiltonian Entanglement evolution Conclusion The qubits The total spin operator of the two-qubit system is ˆ ˆ I I ˆ S = S1 ⊗ ˆ + ˆ ⊗ S2 (1) The corresponding spin state is given C2 ⊗ C2 = C ⊕ C3 . (2) eigenbasis vectors eigenbasis vectors {| + + , | + − , | − + , | − − } {|0, 0 , |1, 1 , |1, 0 , |1, −1 } where | 1 2 = | 1 ⊗ | 2 Hamdouni, Fannes, Petruccione Entanglement Dynamics...
  • 38. Introduction The Model The two-qubit system Exact reduced dynamics The environment The limit N → ∞ The Hamiltonian Entanglement evolution Conclusion The qubits The total spin operator of the two-qubit system is ˆ ˆ I I ˆ S = S1 ⊗ ˆ + ˆ ⊗ S2 (1) The corresponding spin state is given C2 ⊗ C2 = C ⊕ C3 . (2) eigenbasis vectors eigenbasis vectors {| + + , | + − , | − + , | − − } {|0, 0 , |1, 1 , |1, 0 , |1, −1 } where | 1 2 = | 1 ⊗ | 2 Hamdouni, Fannes, Petruccione Entanglement Dynamics...
  • 39. Introduction The Model The two-qubit system Exact reduced dynamics The environment The limit N → ∞ The Hamiltonian Entanglement evolution Conclusion The environment Spin space of the environment: N 2 2 ⊗N (C ) = ν(j, N ) Cdj . j =0 N dj = 2j + 1, 0 j 2 and the degeneracy N /2 N N ν(j, N ) = − ν(j, N )(2j + 1) = 2N N /2 − j N /2 − j − 1 j =0 Hamdouni, Fannes, Petruccione Entanglement Dynamics...
  • 40. Introduction The Model The two-qubit system Exact reduced dynamics The environment The limit N → ∞ The Hamiltonian Entanglement evolution Conclusion The environment Spin space of the environment: N 2 2 ⊗N (C ) = ν(j, N ) Cdj . j =0 N dj = 2j + 1, 0 j 2 and the degeneracy N /2 N N ν(j, N ) = − ν(j, N )(2j + 1) = 2N N /2 − j N /2 − j − 1 j =0 Hamdouni, Fannes, Petruccione Entanglement Dynamics...
  • 41. Introduction The Model The two-qubit system Exact reduced dynamics The environment The limit N → ∞ The Hamiltonian Entanglement evolution Conclusion The environment Spin space of the environment: N 2 2 ⊗N (C ) = ν(j, N ) Cdj . j =0 N dj = 2j + 1, 0 j 2 and the degeneracy N /2 N N ν(j, N ) = − ν(j, N )(2j + 1) = 2N N /2 − j N /2 − j − 1 j =0 Hamdouni, Fannes, Petruccione Entanglement Dynamics...
  • 42. Introduction The Model The two-qubit system Exact reduced dynamics The environment The limit N → ∞ The Hamiltonian Entanglement evolution Conclusion The environment Spin space of the environment: N 2 2 ⊗N (C ) = ν(j, N ) Cdj . j =0 N dj = 2j + 1, 0 j 2 and the degeneracy N /2 N N ν(j, N ) = − ν(j, N )(2j + 1) = 2N N /2 − j N /2 − j − 1 j =0 Hamdouni, Fannes, Petruccione Entanglement Dynamics...
  • 43. Introduction The Model The two-qubit system Exact reduced dynamics The environment The limit N → ∞ The Hamiltonian Entanglement evolution Conclusion The environment Spin space of the environment: N 2 2 ⊗N (C ) = ν(j, N ) Cdj . j =0 N dj = 2j + 1, 0 j 2 and the degeneracy N /2 N N ν(j, N ) = − ν(j, N )(2j + 1) = 2N N /2 − j N /2 − j − 1 j =0 Hamdouni, Fannes, Petruccione Entanglement Dynamics...
  • 44. Introduction The Model The two-qubit system Exact reduced dynamics The environment The limit N → ∞ The Hamiltonian Entanglement evolution Conclusion Heisenberg XY interaction The interaction between the central qubits and the environment is described by the Heisenberg XY interaction: N N H = α[(σ1 + σ2 ) ⊗ x x σix + (σ1 + σ2 ) ⊗ y y σiy ]. i i α is the coupling constant. Defining the lowering and raising operators N σ1,2 = σ1,2 ± i σ1,2 , ± x y J± = σi± . i =1 Hamdouni, Fannes, Petruccione Entanglement Dynamics...
  • 45. Introduction The Model The two-qubit system Exact reduced dynamics The environment The limit N → ∞ The Hamiltonian Entanglement evolution Conclusion we can write H = α[(σ1 + σ2 ) ⊗ J− + (σ1 + σ2 ) ⊗ J+ ] + + − − = α[σ+ ⊗ J− + σ− ⊗ J+ ]. (3) where σ± = σ1 + σ2 . ± ± Due to symmetry, we can restrict ourselves to the subspace C ⊗N ⊗ C 3 H (|00 ⊗ |ΦB ) = 0. Hamdouni, Fannes, Petruccione Entanglement Dynamics...
  • 46. Introduction The Model The two-qubit system Exact reduced dynamics The environment The limit N → ∞ The Hamiltonian Entanglement evolution Conclusion we can write H = α[(σ1 + σ2 ) ⊗ J− + (σ1 + σ2 ) ⊗ J+ ] + + − − = α[σ+ ⊗ J− + σ− ⊗ J+ ]. (3) where σ± = σ1 + σ2 . ± ± Due to symmetry, we can restrict ourselves to the subspace C ⊗N ⊗ C 3 H (|00 ⊗ |ΦB ) = 0. Hamdouni, Fannes, Petruccione Entanglement Dynamics...
  • 47. Introduction The Model The two-qubit system Exact reduced dynamics The environment The limit N → ∞ The Hamiltonian Entanglement evolution Conclusion Hamiltonian     0 0 0 0 1 0 σ+ = 1 0 0 σ− = 0 0 1 0 1 0 0 0 0   0 J+ 0 H = α J− 0 J+  . (4) 0 J− 0 Hamdouni, Fannes, Petruccione Entanglement Dynamics...
  • 48. Introduction The Model The two-qubit system Exact reduced dynamics The environment The limit N → ∞ The Hamiltonian Entanglement evolution Conclusion Hamiltonian     0 0 0 0 1 0 σ+ = 1 0 0 σ− = 0 0 1 0 1 0 0 0 0   0 J+ 0 H = α J− 0 J+  . (4) 0 J− 0 Hamdouni, Fannes, Petruccione Entanglement Dynamics...
  • 49. Introduction The Model The two-qubit system Exact reduced dynamics The environment The limit N → ∞ The Hamiltonian Entanglement evolution Conclusion Hamiltonian     0 0 0 0 1 0 σ+ = 1 0 0 σ− = 0 0 1 0 1 0 0 0 0   0 J+ 0 H = α J− 0 J+  . (4) 0 J− 0 Hamdouni, Fannes, Petruccione Entanglement Dynamics...
  • 50. Introduction The Model The two-qubit system Exact reduced dynamics The environment The limit N → ∞ The Hamiltonian Entanglement evolution Conclusion J+ K n−1 J− 0 J+ K n−1 J+   H2n = α2n  0 Kn 0 , J− K n−1 J 0 J− K n−1 J − + J+ K n   0 0 H 2n+1 = α2n+1 K n J− 0 K n J+  , 0 J− K n 0 where K = J+ J− + J− J+ = 2(J 2 − Jz ). 2 Hamdouni, Fannes, Petruccione Entanglement Dynamics...
  • 51. Introduction The Model The two-qubit system Exact reduced dynamics The environment The limit N → ∞ The Hamiltonian Entanglement evolution Conclusion J+ K n−1 J− 0 J+ K n−1 J+   H2n = α2n  0 Kn 0 , J− K n−1 J 0 J− K n−1 J − + J+ K n   0 0 H 2n+1 = α2n+1 K n J− 0 K n J+  , 0 J− K n 0 where K = J+ J− + J− J+ = 2(J 2 − Jz ). 2 Hamdouni, Fannes, Petruccione Entanglement Dynamics...
  • 52. Introduction The Model The two-qubit system Exact reduced dynamics The environment The limit N → ∞ The Hamiltonian Entanglement evolution Conclusion J+ K n−1 J− 0 J+ K n−1 J+   H2n = α2n  0 Kn 0 , J− K n−1 J 0 J− K n−1 J − + J+ K n   0 0 H 2n+1 = α2n+1 K n J− 0 K n J+  , 0 J− K n 0 where K = J+ J− + J− J+ = 2(J 2 − Jz ). 2 Hamdouni, Fannes, Petruccione Entanglement Dynamics...
  • 53. Introduction The Model The two-qubit system Exact reduced dynamics The environment The limit N → ∞ The Hamiltonian Entanglement evolution Conclusion J+ K n−1 J− 0 J+ K n−1 J+   H2n = α2n  0 Kn 0 , J− K n−1 J 0 J− K n−1 J − + J+ K n   0 0 H 2n+1 = α2n+1 K n J− 0 K n J+  , 0 J− K n 0 where K = J+ J− + J− J+ = 2(J 2 − Jz ). 2 Hamdouni, Fannes, Petruccione Entanglement Dynamics...
  • 54. Introduction The Model The two-qubit system Exact reduced dynamics The environment The limit N → ∞ The Hamiltonian Entanglement evolution Conclusion  √ √ √  1 + J+ cos(αtK K )−1 J− −iJ+ sin(αtK K ) √ J+ cos(αtK K )−1 J+  √ √ √  U (t ) =  −i sin(αt √ J−K) cos(αt K ) −i sin(αt K ) J+ √     K √ √ K√  cos(αt K )−1 J− K J− −iJ− sin(αt √ K) 1 + J− cos(αt K )−1 K J+ K (5) Hamdouni, Fannes, Petruccione Entanglement Dynamics...
  • 55. Introduction The Model Exact reduced dynamics Initial conditions The limit N → ∞ Time evolution Entanglement evolution Conclusion The Liouvillian The state of the composite system is fully described by its total density matrix ρ. The evolution in time of ρ is given by ρ(t ) = exp(Lt )ρ(0). (6) ρ(0) is the initial density matrix. Lρ(t ) = −i [H, ρ(t )]. (7) The dynamics of the reduced system is obtained by tracing over the environment degrees of freedom: ρS (t ) = trB {ρ(t )}. (8) Hamdouni, Fannes, Petruccione Entanglement Dynamics...
  • 56. Introduction The Model Exact reduced dynamics Initial conditions The limit N → ∞ Time evolution Entanglement evolution Conclusion Initial condition Initial state factorizes: ρ(0) = ρS (0) ⊗ ρB (0), (9)  0 ρ0 ρ0  ρ11 12 13 ρS (0) = ρ0∗ 12 ρ0 22 ρ0  . 23 (10) ρ0∗ 13 ρ0∗ 23 ρ0 33 ρB (0) = 2−N IB = lim (e−HB /kB T )/Z . (11) T →∞ Z = trB e−HB /kB T is the partition function. Hamdouni, Fannes, Petruccione Entanglement Dynamics...
  • 57. Introduction The Model Exact reduced dynamics Initial conditions The limit N → ∞ Time evolution Entanglement evolution Conclusion Time evolution of ρS ∞ tk ρS (t ) = tr {Lk ρS (0) ⊗ 2−N IB }. (12) k! B k =1 n n n L ρ=i (−1) H ρH n − . (13) n =0 trB {L2n+1 ρS (0) ⊗ 2−N IB } = 0. n−1 n−1 2n 2n trB {L2n ρS (0) ⊗ 2−N IB } = 2k S2n − 2k 2k +1 S2n +1 + F2n 2k k =1 k =0 Hamdouni, Fannes, Petruccione Entanglement Dynamics...
  • 58. Introduction The Model Exact reduced dynamics Initial conditions The limit N → ∞ Time evolution Entanglement evolution Conclusion Time evolution of ρS ∞ tk ρS (t ) = tr {Lk ρS (0) ⊗ 2−N IB }. (12) k! B k =1 n n n L ρ=i (−1) H ρH n − . (13) n =0 trB {L2n+1 ρS (0) ⊗ 2−N IB } = 0. n−1 n−1 2n 2n trB {L2n ρS (0) ⊗ 2−N IB } = 2k S2n − 2k 2k +1 S2n +1 + F2n 2k k =1 k =0 Hamdouni, Fannes, Petruccione Entanglement Dynamics...
  • 59. Introduction The Model Exact reduced dynamics Initial conditions The limit N → ∞ Time evolution Entanglement evolution Conclusion Time evolution of ρS ∞ tk ρS (t ) = tr {Lk ρS (0) ⊗ 2−N IB }. (12) k! B k =1 n n n L ρ=i (−1) H ρH n − . (13) n =0 trB {L2n+1 ρS (0) ⊗ 2−N IB } = 0. n−1 n−1 2n 2n trB {L2n ρS (0) ⊗ 2−N IB } = 2k S2n − 2k 2k +1 S2n +1 + F2n 2k k =1 k =0 Hamdouni, Fannes, Petruccione Entanglement Dynamics...
  • 60. Introduction The Model Exact reduced dynamics Initial conditions The limit N → ∞ Time evolution Entanglement evolution Conclusion Time evolution of ρS ∞ tk ρS (t ) = tr {Lk ρS (0) ⊗ 2−N IB }. (12) k! B k =1 n n n L ρ=i (−1) H ρH n − . (13) n =0 trB {L2n+1 ρS (0) ⊗ 2−N IB } = 0. n−1 n−1 2n 2n trB {L2n ρS (0) ⊗ 2−N IB } = 2k S2n − 2k 2k +1 S2n +1 + F2n 2k k =1 k =0 Hamdouni, Fannes, Petruccione Entanglement Dynamics...
  • 61. Introduction The Model Exact reduced dynamics Initial conditions The limit N → ∞ Time evolution Entanglement evolution Conclusion Time evolution of ρS ∞ tk ρS (t ) = tr {Lk ρS (0) ⊗ 2−N IB }. (12) k! B k =1 n n n L ρ=i (−1) H ρH n − . (13) n =0 trB {L2n+1 ρS (0) ⊗ 2−N IB } = 0. n−1 n−1 2n 2n trB {L2n ρS (0) ⊗ 2−N IB } = 2k S2n − 2k 2k +1 S2n +1 + F2n 2k k =1 k =0 Hamdouni, Fannes, Petruccione Entanglement Dynamics...
  • 62. Introduction The Model Exact reduced dynamics Initial conditions The limit N → ∞ Time evolution Entanglement evolution Conclusion where  0 (ρ11 − ρ0 )Rn−2 + ρ33 Pn 33 ρ0 Qk 12 n ρ0 O k 13 n  S2n 2k = (−α)n  ρ0∗ Qn−k 12 n ρ0 Fn 22 ρ0 Qk +1  23 n 0∗ O n ρ13 n−k ρ0∗ Qn−k +1 n ∆n 23 ∆n = −(ρ0 − ρ0 )Rn−2 + ρ0 Fn + (ρ0 − 2ρ0 )Pn 11 33 33 11 33 ρ0 Pn ρ0 Qk +1 n 0   22 23 S2n +1 = (−α)n ρ0∗ Qn−k 2k 23 n 0 − ρ0 )P + ρ0 F (ρ11 33 n 33 n ρ0 Qk +1  12 n 0 ρ0∗ Qn−k 12 n ρ0 (Fn − Pn ) 22 Hamdouni, Fannes, Petruccione Entanglement Dynamics...
  • 63. Introduction The Model Exact reduced dynamics Initial conditions The limit N → ∞ Time evolution Entanglement evolution Conclusion 2ρ0 Pn ρ0 (Fn + Pn ) ρ0 Fn   11 12 13 F2n = (−α)n ρ0∗ (Fn + Pn ) 12 2ρ0 Fn 22 ρ0 (2Fn − Pn ) 23 ρ0 Fn 13 ρ0∗ (2Fn − Pn ) 2ρ0 (Fn − Pn ) 23 33 with the environment correlation functions Correlation functions Rn = 2−N trB {(J− J+ )2 K n−2 }, Qk = 2−N trB {J+ K k −1 J− K n−k }, n Ok = 2−N trB {J+ J+ K k −1 J− J− K n−k −1 }, n (14) −N n−1 Pn = 2 trB {J− J+ K }, Fn = 2−N trB {K n }. Hamdouni, Fannes, Petruccione Entanglement Dynamics...
  • 64. Introduction The Model Exact reduced dynamics Initial conditions The limit N → ∞ Time evolution Entanglement evolution Conclusion Exact solution Diagonal elements ρ11 (t ) = ρ0 (1 + 2g (t )) + (ρ0 − ρ0 )f (t ) + ρ0 e(t ) + ρ0 h(t ), 11 11 33 33 22 ρ22 (t ) = ρ0 + (ρ0 − ρ0 )h(t ) + (ρ0 − ρ0 ) (t ), 22 11 33 33 22 (15) ρ33 (t ) = ρ0 (1 − 2g (t )) − (ρ0 − ρ0 )f (t ) − ρ0 h(t ) 33 11 33 22 0 0 0 0 + (ρ11 − 2ρ33 )e(t ) + (ρ22 − ρ33 ) (t ). Hamdouni, Fannes, Petruccione Entanglement Dynamics...
  • 65. Introduction The Model Exact reduced dynamics Initial conditions The limit N → ∞ Time evolution Entanglement evolution Conclusion Off-diagonal elements ρ12 (t ) = ρ0 [ (t ) + e1 (t )] + ρ0 h(t ), 12 23 ρ13 (t ) = ρ0 [ (t ) + f (t )], 13 ρ23 (t ) = ρ0 [ (t ) + e2 (t )] + ρ0 h(t ), 23 12 (16) ρ14 (t ) = ρ0 (1 + g (t )), 14 ρ24 (t ) = ρ0 (t ), 24 ρ34 (t ) = ρ0 (1 + g (t )). 34 Hamdouni, Fannes, Petruccione Entanglement Dynamics...
  • 66. Introduction The Model Exact reduced dynamics Initial conditions The limit N → ∞ Time evolution Entanglement evolution Conclusion with √ −N cos(αt K ) − 1 2 f (t ) = 2 trB J− J+ , (17) K √ cos(αt K ) − 1 g (t ) = 2−N trB J− J+ , (18) K √ sin2 (αt K ) h(t ) = 2−N trB J− J+ , (19) K √ (cos(αt K ) − 1)2 e(t ) = 2−N trB J− J+ , (20) K √ (t ) = 2−N trB sin2 (αt K ) , (21) √ (t ) = 2−N trB cos(αt K ) , (22) Hamdouni, Fannes, Petruccione Entanglement Dynamics...
  • 67. Introduction The Model Exact reduced dynamics Initial conditions The limit N → ∞ Time evolution Entanglement evolution Conclusion √ √ −N 2 cos(αt K) − 1 2 cos(αt K) − 1 f (t ) = 2 trB J− J+ , (23) K √ K cos(αt K ) − 1 √ e1 (t ) = 2−N trB J+ J− cos(αt K ) , (24) K √ cos(αt K ) − 1 √ e2 (t ) = 2−N trB J− J+ cos(αt K ) , (25) K √ √ sin(αt K ) sin(αt K ) h(t ) = 2−N trB J+ √ J− √ . (26) K K Hamdouni, Fannes, Petruccione Entanglement Dynamics...
  • 68. Introduction The Model Exact reduced dynamics Correlation functions The limit N → ∞ Time evolution Entanglement evolution Conclusion The limit of infinite number of spins As N → ∞ trB (J+ J− )n ∼ trB (J+ J− )n− (J− J+ ) 2N N n n! ≈ . 2n Then n N n n! Ok ∼ Rn ≈ , (27) 4 n N n n! Qk ∼ Pn ≈ , (28) 2 Fn ≈ N n n!. (29) Hamdouni, Fannes, Petruccione Entanglement Dynamics...
  • 69. Introduction The Model Exact reduced dynamics Correlation functions The limit N → ∞ Time evolution Entanglement evolution Conclusion The limit of infinite number of spins As N → ∞ trB (J+ J− )n ∼ trB (J+ J− )n− (J− J+ ) 2N N n n! ≈ . 2n Then n N n n! Ok ∼ Rn ≈ , (27) 4 n N n n! Qk ∼ Pn ≈ , (28) 2 Fn ≈ N n n!. (29) Hamdouni, Fannes, Petruccione Entanglement Dynamics...
  • 70. Introduction The Model Exact reduced dynamics Correlation functions The limit N → ∞ Time evolution Entanglement evolution Conclusion Time evolution Rescaling! α α→ √ . (30) N 1 f (t ) = f (t ) = ζ(2t ) − ζ(t ), (t ) = 1 + 2ζ(t ), 4 g (t ) = ζ(t ), 1 e (t ) = ζ(2t ) − 2ζ(t ), 1 2 h(t ) = h(t ) = − ζ(2t ), 1 2 e1,2 (t ) = ζ(2t ) − ζ(t ). (t ) = −ζ(2t ), 2 Hamdouni, Fannes, Petruccione Entanglement Dynamics...
  • 71. Introduction The Model Exact reduced dynamics Correlation functions The limit N → ∞ Time evolution Entanglement evolution Conclusion Time evolution Rescaling! α α→ √ . (30) N 1 f (t ) = f (t ) = ζ(2t ) − ζ(t ), (t ) = 1 + 2ζ(t ), 4 g (t ) = ζ(t ), 1 e (t ) = ζ(2t ) − 2ζ(t ), 1 2 h(t ) = h(t ) = − ζ(2t ), 1 2 e1,2 (t ) = ζ(2t ) − ζ(t ). (t ) = −ζ(2t ), 2 Hamdouni, Fannes, Petruccione Entanglement Dynamics...
  • 72. Introduction The Model Exact reduced dynamics Correlation functions The limit N → ∞ Time evolution Entanglement evolution Conclusion Time evolution Rescaling! α α→ √ . (30) N 1 f (t ) = f (t ) = ζ(2t ) − ζ(t ), (t ) = 1 + 2ζ(t ), 4 g (t ) = ζ(t ), 1 e (t ) = ζ(2t ) − 2ζ(t ), 1 2 h(t ) = h(t ) = − ζ(2t ), 1 2 e1,2 (t ) = ζ(2t ) − ζ(t ). (t ) = −ζ(2t ), 2 Hamdouni, Fannes, Petruccione Entanglement Dynamics...
  • 73. Introduction The Model Exact reduced dynamics Correlation functions The limit N → ∞ Time evolution Entanglement evolution Conclusion Time evolution Rescaling! α α→ √ . (30) N 1 f (t ) = f (t ) = ζ(2t ) − ζ(t ), (t ) = 1 + 2ζ(t ), 4 g (t ) = ζ(t ), 1 e (t ) = ζ(2t ) − 2ζ(t ), 1 2 h(t ) = h(t ) = − ζ(2t ), 1 2 e1,2 (t ) = ζ(2t ) − ζ(t ). (t ) = −ζ(2t ), 2 Hamdouni, Fannes, Petruccione Entanglement Dynamics...
  • 74. Introduction The Model Exact reduced dynamics Correlation functions The limit N → ∞ Time evolution Entanglement evolution Conclusion The function ζ is given by αt αt ζ(t ) = − D+ (− ) 2 2 1 lim ζ(t ) = − t →∞ 2 where we have introduced the Dawson function Dawson function x 2 2 D+ (x ) = e−x et dt 0 √ π −x 2 = e erfi(x ). 2 Hamdouni, Fannes, Petruccione Entanglement Dynamics...
  • 75. Introduction The Model Exact reduced dynamics Correlation functions The limit N → ∞ Time evolution Entanglement evolution Conclusion The function ζ is given by αt αt ζ(t ) = − D+ (− ) 2 2 1 lim ζ(t ) = − t →∞ 2 where we have introduced the Dawson function Dawson function x 2 2 D+ (x ) = e−x et dt 0 √ π −x 2 = e erfi(x ). 2 Hamdouni, Fannes, Petruccione Entanglement Dynamics...
  • 76. Introduction The Model Exact reduced dynamics Correlation functions The limit N → ∞ Time evolution Entanglement evolution Conclusion The function ζ is given by αt αt ζ(t ) = − D+ (− ) 2 2 1 lim ζ(t ) = − t →∞ 2 where we have introduced the Dawson function Dawson function x 2 2 D+ (x ) = e−x et dt 0 √ π −x 2 = e erfi(x ). 2 Hamdouni, Fannes, Petruccione Entanglement Dynamics...
  • 77. Introduction The Model Exact reduced dynamics Correlation functions The limit N → ∞ Time evolution Entanglement evolution Conclusion 1 ρ∞ = S × 4 3 0 + ρ0 + 2 ρ0 ) ρ0 + ρ0 3 0 2ρ0  2 (ρ11 33 3 22 12 23 2 ρ13 14   ρ0∗ + ρ0∗ 12 23 (ρ0 + ρ0 + 2ρ0 ) 11 33 22 ρ0 + ρ0 23 12 0   3 0∗ 3 0 0 + 2 ρ0 ) 2ρ0   2 ρ13 ρ0∗ + ρ0∗ 23 12 2 (ρ11 + ρ33 3 22 34 2ρ0∗ 14 0 2ρ0∗ 34 4ρ0 44 Partial decoherence Hamdouni, Fannes, Petruccione Entanglement Dynamics...
  • 78. Introduction The Model Exact reduced dynamics Correlation functions The limit N → ∞ Time evolution Entanglement evolution Conclusion Figure: 2 The time evolution of the density matrix element ρ11 . Initial state of the two-qubit system is the pure state | − − . The figure shows the plots obtained for N = 100, N = 400 and the limit N → ∞. Hamdouni, Fannes, Petruccione Entanglement Dynamics...
  • 79. Introduction The Model Exact reduced dynamics Correlation functions The limit N → ∞ Time evolution Entanglement evolution Conclusion Figure: 3 The evolution in time of the density matrix element ρ22 as a function of time. The initial condition of the two-qubit system is the pure state | − − . The figure shows the plots obtained for N = 100, N = 400 and the limit N → ∞. Hamdouni, Fannes, Petruccione Entanglement Dynamics...
  • 80. Introduction The Model Exact reduced dynamics Correlation functions The limit N → ∞ Time evolution Entanglement evolution Conclusion Figure: 4 The evolution in time of the density matrix element ρ13 . The initial condition of the two-qubit system is the entangled state √ (| + + + | − − ). The figure shows the plots obtained for 1 2 N = 100, N = 400 and the limit N → ∞. Hamdouni, Fannes, Petruccione Entanglement Dynamics...
  • 81. Introduction The Model Exact reduced dynamics concurrence The limit N → ∞ Main results Entanglement evolution Conclusion Entanglement Definition By definition, entanglementrefers to nonlocal correlations that exist between quantum systems. A quantum state ρ describing a bipartite system A + B and living in the finite Hilbert space HA ⊗ HB is said to be entangled (or not separable) if it cannot be written as a convex combination of product states: ρ= ck ρk ⊗ ρk A B k A state which is not entangled is called separable. Hamdouni, Fannes, Petruccione Entanglement Dynamics...
  • 82. Introduction The Model Exact reduced dynamics concurrence The limit N → ∞ Main results Entanglement evolution Conclusion Entanglement Definition By definition, entanglementrefers to nonlocal correlations that exist between quantum systems. A quantum state ρ describing a bipartite system A + B and living in the finite Hilbert space HA ⊗ HB is said to be entangled (or not separable) if it cannot be written as a convex combination of product states: ρ= ck ρk ⊗ ρk A B k A state which is not entangled is called separable. Hamdouni, Fannes, Petruccione Entanglement Dynamics...
  • 83. Introduction The Model Exact reduced dynamics concurrence The limit N → ∞ Main results Entanglement evolution Conclusion Concurrence There exist many entanglement measures which quantify the amount of entanglement in a given state. For mixed states, the concurrence is used: C (ρ) = max{0, λ1 − λ2 − λ3 − λ4 }. (31) λ1 λ2 λ3 λ4 are the eigenvalues of the operator ρ(σy ⊗ σy )ρ∗ (σy ⊗ σy ) C (ρ) ranges from 0 for separable states to 1 for maximally entangled states. Hamdouni, Fannes, Petruccione Entanglement Dynamics...
  • 84. Introduction The Model Exact reduced dynamics concurrence The limit N → ∞ Main results Entanglement evolution Conclusion Concurrence evolution The operator V = σy ⊗ σy is a linear skew-adjoint operator in C2 ⊗ C2 , i.e., VV = −I. In C ⊕ C3 it reads 0 0 1 0   0 −1 0 0 V ⊗V = 1 0 . (32) 0 0 0 0 0 1 Hamdouni, Fannes, Petruccione Entanglement Dynamics...
  • 85. Introduction The Model Exact reduced dynamics concurrence The limit N → ∞ Main results Entanglement evolution Conclusion Results The concurrence corresponding to the initial separable state | − − is equal to C (ρ) = max{0, −ρ22 (t )} = 0. the initial state is the maximally entangled state |Ψ = √ (| + − + | − + ), then the concurrence takes the form 1 2 C (ρ) = max{0, ρ22 (t ) − 2 ρ11 (t )ρ33 (t )}. the maximally entangled state |Φ = 1 √ 2 (| − − + | + + ) has the concurrence C (ρ) = max{0, 2ρ13 (t ) − ρ22 (t )}. Hamdouni, Fannes, Petruccione Entanglement Dynamics...
  • 86. Introduction The Model Exact reduced dynamics concurrence The limit N → ∞ Main results Entanglement evolution Conclusion Results The concurrence corresponding to the initial separable state | − − is equal to C (ρ) = max{0, −ρ22 (t )} = 0. the initial state is the maximally entangled state |Ψ = √ (| + − + | − + ), then the concurrence takes the form 1 2 C (ρ) = max{0, ρ22 (t ) − 2 ρ11 (t )ρ33 (t )}. the maximally entangled state |Φ = 1 √ 2 (| − − + | + + ) has the concurrence C (ρ) = max{0, 2ρ13 (t ) − ρ22 (t )}. Hamdouni, Fannes, Petruccione Entanglement Dynamics...
  • 87. Introduction The Model Exact reduced dynamics concurrence The limit N → ∞ Main results Entanglement evolution Conclusion Results The concurrence corresponding to the initial separable state | − − is equal to C (ρ) = max{0, −ρ22 (t )} = 0. the initial state is the maximally entangled state |Ψ = √ (| + − + | − + ), then the concurrence takes the form 1 2 C (ρ) = max{0, ρ22 (t ) − 2 ρ11 (t )ρ33 (t )}. the maximally entangled state |Φ = 1 √ 2 (| − − + | + + ) has the concurrence C (ρ) = max{0, 2ρ13 (t ) − ρ22 (t )}. Hamdouni, Fannes, Petruccione Entanglement Dynamics...
  • 88. Introduction The Model Exact reduced dynamics concurrence The limit N → ∞ Main results Entanglement evolution Conclusion Figure: 5 Concurrence as a function of time for initial states 1 √ (| + − + | − + ) (solid curve) and √ (| − − + | + + ) (dashed 1 2 2 curve). Hamdouni, Fannes, Petruccione Entanglement Dynamics...
  • 89. Introduction The Model Exact reduced dynamics The limit N → ∞ Entanglement evolution Conclusion Conclusion Any pure state of the two-qubit system evolves into a mixed state. The pure entangled state √2 (| + − − | − + ) of the two 1 qubits is a decoherence-free state. The environment has no effect on the separability of pure separable states. The environment has the tendency to decrease the degree of entanglement of initially entangled states of the qubits. Hamdouni, Fannes, Petruccione Entanglement Dynamics...
  • 90. Introduction The Model Exact reduced dynamics The limit N → ∞ Entanglement evolution Conclusion Conclusion Any pure state of the two-qubit system evolves into a mixed state. The pure entangled state √2 (| + − − | − + ) of the two 1 qubits is a decoherence-free state. The environment has no effect on the separability of pure separable states. The environment has the tendency to decrease the degree of entanglement of initially entangled states of the qubits. Hamdouni, Fannes, Petruccione Entanglement Dynamics...
  • 91. Introduction The Model Exact reduced dynamics The limit N → ∞ Entanglement evolution Conclusion Conclusion Any pure state of the two-qubit system evolves into a mixed state. The pure entangled state √2 (| + − − | − + ) of the two 1 qubits is a decoherence-free state. The environment has no effect on the separability of pure separable states. The environment has the tendency to decrease the degree of entanglement of initially entangled states of the qubits. Hamdouni, Fannes, Petruccione Entanglement Dynamics...
  • 92. Introduction The Model Exact reduced dynamics The limit N → ∞ Entanglement evolution Conclusion Conclusion Any pure state of the two-qubit system evolves into a mixed state. The pure entangled state √2 (| + − − | − + ) of the two 1 qubits is a decoherence-free state. The environment has no effect on the separability of pure separable states. The environment has the tendency to decrease the degree of entanglement of initially entangled states of the qubits. Hamdouni, Fannes, Petruccione Entanglement Dynamics...
  • 93. Introduction The Model Exact reduced dynamics The limit N → ∞ Entanglement evolution Conclusion Conclusion Any pure state of the two-qubit system evolves into a mixed state. The pure entangled state √2 (| + − − | − + ) of the two 1 qubits is a decoherence-free state. The environment has no effect on the separability of pure separable states. The environment has the tendency to decrease the degree of entanglement of initially entangled states of the qubits. Hamdouni, Fannes, Petruccione Entanglement Dynamics...
  • 94. Introduction The Model Exact reduced dynamics The limit N → ∞ Entanglement evolution Conclusion THANK YOU Hamdouni, Fannes, Petruccione Entanglement Dynamics...