Visualizing Data - an introduction.

470 visualizaciones

Publicado el

Slides of the talk on Data Visualization I gave at Facebook Developers' Meetup, Delhi in Oct 2016.

Publicado en: Datos y análisis
1 comentario
6 recomendaciones
Estadísticas
Notas
Sin descargas
Visualizaciones
Visualizaciones totales
470
En SlideShare
0
De insertados
0
Número de insertados
3
Acciones
Compartido
0
Descargas
7
Comentarios
1
Recomendaciones
6
Insertados 0
No insertados

No hay notas en la diapositiva.

Visualizing Data - an introduction.

  1. 1. alizing Data hvanil Patel Visualizing Data by Dhvanil Patel
  2. 2. Isn’t it all about pretty bar charts? Isn’t it just a fancy way of showing numbers? Oh, Data Viz? Yeah, I can do that in Excel. Why do we even need Data Visualization? Yeah, I’ve worked with D3.js too.
  3. 3. Isn’t it all about pretty bar charts? Isn’t it just a fancy way of showing numbers? Oh, Data Viz? Yeah, I can do that in Excel. Why do we even need Data Visualization? Yeah, I’ve worked with D3.js too.No! No!
  4. 4. KW Pyramid? DIKW Pyramid?
  5. 5. Data Data Information Information Knowledge Knowledge Wisdom Wisdom
  6. 6. Data Data Information Information Knowledge Knowledge Wisdom Wisdom It is raining.
  7. 7. Data Data Information Information Knowledge Knowledge Wisdom Wisdom The temperature dropped 15 degrees and then it started raining.
  8. 8. Data Data Information Information Knowledge Knowledge Wisdom Wisdom If the humidity is very high and the temperature drops substantially the atmospheres is often unlikely to be able to hold the moisture so it rains.
  9. 9. Data Data Information Information Knowledge Knowledge Wisdom Wisdom I should carry an umbrella to office today.
  10. 10. Data Visualization rmation Design Information Design
  11. 11. Why is Data Visualization important? essential? crucial? neccesary? vital? critical? useful? meaningful? decisive? relevant? far-reaching?
  12. 12. Sight Sight 1250Mb/s 1250Mb/s125Mb/s 125Mb/s Touch Touch 12.5Mb/s 12.5Mb/s mell aring Smell HearingTaste
  13. 13. Sight Sight 1250Mb/s 1250Mb/s125Mb/s 125Mb/s Touch Touch 12.5Mb/s 12.5Mb/s mell aring Smell HearingTaste Active awareness at any given time
  14. 14. Human beings are visual creatures.
  15. 15. alysis of Variance (ANOVA) Confounding Factor Confoundent Correlation CoefficientDegrees of Freedom (df) Degrees of Freedom (df) χ² (Chi-Square) χ² (Chi-Square)Sum of Squares Sum of SquaresThe Statistic t The Sternative Hypothesis Statistical Significance The Statistic Z The Statistic Ze-Tailed Test Critical Value CriticalCritical Regiontatistical Test Statistical TestStandard Error Standard Error F Test F TestPower Powerβ (beta) β (beta)α (alpha) α (alpha) Z Score Z Scorerameter Variance VarianceDeviation Range RangeMode M Type II Error Type ITransformation RulesNormal Distribution Normal DistributionStatistic Statisticdian Mean Histogram Histogram Regression Related Measures Related MeasuresCentral Limit TheoremSample Mean (X Bar) Sample Mean (X Bar)pulation Standard Deviation Standard DeviationMean MeaMean Square Mean SquareType I Error Type I ErrorTwo-Tailed Test s² s²Prediction Null HypotUnbiased Estimate Random SampleAverage Deviationandard Deviation
  16. 16. alysis of Variance (ANOVA) Confounding Factor Confoundent Correlation CoefficientDegrees of Freedom (df) Degrees of Freedom (df) χ² (Chi-Square) χ² (Chi-Square)Sum of Squares Sum of SquaresThe Statistic t The Sternative Hypothesis Statistical Significance The Statistic Z The Statistic Ze-Tailed Test Critical Value CriticalCritical Regiontatistical Test Statistical TestStandard Error Standard Error F Test F TestPower Powerβ (beta) β (beta)α (alpha) α (alpha) Z Score Z Scorerameter Variance VarianceDeviation Range RangeMode M Type II Error Type ITransformation RulesNormal Distribution Normal DistributionStatistic Statisticdian Mean Histogram Histogram Regression Related Measures Related MeasuresCentral Limit TheoremSample Mean (X Bar) Sample Mean (X Bar)pulation Standard Deviation Standard DeviationMean MeaMean Square Mean SquareType I Error Type I ErrorTwo-Tailed Test s² s²Prediction Null Hypothesis Null HypotUnbiased EstimateRandom Sample Random SampleAverage Deviation Average Deviationandard Deviation s. People HATE Statistics.
  17. 17. Data Visualization rmation Design Information Design
  18. 18. Anatomy of a Visualization!
  19. 19. Country Military Budget ($B) % GDP United Kingdom 55.5 2.0 Russia 66.4 5.4 South Korea 36.4 2.6 Japan 40.9 1.0 Germany 39.4 1.2 India 51.3 2.3 Saudi Arabia 87.2 13.7 France 50.9 2.1 United States 596.0 3.3 China 215.0 1.9
  20. 20. United Kingdom 55.5 2.0 Russia 66.4 5.4 South Korea 36.4 2.6 Japan 40.9 1.0 Germany 39.4 1.2 India 51.3 2.3 Saudi Arabia 87.2 13.7 France 50.9 2.1 United States 596.0 3.3 China 215.0 1.9 Country ($B) % GDP
  21. 21. United States 596.0 3.3 China 215.0 1.9 Saudi Arabia 87.2 13.7 Russia 66.4 5.4 United Kingdom 55.5 2.0 India 51.3 2.3 France 50.9 2.1 Japan 40.9 1.0 Germany 39.4 1.2 South Korea 36.4 2.6 Country ($B) % GDP
  22. 22. United States 596.0 3.3 China 215.0 1.9 Saudi Arabia 87.2 13.7 Russia 66.4 5.4 United Kingdom 55.5 2.0 India 51.3 2.3 France 50.9 2.1 Japan 40.9 1.0 Germany 39.4 1.2 South Korea 36.4 2.6 Country ($B) % GDP
  23. 23. United States China Saudi Arabia Russia United Kingdom France Japan Germany South Korea India
  24. 24. South Korea Germany Japan France United Kingdom Russia Saudi Arabia China United States India
  25. 25. Japan France United Kingdom Russia Saudi Arabia China United States India South Korea Germany
  26. 26. Japan France United Kingdom Russia Saudi Arabia China United States India South Korea Germany
  27. 27. United States Japan France United Kingdom Russia Saudi Arabia China India South Korea Germany
  28. 28. United States NASA’s budget Japan France United Kingdom Russia Saudi Arabia China India South Korea Germany
  29. 29. Why don’t we ring in Maps? Why don’t we bring in Maps?
  30. 30. United States Japan France United Kingdom Russia Saudi Arabia China India South Korea Germany Military Budget (in $ Billions)
  31. 31. United States Japan France Russia Saudi Arabia India South Korea Germany United Kingdom China Military Budget (% of GDP)
  32. 32. –Ronald Coase –Ronald Coase “If you torture the data long enough, it will confess.”
  33. 33. ation Information Dis Information Un Information Mis Information
  34. 34. That’s all well and good, but How do I start?
  35. 35. Step 1 Pick a Dataset!
  36. 36. Step 2 Visualize!
  37. 37. Visualization Tools!
  38. 38. three.js
  39. 39. three.js
  40. 40. three.js
  41. 41. Mapping Tools!
  42. 42. bit.do/datavisualization
  43. 43. ization uture! Data Visualization and it’s Future!
  44. 44. obile Devices Mobile Devices Tiny screens, huge challenges!
  45. 45. rtual Reality! Virtual Reality! Different ballgame, altogether!
  46. 46. Brain Computer Interfaces! Different ballgame, altogether!
  47. 47. Feedback ?! Questions ?! Stones ?! Tomatoes ?! Shoes ?! Bricks ?! Feedback ?! Questions ?! Stones ?! Tomatoes ?! Shoes ?! Bricks ?!
  48. 48. facebook.com/@flamenfury @dhvanilp twitter.com/@dhvanilp l.com mailto : me@dhvanil.com e: dhvanil.com website: dhvanil.com Thank you! Thank you!

×