SlideShare una empresa de Scribd logo
1 de 15
Descargar para leer sin conexión
Mathematical support for preventive
maintenance periodicity optimization of
radio communication facilities
The Ministry of Transport of the Russian Federation
The Federal Agency of Railway Transport
Omsk State Transport University (OSTU)
Granada, 2016
Alexander Lyubchenko – Associate Prof. of
the Dept. Information and communication
systems and data security
Variety of radio application areas
Page 1
Building industry
Gas-and-oil producing
industry
Electric-power industry
Minerals industry
Page 2Technological radio communication devices
of industrial enterprises
Fig. 2.1 Technological radio communication network
of industrial enterprises
Base
station
PSTN
Dispatcher Control Board
Industrial transport Portable crane
Engineering and
industrial personnel
Mobile-radio
station
Mobile-radio
station Portable radio
stations
Fixed radio
station Fig. 2.2 Railway fixed radio
station RS-46MC
Russian railways have:
- 31.000 of FRS;
- 60.000 of MRS;
- 79.000 of PRS.
Page 3
Actuality of the research
Reasons:
- Idealistic conditions;
- Long time exploitation;
- No recommendations about
length of PM procedures.
Challenging problem:
Solution approaches:
Natural experiments +
expert method
- Long time tests;
- Real system availability;
- Error probability of
decision making.
Mathematical
support
Scientifically
substantiated results:
periodicity Tint and
duration tt
Reasons:
- Idealistic conditions;
- Long time exploitation;
- No recommendations about
length of PM procedures.
!!!Necessity to develop
own local regulations!!!
0
( ) ( ).i ij ij ij ij
j
T p dF

    
о д о д
1 12 13
0 0
( ) ( ) ( )
t t t t
T F F d
 
       
…...
Research objective – development of mathematical support algorithms of a
CAD system for optimization of preventive maintenance intervals of radio com-
munication devices based on a simulation model of the operational process.
Page 4
Research objective and tasks
Tasks:
1) Select and justify the optimality criterion of the operational process of the
radio communication devices;
2) Develop a conceptual and simulation model of the process taking into
account the impact of the following factors: appearance of sudden, gradual,
latent and fictitious failures, human factor of service staff and time
parameters;
3) Implement the experiments to verify the conceptual model, confirm the
adequacy of the simulation and test its stationary properties;
4) Develop algorithms for computer-aided design system allowing
optimization of the preventive maintenance periodicity.
Optimality criterion
Page 5
Fig. 5.1 Typical graphs of the dependences
KOE(Tint) and KA(Tint)
where – allowable value of availability
Objective function KOE(Tint):
where TOS(Tint), TRS(Tint) and TMS(Tint) -
mean time of operable state, repair and
maintenance, accordingly.
Availability function:
Advisable value Trat:
(1)
(3)
(4)
(5)
(6)
 


int
A.A.
(T ) maxOE
A
K f
K K
A.A.K
int
int
int int int
(T )
(T )
(T ) (T ) (T )
OS
OE
OS RS MS
T
K
T T T

 
(2)
int
int
int int
(T )
(T )
(T ) (T )
OS
A
OS RS
T
K
T T


intargmax ( )opt OET K T
1
. .( )all A A AT K K
  min ,rat opt allT T T
Fig. 6.1 State diagram of the operational process
of repairable devices
Conceptual model
Model’s parameters:
1) vector of initial state of embedded
Markov chain:
 0
0 , 1,iP P i n 
where n is a possible quantity of states.
2) matrix of transition probabilities from
state Si to Sj:
, ( 1, ; 1, )ijP i n j n 
3) vector of density functions of
time intervals for each state:
 ( ) , 1,iF F t i n 
States of the process:
- Operable state (S1);
- Misalignment state (S2);
- Nonoperable state (S3);
- Preventive maintenance of operative system (S4);
- Maintenance of system with misalignment (S5);
- Latent failure (S6);
- Maintenance of system being in latent failure (S7);
- Fictitious failure (S8).
(1)
(2)
(3)
Page 6
The model takes into account:
1) sudden and gradual failures;
2) fictitious and latent failures;
3) human factor of service staff;
4) time parameters of maintenance
operations.
Page 7
Simulation model’s algorithms
Start
T < Tk
|Pij|, P0, Tоб,
Т = 0
-
+
N(I) = N(I) + 1;
Determination
of initial state
Calculation of
the vector of
density functions
F(I) < Tоб
-+
T+F(I) >= Tk
- +
F(I) = Tk – T;
T = Tk;
T(I) = T(I)+F(I);
T(I) = T(I)+F(I);
T = T + F(I);
F(I) = Tоб;
T+F(I) >= Tk
- +
F(I) = Tk – T;
T = Tk;
T(I) = T(I)+F(I);
T(I) = T(I)+F(I);
T = T + F(I);
Determination
of the next state
I=J
N = N + 1
End
Fig. 7.1 Flow chart of the simulation algorithm
Steps of simulation:
1) Determination of the first state of the
process according to the vector of initial state;
2) Calculation system’s duration of stay in
current state:
1
ξ ln(1 ),
λ
u  
where u is a uniformly distributed number in the
range [0,1].
3) Definition of the next state Sj according to the
matrix of transition probabilities when the following
inequality is correct (j=f):
1
1 1
, , 1,8.
f f
ij ij
j j
P u P i const j

 
    
(1)
(2)
Page 8
Fig. 8.1 Algorithm of estimation
of output parameters
-
+
Process simulation
Outputs’ estimation
+
+
-
-
-
+
End
Start
7
int intT Т 
int.max RT ,
RN 0,N 0  
int int.maxT T
R RN N 1 
A OEK K, Estimation of
RN 120
A OEK K R,  
N N 1  
N 10 
int int intT T Т  
Accuracy of the estimations:
/2, 1
[ ]
,pN
P
S x
t
N
   (1)
where S[x] is a sample standard deviation of random value x;
Np is a sample size; ta/2,Np-1 is a fractile of t-distribution.
Page 9
Smoothing and interpolation of simulation results
ES – exponential smoothing;
MA – moving-average method;
SGF – Savitzky-Golay filter;
LOWESS – locally weighted scatterplot smoothing.
FT – polynomial fit of the 4th order ;
LI – linear interpolation;
CI – cubic interpolation;
SSI – smoothing spline interpolation.
Table I. Results of average squared error (εASE) estimation
Table II. Results of estimation of εASE and determination
coefficient (R2)
Fig. 9.1 Dispersion before and after the
use of the method of significant sample
Fig. 9.2 Results before (red line) and
after (dotted line) the use of the method
Page 10
Estimation of parameters and adequacy testing
2
int
5 7
int
( , ) min;
5 10 10 ;
100 2000 .
o k
k
S J T T
T hours
T hours
ìï ¢= D ®ïïïï × £ £í
ïïï £ D £ïïî
 
 
6
int
10 10
600
kT hours
T hours
Fig. 10.1 Graph of the residual dispersion Fig. 10.2 Analytical and simulation estimations
Adequacy estimation criterion:
  
2
/
2
,if 2Y X
o
S
S
where S2
y/x is a dispersion cased by the model; S2
o is a residual dispersion.
the simulation model is adequate to analytical.
Page 11
Numerical experiments
0 2000 4000 6000 8000 10000 12000 14000
0.996
0.9965
0.997
0.9975
0.998
0.9985
0.999
0 2000 4000 6000 8000 10000 12000 14000
0.996
0.9965
0.997
0.9975
0.998
0.9985
0.999
0.9995
1
intT ,hours intT ,hours
int(T)OEK
int(T)AK
0 2000 4000 6000 8000 10000 12000 14000 16000
0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
0.45
0.5
intT ,hours
int()pFT
#1lin
#1non
#2non
#3non
#4non
Fig. 11.1 Results for different distribution functions of service staff errors probability
Page 12
Numerical experiments
Fig. 12.1 Results for different values maintenance time parameters
0 2000 4000 6000 8000 10000
0.997
0.9975
0.998
0.9985
0.999
0 2000 4000 6000 8000 10000
0.9988
0.9989
0.999
0.9991
0.9992
0.9993
0.9994
0.9995
0.9996
0.9997
0.9998
intT ,hours intT ,hours
int(T)OEK
int(T)AK
Default values tt=2, ta=1, ts=3 and tr=3 hours
Module of
multivariant
analysis
No
Yes
Increasing of
Тоб.max value
Start
Selecting a device
from DB
Simulation is
finished ?
Module of
parametric
synthesis
Calculation
results
Output of
results
End
Input
parameters
Algorithms of CAD system
Fig. 14.2 Block chart of CAD system
functioning
Core
GUI
CAD Simulation model
prepared in VC++
as external mex-
function of MATLAB
GUI developed
by GUIDE of Matlab
software
Page 13
Fig. 13.1 Structure of the software
The core contains:
1. Module of multivariate analysis including:
a) main simulation algorithm;
b) algorithm of calculation of availability and
operating efficiency mean values;
c) smoothing and interpolation of results.
2. Module of parametric synthesis allowing
to calculate recommended value Trat with
accordance to the optimality criterion.
Fig. 14.1 GUI of CAD system
Page 14

Más contenido relacionado

La actualidad más candente

Data Structures - Lecture 8 - Study Notes
Data Structures - Lecture 8 - Study NotesData Structures - Lecture 8 - Study Notes
Data Structures - Lecture 8 - Study Notes
Haitham El-Ghareeb
 
Seminar 20091023 heydt_presentation
Seminar 20091023 heydt_presentationSeminar 20091023 heydt_presentation
Seminar 20091023 heydt_presentation
douglaslyon
 
Robotic Manipulator with Revolute and Prismatic Joints
Robotic Manipulator with Revolute and Prismatic JointsRobotic Manipulator with Revolute and Prismatic Joints
Robotic Manipulator with Revolute and Prismatic Joints
Travis Heidrich
 

La actualidad más candente (20)

Digital Signal Processing[ECEG-3171]-Ch1_L06
Digital Signal Processing[ECEG-3171]-Ch1_L06Digital Signal Processing[ECEG-3171]-Ch1_L06
Digital Signal Processing[ECEG-3171]-Ch1_L06
 
Actuator Constrained Optimal Control of Formations Near the Libration Points
Actuator Constrained Optimal Control of Formations Near the Libration PointsActuator Constrained Optimal Control of Formations Near the Libration Points
Actuator Constrained Optimal Control of Formations Near the Libration Points
 
Digital Signal Processing[ECEG-3171]-Ch1_L05
Digital Signal Processing[ECEG-3171]-Ch1_L05Digital Signal Processing[ECEG-3171]-Ch1_L05
Digital Signal Processing[ECEG-3171]-Ch1_L05
 
Data Structures - Lecture 8 - Study Notes
Data Structures - Lecture 8 - Study NotesData Structures - Lecture 8 - Study Notes
Data Structures - Lecture 8 - Study Notes
 
[D08.00015] ROBUST AND OPTIMAL CONTROL FOR SUPERCONDUCTING QUBITS, 2-QUBIT G...
[D08.00015] ROBUST AND OPTIMAL CONTROL FOR  SUPERCONDUCTING QUBITS, 2-QUBIT G...[D08.00015] ROBUST AND OPTIMAL CONTROL FOR  SUPERCONDUCTING QUBITS, 2-QUBIT G...
[D08.00015] ROBUST AND OPTIMAL CONTROL FOR SUPERCONDUCTING QUBITS, 2-QUBIT G...
 
Design and Analysis of a Control System Using Root Locus and Frequency Respon...
Design and Analysis of a Control System Using Root Locus and Frequency Respon...Design and Analysis of a Control System Using Root Locus and Frequency Respon...
Design and Analysis of a Control System Using Root Locus and Frequency Respon...
 
Asymptotic notations(Big O, Omega, Theta )
Asymptotic notations(Big O, Omega, Theta )Asymptotic notations(Big O, Omega, Theta )
Asymptotic notations(Big O, Omega, Theta )
 
Digital Signal Processing[ECEG-3171]-Ch1_L03
Digital Signal Processing[ECEG-3171]-Ch1_L03Digital Signal Processing[ECEG-3171]-Ch1_L03
Digital Signal Processing[ECEG-3171]-Ch1_L03
 
Lti system
Lti systemLti system
Lti system
 
Digital Signal Processing[ECEG-3171]-Ch1_L04
Digital Signal Processing[ECEG-3171]-Ch1_L04Digital Signal Processing[ECEG-3171]-Ch1_L04
Digital Signal Processing[ECEG-3171]-Ch1_L04
 
Seminar 20091023 heydt_presentation
Seminar 20091023 heydt_presentationSeminar 20091023 heydt_presentation
Seminar 20091023 heydt_presentation
 
Signals and Systems Assignment Help
Signals and Systems Assignment HelpSignals and Systems Assignment Help
Signals and Systems Assignment Help
 
Robotic Manipulator with Revolute and Prismatic Joints
Robotic Manipulator with Revolute and Prismatic JointsRobotic Manipulator with Revolute and Prismatic Joints
Robotic Manipulator with Revolute and Prismatic Joints
 
Bode lect
Bode lectBode lect
Bode lect
 
Ece4510 notes08
Ece4510 notes08Ece4510 notes08
Ece4510 notes08
 
ALPSチュートリアル
ALPSチュートリアルALPSチュートリアル
ALPSチュートリアル
 
Digital Signal Processing[ECEG-3171]-Ch1_L02
Digital Signal Processing[ECEG-3171]-Ch1_L02Digital Signal Processing[ECEG-3171]-Ch1_L02
Digital Signal Processing[ECEG-3171]-Ch1_L02
 
Digital Signal Processing Lab Manual
Digital Signal Processing Lab Manual Digital Signal Processing Lab Manual
Digital Signal Processing Lab Manual
 
Chapter6 sampling
Chapter6 samplingChapter6 sampling
Chapter6 sampling
 
Dsp Lab Record
Dsp Lab RecordDsp Lab Record
Dsp Lab Record
 

Destacado

Destacado (12)

Towards Automatic StarCraft Strategy Generation Using Genetic Programming
Towards Automatic StarCraft Strategy Generation Using Genetic ProgrammingTowards Automatic StarCraft Strategy Generation Using Genetic Programming
Towards Automatic StarCraft Strategy Generation Using Genetic Programming
 
This was a triumph: Evolving intelligent bots for videogames. And for Science.
This was a triumph: Evolving intelligent bots for videogames. And for Science. This was a triumph: Evolving intelligent bots for videogames. And for Science.
This was a triumph: Evolving intelligent bots for videogames. And for Science.
 
Data mining in security: Ja'far Alqatawna
Data mining in security: Ja'far AlqatawnaData mining in security: Ja'far Alqatawna
Data mining in security: Ja'far Alqatawna
 
Benchmarking languages for evolutionary algorithms
Benchmarking languages for evolutionary algorithmsBenchmarking languages for evolutionary algorithms
Benchmarking languages for evolutionary algorithms
 
Evolutionary Deckbuilding in Hearthstone
Evolutionary Deckbuilding in HearthstoneEvolutionary Deckbuilding in Hearthstone
Evolutionary Deckbuilding in Hearthstone
 
Benchmarking languages for evolutionary computation
Benchmarking languages for evolutionary computationBenchmarking languages for evolutionary computation
Benchmarking languages for evolutionary computation
 
MUSES WP5 Final Conclusions
MUSES WP5 Final ConclusionsMUSES WP5 Final Conclusions
MUSES WP5 Final Conclusions
 
Ciencia y videojuegos (versión Extracción de Información) [UCA 05/2015]
Ciencia y videojuegos (versión Extracción de Información) [UCA 05/2015]Ciencia y videojuegos (versión Extracción de Información) [UCA 05/2015]
Ciencia y videojuegos (versión Extracción de Información) [UCA 05/2015]
 
Ejemplos de investigación en videojuegos
Ejemplos de investigación en videojuegosEjemplos de investigación en videojuegos
Ejemplos de investigación en videojuegos
 
Hackahton smart cities 2016 (Mayo 2016)
Hackahton smart cities 2016 (Mayo 2016)Hackahton smart cities 2016 (Mayo 2016)
Hackahton smart cities 2016 (Mayo 2016)
 
Smart city hackathon
Smart city hackathonSmart city hackathon
Smart city hackathon
 
Open dataday hackathon conclusiones
Open dataday hackathon conclusionesOpen dataday hackathon conclusiones
Open dataday hackathon conclusiones
 

Similar a Mathematical support for preventive maintenance periodicity optimization of radiocommunication facilities

Sampling and Reconstruction (Online Learning).pptx
Sampling and Reconstruction (Online Learning).pptxSampling and Reconstruction (Online Learning).pptx
Sampling and Reconstruction (Online Learning).pptx
HamzaJaved306957
 
Generating Automated and Online Test Oracles for Simulink Models with Continu...
Generating Automated and Online Test Oracles for Simulink Models with Continu...Generating Automated and Online Test Oracles for Simulink Models with Continu...
Generating Automated and Online Test Oracles for Simulink Models with Continu...
Lionel Briand
 
EENG519FinalProjectReport
EENG519FinalProjectReportEENG519FinalProjectReport
EENG519FinalProjectReport
Daniel K
 

Similar a Mathematical support for preventive maintenance periodicity optimization of radiocommunication facilities (20)

Time alignment techniques for experimental sensor data
Time alignment techniques for experimental sensor dataTime alignment techniques for experimental sensor data
Time alignment techniques for experimental sensor data
 
Sampling and Reconstruction (Online Learning).pptx
Sampling and Reconstruction (Online Learning).pptxSampling and Reconstruction (Online Learning).pptx
Sampling and Reconstruction (Online Learning).pptx
 
Robust PID Controller Design for Non-Minimum Phase Systems using Magnitude Op...
Robust PID Controller Design for Non-Minimum Phase Systems using Magnitude Op...Robust PID Controller Design for Non-Minimum Phase Systems using Magnitude Op...
Robust PID Controller Design for Non-Minimum Phase Systems using Magnitude Op...
 
MATHEMATICAL MODELING OF COMPLEX REDUNDANT SYSTEM UNDER HEAD-OF-LINE REPAIR
MATHEMATICAL MODELING OF COMPLEX REDUNDANT SYSTEM UNDER HEAD-OF-LINE REPAIRMATHEMATICAL MODELING OF COMPLEX REDUNDANT SYSTEM UNDER HEAD-OF-LINE REPAIR
MATHEMATICAL MODELING OF COMPLEX REDUNDANT SYSTEM UNDER HEAD-OF-LINE REPAIR
 
LeastSquaresParameterEstimation.ppt
LeastSquaresParameterEstimation.pptLeastSquaresParameterEstimation.ppt
LeastSquaresParameterEstimation.ppt
 
reliability workshop
reliability workshopreliability workshop
reliability workshop
 
F010313342
F010313342F010313342
F010313342
 
ACS 22LIE12 lab Manul.docx
ACS 22LIE12 lab Manul.docxACS 22LIE12 lab Manul.docx
ACS 22LIE12 lab Manul.docx
 
Maneuvering target track prediction model
Maneuvering target track prediction modelManeuvering target track prediction model
Maneuvering target track prediction model
 
Computation of Simple Robust PI/PID Controller Design for Time-Delay Systems ...
Computation of Simple Robust PI/PID Controller Design for Time-Delay Systems ...Computation of Simple Robust PI/PID Controller Design for Time-Delay Systems ...
Computation of Simple Robust PI/PID Controller Design for Time-Delay Systems ...
 
Feedback control of_dynamic_systems
Feedback control of_dynamic_systemsFeedback control of_dynamic_systems
Feedback control of_dynamic_systems
 
Generating Automated and Online Test Oracles for Simulink Models with Continu...
Generating Automated and Online Test Oracles for Simulink Models with Continu...Generating Automated and Online Test Oracles for Simulink Models with Continu...
Generating Automated and Online Test Oracles for Simulink Models with Continu...
 
Advanced Stability Analysis of Control Systems with Variable Parameters
Advanced Stability Analysis of Control Systems with Variable ParametersAdvanced Stability Analysis of Control Systems with Variable Parameters
Advanced Stability Analysis of Control Systems with Variable Parameters
 
Advanced Stability Analysis of Control Systems with Variable Parameters
Advanced Stability Analysis of Control Systems with Variable ParametersAdvanced Stability Analysis of Control Systems with Variable Parameters
Advanced Stability Analysis of Control Systems with Variable Parameters
 
CHANNEL ESTIMATION AND MULTIUSER DETECTION IN ASYNCHRONOUS SATELLITE COMMUNIC...
CHANNEL ESTIMATION AND MULTIUSER DETECTION IN ASYNCHRONOUS SATELLITE COMMUNIC...CHANNEL ESTIMATION AND MULTIUSER DETECTION IN ASYNCHRONOUS SATELLITE COMMUNIC...
CHANNEL ESTIMATION AND MULTIUSER DETECTION IN ASYNCHRONOUS SATELLITE COMMUNIC...
 
4 ijaems nov-2015-4-fsk demodulator- case study of pll application
4 ijaems nov-2015-4-fsk demodulator- case study of pll application4 ijaems nov-2015-4-fsk demodulator- case study of pll application
4 ijaems nov-2015-4-fsk demodulator- case study of pll application
 
EENG519FinalProjectReport
EENG519FinalProjectReportEENG519FinalProjectReport
EENG519FinalProjectReport
 
Continuous Systems To Discrete Event Systems
Continuous Systems To Discrete Event SystemsContinuous Systems To Discrete Event Systems
Continuous Systems To Discrete Event Systems
 
17 16512 32451-1-sm (edit ari)
17 16512 32451-1-sm (edit ari)17 16512 32451-1-sm (edit ari)
17 16512 32451-1-sm (edit ari)
 
17 16512 32451-1-sm (edit ari)
17 16512 32451-1-sm (edit ari)17 16512 32451-1-sm (edit ari)
17 16512 32451-1-sm (edit ari)
 

Último

1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
AldoGarca30
 
Hospital management system project report.pdf
Hospital management system project report.pdfHospital management system project report.pdf
Hospital management system project report.pdf
Kamal Acharya
 
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills KuwaitKuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
jaanualu31
 
Standard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayStandard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power Play
Epec Engineered Technologies
 

Último (20)

Online food ordering system project report.pdf
Online food ordering system project report.pdfOnline food ordering system project report.pdf
Online food ordering system project report.pdf
 
Thermal Engineering Unit - I & II . ppt
Thermal Engineering  Unit - I & II . pptThermal Engineering  Unit - I & II . ppt
Thermal Engineering Unit - I & II . ppt
 
Unleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leapUnleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leap
 
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
 
Thermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VThermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - V
 
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced LoadsFEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
 
Wadi Rum luxhotel lodge Analysis case study.pptx
Wadi Rum luxhotel lodge Analysis case study.pptxWadi Rum luxhotel lodge Analysis case study.pptx
Wadi Rum luxhotel lodge Analysis case study.pptx
 
Hospital management system project report.pdf
Hospital management system project report.pdfHospital management system project report.pdf
Hospital management system project report.pdf
 
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
 
Moment Distribution Method For Btech Civil
Moment Distribution Method For Btech CivilMoment Distribution Method For Btech Civil
Moment Distribution Method For Btech Civil
 
AIRCANVAS[1].pdf mini project for btech students
AIRCANVAS[1].pdf mini project for btech studentsAIRCANVAS[1].pdf mini project for btech students
AIRCANVAS[1].pdf mini project for btech students
 
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptxS1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
 
GEAR TRAIN- BASIC CONCEPTS AND WORKING PRINCIPLE
GEAR TRAIN- BASIC CONCEPTS AND WORKING PRINCIPLEGEAR TRAIN- BASIC CONCEPTS AND WORKING PRINCIPLE
GEAR TRAIN- BASIC CONCEPTS AND WORKING PRINCIPLE
 
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...
 
Work-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptxWork-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptx
 
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills KuwaitKuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
 
Hostel management system project report..pdf
Hostel management system project report..pdfHostel management system project report..pdf
Hostel management system project report..pdf
 
Standard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayStandard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power Play
 
Thermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.pptThermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.ppt
 
Online electricity billing project report..pdf
Online electricity billing project report..pdfOnline electricity billing project report..pdf
Online electricity billing project report..pdf
 

Mathematical support for preventive maintenance periodicity optimization of radiocommunication facilities

  • 1. Mathematical support for preventive maintenance periodicity optimization of radio communication facilities The Ministry of Transport of the Russian Federation The Federal Agency of Railway Transport Omsk State Transport University (OSTU) Granada, 2016 Alexander Lyubchenko – Associate Prof. of the Dept. Information and communication systems and data security
  • 2. Variety of radio application areas Page 1 Building industry Gas-and-oil producing industry Electric-power industry Minerals industry
  • 3. Page 2Technological radio communication devices of industrial enterprises Fig. 2.1 Technological radio communication network of industrial enterprises Base station PSTN Dispatcher Control Board Industrial transport Portable crane Engineering and industrial personnel Mobile-radio station Mobile-radio station Portable radio stations Fixed radio station Fig. 2.2 Railway fixed radio station RS-46MC Russian railways have: - 31.000 of FRS; - 60.000 of MRS; - 79.000 of PRS.
  • 4. Page 3 Actuality of the research Reasons: - Idealistic conditions; - Long time exploitation; - No recommendations about length of PM procedures. Challenging problem: Solution approaches: Natural experiments + expert method - Long time tests; - Real system availability; - Error probability of decision making. Mathematical support Scientifically substantiated results: periodicity Tint and duration tt Reasons: - Idealistic conditions; - Long time exploitation; - No recommendations about length of PM procedures. !!!Necessity to develop own local regulations!!! 0 ( ) ( ).i ij ij ij ij j T p dF       о д о д 1 12 13 0 0 ( ) ( ) ( ) t t t t T F F d           …...
  • 5. Research objective – development of mathematical support algorithms of a CAD system for optimization of preventive maintenance intervals of radio com- munication devices based on a simulation model of the operational process. Page 4 Research objective and tasks Tasks: 1) Select and justify the optimality criterion of the operational process of the radio communication devices; 2) Develop a conceptual and simulation model of the process taking into account the impact of the following factors: appearance of sudden, gradual, latent and fictitious failures, human factor of service staff and time parameters; 3) Implement the experiments to verify the conceptual model, confirm the adequacy of the simulation and test its stationary properties; 4) Develop algorithms for computer-aided design system allowing optimization of the preventive maintenance periodicity.
  • 6. Optimality criterion Page 5 Fig. 5.1 Typical graphs of the dependences KOE(Tint) and KA(Tint) where – allowable value of availability Objective function KOE(Tint): where TOS(Tint), TRS(Tint) and TMS(Tint) - mean time of operable state, repair and maintenance, accordingly. Availability function: Advisable value Trat: (1) (3) (4) (5) (6)     int A.A. (T ) maxOE A K f K K A.A.K int int int int int (T ) (T ) (T ) (T ) (T ) OS OE OS RS MS T K T T T    (2) int int int int (T ) (T ) (T ) (T ) OS A OS RS T K T T   intargmax ( )opt OET K T 1 . .( )all A A AT K K   min ,rat opt allT T T
  • 7. Fig. 6.1 State diagram of the operational process of repairable devices Conceptual model Model’s parameters: 1) vector of initial state of embedded Markov chain:  0 0 , 1,iP P i n  where n is a possible quantity of states. 2) matrix of transition probabilities from state Si to Sj: , ( 1, ; 1, )ijP i n j n  3) vector of density functions of time intervals for each state:  ( ) , 1,iF F t i n  States of the process: - Operable state (S1); - Misalignment state (S2); - Nonoperable state (S3); - Preventive maintenance of operative system (S4); - Maintenance of system with misalignment (S5); - Latent failure (S6); - Maintenance of system being in latent failure (S7); - Fictitious failure (S8). (1) (2) (3) Page 6 The model takes into account: 1) sudden and gradual failures; 2) fictitious and latent failures; 3) human factor of service staff; 4) time parameters of maintenance operations.
  • 8. Page 7 Simulation model’s algorithms Start T < Tk |Pij|, P0, Tоб, Т = 0 - + N(I) = N(I) + 1; Determination of initial state Calculation of the vector of density functions F(I) < Tоб -+ T+F(I) >= Tk - + F(I) = Tk – T; T = Tk; T(I) = T(I)+F(I); T(I) = T(I)+F(I); T = T + F(I); F(I) = Tоб; T+F(I) >= Tk - + F(I) = Tk – T; T = Tk; T(I) = T(I)+F(I); T(I) = T(I)+F(I); T = T + F(I); Determination of the next state I=J N = N + 1 End Fig. 7.1 Flow chart of the simulation algorithm Steps of simulation: 1) Determination of the first state of the process according to the vector of initial state; 2) Calculation system’s duration of stay in current state: 1 ξ ln(1 ), λ u   where u is a uniformly distributed number in the range [0,1]. 3) Definition of the next state Sj according to the matrix of transition probabilities when the following inequality is correct (j=f): 1 1 1 , , 1,8. f f ij ij j j P u P i const j         (1) (2)
  • 9. Page 8 Fig. 8.1 Algorithm of estimation of output parameters - + Process simulation Outputs’ estimation + + - - - + End Start 7 int intT Т  int.max RT , RN 0,N 0   int int.maxT T R RN N 1  A OEK K, Estimation of RN 120 A OEK K R,   N N 1   N 10  int int intT T Т   Accuracy of the estimations: /2, 1 [ ] ,pN P S x t N    (1) where S[x] is a sample standard deviation of random value x; Np is a sample size; ta/2,Np-1 is a fractile of t-distribution.
  • 10. Page 9 Smoothing and interpolation of simulation results ES – exponential smoothing; MA – moving-average method; SGF – Savitzky-Golay filter; LOWESS – locally weighted scatterplot smoothing. FT – polynomial fit of the 4th order ; LI – linear interpolation; CI – cubic interpolation; SSI – smoothing spline interpolation. Table I. Results of average squared error (εASE) estimation Table II. Results of estimation of εASE and determination coefficient (R2) Fig. 9.1 Dispersion before and after the use of the method of significant sample Fig. 9.2 Results before (red line) and after (dotted line) the use of the method
  • 11. Page 10 Estimation of parameters and adequacy testing 2 int 5 7 int ( , ) min; 5 10 10 ; 100 2000 . o k k S J T T T hours T hours ìï ¢= D ®ïïïï × £ £í ïïï £ D £ïïî     6 int 10 10 600 kT hours T hours Fig. 10.1 Graph of the residual dispersion Fig. 10.2 Analytical and simulation estimations Adequacy estimation criterion:    2 / 2 ,if 2Y X o S S where S2 y/x is a dispersion cased by the model; S2 o is a residual dispersion. the simulation model is adequate to analytical.
  • 12. Page 11 Numerical experiments 0 2000 4000 6000 8000 10000 12000 14000 0.996 0.9965 0.997 0.9975 0.998 0.9985 0.999 0 2000 4000 6000 8000 10000 12000 14000 0.996 0.9965 0.997 0.9975 0.998 0.9985 0.999 0.9995 1 intT ,hours intT ,hours int(T)OEK int(T)AK 0 2000 4000 6000 8000 10000 12000 14000 16000 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 intT ,hours int()pFT #1lin #1non #2non #3non #4non Fig. 11.1 Results for different distribution functions of service staff errors probability
  • 13. Page 12 Numerical experiments Fig. 12.1 Results for different values maintenance time parameters 0 2000 4000 6000 8000 10000 0.997 0.9975 0.998 0.9985 0.999 0 2000 4000 6000 8000 10000 0.9988 0.9989 0.999 0.9991 0.9992 0.9993 0.9994 0.9995 0.9996 0.9997 0.9998 intT ,hours intT ,hours int(T)OEK int(T)AK Default values tt=2, ta=1, ts=3 and tr=3 hours
  • 14. Module of multivariant analysis No Yes Increasing of Тоб.max value Start Selecting a device from DB Simulation is finished ? Module of parametric synthesis Calculation results Output of results End Input parameters Algorithms of CAD system Fig. 14.2 Block chart of CAD system functioning Core GUI CAD Simulation model prepared in VC++ as external mex- function of MATLAB GUI developed by GUIDE of Matlab software Page 13 Fig. 13.1 Structure of the software The core contains: 1. Module of multivariate analysis including: a) main simulation algorithm; b) algorithm of calculation of availability and operating efficiency mean values; c) smoothing and interpolation of results. 2. Module of parametric synthesis allowing to calculate recommended value Trat with accordance to the optimality criterion.
  • 15. Fig. 14.1 GUI of CAD system Page 14