SlideShare una empresa de Scribd logo
1 de 62
Descargar para leer sin conexión
Study of the Size-Reduction Effect on the
Photophysical Properties of [Ru(bpy)3][NaCr(ox)3]
Nano-Crystals and Functionalization of their Surface
Elia Previtera
November 24, 2016
Département de Chimie Physique, Université de Genève
Hauser Group
Nano-Size Materials
Applications: Medicine, Bio-imaging, IT, Solar-Energy Harvesting and
Conversion, Lasers, Catalysis, Displays …..
Quantum Dots: tunable emission
wavelength…...
Gold Nanoparticles: tunable absorption
wavelength…..
Size
1
SIZE DEPENDENT PROPERTIES
5
nm
10
nm
15
nm
20
nm
80
nm
90
nm
100
nm
Nano Today 2011.
Nano-Size Materials
2The New York Times article of February 22, 2005.
Nano-Size Materials	
At least one dimensions between 1 and 100 nm
X
At least one physical or chemical size-
dependent property
M.L. Grieneisen, M. Zhang, Small 2011, 7, No. 20, 2836-2839.
What is What in the Nanoworld: A Handbook on Nanoscience and Nanotechnology
2012.
3
Energy Transfer and Migration
..
... .
..
Homo-Energy Transfer or Energy Migration
Hetero-Energy Transfer
..
..
. .
. .
..
. .
.
. .
.
..
... .
..
4
Radiative Energy Transfer and Migration	
Acceptor or DonorDonor*
S0
S1
S0
S1
hν hν’
5
Non-radiative Energy Transfer and Migration	
HOMO
LUMO
Förster
AcceptorDonor*
Dexter
AcceptorDonor*
kEET
F
∝
1
RDA
⎛
⎝
⎜⎜
⎞
⎠
⎟⎟
6
kEET
Ex
∝exp −
2RDA
RDA
0
⎛
⎝
⎜⎜
⎞
⎠
⎟⎟
HOMO
LUMO
10 Å < Rc
F < 80 Å 1 Å < Rc
Ex < 10 Å
6
Non-radiative Energy Transfer and Migration	
ΩDA
= gD
(E)gA
(E)dE∫
Spectral overlap integral
ΩDA
λ
Emi(A)Emi(D)Abs(D) Abs(A)
I
		gD		 					gA	
7
Energy Transfer and Migration in Natural Antennae	
6 CO2 + 6 H2O C6H12O6 + 6 O2
Respiration
Photosynthesis
Sunlight Energy stored
Energy storedEnergy released
Nature, 1995, 374, 517. 8
Energy Transfer and Migration in Natural Antennae	
Photosynthetic unit of Rhodopseudomonas acidophila
Nature, 1995, 374, 517. 9
Reference System: Microcrystals of [Ru(bpy)3][NaCr(ox)3]
Anionic Chiral 3D Polymeric Oxalate Networks
[NaCr(ox)3][Ru(bpy)3]
Na++
D3
[Cr(ox)3]3-
Crystal system
Cubic
Z = 4
Chiral Spacegroup
P213
Site symmetry of

all metal ions
C3
S. Decurtins et al., J. Amer. Chem. Soc. 116 (1994) 9521. 10
Reference System: Microcrystals of [Ru(bpy)3][NaCr(ox)3]
Anionic Chiral 3D Polymeric Oxalate Networks
[NaCr(ox)3][Ru(bpy)3]
Na++
D3
[Cr(ox)3]3-
Crystal system
Cubic
Z = 4
Chiral Spacegroup
P213
Site symmetry of

all metal ions
C3
S. Decurtins et al., J. Amer. Chem. Soc. 116 (1994) 9521. 11
Reference System: Microcrystals of [Ru(bpy)3][NaCr(ox)3]
Anionic Chiral 3D Polymeric Oxalate Networks
[NaCr(ox)3][Ru(bpy)3]
Na++
D3
[Cr(ox)3]3-
Crystal system
Cubic
Z = 4
Chiral Spacegroup
P213
Site symmetry of

all metal ions
C3
S. Decurtins et al., J. Amer. Chem. Soc. 116 (1994) 9521. 12
3D oxalate network: [Ru(bpy)3][NaCr(ox)3]
[Ru(bpy)3]2+: antenna
Oxalate Networks to Study Photo-Induced Energy Transfer
Bulk: efficient energy migration in the 2E state of Cr(III)
[NaCr(ox)3]2- network: energy migration
Is there any influence of the crystal size on the energy migration
within the 2E state of the [Cr(ox)3]3- chromophores?
hν
Energy Transfer
Milos. M. et al., Coor. Chem. Rev., 252, 2000, 2540 13
Reference System: Microcrystals of [Ru(bpy)3][NaCr(ox)3]
Tetrahedral microcrystalline particles with side length 4 µm
S. Decurtins et al., J. Amer. Chem. Soc. 116 (1994) 9521.
5 µm
14
How to Synthesize Nanocrystals?
Ø  Synthesis by the Reverse Micelles technique
Aqueous phase: Solubilization of
[Ru(bpy)3]Cl2
.6H2O and K3[Cr(ox)3].3H2O
Surfactant: Sodium bis(2-ethylhexyl)
Sulfosuccinate (AOT)
Solvent: n-Heptane
TEM à Tetrahedral Shape of Nanocrystals
Centrifugation and
washing in EtOH
15
Size Controlled Micro- and Nanocrystals
Tetrahedral Shape of Nanoparticles
ImageJ
Large Size Distribution
16
1000 nm
Size & Volume Weighted Distribution
Iluminescence ≈ a3
a
17Previtera E. et al., Eur. J. Inorg. Chem. 2016, 1972-1979
< Size > =
Σa
Number of NPs < Size Signal > =
Σ(a x a3)
Total a3
Size Controlled Micro- and Nano-crystals
Ø  Modification of the water-to-surfactant ratio (Wo)
Wo =
[H2O]
[Surfactant]
Size Control of final product!
Wo= 2 Wo= 5 Wo= 8
2.5 µm MPs changing Wo and lowering the
concentration of reactants inside micelles
(Wo= 8 and 0.025 M)
Previtera E. et al., Adv. Mater. 2015, 27, 1832. 18
Size Controlled Micro- and Nanocrystals
2θ = 5.8°
140 nm
220 nm
360 nm
450 nm
670 nm
2.5 µm
4 µm
Previtera E. et al., Adv. Mater. 2015, 27, 1832.
19
Chromium (III): d3 in C3 Symmetry
Ligand field states
4A2(t2g
3)
4T2(t2g
2eg
1)
4A2
2E
Oh C3 + Hso
R1 R2
D (2E) = 13.7 cm-1
D (4A2) = 1.3 cm-1
hν hν
Spin-flip

Δr ≈ 0
t2g → eg

Δr ≈ 0.1 Å2E(t2g
3)
ISC
t2g
eg
t2g
eg
t2g
eg
E
RCr-O
Ms = ± 3/2
Ms = ± 1/2
20
Solid State Spectroscopy Background
Homogeneous line width and inhomogeneous band broadening
Lorentzian with the
homogeneous linewidth
Γhom
2E
4A2
R1
D
A perfect crystal
Electronic origin of Chromium (III)
Andreas Hauser, Lecture Notes. 21
Solid State Spectroscopy Background
Homogeneous line width and inhomogeneous band broadening
Lorentzian with the
homogeneous linewidth
Γhom
2E
4A2
R1
D
A perfect crystalA real crystal
Electronic origin of Chromium (III)
Gaussian profile with the
i n h o m o g e n e o u s b a n d
broadening
Γinh
Andreas Hauser, Lecture Notes. 22
Excitation Spectra of Cr3+ R-Lines
Previtera E. et al., Adv. Mater. 2015, 27, 1832. 23
Excitation Spectra of Cr3+ R-Lines
Previtera E. et al., Adv. Mater. 2015, 27, 1832. 24
Luminescence Spectra
Previtera E. et al., Adv. Mater. 2015, 27, 1832. 25
Solid State Spectroscopy Background
Laser selective
excitation
non-resonant 

fluorescence
2E
4A2
R1
D
resonant fluorescence
In the absence of any other
processes only the excited subset
emits.
The principle of Fluorescence Line Narrowing Spectroscopy (FLN)
Andreas Hauser, Lecture Notes. 26
Solid State Spectroscopy Background
Fluorescence Line Narrowing Spectroscopy Setup
27
FLN Spectra
Previtera E. et al., Eur. J. Inorg. Chem. 2016, 1972-1979
Ø  Energy Transfer Core à Surface
28
FLN Spectra across the R1 Absorption
Previtera E. et al., Eur. J. Inorg. Chem. 2016, 1972-1979
Size: 140 nm
Ø  Smaller numbers of members in the FLN multiline pattern at lower energy
29
FLN Spectra across the R1 Absorption
Previtera E. et al., Eur. J. Inorg. Chem. 2016, 1972-1979
Size: 670 nm Size: 2.5 µm
Ø  Smaller numbers of members in the FLN multiline pattern at lower energy
30
ZFS as Function of FLN Excitation Wavelength
Previtera E. et al., Eur. J. Inorg. Chem. 2016, 1972-1979
Ø  Crystalline environment of the [Cr(ox)3]3- chromophores at the
surface is slightly different to that of the complexes in the bulk
31
Time Resolved FLN Spectra
Previtera E. et al., Eur. J. Inorg. Chem. 2016, 1972-1979
hν’
Energy migration inside 2E of Cr(III)
Cr3+
2E
4A2
hν
4A2
2E
Cr3+ Cr3+ Cr3+
4T2
Core Surface
32
Luminescence Decay Kinetics
Ø  Directional Energy Transfer from the Core to the Surface
Previtera E. et al., Adv. Mater. 2015, 27, 1832.
Previtera E. et al., Eur. J. Inorg. Chem. 2016, 1972-1979
Multi line pattern
decay
(at 14394 cm-1)
τ4 µm = 1.3 ms
τ2.5 µm = 155 µs
τ670 nm = 132 µs
τ140 nm = 57 µs
Broad band rise to
maximum intensity
(at 14371 cm-1)
220 µs for 2.5 mm
180 µs for 670 nm
60 µs for 140 nm
Broad band rise to
maximum intensity
(at 14351 cm-1)
400 µs for 2.5 mm
360 µs for 670 nm
180 µs for 140 nm
33
l
How far does the energy travel?
Ø  Average distance travelled by the energy is of the order of a few hundreds nm
RC resonant process à up to 30 Å
Ø  l = 140 nm à d = 30 nm
10 steps for energy migration
Core à Surface
Ø  l = 670 nm à d = 138 nm
46 steps for energy migration
Core à Surface
Ø  l = 2.5 µm à d = 510 nm
170 steps for energy migration
Core à Surface
Previtera E. et al., Adv. Mater. 2015, 27, 1832.
Previtera E. et al., Eur. J. Inorg. Chem. 2016, 1972-1979
34
Energy Transfer Mechanism
Previtera E. et al., Eur. J. Inorg. Chem. 2016, 1972-1979
1A1
[Ru(bpy)3]2+
35
<< 1 µs
< 1 ns
Conclusions
•  Size-controlled micro- and nano-crystals of [Ru(bpy)3][NaCr(ox)3]
•  Directional Energy Transfer from the Core to the Surface
•  Average distance travelled by the energy is of the order of few hundreds nm
Previtera E. et al., Adv. Mater. 2015, 27, 1832.
Previtera E. et al., Eur. J. Inorg. Chem. 2016, 1972-1979
36
l
Control of the surface state
$  Growth of oxalate network shell with
cavities filled with energy acceptor
[Cr(bpy)3]3+
$  Direct chemical grafting of Ln3+ complexes
(Ln3+ = Er3+, Eu3+, Yb3+)
37
Growing an Oxalate network shell
•  Core: 670 nm NPs
[Ru(bpy)3][NaCr(ox)3] and	[Ru(bpy)3][NaAl(ox)3] = RuCr, RuAl
•  Core-Shell:
[Ru(bpy)3][NaAl(ox)3]@[Ru(bpy)3][NaCr(ox)3] =	RuAl@RuCr
[Ru(bpy)3][NaCr(ox)3]@[NaCr(ox)3][Cr(bpy)3]ClO4 =	RuCr@CrCr
[Ru(bpy)3][NaAl(ox)3]@[NaCr(ox)3][Cr(bpy)3]ClO4 =	RuAl@CrCr
38
Growing an Oxalate network shell
PUMP
Reactants Size
nm
[Ru(bpy)3][NaMIII(ox)3]
MIII = Cr3+, Al3+
670
(NH4)3[Cr(ox)3]	 -
[Ru(bpy)3]Cl2
.6H2O -
[Cr(bpy)3]ClO4 -
NaCl	 -
39
Growing an Oxalate network shell
Surface change
•  Roughness
•  Round corners
Bigger average size
RuAl RuAl@RuCr
RuCr RuCr@CrCr
RuAl RuAl@CrCr
40
Growing an Oxalate network shell
41
Growing an Oxalate network shell
Ø  Energy Transfer Core à Shell?
42
Growing an Oxalate network shell
43
Growing an Oxalate network shell
44
Conclusions
•  It is possible to grow an Oxalate network shell of good crystalline quality
containing in its cavities the energy acceptor [Cr(bpy)3]3+.
•  No evidence of energy transfer towards the shell in RuCr@CrCr was found.
45
Direct chemical grafting of Ln3+ complexes

Up-Conversion Nanoparticles
Nature Materials 2011. 46
Direct chemical grafting of Ln3+ complexes

365 nm
a) b)
[Rh(bpy)3][NaAl(ox)3]ClO4 + [Eu(hfac)3dig] [Rh(bpy)3][NaAl(ox)3]ClO4@[Eu(hfac)3] + dig
Preliminary Test
47
hfac = hexafluoroacetylacetonate
dig = diglyme or bis(2-methoxyethyl)ether
Direct chemical grafting of Ln3+ complexes

[Rh(bpy)3][NaAl(ox)3]ClO4 + [Eu(hfac)3dig] [Rh(bpy)3][NaAl(ox)3]ClO4@[Eu(hfac)3] + dig
48
Direct chemical grafting of Ln3+ complexes
Reactants Size
nm
[Ru(bpy)3][NaCr(ox)3]
RuCr
220
[Eu(hfac)3dig]
Eu
-
[Er(hfac)3dig]
Er
-
[Yb(hfac)3dig]
Yb
-
RuCr + [Ln(hfac)3dig] RuCr@[Ln(hfac)3] + dig
49
hfac = hexafluoroacetylacetonate
dig = diglyme or bis(2-methoxyethyl)ether
Excitation Spectra of Cr3+ R-Lines

50
ZFS as Function of FLN Excitation Wavelength
51
Direct chemical grafting of Ln3+ complexes

Ø  Energy Transfer Core à [Ln(hfac)3]
52
Down-Converted Luminescence
53
Down-Converted Luminescence

54
Down-Converted Luminescence
55
Down-Converted Luminescence
56
•  Improving of the NPs’ surface.
•  Quenching of the broad band luminescence.
•  Efficient excitation energy transfer from the 2E excited states of
the [Cr(ox)3]3- ions located at the surface towards the
lanthanides complexes grafted at the NPs’ surface.
•  Good indication of down conversion luminescence related to
the lanthanides transitions 4I9/2à4I15/2 and 2F5/2à2F7/2 for
Erbium and Ytterbium.
•  No up-conversion luminescence.
Conclusions
57
Outlook
•  Direct chemical grafting of [Gd(hfac)3dig]
6P3/2
5/2
7/2
8S7/2
32200cm-1
•  Enhancing of the lifetime of the surface [Cr(ox)3]3- chromophores?
•  Would direct excitation of [Gd(hfac)3] complexes grafted at the surface give
directional energy transfer towards the chromophores located at the surface or
further into the core? 58
•  This work contributes to the expansion of the basic
knowledge about nano-size materials.
•  The energy can travel few hundreds of nanometers in
NCs. This important basic knowledge can be useful for
future applications in solar energy harvesting and
conversion.
•  This work demonstrates that also particles with sizes
bigger than 100 nm can show size-dependent properties.
General Conclusions
59
Acknowledgements
Prof. Hauser
Dr. Lawson Daku
Dr. Chakraborty
Dr. Suffren
Dr. Sun
Teresa Delgado Perez
Andrea Missana
Catherine Ludy
Nahid Jeddi
Patrick Barman
Dominique Lovy
Laurent Devenoge
Hauser’ Group:
Prof. Decurtins
Prof. Hagemann
Dr. Tissot
Jury members:
Dr. Moury
Dr. Olchowka
Dr. Bierwagen
Manish Sharma
Daniel Sethio
Angelina Gigante
Hagemann’ Group:
Prof. Piguet
Dr. Nozary
Piguet’ Group:
Dr. Varnholt
Dr. Lawson Daku
Dr. Chakraborty
Dr. Moury
Andrea Missana
Manish Sharma
Corrections:
60
Thank you for your
attention!
61

Más contenido relacionado

La actualidad más candente

Electronic structure of strongly correlated materials Part III V.Anisimov
 Electronic structure of strongly correlated materials Part III V.Anisimov Electronic structure of strongly correlated materials Part III V.Anisimov
Electronic structure of strongly correlated materials Part III V.AnisimovABDERRAHMANE REGGAD
 
Axion dark matter and 21cm line signal
Axion dark matter and 21cm line signalAxion dark matter and 21cm line signal
Axion dark matter and 21cm line signalHayato Shimabukuro
 
The metal-insulator transition of VO2 revisited
The metal-insulator transition of VO2revisitedThe metal-insulator transition of VO2revisited
The metal-insulator transition of VO2 revisitedABDERRAHMANE REGGAD
 
Phase Transitions in VO2 – Nikita Butakov
Phase Transitions in VO2 – Nikita ButakovPhase Transitions in VO2 – Nikita Butakov
Phase Transitions in VO2 – Nikita ButakovABDERRAHMANE REGGAD
 
21cm forest probes axion dark matter
21cm forest probes axion dark matter21cm forest probes axion dark matter
21cm forest probes axion dark matterHayato Shimabukuro
 
Electron Diffusion and Phonon Drag Thermopower in Silicon Nanowires
Electron Diffusion and Phonon Drag Thermopower in Silicon NanowiresElectron Diffusion and Phonon Drag Thermopower in Silicon Nanowires
Electron Diffusion and Phonon Drag Thermopower in Silicon NanowiresAI Publications
 
1.crystal structure using x – ray diffraction
1.crystal structure using  x – ray diffraction1.crystal structure using  x – ray diffraction
1.crystal structure using x – ray diffractionNarayan Behera
 
NANO281 Lecture 01 - Introduction to Data Science in Materials Science
NANO281 Lecture 01 - Introduction to Data Science in Materials ScienceNANO281 Lecture 01 - Introduction to Data Science in Materials Science
NANO281 Lecture 01 - Introduction to Data Science in Materials ScienceUniversity of California, San Diego
 
Electronic structure of strongly correlated materials
Electronic structure of strongly correlated materialsElectronic structure of strongly correlated materials
Electronic structure of strongly correlated materialsABDERRAHMANE REGGAD
 
Theoretical and Applied Phase-Field: Glimpses of the activities in India
Theoretical and Applied Phase-Field: Glimpses of the activities in IndiaTheoretical and Applied Phase-Field: Glimpses of the activities in India
Theoretical and Applied Phase-Field: Glimpses of the activities in IndiaDaniel Wheeler
 
Triumph- JEE Advanced Physics Paper 2
Triumph- JEE Advanced Physics Paper 2Triumph- JEE Advanced Physics Paper 2
Triumph- JEE Advanced Physics Paper 2askiitians
 
Low energy ion beam nanopatterning of Co_(x)Si_(1-x) surfaces
Low energy ion beam nanopatterning of Co_(x)Si_(1-x) surfacesLow energy ion beam nanopatterning of Co_(x)Si_(1-x) surfaces
Low energy ion beam nanopatterning of Co_(x)Si_(1-x) surfacesDr. Basanta Kumar Parida
 
Ab initio restricted hartree-fock formalism using for calculations electronic...
Ab initio restricted hartree-fock formalism using for calculations electronic...Ab initio restricted hartree-fock formalism using for calculations electronic...
Ab initio restricted hartree-fock formalism using for calculations electronic...Alexander Decker
 
Iván Brihuega-Probing graphene physics at the atomic scale
Iván Brihuega-Probing graphene physics at the atomic scaleIván Brihuega-Probing graphene physics at the atomic scale
Iván Brihuega-Probing graphene physics at the atomic scaleFundación Ramón Areces
 
A thirty-four billion solar mass black hole in SMSS J2157–3602, the most lumi...
A thirty-four billion solar mass black hole in SMSS J2157–3602, the most lumi...A thirty-four billion solar mass black hole in SMSS J2157–3602, the most lumi...
A thirty-four billion solar mass black hole in SMSS J2157–3602, the most lumi...Sérgio Sacani
 
Magnetism of organometallics with DFT (an alternate approach)
Magnetism of organometallics with DFT (an alternate approach)Magnetism of organometallics with DFT (an alternate approach)
Magnetism of organometallics with DFT (an alternate approach)Shruba Gangopadhyay Ph.D.
 

La actualidad más candente (20)

Electronic structure of strongly correlated materials Part III V.Anisimov
 Electronic structure of strongly correlated materials Part III V.Anisimov Electronic structure of strongly correlated materials Part III V.Anisimov
Electronic structure of strongly correlated materials Part III V.Anisimov
 
Axion dark matter and 21cm line signal
Axion dark matter and 21cm line signalAxion dark matter and 21cm line signal
Axion dark matter and 21cm line signal
 
The metal-insulator transition of VO2 revisited
The metal-insulator transition of VO2revisitedThe metal-insulator transition of VO2revisited
The metal-insulator transition of VO2 revisited
 
Phase Transitions in VO2 – Nikita Butakov
Phase Transitions in VO2 – Nikita ButakovPhase Transitions in VO2 – Nikita Butakov
Phase Transitions in VO2 – Nikita Butakov
 
21cm forest probes axion dark matter
21cm forest probes axion dark matter21cm forest probes axion dark matter
21cm forest probes axion dark matter
 
Electron Diffusion and Phonon Drag Thermopower in Silicon Nanowires
Electron Diffusion and Phonon Drag Thermopower in Silicon NanowiresElectron Diffusion and Phonon Drag Thermopower in Silicon Nanowires
Electron Diffusion and Phonon Drag Thermopower in Silicon Nanowires
 
NANO266 - Lecture 3 - Beyond the Hartree-Fock Approximation
NANO266 - Lecture 3 - Beyond the Hartree-Fock ApproximationNANO266 - Lecture 3 - Beyond the Hartree-Fock Approximation
NANO266 - Lecture 3 - Beyond the Hartree-Fock Approximation
 
Mott insulators
Mott insulatorsMott insulators
Mott insulators
 
1.crystal structure using x – ray diffraction
1.crystal structure using  x – ray diffraction1.crystal structure using  x – ray diffraction
1.crystal structure using x – ray diffraction
 
NANO281 Lecture 01 - Introduction to Data Science in Materials Science
NANO281 Lecture 01 - Introduction to Data Science in Materials ScienceNANO281 Lecture 01 - Introduction to Data Science in Materials Science
NANO281 Lecture 01 - Introduction to Data Science in Materials Science
 
Electronic structure of strongly correlated materials
Electronic structure of strongly correlated materialsElectronic structure of strongly correlated materials
Electronic structure of strongly correlated materials
 
Theoretical and Applied Phase-Field: Glimpses of the activities in India
Theoretical and Applied Phase-Field: Glimpses of the activities in IndiaTheoretical and Applied Phase-Field: Glimpses of the activities in India
Theoretical and Applied Phase-Field: Glimpses of the activities in India
 
Triumph- JEE Advanced Physics Paper 2
Triumph- JEE Advanced Physics Paper 2Triumph- JEE Advanced Physics Paper 2
Triumph- JEE Advanced Physics Paper 2
 
Low energy ion beam nanopatterning of Co_(x)Si_(1-x) surfaces
Low energy ion beam nanopatterning of Co_(x)Si_(1-x) surfacesLow energy ion beam nanopatterning of Co_(x)Si_(1-x) surfaces
Low energy ion beam nanopatterning of Co_(x)Si_(1-x) surfaces
 
Walker esa
Walker esaWalker esa
Walker esa
 
Ab initio restricted hartree-fock formalism using for calculations electronic...
Ab initio restricted hartree-fock formalism using for calculations electronic...Ab initio restricted hartree-fock formalism using for calculations electronic...
Ab initio restricted hartree-fock formalism using for calculations electronic...
 
Iván Brihuega-Probing graphene physics at the atomic scale
Iván Brihuega-Probing graphene physics at the atomic scaleIván Brihuega-Probing graphene physics at the atomic scale
Iván Brihuega-Probing graphene physics at the atomic scale
 
G0113647
G0113647G0113647
G0113647
 
A thirty-four billion solar mass black hole in SMSS J2157–3602, the most lumi...
A thirty-four billion solar mass black hole in SMSS J2157–3602, the most lumi...A thirty-four billion solar mass black hole in SMSS J2157–3602, the most lumi...
A thirty-four billion solar mass black hole in SMSS J2157–3602, the most lumi...
 
Magnetism of organometallics with DFT (an alternate approach)
Magnetism of organometallics with DFT (an alternate approach)Magnetism of organometallics with DFT (an alternate approach)
Magnetism of organometallics with DFT (an alternate approach)
 

Destacado

Pass Now - Intensive Driving Courses
Pass Now - Intensive Driving CoursesPass Now - Intensive Driving Courses
Pass Now - Intensive Driving Coursespass now
 
China Unicom Global Profile
China Unicom Global ProfileChina Unicom Global Profile
China Unicom Global ProfileAbhijit Datey
 
Cyber Ranges: The (R)evolution in Cybersecurity Training
Cyber Ranges: The (R)evolution in Cybersecurity TrainingCyber Ranges: The (R)evolution in Cybersecurity Training
Cyber Ranges: The (R)evolution in Cybersecurity TrainingMinsait
 
Certification newsletter December 2016
Certification newsletter   December 2016Certification newsletter   December 2016
Certification newsletter December 2016Kathleen Walton
 
Language and register
Language and registerLanguage and register
Language and registerShazgreen17
 
Magazine analysis
Magazine analysisMagazine analysis
Magazine analysisShazgreen17
 
Experiencia innovadora
Experiencia innovadoraExperiencia innovadora
Experiencia innovadorathomjer17
 
microseal-acetabular-system
microseal-acetabular-systemmicroseal-acetabular-system
microseal-acetabular-systemDaryl Hagle
 

Destacado (13)

Monsicha_ Public_health
Monsicha_ Public_healthMonsicha_ Public_health
Monsicha_ Public_health
 
Pass Now - Intensive Driving Courses
Pass Now - Intensive Driving CoursesPass Now - Intensive Driving Courses
Pass Now - Intensive Driving Courses
 
China Unicom Global Profile
China Unicom Global ProfileChina Unicom Global Profile
China Unicom Global Profile
 
Cyber Ranges: The (R)evolution in Cybersecurity Training
Cyber Ranges: The (R)evolution in Cybersecurity TrainingCyber Ranges: The (R)evolution in Cybersecurity Training
Cyber Ranges: The (R)evolution in Cybersecurity Training
 
Certification newsletter December 2016
Certification newsletter   December 2016Certification newsletter   December 2016
Certification newsletter December 2016
 
Sound Wave Project
Sound Wave ProjectSound Wave Project
Sound Wave Project
 
Language and register
Language and registerLanguage and register
Language and register
 
Magazine analysis
Magazine analysisMagazine analysis
Magazine analysis
 
Ensayo estadistica
Ensayo estadisticaEnsayo estadistica
Ensayo estadistica
 
Millette Notary License
Millette Notary LicenseMillette Notary License
Millette Notary License
 
Experiencia innovadora
Experiencia innovadoraExperiencia innovadora
Experiencia innovadora
 
Recreacion
RecreacionRecreacion
Recreacion
 
microseal-acetabular-system
microseal-acetabular-systemmicroseal-acetabular-system
microseal-acetabular-system
 

Similar a Size-Dependent Energy Transfer in Ru(bpy)3NaCr(ox)3 Nano-Crystals

Phonon frequency spectrum through lattice dynamics and normal coordinate anal...
Phonon frequency spectrum through lattice dynamics and normal coordinate anal...Phonon frequency spectrum through lattice dynamics and normal coordinate anal...
Phonon frequency spectrum through lattice dynamics and normal coordinate anal...Alexander Decker
 
Preliminary Exam Presentation
Preliminary Exam PresentationPreliminary Exam Presentation
Preliminary Exam Presentationggarner
 
Lattice dynamics and normal coordinate analysis of htsc tl ca3ba2cu4o11
Lattice dynamics and normal coordinate analysis of htsc tl ca3ba2cu4o11Lattice dynamics and normal coordinate analysis of htsc tl ca3ba2cu4o11
Lattice dynamics and normal coordinate analysis of htsc tl ca3ba2cu4o11Alexander Decker
 
From the workshop "High-Resolution Submillimeter Spectroscopy of the Interste...
From the workshop "High-Resolution Submillimeter Spectroscopy of the Interste...From the workshop "High-Resolution Submillimeter Spectroscopy of the Interste...
From the workshop "High-Resolution Submillimeter Spectroscopy of the Interste...Lars E. Kristensen
 
Magnon crystallization in kagomé antiferromagnets
Magnon crystallization in kagomé antiferromagnetsMagnon crystallization in kagomé antiferromagnets
Magnon crystallization in kagomé antiferromagnetsRyutaro Okuma
 
Neutron scattering from nanoparticles
Neutron  scattering from  nanoparticlesNeutron  scattering from  nanoparticles
Neutron scattering from nanoparticlesupvita pandey
 
X ray diffraction or braggs diffraction or
X ray diffraction or braggs diffraction orX ray diffraction or braggs diffraction or
X ray diffraction or braggs diffraction orbpati5271
 
XRD-calculations and characterization.pdf
XRD-calculations and characterization.pdfXRD-calculations and characterization.pdf
XRD-calculations and characterization.pdfEmadElsehly
 
13_Properties of Nanomaterials.pptx
13_Properties of Nanomaterials.pptx13_Properties of Nanomaterials.pptx
13_Properties of Nanomaterials.pptxRABEYABASORI
 
XRD principle and application
XRD principle and applicationXRD principle and application
XRD principle and applicationTechef In
 
Atomic Plane Resolution Electron Magnetic Circular Dichroism
Atomic Plane Resolution Electron Magnetic Circular DichroismAtomic Plane Resolution Electron Magnetic Circular Dichroism
Atomic Plane Resolution Electron Magnetic Circular DichroismRiccardo Di Stefano
 
Physics(JEE-MAINS)
Physics(JEE-MAINS)Physics(JEE-MAINS)
Physics(JEE-MAINS)Amol Gupta
 
How Carbon Nanotubes Collapse on Different Ag Surface?
How Carbon Nanotubes Collapse on Different Ag Surface?How Carbon Nanotubes Collapse on Different Ag Surface?
How Carbon Nanotubes Collapse on Different Ag Surface?ijrap
 
How Carbon Nanotubes Collapse on Different Ag Surface?
How Carbon Nanotubes Collapse on Different Ag Surface? How Carbon Nanotubes Collapse on Different Ag Surface?
How Carbon Nanotubes Collapse on Different Ag Surface? ijrap
 

Similar a Size-Dependent Energy Transfer in Ru(bpy)3NaCr(ox)3 Nano-Crystals (20)

Phonon frequency spectrum through lattice dynamics and normal coordinate anal...
Phonon frequency spectrum through lattice dynamics and normal coordinate anal...Phonon frequency spectrum through lattice dynamics and normal coordinate anal...
Phonon frequency spectrum through lattice dynamics and normal coordinate anal...
 
Preliminary Exam Presentation
Preliminary Exam PresentationPreliminary Exam Presentation
Preliminary Exam Presentation
 
Seminor ansto-0730
Seminor ansto-0730Seminor ansto-0730
Seminor ansto-0730
 
Lattice dynamics and normal coordinate analysis of htsc tl ca3ba2cu4o11
Lattice dynamics and normal coordinate analysis of htsc tl ca3ba2cu4o11Lattice dynamics and normal coordinate analysis of htsc tl ca3ba2cu4o11
Lattice dynamics and normal coordinate analysis of htsc tl ca3ba2cu4o11
 
From the workshop "High-Resolution Submillimeter Spectroscopy of the Interste...
From the workshop "High-Resolution Submillimeter Spectroscopy of the Interste...From the workshop "High-Resolution Submillimeter Spectroscopy of the Interste...
From the workshop "High-Resolution Submillimeter Spectroscopy of the Interste...
 
263 4.pdf
263 4.pdf263 4.pdf
263 4.pdf
 
263 4.pdf
263 4.pdf263 4.pdf
263 4.pdf
 
Magnon crystallization in kagomé antiferromagnets
Magnon crystallization in kagomé antiferromagnetsMagnon crystallization in kagomé antiferromagnets
Magnon crystallization in kagomé antiferromagnets
 
Neutron scattering from nanoparticles
Neutron  scattering from  nanoparticlesNeutron  scattering from  nanoparticles
Neutron scattering from nanoparticles
 
X ray diffraction or braggs diffraction or
X ray diffraction or braggs diffraction orX ray diffraction or braggs diffraction or
X ray diffraction or braggs diffraction or
 
XRD-calculations and characterization.pdf
XRD-calculations and characterization.pdfXRD-calculations and characterization.pdf
XRD-calculations and characterization.pdf
 
13_Properties of Nanomaterials.pptx
13_Properties of Nanomaterials.pptx13_Properties of Nanomaterials.pptx
13_Properties of Nanomaterials.pptx
 
XRD principle and application
XRD principle and applicationXRD principle and application
XRD principle and application
 
Atomic Plane Resolution Electron Magnetic Circular Dichroism
Atomic Plane Resolution Electron Magnetic Circular DichroismAtomic Plane Resolution Electron Magnetic Circular Dichroism
Atomic Plane Resolution Electron Magnetic Circular Dichroism
 
Xrd presentation
Xrd presentationXrd presentation
Xrd presentation
 
Innelastic Light Scattering in Carbon Nanostructures: from the micro to the n...
Innelastic Light Scattering in Carbon Nanostructures: from the micro to the n...Innelastic Light Scattering in Carbon Nanostructures: from the micro to the n...
Innelastic Light Scattering in Carbon Nanostructures: from the micro to the n...
 
Physics(JEE-MAINS)
Physics(JEE-MAINS)Physics(JEE-MAINS)
Physics(JEE-MAINS)
 
How Carbon Nanotubes Collapse on Different Ag Surface?
How Carbon Nanotubes Collapse on Different Ag Surface?How Carbon Nanotubes Collapse on Different Ag Surface?
How Carbon Nanotubes Collapse on Different Ag Surface?
 
How Carbon Nanotubes Collapse on Different Ag Surface?
How Carbon Nanotubes Collapse on Different Ag Surface? How Carbon Nanotubes Collapse on Different Ag Surface?
How Carbon Nanotubes Collapse on Different Ag Surface?
 
X – ray diffraction by iswar hazarika
X – ray diffraction by iswar hazarikaX – ray diffraction by iswar hazarika
X – ray diffraction by iswar hazarika
 

Size-Dependent Energy Transfer in Ru(bpy)3NaCr(ox)3 Nano-Crystals

  • 1. Study of the Size-Reduction Effect on the Photophysical Properties of [Ru(bpy)3][NaCr(ox)3] Nano-Crystals and Functionalization of their Surface Elia Previtera November 24, 2016 Département de Chimie Physique, Université de Genève Hauser Group
  • 2. Nano-Size Materials Applications: Medicine, Bio-imaging, IT, Solar-Energy Harvesting and Conversion, Lasers, Catalysis, Displays ….. Quantum Dots: tunable emission wavelength…... Gold Nanoparticles: tunable absorption wavelength….. Size 1 SIZE DEPENDENT PROPERTIES 5 nm 10 nm 15 nm 20 nm 80 nm 90 nm 100 nm Nano Today 2011.
  • 3. Nano-Size Materials 2The New York Times article of February 22, 2005.
  • 4. Nano-Size Materials At least one dimensions between 1 and 100 nm X At least one physical or chemical size- dependent property M.L. Grieneisen, M. Zhang, Small 2011, 7, No. 20, 2836-2839. What is What in the Nanoworld: A Handbook on Nanoscience and Nanotechnology 2012. 3
  • 5. Energy Transfer and Migration .. ... . .. Homo-Energy Transfer or Energy Migration Hetero-Energy Transfer .. .. . . . . .. . . . . . . .. ... . .. 4
  • 6. Radiative Energy Transfer and Migration Acceptor or DonorDonor* S0 S1 S0 S1 hν hν’ 5
  • 7. Non-radiative Energy Transfer and Migration HOMO LUMO Förster AcceptorDonor* Dexter AcceptorDonor* kEET F ∝ 1 RDA ⎛ ⎝ ⎜⎜ ⎞ ⎠ ⎟⎟ 6 kEET Ex ∝exp − 2RDA RDA 0 ⎛ ⎝ ⎜⎜ ⎞ ⎠ ⎟⎟ HOMO LUMO 10 Å < Rc F < 80 Å 1 Å < Rc Ex < 10 Å 6
  • 8. Non-radiative Energy Transfer and Migration ΩDA = gD (E)gA (E)dE∫ Spectral overlap integral ΩDA λ Emi(A)Emi(D)Abs(D) Abs(A) I gD gA 7
  • 9. Energy Transfer and Migration in Natural Antennae 6 CO2 + 6 H2O C6H12O6 + 6 O2 Respiration Photosynthesis Sunlight Energy stored Energy storedEnergy released Nature, 1995, 374, 517. 8
  • 10. Energy Transfer and Migration in Natural Antennae Photosynthetic unit of Rhodopseudomonas acidophila Nature, 1995, 374, 517. 9
  • 11. Reference System: Microcrystals of [Ru(bpy)3][NaCr(ox)3] Anionic Chiral 3D Polymeric Oxalate Networks [NaCr(ox)3][Ru(bpy)3] Na++ D3 [Cr(ox)3]3- Crystal system Cubic Z = 4 Chiral Spacegroup P213 Site symmetry of
 all metal ions C3 S. Decurtins et al., J. Amer. Chem. Soc. 116 (1994) 9521. 10
  • 12. Reference System: Microcrystals of [Ru(bpy)3][NaCr(ox)3] Anionic Chiral 3D Polymeric Oxalate Networks [NaCr(ox)3][Ru(bpy)3] Na++ D3 [Cr(ox)3]3- Crystal system Cubic Z = 4 Chiral Spacegroup P213 Site symmetry of
 all metal ions C3 S. Decurtins et al., J. Amer. Chem. Soc. 116 (1994) 9521. 11
  • 13. Reference System: Microcrystals of [Ru(bpy)3][NaCr(ox)3] Anionic Chiral 3D Polymeric Oxalate Networks [NaCr(ox)3][Ru(bpy)3] Na++ D3 [Cr(ox)3]3- Crystal system Cubic Z = 4 Chiral Spacegroup P213 Site symmetry of
 all metal ions C3 S. Decurtins et al., J. Amer. Chem. Soc. 116 (1994) 9521. 12
  • 14. 3D oxalate network: [Ru(bpy)3][NaCr(ox)3] [Ru(bpy)3]2+: antenna Oxalate Networks to Study Photo-Induced Energy Transfer Bulk: efficient energy migration in the 2E state of Cr(III) [NaCr(ox)3]2- network: energy migration Is there any influence of the crystal size on the energy migration within the 2E state of the [Cr(ox)3]3- chromophores? hν Energy Transfer Milos. M. et al., Coor. Chem. Rev., 252, 2000, 2540 13
  • 15. Reference System: Microcrystals of [Ru(bpy)3][NaCr(ox)3] Tetrahedral microcrystalline particles with side length 4 µm S. Decurtins et al., J. Amer. Chem. Soc. 116 (1994) 9521. 5 µm 14
  • 16. How to Synthesize Nanocrystals? Ø  Synthesis by the Reverse Micelles technique Aqueous phase: Solubilization of [Ru(bpy)3]Cl2 .6H2O and K3[Cr(ox)3].3H2O Surfactant: Sodium bis(2-ethylhexyl) Sulfosuccinate (AOT) Solvent: n-Heptane TEM à Tetrahedral Shape of Nanocrystals Centrifugation and washing in EtOH 15
  • 17. Size Controlled Micro- and Nanocrystals Tetrahedral Shape of Nanoparticles ImageJ Large Size Distribution 16 1000 nm
  • 18. Size & Volume Weighted Distribution Iluminescence ≈ a3 a 17Previtera E. et al., Eur. J. Inorg. Chem. 2016, 1972-1979 < Size > = Σa Number of NPs < Size Signal > = Σ(a x a3) Total a3
  • 19. Size Controlled Micro- and Nano-crystals Ø  Modification of the water-to-surfactant ratio (Wo) Wo = [H2O] [Surfactant] Size Control of final product! Wo= 2 Wo= 5 Wo= 8 2.5 µm MPs changing Wo and lowering the concentration of reactants inside micelles (Wo= 8 and 0.025 M) Previtera E. et al., Adv. Mater. 2015, 27, 1832. 18
  • 20. Size Controlled Micro- and Nanocrystals 2θ = 5.8° 140 nm 220 nm 360 nm 450 nm 670 nm 2.5 µm 4 µm Previtera E. et al., Adv. Mater. 2015, 27, 1832. 19
  • 21. Chromium (III): d3 in C3 Symmetry Ligand field states 4A2(t2g 3) 4T2(t2g 2eg 1) 4A2 2E Oh C3 + Hso R1 R2 D (2E) = 13.7 cm-1 D (4A2) = 1.3 cm-1 hν hν Spin-flip
 Δr ≈ 0 t2g → eg
 Δr ≈ 0.1 Å2E(t2g 3) ISC t2g eg t2g eg t2g eg E RCr-O Ms = ± 3/2 Ms = ± 1/2 20
  • 22. Solid State Spectroscopy Background Homogeneous line width and inhomogeneous band broadening Lorentzian with the homogeneous linewidth Γhom 2E 4A2 R1 D A perfect crystal Electronic origin of Chromium (III) Andreas Hauser, Lecture Notes. 21
  • 23. Solid State Spectroscopy Background Homogeneous line width and inhomogeneous band broadening Lorentzian with the homogeneous linewidth Γhom 2E 4A2 R1 D A perfect crystalA real crystal Electronic origin of Chromium (III) Gaussian profile with the i n h o m o g e n e o u s b a n d broadening Γinh Andreas Hauser, Lecture Notes. 22
  • 24. Excitation Spectra of Cr3+ R-Lines Previtera E. et al., Adv. Mater. 2015, 27, 1832. 23
  • 25. Excitation Spectra of Cr3+ R-Lines Previtera E. et al., Adv. Mater. 2015, 27, 1832. 24
  • 26. Luminescence Spectra Previtera E. et al., Adv. Mater. 2015, 27, 1832. 25
  • 27. Solid State Spectroscopy Background Laser selective excitation non-resonant 
 fluorescence 2E 4A2 R1 D resonant fluorescence In the absence of any other processes only the excited subset emits. The principle of Fluorescence Line Narrowing Spectroscopy (FLN) Andreas Hauser, Lecture Notes. 26
  • 28. Solid State Spectroscopy Background Fluorescence Line Narrowing Spectroscopy Setup 27
  • 29. FLN Spectra Previtera E. et al., Eur. J. Inorg. Chem. 2016, 1972-1979 Ø  Energy Transfer Core à Surface 28
  • 30. FLN Spectra across the R1 Absorption Previtera E. et al., Eur. J. Inorg. Chem. 2016, 1972-1979 Size: 140 nm Ø  Smaller numbers of members in the FLN multiline pattern at lower energy 29
  • 31. FLN Spectra across the R1 Absorption Previtera E. et al., Eur. J. Inorg. Chem. 2016, 1972-1979 Size: 670 nm Size: 2.5 µm Ø  Smaller numbers of members in the FLN multiline pattern at lower energy 30
  • 32. ZFS as Function of FLN Excitation Wavelength Previtera E. et al., Eur. J. Inorg. Chem. 2016, 1972-1979 Ø  Crystalline environment of the [Cr(ox)3]3- chromophores at the surface is slightly different to that of the complexes in the bulk 31
  • 33. Time Resolved FLN Spectra Previtera E. et al., Eur. J. Inorg. Chem. 2016, 1972-1979 hν’ Energy migration inside 2E of Cr(III) Cr3+ 2E 4A2 hν 4A2 2E Cr3+ Cr3+ Cr3+ 4T2 Core Surface 32
  • 34. Luminescence Decay Kinetics Ø  Directional Energy Transfer from the Core to the Surface Previtera E. et al., Adv. Mater. 2015, 27, 1832. Previtera E. et al., Eur. J. Inorg. Chem. 2016, 1972-1979 Multi line pattern decay (at 14394 cm-1) τ4 µm = 1.3 ms τ2.5 µm = 155 µs τ670 nm = 132 µs τ140 nm = 57 µs Broad band rise to maximum intensity (at 14371 cm-1) 220 µs for 2.5 mm 180 µs for 670 nm 60 µs for 140 nm Broad band rise to maximum intensity (at 14351 cm-1) 400 µs for 2.5 mm 360 µs for 670 nm 180 µs for 140 nm 33 l
  • 35. How far does the energy travel? Ø  Average distance travelled by the energy is of the order of a few hundreds nm RC resonant process à up to 30 Å Ø  l = 140 nm à d = 30 nm 10 steps for energy migration Core à Surface Ø  l = 670 nm à d = 138 nm 46 steps for energy migration Core à Surface Ø  l = 2.5 µm à d = 510 nm 170 steps for energy migration Core à Surface Previtera E. et al., Adv. Mater. 2015, 27, 1832. Previtera E. et al., Eur. J. Inorg. Chem. 2016, 1972-1979 34
  • 36. Energy Transfer Mechanism Previtera E. et al., Eur. J. Inorg. Chem. 2016, 1972-1979 1A1 [Ru(bpy)3]2+ 35 << 1 µs < 1 ns
  • 37. Conclusions •  Size-controlled micro- and nano-crystals of [Ru(bpy)3][NaCr(ox)3] •  Directional Energy Transfer from the Core to the Surface •  Average distance travelled by the energy is of the order of few hundreds nm Previtera E. et al., Adv. Mater. 2015, 27, 1832. Previtera E. et al., Eur. J. Inorg. Chem. 2016, 1972-1979 36 l
  • 38. Control of the surface state $  Growth of oxalate network shell with cavities filled with energy acceptor [Cr(bpy)3]3+ $  Direct chemical grafting of Ln3+ complexes (Ln3+ = Er3+, Eu3+, Yb3+) 37
  • 39. Growing an Oxalate network shell •  Core: 670 nm NPs [Ru(bpy)3][NaCr(ox)3] and [Ru(bpy)3][NaAl(ox)3] = RuCr, RuAl •  Core-Shell: [Ru(bpy)3][NaAl(ox)3]@[Ru(bpy)3][NaCr(ox)3] = RuAl@RuCr [Ru(bpy)3][NaCr(ox)3]@[NaCr(ox)3][Cr(bpy)3]ClO4 = RuCr@CrCr [Ru(bpy)3][NaAl(ox)3]@[NaCr(ox)3][Cr(bpy)3]ClO4 = RuAl@CrCr 38
  • 40. Growing an Oxalate network shell PUMP Reactants Size nm [Ru(bpy)3][NaMIII(ox)3] MIII = Cr3+, Al3+ 670 (NH4)3[Cr(ox)3] - [Ru(bpy)3]Cl2 .6H2O - [Cr(bpy)3]ClO4 - NaCl - 39
  • 41. Growing an Oxalate network shell Surface change •  Roughness •  Round corners Bigger average size RuAl RuAl@RuCr RuCr RuCr@CrCr RuAl RuAl@CrCr 40
  • 42. Growing an Oxalate network shell 41
  • 43. Growing an Oxalate network shell Ø  Energy Transfer Core à Shell? 42
  • 44. Growing an Oxalate network shell 43
  • 45. Growing an Oxalate network shell 44
  • 46. Conclusions •  It is possible to grow an Oxalate network shell of good crystalline quality containing in its cavities the energy acceptor [Cr(bpy)3]3+. •  No evidence of energy transfer towards the shell in RuCr@CrCr was found. 45
  • 47. Direct chemical grafting of Ln3+ complexes
 Up-Conversion Nanoparticles Nature Materials 2011. 46
  • 48. Direct chemical grafting of Ln3+ complexes
 365 nm a) b) [Rh(bpy)3][NaAl(ox)3]ClO4 + [Eu(hfac)3dig] [Rh(bpy)3][NaAl(ox)3]ClO4@[Eu(hfac)3] + dig Preliminary Test 47 hfac = hexafluoroacetylacetonate dig = diglyme or bis(2-methoxyethyl)ether
  • 49. Direct chemical grafting of Ln3+ complexes
 [Rh(bpy)3][NaAl(ox)3]ClO4 + [Eu(hfac)3dig] [Rh(bpy)3][NaAl(ox)3]ClO4@[Eu(hfac)3] + dig 48
  • 50. Direct chemical grafting of Ln3+ complexes Reactants Size nm [Ru(bpy)3][NaCr(ox)3] RuCr 220 [Eu(hfac)3dig] Eu - [Er(hfac)3dig] Er - [Yb(hfac)3dig] Yb - RuCr + [Ln(hfac)3dig] RuCr@[Ln(hfac)3] + dig 49 hfac = hexafluoroacetylacetonate dig = diglyme or bis(2-methoxyethyl)ether
  • 51. Excitation Spectra of Cr3+ R-Lines
 50
  • 52. ZFS as Function of FLN Excitation Wavelength 51
  • 53. Direct chemical grafting of Ln3+ complexes
 Ø  Energy Transfer Core à [Ln(hfac)3] 52
  • 58. •  Improving of the NPs’ surface. •  Quenching of the broad band luminescence. •  Efficient excitation energy transfer from the 2E excited states of the [Cr(ox)3]3- ions located at the surface towards the lanthanides complexes grafted at the NPs’ surface. •  Good indication of down conversion luminescence related to the lanthanides transitions 4I9/2à4I15/2 and 2F5/2à2F7/2 for Erbium and Ytterbium. •  No up-conversion luminescence. Conclusions 57
  • 59. Outlook •  Direct chemical grafting of [Gd(hfac)3dig] 6P3/2 5/2 7/2 8S7/2 32200cm-1 •  Enhancing of the lifetime of the surface [Cr(ox)3]3- chromophores? •  Would direct excitation of [Gd(hfac)3] complexes grafted at the surface give directional energy transfer towards the chromophores located at the surface or further into the core? 58
  • 60. •  This work contributes to the expansion of the basic knowledge about nano-size materials. •  The energy can travel few hundreds of nanometers in NCs. This important basic knowledge can be useful for future applications in solar energy harvesting and conversion. •  This work demonstrates that also particles with sizes bigger than 100 nm can show size-dependent properties. General Conclusions 59
  • 61. Acknowledgements Prof. Hauser Dr. Lawson Daku Dr. Chakraborty Dr. Suffren Dr. Sun Teresa Delgado Perez Andrea Missana Catherine Ludy Nahid Jeddi Patrick Barman Dominique Lovy Laurent Devenoge Hauser’ Group: Prof. Decurtins Prof. Hagemann Dr. Tissot Jury members: Dr. Moury Dr. Olchowka Dr. Bierwagen Manish Sharma Daniel Sethio Angelina Gigante Hagemann’ Group: Prof. Piguet Dr. Nozary Piguet’ Group: Dr. Varnholt Dr. Lawson Daku Dr. Chakraborty Dr. Moury Andrea Missana Manish Sharma Corrections: 60
  • 62. Thank you for your attention! 61