Hemos actualizado nuestra política de privacidad. Haga clic aquí para revisar los detalles. Pulse aquí para revisar los detalles
Active su período de prueba de 30 días gratis para desbloquear las lecturas ilimitadas.
Active su período de prueba de 30 días gratis para seguir leyendo.
Descargar para leer sin conexión
Sometimes just creating a good model is not enough we need to enable people to use it and that often means making it a part of a bigger system or somehow deploying it. This will be from an engineering point of view of how we work with a data scientist or a team of them to make sure the model is production ready. Here is a short check list of things we would do for each model: 1. understand what the model is trying to do/predict 2. define all of the model inputs and outputs 3. define point (as a point in time and integration point) in the wider system when the model is called 4. define how we want to host the model. We from engineering team usually help to make sure we can gather all of the model inputs and process all of the model outputs, also we make sure models are fast and reliable to call in a production environment and we help optimize them for that we also help enforce good engineering practices that rub off on DS people and make them more efficient. And in this talk we will see a few examples of how we do things and what things to look for.
Sometimes just creating a good model is not enough we need to enable people to use it and that often means making it a part of a bigger system or somehow deploying it. This will be from an engineering point of view of how we work with a data scientist or a team of them to make sure the model is production ready. Here is a short check list of things we would do for each model: 1. understand what the model is trying to do/predict 2. define all of the model inputs and outputs 3. define point (as a point in time and integration point) in the wider system when the model is called 4. define how we want to host the model. We from engineering team usually help to make sure we can gather all of the model inputs and process all of the model outputs, also we make sure models are fast and reliable to call in a production environment and we help optimize them for that we also help enforce good engineering practices that rub off on DS people and make them more efficient. And in this talk we will see a few examples of how we do things and what things to look for.
Parece que ya has recortado esta diapositiva en .
¡Acabas de recortar tu primera diapositiva!
Los recortes son una forma práctica de recopilar diapositivas importantes para volver a ellas más tarde. Ahora puedes personalizar el nombre de un tablero de recortes para guardar tus recortes.La familia SlideShare crece. Disfruta de acceso a millones de libros electrónicos, audiolibros, revistas y mucho más de Scribd.
Cancela en cualquier momento.Lecturas ilimitadas
Aprenda más rápido y de forma más inteligente con los mejores expertos
Descargas ilimitadas
Descárguelo para aprender sin necesidad de estar conectado y desde cualquier lugar
¡Además, tiene acceso gratis a Scribd!
Acceso instantáneo a millones de libros electrónicos, audiolibros, revistas, podcasts y mucho más.
Lea y escuche sin conexión desde cualquier dispositivo.
Acceso gratis a servicios prémium como TuneIn, Mubi y muchos más.
Hemos actualizado su política de privacidad para cumplir con las cambiantes normativas de privacidad internacionales y para ofrecerle información sobre las limitadas formas en las que utilizamos sus datos.
Puede leer los detalles a continuación. Al aceptar, usted acepta la política de privacidad actualizada.
¡Gracias!