SlideShare una empresa de Scribd logo
1 de 14
Descargar para leer sin conexión
A Blended Learning Approach to Lean Six Sigma Green Belt Education for
European Students
Mikko Rajala,1
Henri Jarrett,1
and Jukka-Matti Turtiainen2
1
Aalto University School of Science Department of Industrial Engineering and Management
P. O. Box 15500 FI-00076 Aalto, Finland
2
Lappeenranta University of Technology School of Business and Management
P. O. Box 20 FI-53851 Lappeenranta, Finland
ABSTRACT
The European Students of Industrial Engineering and Management (ESTIEM) have
developed a blended learning approach for teaching Lean Six Sigma to students in European
universities. This case study will describe how three different pedagogical methods – offline,
blended and online – are integrated for teaching this course at a Green Belt level of
competence.
This paper describes alternative different teaching methods and the rational for integrating
both online and offline teaching which have their unique benefits. Whereas online content is
highly scalable and consistent, offline teaching enables efficient contact sessions, reflection
and practical assignments. Combining these introduces additional benefits in the learning
process outcomes.
The benefits of the blended learning model are described through lessons learned in the Lean
Six Sigma Green Belt course developed for ESTIEM. This course was developed under the
mentoring of ESTIEM Summer Academy Professor Gregory H. Watson and it applies a five-
level learning model for teaching the methods and tools, and establishing linkages between
the tools. The theory was taught in 13-hours of video material supported by an online learning
experience including quizzes, games, and take-home exercises. The tools were applied in
practical group discussion sessions. Finally the case study, focused on challenging
participants to choose the right tools to answer high-level questions.
Findings from this development project suggest that the best student performance results are
achieved by using a mixture of offline and online learning methods. Some of the theoretical
parts are best taught in a fully online format – it is both scalable, and provides the opportunity
for customizing the individual learning experiences. While the theory of the tools can be
taught in the online format – learning the tools and the linkages to other tools often require
doing practical exercises which are difficult to replicate online. Teaching the tools effectively
requires that instructors develop deeper understanding of the advantages of mixing online and
offline teaching methods. Based on the findings from this paper, the blended method has the
potential be able to reach almost the same efficiency as the traditional face-to-face learning
while enabling broad scaling for dissemination with fewer committed resources.
KEYWORDS
Lean Six Sigma, Green Belt, e-learning, massive on-line course, blended learning, industrial
engineering and management, ESTIEM, internship, case study, practicum, quality problem
solving
1 Introduction
There is a strong industry pull for the Lean Six Sigma or operations improvement
professionals in general. Despite this fact, the Lean Six Sigma education is to a large extent
not offered to students in Europe. Combining a strong student network with the state of art
Lean Six Sigma content by Gregory H. Watson creates a unique setting for filling in this gap.
Our vision is to provide a scalable Lean Six Sigma Green Belt course for European Industrial
Engineering and Management students. By taking part in the Green Belt course and using the
Lean Six Sigma method in an internship, students have the opportunity to obtain a Green Belt
certificate already during their studies. We aim to equip young professionals with the Lean
Six Sigma mindset and tools so that they can thrive in their career and add value to companies
and society.
1.0 What have we accomplished?
Between November 2016 and July 2017, over 140 students have completed our course. Out of
those students, ca. one fifth have already started the internship in order to obtain the Green
Belt certificate. As for training instances, there have been three international training events
held in various locations around Europe, eight courses held locally at certain universities by
local student organizations, and a handful of online and offline pilots. As the persons
delivering our course, we have currently 15 trainers and are in process for developing more.
By the end of the year 2017, our goal is to double the number of trainers and the participants
who have gone through our course.
Figure 1: Current accomplishments of our course
1.1 Context of teaching
ESTIEM is the organisation for European Students of Industrial Engineering and
Management, who combine the technological understanding with management skills. The
goal of ESTIEM is to establish and foster relations between students. ESTIEM consists of 80
Local Groups in 31 countries. A Local Group is essentially a local organization of the
ESTIEM network which is associated with an IEM program of a university. ESTIEM
organizes over 180 events annually, and the topics of the events range from academic and
personal development to coordination meetings and cultural activities. Circa 8 000 students
are involved with the association and ESTIEM has a reach of 60 000 Industrial Engineering
and Management students in Europe. ESTIEM acts as the network enabling the development
and scaling of the Lean Six Sigma Green Belt course, providing both resources and students
to it.
2 Case Study
In the context of Lean Six Sigma education, the goal of ESTIEM is to expand Lean Six Sigma
teaching among European Industrial Engineering & Management students. The case study
illustrates how the course has developed, the learning modes used in the context of the course,
and the blended learning model utilized in the teaching of the course.
2.0 The Path of Development
This chapter discusses the what steps have been taken in developing the course. The path
starts from the emergence of the original idea, proceeding to designing the curriculum,
piloting the first Green Belt course, and finally how the teaching was rapidly expanded.
2.1 ESTIEM as the parent of the course
The original idea of developing the course stems from an ESTIEM event held in Helsinki in
2015, where Gregory H. Watson acted as the academic leader. At the event, students discussed
together with Mr. Watson about the possibility to develop a Green Belt course for ESTIEM.
Shortly after, the development of the course started as three students commenced to
collaborate with Mr. Watson. The early tasks were divided into several components such as
understanding customer and market needs, curriculum design, recording teaching videos,
building an online course, piloting different teaching models, and collaborating with various
stakeholder groups.
2.2 Curriculum Design
Building on the ASQ Green Belt program (American Society for Quality, 2017), the body of
knowledge was created by Gregory H. Watson. As the course is targeted to engineers, certain
technical aspects were added to the Green Belt course - especially related to the statistical
knowledge.
Based on the body of knowledge, the curriculum was designed for teaching young
professionals. Young professionals, i.e. Industrial Engineering students with Master’s level
education or similar, tend to have limited work experience and can, thus, lack the ability to
link the learnings from the academic courses to the real-life problems. Without the real-life
linkage, mere theoretical teaching can be easily forgotten, and left without context. Thus,
several practical exercises as well as case work were added to support theoretical learning
during the general learning process of the student.
The main goal of the curriculum is to help young professionals to successfully solve complex
operational problems in companies. Thus, measuring the success of the course is not linked to
the impeccable knowledge of the theory, but whether the student is able to conduct successful
operational improvement projects in companies (Watson, 2004). In order to achieve this goal,
the curriculum comprises learning paths with parallel teaching of the theory and learning by
doing. In perhaps more traditional teaching models, the teaching of the theory comes first, and
is followed by the practical training. In contrast, the method of this course could better be
described as a constant dialogue between strengthening the theory, and the application of the
tools.
2.3 Pilot Sessions with support from Aalto University
Apart from the various small-scale pilots, the first actual teaching round was held at Aalto
University, Finland. The collaboration with Aalto University proved to be highly fruitful and
it received excellent feedback from the students. In practice, Gregory H. Watson acted as the
lecturer of the course whereas the students involved in the development of the course
facilitated the practical group work.
2.4 Expansion through a new approach to teaching
The expansion of the course is done using three different methods. Firstly, we support the
local trainers to deliver courses for the students from the same university. Secondly,
supporting the local course expansion, the regional courses enable the student organizations
which are similar and close to each other to organize courses together. Thirdly, the 5-day-long
events provide the opportunities for Industrial Engineering and Management students to join
the Green Belt course. A combination of these three types of expansion methods have enabled
the rapid growth, and are aimed to create the strength and continuity into the local level.
Approximately speaking, on a high level, teaching the course can be divided into three
individual components: 1) teaching the theory, 2) facilitating trainings and cases, and 3)
project mentoring. In traditional Green Belt teaching it is typical that a seasoned professional
offers face–to–face teaching in some or all three of the mentioned components. In our course,
we have challenged whether those three parts can be separated to enable the scalability of
high quality content. Firstly, the high quality teaching of the theory was ensured by creating
an online content with 13 hours of videos from Gregory H. Watson. Secondly, the trainings
are standardized, and developed so that the students are able to deliver the trainings. Thirdly,
the project mentoring is conducted by people who have practical experience and conducted
their Green Belt project.
Summarizing the strategy for expansion, scalability was reached by separating the theory,
facilitation of the content, and the project mentoring. It was deemed that there is no need to
allocate responsibilities of all three components to one person. Our approach to teaching is
further described in the chapter Blended Learning Model and Core instructional material.
2.5 Learning Modes
Based on the learnings from the pilot courses and the expansion, a great deal of things about
how students learn were discovered. This chapter discusses these learnings and how they have
been integrated into the teaching model.
The learning modes present in our course can be illustrated with the following 5 level model,
which is presented in the Figure 2. The 5 level model was created by translating the cognitive
domain of Bloom’s taxonomy of learning to the context of our course (Anderson et al., 2001).
Rather than seeing learning as a step-by-step process, the model is built in a format of a
pyramid: sufficient knowledge on the lower levels is a prerequisite for advancing upwards,
but the lower levels of the pyramid can be understood better only when the upper levels of the
pyramid are strengthened.
The learning model starts with Defining: the ability of the student to recall what has been
heard about the topic. As a practical example, in the case of teaching a SIPOC map, the
student would be able to answer a question in an exam like regarding the basic description
and usage of a SIPOC map.
The next level, Understanding, requires the student to further develop their knowledge of the
tool through the four lenses of learning: 1) which questions in processes the tool aims to
answer, 2) how it links to the DMAIC, and 3) how the other tools can be linked to the tool. In
the context of SIPOC, the student would be able to describe the output and usage of the
SIPOC map in more detail, as well as describe how the individual parts support in achieving
the desired output.
The Applying level means that the student is not only able to describe the individual parts, but
is also able to apply the topic to an actual problem. In the Bloom’s taxonomy, the application
of the topics is considered as a separate domain (Anderson et al., 2001). As our end goal is the
successful application of the topics, sufficient Understanding of a particular topic is a
prerequisite for Applying: without Understanding, Applying the topics would be mindless.
The only way to achieve informed practice is to first have the sufficient knowledge to create
the correct mental mapping while Applying the topic. Again, in the context of a SIPOC map,
the student would be able to create the SIPOC map from a real-life or simulated work process.
The Synthesizing level requires students to be able to integrate learnings from separate topics
together to address the complex nature of real-world problems. The student should, on this
level, have mental mappings of simplified links between the topics, and the ability to actually
use the outputs of a tool to enhance the power of another tool. In the case of a SIPOC map,
the student would understand how the problem statement helps in defining the starting and
ending point of the high-level process, and how the high-level process is then turned into the
input of creating a Deployment Diagram.
The ultimate level, Usage in real-life, implies the ability of a student to understand the need of
utilizing a tool when observing a real-world problem, and successfully using the tool to guide
the progress forward. As real-life processes are often messy, and the data is rarely perfect, the
student needs a sufficient knowledge on the previous levels in order to modify the tool to get
the desired output. Again, using a SIPOC map as an example, the student should be able to
recognize situations in the real-world where the SIPOC map is applicable, and be able to
modify the tool to fit to the given context.
Figure 2: The five level model for learning
2.6 Blended Learning Model and Core instructional material
This chapter will take the 5 level model of learning, and tie it to the actual methods of
teaching in our course. The Table 1 summarizes the methods, and their linkage to the 5 level
model of learning. Each of the teaching methods is then described in greater detail to address
their role in preparing the students for conducting successful projects in companies.
The different teaching methods can be divided into two categories, online- and offline-based
methods - thus the name, Blended Learning Model. The online-based methods have the same
content independent on the course model, i.e. whether the course is a 5-days-long event or a
6-weeks-long course. They aim to ensure the quality of the teaching in different locations, and
help to spread the expert teaching to broader audiences.
Offline-based methods, on the other hand, can vary a bit based on the course model. They rely
more on the abilities of the trainer to facilitate the learning process of the student. Whereas the
online-based methods help to spread the knowledge of the expert, offline-based methods rely
more on learning in groups, and creating practical experiences for the theory learned in the
online modules.
Method Description Linkage to 5 steps of
learning
Online methods Videos 13 hours of 1-20
minute videos from
Gregory H. Watson
as the base content
Defining
Understanding
Questions inside
videos
Quiz type questions
about the learning
goals immediately
inside the videos
Defining
Understanding
Quizzes / Tests Questions after
videos enhance and
monitor the learning
Defining
Understanding
Games Simulated problems
where students need
to answer questions
Understanding
(Applying)
Exercises Students need to use a
tool individually on a
simplified problem
Applying
Offline methods Training 2-3 hour modules
focused on using the
tools in groups for
simulated problems
(Understanding)
Applying
Synthesizing
Cases Simulated case where
the students go
through a full
DMAIC cycle in
groups
(Applying)
Synthesizing
(Usage in real-life)
Table 1: The teaching methods and their linkage to the 5 level learning model
2.7 Online-based module
This chapter discusses the contents of the online-based module in more detail.
The lecture videos form the backbone of the course, as they serve as the foundational theory
of the course. In the videos, Gregory H. Watson lectures for 1-20 minutes, and combined, the
lecture videos comprise the theoretical insights presented in the course.
Questions inside videos help the students to make sure that they have achieved the learning
goals of the videos. As the content can sometimes be relatively difficult, the questions are
placed after the important part of the content is described, allowing the student to rewind to
the point of the video where the insight was first presented.
Quizzes comprise questions which check after the online course modules that the students
have reached the learning goals. In case the student responds incorrectly, the student is guided
to go back to the timestamp on the correct video, where that part of insight is described.
Additionally, questions can be asked in the Q&A forums embedded in the online course.
Games in the online platform serve as a bridge between the Understanding and Applying
levels of learning. The games involve simple tasks to make conclusions about the output of
the tools in a simulated work process. The games aim to strengthen the knowledge of the
student in three aspects: 1) which questions the tool can provide insight to, 2) how to interpret
the output of the tools, and 3) what questions follow from using the tools.
Exercises are focused on giving students an experience of utilizing an individual tool in a
simplified and predetermined task. The exercises are especially used with the statistical tools,
but can also be used to teach the qualitative tools, such as the project charter or a SIPOC map.
The exercises are done individually, and they are designed to be relatively easy and
straightforward to complete.
2.8 Trainings
Trainings have an integral role in both creating linkages between the practical use cases and
the theory, as well as strengthening the understanding of the tools through group discussions
and simulated learning experiences. Each training comprises of multiple learning sequences
which are organized as follows: 1) the relevant theory is revised by discussing in groups, 2)
the tools are used in groups on a simulated work process, and 3) the conclusions and learnings
from the training and other real-life experiences are reflected all together and in groups. The
trainings form stories, where the different tools are linked together, and the students are taught
to utilize the learnings from the previous tools to form a coherent story.
The trainings are standardized, and built so that the students can facilitate them with sufficient
development of the trainers. The development path of the trainers aims to create capabilities
for the trainers in the three domains presented in the Figure 3: focusing on the individual
learning of the students, handling difficult situations and having sufficient knowledge of the
content
Figure 3: The key competences of the trainer.
The focus on individual learning of the students aims to teach the trainers with the right
facilitation skills. As the students can come from very different backgrounds, the trainers are
taught to be observing the group dynamics and focusing on making sure that the students
understand the concepts. The 5 level learning model is used as a basis for observing the
participants: trainers should make sure that the participants have the sufficient Understanding
of the theory to create the correct linkages before Applying.
Ability to handle difficult situations is an important part in securing the high quality
learning experiences for the students. When the trainings are delivered by the students for the
students, the authority of the trainer must be preserved with more rigor than when the
trainings are delivered by one acknowledged expert. For this reason, we teach our trainers to
handle the difficult situations that can happen during the trainings. Furthermore, several
support systems are built for the trainers: e.g. the system for finding answers to the difficult
questions that come up during the trainings, and the creation of formal path and status for
trainers.
Sufficient knowledge of the content serves as the cornerstone for delivering high quality
trainings. In order to have the sufficient knowledge, the following process aims to provide the
trainers with ability to teach and answer to the majority of questions during the trainings:
1) the trainers need to have gone through the Green Belt course,
2) the self-study material is given on the topic of the trainer,
3) coaching is given by a person with more experience on Lean Six Sigma,
4) the trainings are prepared and delivered in pairs to enable peer support
2.9 Case study & internship
After the trainings, the students complete a case study and an internship. The case study takes
the students through a simulated DMAIC cycle: it starts with creating the project charter of
the given problem, and ends in thinking through what kind of methods are critical for
achieving a lasting change in an actual work process. The case study is done in groups, and
goes on throughout the course. The structure of the case study forces students to think of the
relevant questions to be answered in each phase of the case study, as well as to think which
tools can be useful in addressing those questions. By forcing students to think of the questions
and relevant tools for answering them, the case study aims to prepare the students for the
challenges in the real-world.
In order to receive Green Belt certificate, students need to do a real-world Green Belt
internship in an organization. The project has to follow DMAIC project management
methodology and certain basic tools are required to be applied. By using the methodology in
real-life students get an experience how the theory fits into practice. They get a deeper
understanding of the usage of the methodology and something to relate to when thinking
about the theory. By doing the project students have a chance to demonstrate their skills in
real-life and a meaningful start in their career. (Watson, 2006)
3 Lessons Learned
Based on the learnings from our course, we have identified that teaching quality can be
expanded to a broader audience through a Blended Learning Model. This chapter discusses in
more detail how the Blended Learning Model could help the creation of new courses in three
domains: scalability of teaching, teaching people with limited practical experience, and trainer
development.
3.0 Teaching people with limited practical experience
The case study illustrates that people with limited working experience can highly benefit from
Lean Six Sigma Green Belt teaching. Based on our experience, the way of teaching cannot,
however, follow the traditional pattern of an expert discussing the theory complemented with
the practical examples from companies. Without the practical experience, the students have
difficulties in making the real-world linkages, and thus, might be unable to use the learned
insights in actual problems.
For the people with limited working experience, we have identified that learning by doing
must go hand-in-hand with teaching the theory. The theory is needed to have the right context
for doing, and the doing is required to create the actual linkages between the learned concepts.
This dialogue between learning the theory and doing must step-by-step prepare the students
towards being able to utilize the tools in the real-world. Whereas a more experienced audience
might be able to build real-world linkages of insights themselves, a robust teaching model is
required to ensure learning among less experienced students.
3.1 Scalability of the teaching
The scarce resource in several organizations teaching quality programs is the availability of a
seasoned expert who is sufficiently competent to teach the Lean Six Sigma course. Based on
our experience, a Lean Six Sigma expert might not be needed to take care of the majority of
the teaching. Further, a combination of online and offline teaching can enable excellent
learning outcomes with limited involvement of the experts during the course.
In the case study, we suggested that the teaching should be a dialogue between theoretical
learning and doing. Theoretical learning is difficult to achieve if the trainer has insufficient
experience in the field. We have identified that to have an expert teaching the theoretical
content is key to phrase the insights in a correct, understandable, and concise manner, and
thus the expert teaching is needed in the theory parts. Our case study illustrates, that the
online-based teaching of the theory can lead to good learning outcomes. Online-based or
blended teaching can require more work in the creation phase of the course content, but
decrease the work needed for delivering the course in the longer run.
Based on our experience, the online teaching is, however, insufficient to replace the actual
experience of doing and discussing the insights in groups. Thus, the trainings are an essential
part of our course. Our case study illustrates, however, that even less experienced trainers are
able to deliver high quality sessions given a well-executed preparation process, as well as
predefined training content. Separating the training delivery and the online-based teaching,
quality improvement courses could be expanded to reach larger audiences with less Lean Six
Sigma expert resources.
3.2 Trainer development
Based on the lessons learned from the case study, it is important that trainers with limited
formal authority and expertise have tools to overcome difficult situations. For example, the
atmosphere in a training might become tense if students start asking harder and harder
questions and to question the competence of the trainer if the questions are not answered. If
this kind of situation arises, trainers need to be capable and have the sufficient support
systems to overcome the situation and continue the flow of the training.
In the case study we presented the development path of the trainers for the course. During the
development path of the trainer, students deepen their knowledge on the Lean Six Sigma as
well as get valuable experience in facilitating group work and learning. The skills and
experiences they gain during their trainer development path will be very valuable in their
future careers.
4 Discussion about the future
The development of the course has been a highly iterative process. Between October 2016
and June 2017, 12 separate teaching rounds were organized - each with a set of new
hypotheses to test. While the standardization of the course is well on its way, the development
has not stalled. This chapter discusses the possible new avenues of development, we are
currently in the midst of building.
The first developmental objective is to develop new approaches to conducting Lean Six
Sigma Green Belt internships in companies. Currently, the students have been applying as
individuals to companies to conduct a 1-6 month internship. Our goal is to build sustainable,
and continuous ways to create value for both the company and our students. As one of the
possible models, a given company would continuously have one Green Belt working on a
project. The length of the project for one student could be between 1-3 months, and a
mentoring system would be created to get new students fast onboard with prior learnings. We
are currently looking for companies to test this model with.
The second objective links to our goal of creating a measurement system for tracking the
learning process of our students. The current methods in our course have followed the
traditional logic of monitoring that the exercises have been done, and giving feedback on the
learning during the trainings. Our learning goals, should, however be the foundation for
creating individual learning paths: if a student has trouble in exercises about a specific tool,
more material should be automatically handed out for the individual to strengthen their
knowledge. We are currently looking for ideas for the technical issues, and the architecture of
the measurement system.
As trainers are one of the key elements of our course, we are currently developing a
mentoring system for the trainers. At present, the mentoring is done via an online video call
before each training the trainer holds. To enable scalability, we are looking for people with
experience in Lean Six Sigma to help us with delivering these mentoring sessions.
Additionally, we are in progress of creating new models for the trainer mentoring: e.g.
combining several trainers teaching the same training in different places as peer groups, who
the mentor is then guiding.
As the fourth developmental objective, we are aiming to integrate our course to the
curriculums in the European universities. Already, a few universities have indicated a green
light for giving credits for this course, and some have already done that. In addition to getting
credits for the course, we are aiming to get the course into the actual curriculums of several
universities. To enable the strong integration with universities, we are currently in discussions
with a handful of European universities, and are actively looking for more partners to develop
a suitable model for growth together.
5 References
American Society for Quality (2017). Certified Six Sigma Green Belt. Milwaukee, WI: ASQ;
downloaded on 1 August 2017 from:
https://asq.org/cert/resource/pdf/certification/inserts/CSSGB%20Insert%20B1506.pdf .
Anderson, Lorin W., Krathwohl, David R., eds. (2001). A Taxonomy for Learning, Teaching
and Assessing: A Revision of Bloom’s Taxonomy of Educational Objectives. Allyn and Bacon.
Watson, Gregory H. (2004). Six Sigma for Business Leaders. Salem, NH: GOAL QPC Press.
Watson, Gregory H. (2006), “Industrial Engineering: Confluence of a Six Sigma
Curriculum,” Proceedings of the IIE Research Conference, Orlando, FL, 28 May 2006.

Más contenido relacionado

La actualidad más candente

Champ Year 1 Rutgers Report Presentation
Champ Year 1 Rutgers Report PresentationChamp Year 1 Rutgers Report Presentation
Champ Year 1 Rutgers Report Presentationcccschamp
 
Applying design thinking to reimagine our First Year Experience - EFYE 2017 B...
Applying design thinking to reimagine our First Year Experience - EFYE 2017 B...Applying design thinking to reimagine our First Year Experience - EFYE 2017 B...
Applying design thinking to reimagine our First Year Experience - EFYE 2017 B...clairemcdonnell5
 
Higher ed - wiztango active learning platform
Higher ed - wiztango active learning platformHigher ed - wiztango active learning platform
Higher ed - wiztango active learning platformWIZTANGO
 
Cwdc champ advisory council meeting jan 27
Cwdc champ advisory council meeting jan 27Cwdc champ advisory council meeting jan 27
Cwdc champ advisory council meeting jan 27COCommunityCollegeSystem
 
Colorado Helps Advanced Manufacturing DOL presentation March 2014
Colorado Helps Advanced Manufacturing DOL presentation March 2014Colorado Helps Advanced Manufacturing DOL presentation March 2014
Colorado Helps Advanced Manufacturing DOL presentation March 2014cccschamp
 
MOOC's Targeted Learning Outside Higher Education's Traditional Models STEMTe...
MOOC's Targeted Learning Outside Higher Education's Traditional Models STEMTe...MOOC's Targeted Learning Outside Higher Education's Traditional Models STEMTe...
MOOC's Targeted Learning Outside Higher Education's Traditional Models STEMTe...cccschamp
 
[MID2018] Presentation of Darco Jansen (EADTU) during MID2018 in Maastricht
[MID2018] Presentation of Darco Jansen (EADTU) during MID2018 in Maastricht[MID2018] Presentation of Darco Jansen (EADTU) during MID2018 in Maastricht
[MID2018] Presentation of Darco Jansen (EADTU) during MID2018 in MaastrichtEADTU
 
Champ year 1 Outcomes Leadership an Advisory Meetings
Champ year 1 Outcomes Leadership an Advisory MeetingsChamp year 1 Outcomes Leadership an Advisory Meetings
Champ year 1 Outcomes Leadership an Advisory Meetingscccschamp
 
The state of training and development in europe cegos survey 2013
The state of training and development in europe cegos survey 2013The state of training and development in europe cegos survey 2013
The state of training and development in europe cegos survey 2013Cegos Asia Pacific Pte Ltd
 
CHAMP Leadership Team Meeting June 2014
CHAMP Leadership Team Meeting June 2014CHAMP Leadership Team Meeting June 2014
CHAMP Leadership Team Meeting June 2014cccschamp
 
Innovation in Education: Tools and methods for success (Session 2)
Innovation in Education: Tools and methods for success (Session 2)Innovation in Education: Tools and methods for success (Session 2)
Innovation in Education: Tools and methods for success (Session 2)Andreas Meiszner
 
A Field of Online Dreams – Build it and they will come (or will they?) - Cult...
A Field of Online Dreams – Build it and they will come (or will they?) - Cult...A Field of Online Dreams – Build it and they will come (or will they?) - Cult...
A Field of Online Dreams – Build it and they will come (or will they?) - Cult...Ken McCarthy
 
Design of an innovative approach based on Service Learning for Information Te...
Design of an innovative approach based on Service Learning for Information Te...Design of an innovative approach based on Service Learning for Information Te...
Design of an innovative approach based on Service Learning for Information Te...Grial - University of Salamanca
 
Challenges Facing Professional Higher Education in Central and South-Eastern ...
Challenges Facing Professional Higher Education in Central and South-Eastern ...Challenges Facing Professional Higher Education in Central and South-Eastern ...
Challenges Facing Professional Higher Education in Central and South-Eastern ...Anthony Fisher Camilleri
 
Introducing the new aoit courses 062309
Introducing the new aoit courses 062309Introducing the new aoit courses 062309
Introducing the new aoit courses 062309NAFCareerAcads
 
Adult Education: Skills Upgrading Vs 2nd Chance for Qualification
Adult Education: Skills Upgrading Vs 2nd Chance for QualificationAdult Education: Skills Upgrading Vs 2nd Chance for Qualification
Adult Education: Skills Upgrading Vs 2nd Chance for QualificationChin Joo Quek
 
PurpleLeap - Atrium for Career Excellence
PurpleLeap  - Atrium for Career Excellence PurpleLeap  - Atrium for Career Excellence
PurpleLeap - Atrium for Career Excellence purpleleap_bangalore
 
Providing remote workplace services in emergency situations (staff support)
Providing remote workplace services in emergency situations (staff support)Providing remote workplace services in emergency situations (staff support)
Providing remote workplace services in emergency situations (staff support)EADTU
 

La actualidad más candente (20)

Champ Year 1 Rutgers Report Presentation
Champ Year 1 Rutgers Report PresentationChamp Year 1 Rutgers Report Presentation
Champ Year 1 Rutgers Report Presentation
 
Applying design thinking to reimagine our First Year Experience - EFYE 2017 B...
Applying design thinking to reimagine our First Year Experience - EFYE 2017 B...Applying design thinking to reimagine our First Year Experience - EFYE 2017 B...
Applying design thinking to reimagine our First Year Experience - EFYE 2017 B...
 
Higher ed - wiztango active learning platform
Higher ed - wiztango active learning platformHigher ed - wiztango active learning platform
Higher ed - wiztango active learning platform
 
Cwdc champ advisory council meeting jan 27
Cwdc champ advisory council meeting jan 27Cwdc champ advisory council meeting jan 27
Cwdc champ advisory council meeting jan 27
 
Colorado Helps Advanced Manufacturing DOL presentation March 2014
Colorado Helps Advanced Manufacturing DOL presentation March 2014Colorado Helps Advanced Manufacturing DOL presentation March 2014
Colorado Helps Advanced Manufacturing DOL presentation March 2014
 
MOOC's Targeted Learning Outside Higher Education's Traditional Models STEMTe...
MOOC's Targeted Learning Outside Higher Education's Traditional Models STEMTe...MOOC's Targeted Learning Outside Higher Education's Traditional Models STEMTe...
MOOC's Targeted Learning Outside Higher Education's Traditional Models STEMTe...
 
[MID2018] Presentation of Darco Jansen (EADTU) during MID2018 in Maastricht
[MID2018] Presentation of Darco Jansen (EADTU) during MID2018 in Maastricht[MID2018] Presentation of Darco Jansen (EADTU) during MID2018 in Maastricht
[MID2018] Presentation of Darco Jansen (EADTU) during MID2018 in Maastricht
 
Champ year 1 Outcomes Leadership an Advisory Meetings
Champ year 1 Outcomes Leadership an Advisory MeetingsChamp year 1 Outcomes Leadership an Advisory Meetings
Champ year 1 Outcomes Leadership an Advisory Meetings
 
The state of training and development in europe cegos survey 2013
The state of training and development in europe cegos survey 2013The state of training and development in europe cegos survey 2013
The state of training and development in europe cegos survey 2013
 
CHAMP Leadership Team Meeting June 2014
CHAMP Leadership Team Meeting June 2014CHAMP Leadership Team Meeting June 2014
CHAMP Leadership Team Meeting June 2014
 
Innovation in Education: Tools and methods for success (Session 2)
Innovation in Education: Tools and methods for success (Session 2)Innovation in Education: Tools and methods for success (Session 2)
Innovation in Education: Tools and methods for success (Session 2)
 
A Field of Online Dreams – Build it and they will come (or will they?) - Cult...
A Field of Online Dreams – Build it and they will come (or will they?) - Cult...A Field of Online Dreams – Build it and they will come (or will they?) - Cult...
A Field of Online Dreams – Build it and they will come (or will they?) - Cult...
 
Design of an innovative approach based on Service Learning for Information Te...
Design of an innovative approach based on Service Learning for Information Te...Design of an innovative approach based on Service Learning for Information Te...
Design of an innovative approach based on Service Learning for Information Te...
 
Challenges Facing Professional Higher Education in Central and South-Eastern ...
Challenges Facing Professional Higher Education in Central and South-Eastern ...Challenges Facing Professional Higher Education in Central and South-Eastern ...
Challenges Facing Professional Higher Education in Central and South-Eastern ...
 
Learning and Development: Past and Present
Learning and Development: Past and PresentLearning and Development: Past and Present
Learning and Development: Past and Present
 
Introducing the new aoit courses 062309
Introducing the new aoit courses 062309Introducing the new aoit courses 062309
Introducing the new aoit courses 062309
 
Adult Education: Skills Upgrading Vs 2nd Chance for Qualification
Adult Education: Skills Upgrading Vs 2nd Chance for QualificationAdult Education: Skills Upgrading Vs 2nd Chance for Qualification
Adult Education: Skills Upgrading Vs 2nd Chance for Qualification
 
PurpleLeap - Atrium for Career Excellence
PurpleLeap  - Atrium for Career Excellence PurpleLeap  - Atrium for Career Excellence
PurpleLeap - Atrium for Career Excellence
 
Internship Assessment from Company Supervisor’s viewpoints: a fiveyear experi...
Internship Assessment from Company Supervisor’s viewpoints: a fiveyear experi...Internship Assessment from Company Supervisor’s viewpoints: a fiveyear experi...
Internship Assessment from Company Supervisor’s viewpoints: a fiveyear experi...
 
Providing remote workplace services in emergency situations (staff support)
Providing remote workplace services in emergency situations (staff support)Providing remote workplace services in emergency situations (staff support)
Providing remote workplace services in emergency situations (staff support)
 

Similar a Conferene Paper - A blended learning approach to lean six sigma green belt education for European students

Effectivepracticeelearning
EffectivepracticeelearningEffectivepracticeelearning
EffectivepracticeelearningDr Lendy Spires
 
Effective e-learning practice JISC
Effective e-learning practice JISCEffective e-learning practice JISC
Effective e-learning practice JISCNina Clutton
 
Continuous professional development for secondary education teachers to adopt...
Continuous professional development for secondary education teachers to adopt...Continuous professional development for secondary education teachers to adopt...
Continuous professional development for secondary education teachers to adopt...Up2Universe
 
Using e-learning for social sciences: practical lessons from the Free Univers...
Using e-learning for social sciences: practical lessons from the Free Univers...Using e-learning for social sciences: practical lessons from the Free Univers...
Using e-learning for social sciences: practical lessons from the Free Univers...eLearning Papers
 
Profile 5 lsis award for efficiency through effective use of technology in ...
Profile 5   lsis award for efficiency through effective use of technology in ...Profile 5   lsis award for efficiency through effective use of technology in ...
Profile 5 lsis award for efficiency through effective use of technology in ...Association of Colleges
 
List of Practices from Case Studies, by Indra Dedze
List of Practices from Case Studies, by Indra DedzeList of Practices from Case Studies, by Indra Dedze
List of Practices from Case Studies, by Indra Dedzegaihe
 
Practical examples of introducing ICTs in a higher education institution
Practical examples of introducing ICTs in a higher education institutionPractical examples of introducing ICTs in a higher education institution
Practical examples of introducing ICTs in a higher education institutionMagda Barnard
 
009 icemi2014 h00014
009 icemi2014 h00014009 icemi2014 h00014
009 icemi2014 h00014arteimi
 
HEA E-mentoring project FINAL short report
HEA E-mentoring project FINAL short report HEA E-mentoring project FINAL short report
HEA E-mentoring project FINAL short report Andrea Wheeler
 
TRADITIONAL VERSUS BLENDED LEARNING METHOD: A COMPARATIVE STUDY ON ITS EFFECT...
TRADITIONAL VERSUS BLENDED LEARNING METHOD: A COMPARATIVE STUDY ON ITS EFFECT...TRADITIONAL VERSUS BLENDED LEARNING METHOD: A COMPARATIVE STUDY ON ITS EFFECT...
TRADITIONAL VERSUS BLENDED LEARNING METHOD: A COMPARATIVE STUDY ON ITS EFFECT...ijait
 
It shape newsletter 7th. issue
It shape newsletter 7th. issueIt shape newsletter 7th. issue
It shape newsletter 7th. issueIT Shape
 
Hanson Using Cdio Hanson Fors
Hanson Using Cdio Hanson ForsHanson Using Cdio Hanson Fors
Hanson Using Cdio Hanson Forsguest0f2c98
 
eLearning Proposal
eLearning ProposaleLearning Proposal
eLearning Proposalayounce
 
Project: European Maturity Model for Blended Education
Project: European Maturity Model for Blended EducationProject: European Maturity Model for Blended Education
Project: European Maturity Model for Blended EducationEADTU
 
Making further education sustainable in a digital world through collabaoratio...
Making further education sustainable in a digital world through collabaoratio...Making further education sustainable in a digital world through collabaoratio...
Making further education sustainable in a digital world through collabaoratio...carlococuzzi1
 
Poster by Geir Hareide Hansen, EDEN Annual Conference 2011
Poster by Geir Hareide Hansen, EDEN Annual Conference 2011Poster by Geir Hareide Hansen, EDEN Annual Conference 2011
Poster by Geir Hareide Hansen, EDEN Annual Conference 2011Geir Hareide Hansen
 
University Strategy course paper
University Strategy course paperUniversity Strategy course paper
University Strategy course paperWesam Rohouma
 

Similar a Conferene Paper - A blended learning approach to lean six sigma green belt education for European students (20)

Effectivepracticeelearning
EffectivepracticeelearningEffectivepracticeelearning
Effectivepracticeelearning
 
Effective e-learning practice JISC
Effective e-learning practice JISCEffective e-learning practice JISC
Effective e-learning practice JISC
 
Continuous professional development for secondary education teachers to adopt...
Continuous professional development for secondary education teachers to adopt...Continuous professional development for secondary education teachers to adopt...
Continuous professional development for secondary education teachers to adopt...
 
Using e-learning for social sciences: practical lessons from the Free Univers...
Using e-learning for social sciences: practical lessons from the Free Univers...Using e-learning for social sciences: practical lessons from the Free Univers...
Using e-learning for social sciences: practical lessons from the Free Univers...
 
Profile 5 lsis award for efficiency through effective use of technology in ...
Profile 5   lsis award for efficiency through effective use of technology in ...Profile 5   lsis award for efficiency through effective use of technology in ...
Profile 5 lsis award for efficiency through effective use of technology in ...
 
List of Practices from Case Studies, by Indra Dedze
List of Practices from Case Studies, by Indra DedzeList of Practices from Case Studies, by Indra Dedze
List of Practices from Case Studies, by Indra Dedze
 
Practical examples of introducing ICTs in a higher education institution
Practical examples of introducing ICTs in a higher education institutionPractical examples of introducing ICTs in a higher education institution
Practical examples of introducing ICTs in a higher education institution
 
009 icemi2014 h00014
009 icemi2014 h00014009 icemi2014 h00014
009 icemi2014 h00014
 
Changing Values in Higher Education
Changing Values in Higher EducationChanging Values in Higher Education
Changing Values in Higher Education
 
HEA E-mentoring project FINAL short report
HEA E-mentoring project FINAL short report HEA E-mentoring project FINAL short report
HEA E-mentoring project FINAL short report
 
TRADITIONAL VERSUS BLENDED LEARNING METHOD: A COMPARATIVE STUDY ON ITS EFFECT...
TRADITIONAL VERSUS BLENDED LEARNING METHOD: A COMPARATIVE STUDY ON ITS EFFECT...TRADITIONAL VERSUS BLENDED LEARNING METHOD: A COMPARATIVE STUDY ON ITS EFFECT...
TRADITIONAL VERSUS BLENDED LEARNING METHOD: A COMPARATIVE STUDY ON ITS EFFECT...
 
Developing soft skills
Developing soft skillsDeveloping soft skills
Developing soft skills
 
It shape newsletter 7th. issue
It shape newsletter 7th. issueIt shape newsletter 7th. issue
It shape newsletter 7th. issue
 
Hanson Using Cdio Hanson Fors
Hanson Using Cdio Hanson ForsHanson Using Cdio Hanson Fors
Hanson Using Cdio Hanson Fors
 
eLearning Proposal
eLearning ProposaleLearning Proposal
eLearning Proposal
 
Project: European Maturity Model for Blended Education
Project: European Maturity Model for Blended EducationProject: European Maturity Model for Blended Education
Project: European Maturity Model for Blended Education
 
Making further education sustainable in a digital world through collabaoratio...
Making further education sustainable in a digital world through collabaoratio...Making further education sustainable in a digital world through collabaoratio...
Making further education sustainable in a digital world through collabaoratio...
 
Poster by Geir Hareide Hansen, EDEN Annual Conference 2011
Poster by Geir Hareide Hansen, EDEN Annual Conference 2011Poster by Geir Hareide Hansen, EDEN Annual Conference 2011
Poster by Geir Hareide Hansen, EDEN Annual Conference 2011
 
University Strategy course paper
University Strategy course paperUniversity Strategy course paper
University Strategy course paper
 
Virtual Flipped Classroom
Virtual Flipped ClassroomVirtual Flipped Classroom
Virtual Flipped Classroom
 

Más de ESTIEM

Certification Requirements_2023 Version_FOR PUBLICATION.pdf
Certification Requirements_2023 Version_FOR PUBLICATION.pdfCertification Requirements_2023 Version_FOR PUBLICATION.pdf
Certification Requirements_2023 Version_FOR PUBLICATION.pdfESTIEM
 
A green belt practitioners guide for quality champions publication v2021
A green belt practitioners guide for quality champions publication v2021A green belt practitioners guide for quality champions publication v2021
A green belt practitioners guide for quality champions publication v2021ESTIEM
 
ESTIEM Lean Six Sigma Green Belt course - Glossary of terms
ESTIEM Lean Six Sigma Green Belt course - Glossary of termsESTIEM Lean Six Sigma Green Belt course - Glossary of terms
ESTIEM Lean Six Sigma Green Belt course - Glossary of termsESTIEM
 
04 - Risk analysis - ESTIEM Lean Six Sigma Green Belt Course
04 - Risk analysis - ESTIEM Lean Six Sigma Green Belt Course04 - Risk analysis - ESTIEM Lean Six Sigma Green Belt Course
04 - Risk analysis - ESTIEM Lean Six Sigma Green Belt CourseESTIEM
 
03 - Process mapping & Bottleneck Identification - ESTIEM Lean Six Sigma Gre...
03 - Process mapping  & Bottleneck Identification - ESTIEM Lean Six Sigma Gre...03 - Process mapping  & Bottleneck Identification - ESTIEM Lean Six Sigma Gre...
03 - Process mapping & Bottleneck Identification - ESTIEM Lean Six Sigma Gre...ESTIEM
 
02 - Exploratory Data Analysis (EDA) - ESTIEM Lean Six Sigma Green Belt Course
02 - Exploratory Data Analysis (EDA) - ESTIEM Lean Six Sigma Green Belt Course02 - Exploratory Data Analysis (EDA) - ESTIEM Lean Six Sigma Green Belt Course
02 - Exploratory Data Analysis (EDA) - ESTIEM Lean Six Sigma Green Belt CourseESTIEM
 
00 - Introduction to the Course - ESTIEM Lean Six Sigma Green Belt Course
00 - Introduction to the Course - ESTIEM Lean Six Sigma Green Belt Course00 - Introduction to the Course - ESTIEM Lean Six Sigma Green Belt Course
00 - Introduction to the Course - ESTIEM Lean Six Sigma Green Belt CourseESTIEM
 
DMAIC Recap - ESTIEM Lean Six Sigma Green Belt Course
DMAIC Recap - ESTIEM Lean Six Sigma Green Belt CourseDMAIC Recap - ESTIEM Lean Six Sigma Green Belt Course
DMAIC Recap - ESTIEM Lean Six Sigma Green Belt CourseESTIEM
 
09 - Control - ESTIEM Lean Six Sigma Green Belt Course
09 - Control - ESTIEM Lean Six Sigma Green Belt Course09 - Control - ESTIEM Lean Six Sigma Green Belt Course
09 - Control - ESTIEM Lean Six Sigma Green Belt CourseESTIEM
 
08 - Improve - ESTIEM Lean Six Sigma Green Belt Course
08 - Improve - ESTIEM Lean Six Sigma Green Belt Course08 - Improve - ESTIEM Lean Six Sigma Green Belt Course
08 - Improve - ESTIEM Lean Six Sigma Green Belt CourseESTIEM
 
07 - Analysis Regression - ESTIEM Lean Six Sigma Green Belt Course
07 - Analysis Regression - ESTIEM Lean Six Sigma Green Belt Course07 - Analysis Regression - ESTIEM Lean Six Sigma Green Belt Course
07 - Analysis Regression - ESTIEM Lean Six Sigma Green Belt CourseESTIEM
 
05 - Measurement System Analaysis (MSA) - ESTIEM Lean Six Sigma Green Belt Co...
05 - Measurement System Analaysis (MSA) - ESTIEM Lean Six Sigma Green Belt Co...05 - Measurement System Analaysis (MSA) - ESTIEM Lean Six Sigma Green Belt Co...
05 - Measurement System Analaysis (MSA) - ESTIEM Lean Six Sigma Green Belt Co...ESTIEM
 
ESTIEM Lean Six Sigma Green Belt Project at YIT - Airport Extension
ESTIEM Lean Six Sigma Green Belt Project at YIT - Airport ExtensionESTIEM Lean Six Sigma Green Belt Project at YIT - Airport Extension
ESTIEM Lean Six Sigma Green Belt Project at YIT - Airport ExtensionESTIEM
 
ESTIEM Lean Six Sigma Green Belt Project at Continental - Scrap Reduction
ESTIEM Lean Six Sigma Green Belt Project at Continental - Scrap ReductionESTIEM Lean Six Sigma Green Belt Project at Continental - Scrap Reduction
ESTIEM Lean Six Sigma Green Belt Project at Continental - Scrap ReductionESTIEM
 

Más de ESTIEM (14)

Certification Requirements_2023 Version_FOR PUBLICATION.pdf
Certification Requirements_2023 Version_FOR PUBLICATION.pdfCertification Requirements_2023 Version_FOR PUBLICATION.pdf
Certification Requirements_2023 Version_FOR PUBLICATION.pdf
 
A green belt practitioners guide for quality champions publication v2021
A green belt practitioners guide for quality champions publication v2021A green belt practitioners guide for quality champions publication v2021
A green belt practitioners guide for quality champions publication v2021
 
ESTIEM Lean Six Sigma Green Belt course - Glossary of terms
ESTIEM Lean Six Sigma Green Belt course - Glossary of termsESTIEM Lean Six Sigma Green Belt course - Glossary of terms
ESTIEM Lean Six Sigma Green Belt course - Glossary of terms
 
04 - Risk analysis - ESTIEM Lean Six Sigma Green Belt Course
04 - Risk analysis - ESTIEM Lean Six Sigma Green Belt Course04 - Risk analysis - ESTIEM Lean Six Sigma Green Belt Course
04 - Risk analysis - ESTIEM Lean Six Sigma Green Belt Course
 
03 - Process mapping & Bottleneck Identification - ESTIEM Lean Six Sigma Gre...
03 - Process mapping  & Bottleneck Identification - ESTIEM Lean Six Sigma Gre...03 - Process mapping  & Bottleneck Identification - ESTIEM Lean Six Sigma Gre...
03 - Process mapping & Bottleneck Identification - ESTIEM Lean Six Sigma Gre...
 
02 - Exploratory Data Analysis (EDA) - ESTIEM Lean Six Sigma Green Belt Course
02 - Exploratory Data Analysis (EDA) - ESTIEM Lean Six Sigma Green Belt Course02 - Exploratory Data Analysis (EDA) - ESTIEM Lean Six Sigma Green Belt Course
02 - Exploratory Data Analysis (EDA) - ESTIEM Lean Six Sigma Green Belt Course
 
00 - Introduction to the Course - ESTIEM Lean Six Sigma Green Belt Course
00 - Introduction to the Course - ESTIEM Lean Six Sigma Green Belt Course00 - Introduction to the Course - ESTIEM Lean Six Sigma Green Belt Course
00 - Introduction to the Course - ESTIEM Lean Six Sigma Green Belt Course
 
DMAIC Recap - ESTIEM Lean Six Sigma Green Belt Course
DMAIC Recap - ESTIEM Lean Six Sigma Green Belt CourseDMAIC Recap - ESTIEM Lean Six Sigma Green Belt Course
DMAIC Recap - ESTIEM Lean Six Sigma Green Belt Course
 
09 - Control - ESTIEM Lean Six Sigma Green Belt Course
09 - Control - ESTIEM Lean Six Sigma Green Belt Course09 - Control - ESTIEM Lean Six Sigma Green Belt Course
09 - Control - ESTIEM Lean Six Sigma Green Belt Course
 
08 - Improve - ESTIEM Lean Six Sigma Green Belt Course
08 - Improve - ESTIEM Lean Six Sigma Green Belt Course08 - Improve - ESTIEM Lean Six Sigma Green Belt Course
08 - Improve - ESTIEM Lean Six Sigma Green Belt Course
 
07 - Analysis Regression - ESTIEM Lean Six Sigma Green Belt Course
07 - Analysis Regression - ESTIEM Lean Six Sigma Green Belt Course07 - Analysis Regression - ESTIEM Lean Six Sigma Green Belt Course
07 - Analysis Regression - ESTIEM Lean Six Sigma Green Belt Course
 
05 - Measurement System Analaysis (MSA) - ESTIEM Lean Six Sigma Green Belt Co...
05 - Measurement System Analaysis (MSA) - ESTIEM Lean Six Sigma Green Belt Co...05 - Measurement System Analaysis (MSA) - ESTIEM Lean Six Sigma Green Belt Co...
05 - Measurement System Analaysis (MSA) - ESTIEM Lean Six Sigma Green Belt Co...
 
ESTIEM Lean Six Sigma Green Belt Project at YIT - Airport Extension
ESTIEM Lean Six Sigma Green Belt Project at YIT - Airport ExtensionESTIEM Lean Six Sigma Green Belt Project at YIT - Airport Extension
ESTIEM Lean Six Sigma Green Belt Project at YIT - Airport Extension
 
ESTIEM Lean Six Sigma Green Belt Project at Continental - Scrap Reduction
ESTIEM Lean Six Sigma Green Belt Project at Continental - Scrap ReductionESTIEM Lean Six Sigma Green Belt Project at Continental - Scrap Reduction
ESTIEM Lean Six Sigma Green Belt Project at Continental - Scrap Reduction
 

Último

1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdfQucHHunhnh
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactPECB
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingTechSoup
 
Student login on Anyboli platform.helpin
Student login on Anyboli platform.helpinStudent login on Anyboli platform.helpin
Student login on Anyboli platform.helpinRaunakKeshri1
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfJayanti Pande
 
fourth grading exam for kindergarten in writing
fourth grading exam for kindergarten in writingfourth grading exam for kindergarten in writing
fourth grading exam for kindergarten in writingTeacherCyreneCayanan
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104misteraugie
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxiammrhaywood
 
General AI for Medical Educators April 2024
General AI for Medical Educators April 2024General AI for Medical Educators April 2024
General AI for Medical Educators April 2024Janet Corral
 
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...PsychoTech Services
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfsanyamsingh5019
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityGeoBlogs
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introductionMaksud Ahmed
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3JemimahLaneBuaron
 
9548086042 for call girls in Indira Nagar with room service
9548086042  for call girls in Indira Nagar  with room service9548086042  for call girls in Indira Nagar  with room service
9548086042 for call girls in Indira Nagar with room servicediscovermytutordmt
 
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...Sapna Thakur
 

Último (20)

1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy Consulting
 
Student login on Anyboli platform.helpin
Student login on Anyboli platform.helpinStudent login on Anyboli platform.helpin
Student login on Anyboli platform.helpin
 
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptxINDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdf
 
fourth grading exam for kindergarten in writing
fourth grading exam for kindergarten in writingfourth grading exam for kindergarten in writing
fourth grading exam for kindergarten in writing
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
 
General AI for Medical Educators April 2024
General AI for Medical Educators April 2024General AI for Medical Educators April 2024
General AI for Medical Educators April 2024
 
Advance Mobile Application Development class 07
Advance Mobile Application Development class 07Advance Mobile Application Development class 07
Advance Mobile Application Development class 07
 
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdf
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activity
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3
 
9548086042 for call girls in Indira Nagar with room service
9548086042  for call girls in Indira Nagar  with room service9548086042  for call girls in Indira Nagar  with room service
9548086042 for call girls in Indira Nagar with room service
 
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
 
Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1
 

Conferene Paper - A blended learning approach to lean six sigma green belt education for European students

  • 1. A Blended Learning Approach to Lean Six Sigma Green Belt Education for European Students Mikko Rajala,1 Henri Jarrett,1 and Jukka-Matti Turtiainen2 1 Aalto University School of Science Department of Industrial Engineering and Management P. O. Box 15500 FI-00076 Aalto, Finland 2 Lappeenranta University of Technology School of Business and Management P. O. Box 20 FI-53851 Lappeenranta, Finland ABSTRACT The European Students of Industrial Engineering and Management (ESTIEM) have developed a blended learning approach for teaching Lean Six Sigma to students in European universities. This case study will describe how three different pedagogical methods – offline, blended and online – are integrated for teaching this course at a Green Belt level of competence. This paper describes alternative different teaching methods and the rational for integrating both online and offline teaching which have their unique benefits. Whereas online content is highly scalable and consistent, offline teaching enables efficient contact sessions, reflection and practical assignments. Combining these introduces additional benefits in the learning process outcomes. The benefits of the blended learning model are described through lessons learned in the Lean Six Sigma Green Belt course developed for ESTIEM. This course was developed under the mentoring of ESTIEM Summer Academy Professor Gregory H. Watson and it applies a five- level learning model for teaching the methods and tools, and establishing linkages between the tools. The theory was taught in 13-hours of video material supported by an online learning experience including quizzes, games, and take-home exercises. The tools were applied in practical group discussion sessions. Finally the case study, focused on challenging participants to choose the right tools to answer high-level questions. Findings from this development project suggest that the best student performance results are achieved by using a mixture of offline and online learning methods. Some of the theoretical parts are best taught in a fully online format – it is both scalable, and provides the opportunity for customizing the individual learning experiences. While the theory of the tools can be taught in the online format – learning the tools and the linkages to other tools often require doing practical exercises which are difficult to replicate online. Teaching the tools effectively requires that instructors develop deeper understanding of the advantages of mixing online and offline teaching methods. Based on the findings from this paper, the blended method has the potential be able to reach almost the same efficiency as the traditional face-to-face learning while enabling broad scaling for dissemination with fewer committed resources. KEYWORDS Lean Six Sigma, Green Belt, e-learning, massive on-line course, blended learning, industrial engineering and management, ESTIEM, internship, case study, practicum, quality problem solving
  • 2. 1 Introduction There is a strong industry pull for the Lean Six Sigma or operations improvement professionals in general. Despite this fact, the Lean Six Sigma education is to a large extent not offered to students in Europe. Combining a strong student network with the state of art Lean Six Sigma content by Gregory H. Watson creates a unique setting for filling in this gap. Our vision is to provide a scalable Lean Six Sigma Green Belt course for European Industrial Engineering and Management students. By taking part in the Green Belt course and using the Lean Six Sigma method in an internship, students have the opportunity to obtain a Green Belt certificate already during their studies. We aim to equip young professionals with the Lean Six Sigma mindset and tools so that they can thrive in their career and add value to companies and society. 1.0 What have we accomplished? Between November 2016 and July 2017, over 140 students have completed our course. Out of those students, ca. one fifth have already started the internship in order to obtain the Green Belt certificate. As for training instances, there have been three international training events held in various locations around Europe, eight courses held locally at certain universities by local student organizations, and a handful of online and offline pilots. As the persons delivering our course, we have currently 15 trainers and are in process for developing more. By the end of the year 2017, our goal is to double the number of trainers and the participants who have gone through our course. Figure 1: Current accomplishments of our course 1.1 Context of teaching ESTIEM is the organisation for European Students of Industrial Engineering and Management, who combine the technological understanding with management skills. The goal of ESTIEM is to establish and foster relations between students. ESTIEM consists of 80
  • 3. Local Groups in 31 countries. A Local Group is essentially a local organization of the ESTIEM network which is associated with an IEM program of a university. ESTIEM organizes over 180 events annually, and the topics of the events range from academic and personal development to coordination meetings and cultural activities. Circa 8 000 students are involved with the association and ESTIEM has a reach of 60 000 Industrial Engineering and Management students in Europe. ESTIEM acts as the network enabling the development and scaling of the Lean Six Sigma Green Belt course, providing both resources and students to it. 2 Case Study In the context of Lean Six Sigma education, the goal of ESTIEM is to expand Lean Six Sigma teaching among European Industrial Engineering & Management students. The case study illustrates how the course has developed, the learning modes used in the context of the course, and the blended learning model utilized in the teaching of the course. 2.0 The Path of Development This chapter discusses the what steps have been taken in developing the course. The path starts from the emergence of the original idea, proceeding to designing the curriculum, piloting the first Green Belt course, and finally how the teaching was rapidly expanded. 2.1 ESTIEM as the parent of the course The original idea of developing the course stems from an ESTIEM event held in Helsinki in 2015, where Gregory H. Watson acted as the academic leader. At the event, students discussed together with Mr. Watson about the possibility to develop a Green Belt course for ESTIEM. Shortly after, the development of the course started as three students commenced to collaborate with Mr. Watson. The early tasks were divided into several components such as understanding customer and market needs, curriculum design, recording teaching videos, building an online course, piloting different teaching models, and collaborating with various stakeholder groups. 2.2 Curriculum Design Building on the ASQ Green Belt program (American Society for Quality, 2017), the body of knowledge was created by Gregory H. Watson. As the course is targeted to engineers, certain technical aspects were added to the Green Belt course - especially related to the statistical knowledge. Based on the body of knowledge, the curriculum was designed for teaching young
  • 4. professionals. Young professionals, i.e. Industrial Engineering students with Master’s level education or similar, tend to have limited work experience and can, thus, lack the ability to link the learnings from the academic courses to the real-life problems. Without the real-life linkage, mere theoretical teaching can be easily forgotten, and left without context. Thus, several practical exercises as well as case work were added to support theoretical learning during the general learning process of the student. The main goal of the curriculum is to help young professionals to successfully solve complex operational problems in companies. Thus, measuring the success of the course is not linked to the impeccable knowledge of the theory, but whether the student is able to conduct successful operational improvement projects in companies (Watson, 2004). In order to achieve this goal, the curriculum comprises learning paths with parallel teaching of the theory and learning by doing. In perhaps more traditional teaching models, the teaching of the theory comes first, and is followed by the practical training. In contrast, the method of this course could better be described as a constant dialogue between strengthening the theory, and the application of the tools. 2.3 Pilot Sessions with support from Aalto University Apart from the various small-scale pilots, the first actual teaching round was held at Aalto University, Finland. The collaboration with Aalto University proved to be highly fruitful and it received excellent feedback from the students. In practice, Gregory H. Watson acted as the lecturer of the course whereas the students involved in the development of the course facilitated the practical group work. 2.4 Expansion through a new approach to teaching The expansion of the course is done using three different methods. Firstly, we support the local trainers to deliver courses for the students from the same university. Secondly, supporting the local course expansion, the regional courses enable the student organizations which are similar and close to each other to organize courses together. Thirdly, the 5-day-long events provide the opportunities for Industrial Engineering and Management students to join the Green Belt course. A combination of these three types of expansion methods have enabled the rapid growth, and are aimed to create the strength and continuity into the local level. Approximately speaking, on a high level, teaching the course can be divided into three individual components: 1) teaching the theory, 2) facilitating trainings and cases, and 3)
  • 5. project mentoring. In traditional Green Belt teaching it is typical that a seasoned professional offers face–to–face teaching in some or all three of the mentioned components. In our course, we have challenged whether those three parts can be separated to enable the scalability of high quality content. Firstly, the high quality teaching of the theory was ensured by creating an online content with 13 hours of videos from Gregory H. Watson. Secondly, the trainings are standardized, and developed so that the students are able to deliver the trainings. Thirdly, the project mentoring is conducted by people who have practical experience and conducted their Green Belt project. Summarizing the strategy for expansion, scalability was reached by separating the theory, facilitation of the content, and the project mentoring. It was deemed that there is no need to allocate responsibilities of all three components to one person. Our approach to teaching is further described in the chapter Blended Learning Model and Core instructional material. 2.5 Learning Modes Based on the learnings from the pilot courses and the expansion, a great deal of things about how students learn were discovered. This chapter discusses these learnings and how they have been integrated into the teaching model. The learning modes present in our course can be illustrated with the following 5 level model, which is presented in the Figure 2. The 5 level model was created by translating the cognitive domain of Bloom’s taxonomy of learning to the context of our course (Anderson et al., 2001). Rather than seeing learning as a step-by-step process, the model is built in a format of a pyramid: sufficient knowledge on the lower levels is a prerequisite for advancing upwards, but the lower levels of the pyramid can be understood better only when the upper levels of the pyramid are strengthened. The learning model starts with Defining: the ability of the student to recall what has been heard about the topic. As a practical example, in the case of teaching a SIPOC map, the student would be able to answer a question in an exam like regarding the basic description and usage of a SIPOC map. The next level, Understanding, requires the student to further develop their knowledge of the tool through the four lenses of learning: 1) which questions in processes the tool aims to
  • 6. answer, 2) how it links to the DMAIC, and 3) how the other tools can be linked to the tool. In the context of SIPOC, the student would be able to describe the output and usage of the SIPOC map in more detail, as well as describe how the individual parts support in achieving the desired output. The Applying level means that the student is not only able to describe the individual parts, but is also able to apply the topic to an actual problem. In the Bloom’s taxonomy, the application of the topics is considered as a separate domain (Anderson et al., 2001). As our end goal is the successful application of the topics, sufficient Understanding of a particular topic is a prerequisite for Applying: without Understanding, Applying the topics would be mindless. The only way to achieve informed practice is to first have the sufficient knowledge to create the correct mental mapping while Applying the topic. Again, in the context of a SIPOC map, the student would be able to create the SIPOC map from a real-life or simulated work process. The Synthesizing level requires students to be able to integrate learnings from separate topics together to address the complex nature of real-world problems. The student should, on this level, have mental mappings of simplified links between the topics, and the ability to actually use the outputs of a tool to enhance the power of another tool. In the case of a SIPOC map, the student would understand how the problem statement helps in defining the starting and ending point of the high-level process, and how the high-level process is then turned into the input of creating a Deployment Diagram. The ultimate level, Usage in real-life, implies the ability of a student to understand the need of utilizing a tool when observing a real-world problem, and successfully using the tool to guide the progress forward. As real-life processes are often messy, and the data is rarely perfect, the student needs a sufficient knowledge on the previous levels in order to modify the tool to get the desired output. Again, using a SIPOC map as an example, the student should be able to recognize situations in the real-world where the SIPOC map is applicable, and be able to modify the tool to fit to the given context.
  • 7. Figure 2: The five level model for learning 2.6 Blended Learning Model and Core instructional material This chapter will take the 5 level model of learning, and tie it to the actual methods of teaching in our course. The Table 1 summarizes the methods, and their linkage to the 5 level model of learning. Each of the teaching methods is then described in greater detail to address their role in preparing the students for conducting successful projects in companies. The different teaching methods can be divided into two categories, online- and offline-based methods - thus the name, Blended Learning Model. The online-based methods have the same content independent on the course model, i.e. whether the course is a 5-days-long event or a 6-weeks-long course. They aim to ensure the quality of the teaching in different locations, and help to spread the expert teaching to broader audiences. Offline-based methods, on the other hand, can vary a bit based on the course model. They rely more on the abilities of the trainer to facilitate the learning process of the student. Whereas the online-based methods help to spread the knowledge of the expert, offline-based methods rely more on learning in groups, and creating practical experiences for the theory learned in the online modules.
  • 8. Method Description Linkage to 5 steps of learning Online methods Videos 13 hours of 1-20 minute videos from Gregory H. Watson as the base content Defining Understanding Questions inside videos Quiz type questions about the learning goals immediately inside the videos Defining Understanding Quizzes / Tests Questions after videos enhance and monitor the learning Defining Understanding Games Simulated problems where students need to answer questions Understanding (Applying) Exercises Students need to use a tool individually on a simplified problem Applying Offline methods Training 2-3 hour modules focused on using the tools in groups for simulated problems (Understanding) Applying Synthesizing Cases Simulated case where the students go through a full DMAIC cycle in groups (Applying) Synthesizing (Usage in real-life) Table 1: The teaching methods and their linkage to the 5 level learning model 2.7 Online-based module This chapter discusses the contents of the online-based module in more detail. The lecture videos form the backbone of the course, as they serve as the foundational theory of the course. In the videos, Gregory H. Watson lectures for 1-20 minutes, and combined, the lecture videos comprise the theoretical insights presented in the course. Questions inside videos help the students to make sure that they have achieved the learning
  • 9. goals of the videos. As the content can sometimes be relatively difficult, the questions are placed after the important part of the content is described, allowing the student to rewind to the point of the video where the insight was first presented. Quizzes comprise questions which check after the online course modules that the students have reached the learning goals. In case the student responds incorrectly, the student is guided to go back to the timestamp on the correct video, where that part of insight is described. Additionally, questions can be asked in the Q&A forums embedded in the online course. Games in the online platform serve as a bridge between the Understanding and Applying levels of learning. The games involve simple tasks to make conclusions about the output of the tools in a simulated work process. The games aim to strengthen the knowledge of the student in three aspects: 1) which questions the tool can provide insight to, 2) how to interpret the output of the tools, and 3) what questions follow from using the tools. Exercises are focused on giving students an experience of utilizing an individual tool in a simplified and predetermined task. The exercises are especially used with the statistical tools, but can also be used to teach the qualitative tools, such as the project charter or a SIPOC map. The exercises are done individually, and they are designed to be relatively easy and straightforward to complete. 2.8 Trainings Trainings have an integral role in both creating linkages between the practical use cases and the theory, as well as strengthening the understanding of the tools through group discussions and simulated learning experiences. Each training comprises of multiple learning sequences which are organized as follows: 1) the relevant theory is revised by discussing in groups, 2) the tools are used in groups on a simulated work process, and 3) the conclusions and learnings from the training and other real-life experiences are reflected all together and in groups. The trainings form stories, where the different tools are linked together, and the students are taught to utilize the learnings from the previous tools to form a coherent story. The trainings are standardized, and built so that the students can facilitate them with sufficient development of the trainers. The development path of the trainers aims to create capabilities for the trainers in the three domains presented in the Figure 3: focusing on the individual
  • 10. learning of the students, handling difficult situations and having sufficient knowledge of the content Figure 3: The key competences of the trainer. The focus on individual learning of the students aims to teach the trainers with the right facilitation skills. As the students can come from very different backgrounds, the trainers are taught to be observing the group dynamics and focusing on making sure that the students understand the concepts. The 5 level learning model is used as a basis for observing the participants: trainers should make sure that the participants have the sufficient Understanding of the theory to create the correct linkages before Applying. Ability to handle difficult situations is an important part in securing the high quality learning experiences for the students. When the trainings are delivered by the students for the students, the authority of the trainer must be preserved with more rigor than when the trainings are delivered by one acknowledged expert. For this reason, we teach our trainers to handle the difficult situations that can happen during the trainings. Furthermore, several support systems are built for the trainers: e.g. the system for finding answers to the difficult questions that come up during the trainings, and the creation of formal path and status for trainers. Sufficient knowledge of the content serves as the cornerstone for delivering high quality
  • 11. trainings. In order to have the sufficient knowledge, the following process aims to provide the trainers with ability to teach and answer to the majority of questions during the trainings: 1) the trainers need to have gone through the Green Belt course, 2) the self-study material is given on the topic of the trainer, 3) coaching is given by a person with more experience on Lean Six Sigma, 4) the trainings are prepared and delivered in pairs to enable peer support 2.9 Case study & internship After the trainings, the students complete a case study and an internship. The case study takes the students through a simulated DMAIC cycle: it starts with creating the project charter of the given problem, and ends in thinking through what kind of methods are critical for achieving a lasting change in an actual work process. The case study is done in groups, and goes on throughout the course. The structure of the case study forces students to think of the relevant questions to be answered in each phase of the case study, as well as to think which tools can be useful in addressing those questions. By forcing students to think of the questions and relevant tools for answering them, the case study aims to prepare the students for the challenges in the real-world. In order to receive Green Belt certificate, students need to do a real-world Green Belt internship in an organization. The project has to follow DMAIC project management methodology and certain basic tools are required to be applied. By using the methodology in real-life students get an experience how the theory fits into practice. They get a deeper understanding of the usage of the methodology and something to relate to when thinking about the theory. By doing the project students have a chance to demonstrate their skills in real-life and a meaningful start in their career. (Watson, 2006) 3 Lessons Learned Based on the learnings from our course, we have identified that teaching quality can be expanded to a broader audience through a Blended Learning Model. This chapter discusses in more detail how the Blended Learning Model could help the creation of new courses in three domains: scalability of teaching, teaching people with limited practical experience, and trainer development. 3.0 Teaching people with limited practical experience The case study illustrates that people with limited working experience can highly benefit from
  • 12. Lean Six Sigma Green Belt teaching. Based on our experience, the way of teaching cannot, however, follow the traditional pattern of an expert discussing the theory complemented with the practical examples from companies. Without the practical experience, the students have difficulties in making the real-world linkages, and thus, might be unable to use the learned insights in actual problems. For the people with limited working experience, we have identified that learning by doing must go hand-in-hand with teaching the theory. The theory is needed to have the right context for doing, and the doing is required to create the actual linkages between the learned concepts. This dialogue between learning the theory and doing must step-by-step prepare the students towards being able to utilize the tools in the real-world. Whereas a more experienced audience might be able to build real-world linkages of insights themselves, a robust teaching model is required to ensure learning among less experienced students. 3.1 Scalability of the teaching The scarce resource in several organizations teaching quality programs is the availability of a seasoned expert who is sufficiently competent to teach the Lean Six Sigma course. Based on our experience, a Lean Six Sigma expert might not be needed to take care of the majority of the teaching. Further, a combination of online and offline teaching can enable excellent learning outcomes with limited involvement of the experts during the course. In the case study, we suggested that the teaching should be a dialogue between theoretical learning and doing. Theoretical learning is difficult to achieve if the trainer has insufficient experience in the field. We have identified that to have an expert teaching the theoretical content is key to phrase the insights in a correct, understandable, and concise manner, and thus the expert teaching is needed in the theory parts. Our case study illustrates, that the online-based teaching of the theory can lead to good learning outcomes. Online-based or blended teaching can require more work in the creation phase of the course content, but decrease the work needed for delivering the course in the longer run. Based on our experience, the online teaching is, however, insufficient to replace the actual experience of doing and discussing the insights in groups. Thus, the trainings are an essential part of our course. Our case study illustrates, however, that even less experienced trainers are able to deliver high quality sessions given a well-executed preparation process, as well as
  • 13. predefined training content. Separating the training delivery and the online-based teaching, quality improvement courses could be expanded to reach larger audiences with less Lean Six Sigma expert resources. 3.2 Trainer development Based on the lessons learned from the case study, it is important that trainers with limited formal authority and expertise have tools to overcome difficult situations. For example, the atmosphere in a training might become tense if students start asking harder and harder questions and to question the competence of the trainer if the questions are not answered. If this kind of situation arises, trainers need to be capable and have the sufficient support systems to overcome the situation and continue the flow of the training. In the case study we presented the development path of the trainers for the course. During the development path of the trainer, students deepen their knowledge on the Lean Six Sigma as well as get valuable experience in facilitating group work and learning. The skills and experiences they gain during their trainer development path will be very valuable in their future careers. 4 Discussion about the future The development of the course has been a highly iterative process. Between October 2016 and June 2017, 12 separate teaching rounds were organized - each with a set of new hypotheses to test. While the standardization of the course is well on its way, the development has not stalled. This chapter discusses the possible new avenues of development, we are currently in the midst of building. The first developmental objective is to develop new approaches to conducting Lean Six Sigma Green Belt internships in companies. Currently, the students have been applying as individuals to companies to conduct a 1-6 month internship. Our goal is to build sustainable, and continuous ways to create value for both the company and our students. As one of the possible models, a given company would continuously have one Green Belt working on a project. The length of the project for one student could be between 1-3 months, and a mentoring system would be created to get new students fast onboard with prior learnings. We are currently looking for companies to test this model with. The second objective links to our goal of creating a measurement system for tracking the
  • 14. learning process of our students. The current methods in our course have followed the traditional logic of monitoring that the exercises have been done, and giving feedback on the learning during the trainings. Our learning goals, should, however be the foundation for creating individual learning paths: if a student has trouble in exercises about a specific tool, more material should be automatically handed out for the individual to strengthen their knowledge. We are currently looking for ideas for the technical issues, and the architecture of the measurement system. As trainers are one of the key elements of our course, we are currently developing a mentoring system for the trainers. At present, the mentoring is done via an online video call before each training the trainer holds. To enable scalability, we are looking for people with experience in Lean Six Sigma to help us with delivering these mentoring sessions. Additionally, we are in progress of creating new models for the trainer mentoring: e.g. combining several trainers teaching the same training in different places as peer groups, who the mentor is then guiding. As the fourth developmental objective, we are aiming to integrate our course to the curriculums in the European universities. Already, a few universities have indicated a green light for giving credits for this course, and some have already done that. In addition to getting credits for the course, we are aiming to get the course into the actual curriculums of several universities. To enable the strong integration with universities, we are currently in discussions with a handful of European universities, and are actively looking for more partners to develop a suitable model for growth together. 5 References American Society for Quality (2017). Certified Six Sigma Green Belt. Milwaukee, WI: ASQ; downloaded on 1 August 2017 from: https://asq.org/cert/resource/pdf/certification/inserts/CSSGB%20Insert%20B1506.pdf . Anderson, Lorin W., Krathwohl, David R., eds. (2001). A Taxonomy for Learning, Teaching and Assessing: A Revision of Bloom’s Taxonomy of Educational Objectives. Allyn and Bacon. Watson, Gregory H. (2004). Six Sigma for Business Leaders. Salem, NH: GOAL QPC Press. Watson, Gregory H. (2006), “Industrial Engineering: Confluence of a Six Sigma Curriculum,” Proceedings of the IIE Research Conference, Orlando, FL, 28 May 2006.