SlideShare una empresa de Scribd logo
1 de 1
Descargar para leer sin conexión
Seismic	
  Performance	
  and	
  Design	
  of	
  Embedded	
  Steel	
  Column	
  Base	
  Connec8ons	
  
Emmanuel	
  Flores1,	
  David	
  Grilli2,	
  and	
  Amit	
  Kanvinde2,	
  Ph.	
  D.	
  
	
  1Department	
  of	
  Civil	
  and	
  Environmental	
  Engineering,	
  University	
  of	
  California,	
  Berkeley,	
  94720	
  
2Department	
  of	
  Civil	
  and	
  Environmental	
  Engineering,	
  University	
  of	
  California,	
  Davis,	
  95616	
  	
  
Column	
  base	
  connecJons	
  are	
  very	
  important	
  structural	
  interfaces	
  
because	
  this	
  is	
  where	
  load	
  is	
  transferred	
  from	
  the	
  enJre	
  structure	
  to	
  
the	
  foundaJon.	
  	
  It	
  is	
  common	
  for	
  embedded	
  columns	
  to	
  be	
  the	
  
preferred	
  alternaJve	
  to	
  restrain	
  column	
  bases	
  of	
  mid-­‐to-­‐high	
  rise	
  
buildings	
  in	
  highly	
  seismic	
  regions	
  due	
  to	
  its	
  ability	
  to	
  beNer	
  resist	
  
moment	
  and	
  shear.	
  	
  Despite	
  the	
  widespread	
  use	
  of	
  embedded	
  
columns,	
  there	
  is	
  very	
  liNle	
  experimental	
  data	
  and	
  no	
  true	
  design	
  
guidelines	
  on	
  this	
  type	
  of	
  connecJon.	
  	
  What	
  this	
  invesJgaJon	
  will	
  do	
  
is	
  develop	
  a	
  fundamental	
  understanding	
  of	
  the	
  force	
  transfer	
  
mechanisms	
  and	
  demonstrate	
  strength,	
  sJffness,	
  ducJlity,	
  and	
  
damage	
  states	
  that	
  occur	
  in	
  embedded	
  columns.	
  	
  To	
  do	
  this,	
  five	
  
realisJcally-­‐sized	
  embedded	
  columns	
  will	
  be	
  taken	
  to	
  a	
  strong	
  
reacJon	
  floor	
  to	
  be	
  subjected	
  to	
  various	
  combinaJons	
  of	
  axial	
  
compression	
  or	
  tension	
  with	
  cyclic	
  lateral	
  loading.	
  	
  Data	
  from	
  these	
  
tests	
  will	
  be	
  recorded	
  as	
  lateral	
  force-­‐displacement	
  hystereJc	
  curves,	
  
stress	
  distribuJons	
  over	
  the	
  embedded	
  part	
  of	
  the	
  columns,	
  and	
  
observed	
  failure	
  modes.	
  
Abstract	
  
•  Use	
  calibraJon	
  plots	
  to	
  convert	
  future	
  voltage	
  data	
  into	
  values	
  of	
  
distance	
  and	
  strain.	
  
•  Determine	
  strength,	
  sJffness,	
  and	
  damage	
  states	
  
•  Develop	
  equaJons	
  for	
  strength	
  and	
  update	
  building	
  codes,	
  
standards,	
  and	
  specificaJons	
  
Next	
  Steps	
  
A	
  special	
  thanks	
  to:	
  
	
  
•  Professor	
  Amit	
  Kanvinde	
  and	
  David	
  Grilli	
  
•  Cal	
  NERDS	
  
•  UC	
  LEADS	
  
Acknowledgements	
  
Background	
  
•  Column	
  base	
  connecJons	
  are	
  some	
  of	
  the	
  most	
  crucial	
  connecJons	
  
in	
  a	
  steel	
  frame	
  since	
  they	
  transfer	
  forces	
  from	
  the	
  enJre	
  structure	
  
to	
  the	
  foundaJon.	
  
•  Earthquakes	
  are	
  known	
  to	
  produce	
  large	
  moment	
  and	
  shear	
  forces	
  
in	
  a	
  building	
  which	
  can	
  place	
  a	
  risk	
  on	
  the	
  safety	
  of	
  people	
  and	
  the	
  
building	
  itself.	
  
•  The	
  two	
  most	
  frequent	
  types	
  of	
  connecJon	
  used	
  in	
  pracJce	
  are	
  the	
  
exposed	
  column	
  base	
  connecJon	
  and	
  the	
  embedded	
  column	
  base	
  
connecJon.	
  
•  For	
  the	
  steel	
  frame,	
  the	
  embedded	
  column	
  base	
  connecJon	
  is	
  the	
  
most	
  effecJve	
  type	
  of	
  base	
  connecJon	
  for	
  buildings	
  in	
  earthquake	
  
prone	
  regions	
  because	
  of	
  their	
  ability	
  to	
  resist	
  moment	
  and	
  shear.	
  
	
  
	
  
	
  Figure	
  1. 	
  	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Figure	
  2.	
  
Figure	
  1	
  is	
  an	
  example	
  of	
  an	
  embedded	
  connecJon	
  while	
  Figure	
  2	
  is	
  
an	
  example	
  of	
  an	
  exposed	
  connecJon.	
  	
  These	
  are	
  the	
  two	
  most	
  
commonly	
  used	
  connecJons	
  for	
  steel	
  frames.	
  
Methods	
  
For	
  this	
  experiment,	
  5	
  steel	
  columns	
  will	
  be	
  used	
  with	
  varying	
  heights	
  
of	
  12	
  to	
  14	
  feet.	
  	
  Each	
  column	
  will	
  be	
  embedded	
  into	
  a	
  block	
  of	
  
concrete.	
  	
  The	
  steel	
  column	
  specimens	
  will	
  be	
  tested	
  on	
  a	
  strong	
  
reacJon	
  floor	
  where	
  a	
  hydraulic	
  actuator,	
  capable	
  of	
  producing	
  200	
  
kips	
  of	
  force,	
  will	
  generate	
  cyclic	
  lateral	
  forces.	
  	
  Along	
  with	
  being	
  
subjected	
  to	
  a	
  lateral	
  force,	
  the	
  specimens	
  will	
  also	
  be	
  subjected	
  to	
  
either	
  axial	
  tension	
  (Figure	
  3.)	
  or	
  compression	
  (Figure	
  4.)	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  Figure	
  3. 	
  	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Figure	
  4.	
  
Each	
  specimen	
  will	
  be	
  a	
  different	
  combinaJon	
  of	
  lateral	
  force	
  and	
  
axial	
  force	
  as	
  shown	
  in	
  Table	
  1	
  below.	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Table	
  1.	
  
The	
  data	
  that	
  will	
  be	
  collected	
  from	
  these	
  specimens	
  will	
  be	
  
displacement	
  along	
  the	
  length	
  of	
  the	
  column	
  and	
  stress	
  values	
  in	
  the	
  
embedded	
  porJon	
  of	
  the	
  column.	
  	
  Linear	
  potenJometers	
  and	
  string	
  
potenJometers	
  will	
  be	
  used	
  to	
  measure	
  displacement	
  while	
  strain	
  
gauges	
  will	
  be	
  measuring	
  strain.	
  The	
  types	
  of	
  instruments	
  and	
  their	
  
placement	
  on	
  the	
  specimen	
  are	
  shown	
  below	
  in	
  Figures	
  5	
  and	
  6.	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Figure	
  5. 	
   	
  	
  	
  	
  	
  Figure	
  6.	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Top	
  View	
  of	
  Column	
  Specimen 	
  	
   	
  Side	
  View	
  of	
  
	
   	
   	
   	
  	
  	
  	
  Embedded	
  	
  
	
   	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  PorJon	
  of	
  Column	
  
Test	
  #	
   Column	
  Size	
   Loading	
  (kips)	
   Embedment	
  (in.)	
  
1	
   W14x370	
   Axial	
  0	
  +	
  Lat.	
   40	
  
2	
   W14x370	
   Axial	
  500	
  (C)	
  +	
  Lat.	
   40	
  
3	
   W14x370	
   Axial	
  500	
  (T)	
  +	
  Lat.	
   40	
  
4	
   W14x370	
   Axial	
  500	
  (C)	
  +	
  Lat.	
   20	
  
5	
   W18x311	
   Axial	
  500	
  (T)	
  +	
  Lat.	
   20	
  
Preliminary	
  Results	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  	
  	
  	
  	
  	
  	
  	
  Figure	
  7. 	
   	
  	
  	
  Figure	
  8.	
  
Figures	
  7	
  and	
  8	
  are	
  voltage	
  vs.	
  distance	
  plots	
  for	
  2	
  string	
  potenJometers.	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  	
  	
  	
  	
  	
  Figure	
  9. 	
  	
  	
   	
   	
  	
  Figure	
  10.	
  
Figures	
  9	
  and	
  10	
  are	
  voltage	
  vs.	
  posiJon	
  plots	
  for	
  2	
  linear	
  potenJometers.	
  
y	
  =	
  0.0954x	
  +	
  0.0401	
  
0	
  
0.5	
  
1	
  
1.5	
  
2	
  
2.5	
  
3	
  
3.5	
  
4	
  
4.5	
  
5	
  
0	
   10	
   20	
   30	
   40	
   50	
   60	
  
Voltage	
  (V)	
  
Distance	
  (in.)	
  
Calibra8on	
  Plot	
  for	
  SP1	
  
y	
  =	
  0.0952x	
  +	
  0.0505	
  
0	
  
0.5	
  
1	
  
1.5	
  
2	
  
2.5	
  
3	
  
3.5	
  
4	
  
4.5	
  
5	
  
0	
   10	
   20	
   30	
   40	
   50	
   60	
  
Voltage	
  (V)	
  
Distance	
  (in.)	
  
Calibra8on	
  Plot	
  for	
  SP2	
  
y	
  =	
  3.2471x	
  -­‐	
  0.8103	
  
0	
  
1	
  
2	
  
3	
  
4	
  
5	
  
6	
  
0	
   0.2	
   0.4	
   0.6	
   0.8	
   1	
   1.2	
   1.4	
   1.6	
   1.8	
   2	
  
Voltage	
  (V)	
  
Posi8on	
  (in.)	
  
Calibra8on	
  Plot	
  for	
  LP1	
  
y	
  =	
  3.3119x	
  -­‐	
  1.0336	
  
0	
  
1	
  
2	
  
3	
  
4	
  
5	
  
6	
  
0	
   0.2	
   0.4	
   0.6	
   0.8	
   1	
   1.2	
   1.4	
   1.6	
   1.8	
   2	
  
Voltage	
  (V)	
  
Posi8on	
  (in.)	
  
Calibra8on	
  Plot	
  for	
  LP2	
  
Conclusions	
  
There	
  is	
  a	
  strong	
  linear	
  correlaJon	
  between	
  voltage	
  and	
  distance	
  for	
  the	
  
string	
  potenJometers.	
  	
  This	
  strong	
  linear	
  correlaJon	
  also	
  appears	
  
between	
  voltage	
  and	
  posiJon	
  for	
  the	
  linear	
  potenJometers.	
  	
  The	
  voltage	
  
vs.	
  distance	
  plots	
  are	
  unique	
  and	
  correspond	
  to	
  only	
  one	
  string	
  
potenJometer.	
  	
  This	
  is	
  also	
  true	
  for	
  the	
  voltage	
  vs.	
  posiJon	
  plots	
  for	
  linear	
  
potenJometers.	
  
Photo	
  Credits:	
  
•  Images	
  used	
  to	
  design	
  the	
  poster	
  (sidebar)	
  were	
  taken	
  on	
  (September	
  27,	
  2013)	
  from	
  top	
  to	
  boNom:	
  
hNp://upload.wikimedia.org/wikipedia/commons/1/1b/Los_Angeles_Library_Tower_%28small%29_crop.jpg,	
  hNp://upload.wikimedia.org/wikipedia/en/thumb/5/51/
Wilshire_Grand_Center.jpg/220px-­‐Wilshire_Grand_Center.jpg	
  ,hNp://upload.wikimedia.org/wikipedia/commons/c/c9/Taipei101.portrait.altonthompson.jpg,	
  hNp://
upload.wikimedia.org/wikipedia/en/b/bc/Transamerica_Pyramid1.jpg,	
  hNp://upload.wikimedia.org/wikipedia/commons/7/70/Downtown_Los_Angeles_-­‐_Aon_Center.jpg	
  
References	
  
Cui,	
  Yao,	
  Takuya	
  Nagae,	
  and	
  Masayoshi	
  Nakashima.	
  “HystereJc	
  Behavior	
  and	
  
Strength	
  Capacity	
  of	
  Shallowly	
  Embedded	
  Steel	
  Column	
  Bases.”	
  Journal	
  of	
  Structural	
  
Engineering	
  135.10	
  (2009).	
  1231-­‐1238.	
  Print.	
  
	
  
Gong,	
  Bingnian	
  and	
  Bahram	
  M.	
  Shahrooz.	
  “Concrete-­‐Steel	
  Composite	
  Coupling	
  
Beams	
  I:	
  Component	
  TesJng.”	
  Journal	
  of	
  Structural	
  Engineering	
  127.6	
  (2001).	
  
625-­‐631.	
  Print.	
  
	
  
Pertold,	
  J.,	
  et	
  al.	
  “Embedded	
  Steel	
  Column	
  Bases.”	
  Journal	
  of	
  Construc3on	
  Steel	
  
Research	
  56	
  (2000).	
  271-­‐286.	
  Print.	
  

Más contenido relacionado

La actualidad más candente

Comparison of the lateral deflection at midpoint of long & short side column
Comparison of the lateral deflection at midpoint of long & short side columnComparison of the lateral deflection at midpoint of long & short side column
Comparison of the lateral deflection at midpoint of long & short side column
IAEME Publication
 
Modeling of Deep Girders Supporting Shear Walls
Modeling of Deep Girders Supporting Shear WallsModeling of Deep Girders Supporting Shear Walls
Modeling of Deep Girders Supporting Shear Walls
Syed Karar Hussain
 
Statically Balanced Tensegrity Mechanisms By Schenk
Statically Balanced Tensegrity Mechanisms By SchenkStatically Balanced Tensegrity Mechanisms By Schenk
Statically Balanced Tensegrity Mechanisms By Schenk
Tensegrity Wiki
 
Deployable Tensegrity Robots Tel Aviv
Deployable Tensegrity Robots Tel AvivDeployable Tensegrity Robots Tel Aviv
Deployable Tensegrity Robots Tel Aviv
Tensegrity Wiki
 

La actualidad más candente (18)

IRJET- Developing of an Equivalent Rectanuglar Column for an L-Shaped RC Colu...
IRJET- Developing of an Equivalent Rectanuglar Column for an L-Shaped RC Colu...IRJET- Developing of an Equivalent Rectanuglar Column for an L-Shaped RC Colu...
IRJET- Developing of an Equivalent Rectanuglar Column for an L-Shaped RC Colu...
 
B05
B05B05
B05
 
Analysis of Multi-storey Building Frames Subjected to Gravity and Seismic Loa...
Analysis of Multi-storey Building Frames Subjected to Gravity and Seismic Loa...Analysis of Multi-storey Building Frames Subjected to Gravity and Seismic Loa...
Analysis of Multi-storey Building Frames Subjected to Gravity and Seismic Loa...
 
Deflection of simply supported beam and cantilever
Deflection of simply supported beam and cantileverDeflection of simply supported beam and cantilever
Deflection of simply supported beam and cantilever
 
Structural analysis 2
Structural analysis   2Structural analysis   2
Structural analysis 2
 
Comparison of the lateral deflection at midpoint of long & short side column
Comparison of the lateral deflection at midpoint of long & short side columnComparison of the lateral deflection at midpoint of long & short side column
Comparison of the lateral deflection at midpoint of long & short side column
 
Probability of Failure of Column and Beam in Steel Structure due to Plan Irre...
Probability of Failure of Column and Beam in Steel Structure due to Plan Irre...Probability of Failure of Column and Beam in Steel Structure due to Plan Irre...
Probability of Failure of Column and Beam in Steel Structure due to Plan Irre...
 
Influence lines gdlc
Influence lines   gdlcInfluence lines   gdlc
Influence lines gdlc
 
Mm210(4)
Mm210(4)Mm210(4)
Mm210(4)
 
Modeling of Deep Girders Supporting Shear Walls
Modeling of Deep Girders Supporting Shear WallsModeling of Deep Girders Supporting Shear Walls
Modeling of Deep Girders Supporting Shear Walls
 
lab report structure continuous beam
lab report structure continuous beamlab report structure continuous beam
lab report structure continuous beam
 
4th 2 lecture shear and moment diagram structure i
4th 2  lecture shear and moment diagram structure i4th 2  lecture shear and moment diagram structure i
4th 2 lecture shear and moment diagram structure i
 
Statically Balanced Tensegrity Mechanisms By Schenk
Statically Balanced Tensegrity Mechanisms By SchenkStatically Balanced Tensegrity Mechanisms By Schenk
Statically Balanced Tensegrity Mechanisms By Schenk
 
Influence lines (structural analysis theories)
Influence lines (structural analysis theories)Influence lines (structural analysis theories)
Influence lines (structural analysis theories)
 
Seismic Design Of Structures Project
Seismic Design Of Structures ProjectSeismic Design Of Structures Project
Seismic Design Of Structures Project
 
Experiment 6 MOS LAB
Experiment 6 MOS LABExperiment 6 MOS LAB
Experiment 6 MOS LAB
 
Progressive collapse of reinforced concrete structures using ETABS
Progressive collapse of reinforced concrete structures using ETABSProgressive collapse of reinforced concrete structures using ETABS
Progressive collapse of reinforced concrete structures using ETABS
 
Deployable Tensegrity Robots Tel Aviv
Deployable Tensegrity Robots Tel AvivDeployable Tensegrity Robots Tel Aviv
Deployable Tensegrity Robots Tel Aviv
 

Destacado

Presentation flora
Presentation floraPresentation flora
Presentation flora
Flora eugin
 

Destacado (15)

Social Data Science For Intelligent Cities
Social Data Science For Intelligent CitiesSocial Data Science For Intelligent Cities
Social Data Science For Intelligent Cities
 
Enrich, Link, Search
Enrich, Link, SearchEnrich, Link, Search
Enrich, Link, Search
 
IMI Tri-Fold Brochure
IMI Tri-Fold BrochureIMI Tri-Fold Brochure
IMI Tri-Fold Brochure
 
What's Next: Talk to ITT Tallaght Final Year Computing Graduates
What's Next: Talk to ITT Tallaght Final Year Computing GraduatesWhat's Next: Talk to ITT Tallaght Final Year Computing Graduates
What's Next: Talk to ITT Tallaght Final Year Computing Graduates
 
Rachel McCollum, Parsons Design + Management, Senior Thesis Poster, Spring 2009
Rachel McCollum, Parsons Design + Management, Senior Thesis Poster, Spring 2009Rachel McCollum, Parsons Design + Management, Senior Thesis Poster, Spring 2009
Rachel McCollum, Parsons Design + Management, Senior Thesis Poster, Spring 2009
 
Presentation flora
Presentation floraPresentation flora
Presentation flora
 
Enhancing science-based development in Africa: Where does Ethiopia stand?
Enhancing science-based development in Africa: Where does Ethiopia stand?Enhancing science-based development in Africa: Where does Ethiopia stand?
Enhancing science-based development in Africa: Where does Ethiopia stand?
 
Redusere friksjon gjennom bruk av teknologi
Redusere friksjon gjennom bruk av teknologiRedusere friksjon gjennom bruk av teknologi
Redusere friksjon gjennom bruk av teknologi
 
IMI Event Flyer
IMI Event FlyerIMI Event Flyer
IMI Event Flyer
 
ARF as a Vehicle to an East Asia Regional Order
ARF as a Vehicle to an East Asia Regional OrderARF as a Vehicle to an East Asia Regional Order
ARF as a Vehicle to an East Asia Regional Order
 
Greasing The Wheels
Greasing The WheelsGreasing The Wheels
Greasing The Wheels
 
SAIL 2015 Crowdmanagement Experiment. Pitch slides
SAIL 2015 Crowdmanagement Experiment. Pitch slidesSAIL 2015 Crowdmanagement Experiment. Pitch slides
SAIL 2015 Crowdmanagement Experiment. Pitch slides
 
Name and logo
Name and logoName and logo
Name and logo
 
Duck or rabbit- A simple psychometric test
Duck or rabbit- A simple psychometric testDuck or rabbit- A simple psychometric test
Duck or rabbit- A simple psychometric test
 
Diversity and inclusion in the workplace—The future for CGIAR
Diversity and inclusion in the workplace—The future for CGIARDiversity and inclusion in the workplace—The future for CGIAR
Diversity and inclusion in the workplace—The future for CGIAR
 

Similar a ResearchPoster_Davis_2013

Deflections in PT elements pt structure for all pt slabs in civil industry.pdf
Deflections in PT elements pt structure for all pt slabs in civil industry.pdfDeflections in PT elements pt structure for all pt slabs in civil industry.pdf
Deflections in PT elements pt structure for all pt slabs in civil industry.pdf
vijayvijay327286
 
Buckling test engt110
Buckling test engt110Buckling test engt110
Buckling test engt110
asghar123456
 
Page 6 of 8Engineering Materials ScienceMetals LabLEEDS .docx
Page 6 of 8Engineering Materials ScienceMetals LabLEEDS .docxPage 6 of 8Engineering Materials ScienceMetals LabLEEDS .docx
Page 6 of 8Engineering Materials ScienceMetals LabLEEDS .docx
bunyansaturnina
 

Similar a ResearchPoster_Davis_2013 (20)

I012274853
I012274853I012274853
I012274853
 
BEHAVIOR OF SLENDER COLUMN SUBJECTED TO ECCENTRIC LOADING
BEHAVIOR OF SLENDER COLUMN SUBJECTED TO ECCENTRIC LOADINGBEHAVIOR OF SLENDER COLUMN SUBJECTED TO ECCENTRIC LOADING
BEHAVIOR OF SLENDER COLUMN SUBJECTED TO ECCENTRIC LOADING
 
Deflections in PT elements pt structure for all pt slabs in civil industry.pdf
Deflections in PT elements pt structure for all pt slabs in civil industry.pdfDeflections in PT elements pt structure for all pt slabs in civil industry.pdf
Deflections in PT elements pt structure for all pt slabs in civil industry.pdf
 
Assessing Uncertainty of Pushover Analysis to Geometric Modeling
Assessing Uncertainty of Pushover Analysis to Geometric ModelingAssessing Uncertainty of Pushover Analysis to Geometric Modeling
Assessing Uncertainty of Pushover Analysis to Geometric Modeling
 
IRJET- Capacity Analysis of Post-Tensioned Steel Structure in Column Removal
IRJET- Capacity Analysis of Post-Tensioned Steel Structure in Column RemovalIRJET- Capacity Analysis of Post-Tensioned Steel Structure in Column Removal
IRJET- Capacity Analysis of Post-Tensioned Steel Structure in Column Removal
 
Design for Short Axially Loaded Columns ACI318
Design for Short  Axially  Loaded Columns ACI318Design for Short  Axially  Loaded Columns ACI318
Design for Short Axially Loaded Columns ACI318
 
The Effect of Structure -Soil Interaction on Eccentrically Loaded Frame
The Effect of Structure -Soil Interaction on Eccentrically Loaded FrameThe Effect of Structure -Soil Interaction on Eccentrically Loaded Frame
The Effect of Structure -Soil Interaction on Eccentrically Loaded Frame
 
Basic civil mechanical Engineering lab manual according to JNTU annathapur sy...
Basic civil mechanical Engineering lab manual according to JNTU annathapur sy...Basic civil mechanical Engineering lab manual according to JNTU annathapur sy...
Basic civil mechanical Engineering lab manual according to JNTU annathapur sy...
 
Short Composite Columns - thesis
Short Composite Columns - thesis Short Composite Columns - thesis
Short Composite Columns - thesis
 
Buckling test engt110
Buckling test engt110Buckling test engt110
Buckling test engt110
 
Behavior of RC Beams Retrofitted/Strengthened With External Post-Tension System
Behavior of RC Beams Retrofitted/Strengthened With External Post-Tension SystemBehavior of RC Beams Retrofitted/Strengthened With External Post-Tension System
Behavior of RC Beams Retrofitted/Strengthened With External Post-Tension System
 
U01232170177
U01232170177U01232170177
U01232170177
 
Strain gauge loadcell ppt
Strain gauge loadcell pptStrain gauge loadcell ppt
Strain gauge loadcell ppt
 
Analysis of multi storey building frames subjected to gravity and seismic loa...
Analysis of multi storey building frames subjected to gravity and seismic loa...Analysis of multi storey building frames subjected to gravity and seismic loa...
Analysis of multi storey building frames subjected to gravity and seismic loa...
 
IRJET-Cyclic Response of Perforated Beam in Steel Column Joints
IRJET-Cyclic Response of Perforated Beam in Steel Column JointsIRJET-Cyclic Response of Perforated Beam in Steel Column Joints
IRJET-Cyclic Response of Perforated Beam in Steel Column Joints
 
IRJET- Study of Cold-Formed Steel Flexural Member Under Monotonic and Reverse...
IRJET- Study of Cold-Formed Steel Flexural Member Under Monotonic and Reverse...IRJET- Study of Cold-Formed Steel Flexural Member Under Monotonic and Reverse...
IRJET- Study of Cold-Formed Steel Flexural Member Under Monotonic and Reverse...
 
Page 6 of 8Engineering Materials ScienceMetals LabLEEDS .docx
Page 6 of 8Engineering Materials ScienceMetals LabLEEDS .docxPage 6 of 8Engineering Materials ScienceMetals LabLEEDS .docx
Page 6 of 8Engineering Materials ScienceMetals LabLEEDS .docx
 
Seismic Behavior Of Double Steel Plate Composite Wall Under Cyclic Loading
Seismic Behavior Of Double Steel Plate Composite Wall Under Cyclic LoadingSeismic Behavior Of Double Steel Plate Composite Wall Under Cyclic Loading
Seismic Behavior Of Double Steel Plate Composite Wall Under Cyclic Loading
 
2001 iabse - Reliability Assessment of Cable-Stayed Bridges
2001 iabse - Reliability Assessment of Cable-Stayed Bridges2001 iabse - Reliability Assessment of Cable-Stayed Bridges
2001 iabse - Reliability Assessment of Cable-Stayed Bridges
 
Chapter 02.pdf
Chapter 02.pdfChapter 02.pdf
Chapter 02.pdf
 

ResearchPoster_Davis_2013

  • 1. Seismic  Performance  and  Design  of  Embedded  Steel  Column  Base  Connec8ons   Emmanuel  Flores1,  David  Grilli2,  and  Amit  Kanvinde2,  Ph.  D.    1Department  of  Civil  and  Environmental  Engineering,  University  of  California,  Berkeley,  94720   2Department  of  Civil  and  Environmental  Engineering,  University  of  California,  Davis,  95616     Column  base  connecJons  are  very  important  structural  interfaces   because  this  is  where  load  is  transferred  from  the  enJre  structure  to   the  foundaJon.    It  is  common  for  embedded  columns  to  be  the   preferred  alternaJve  to  restrain  column  bases  of  mid-­‐to-­‐high  rise   buildings  in  highly  seismic  regions  due  to  its  ability  to  beNer  resist   moment  and  shear.    Despite  the  widespread  use  of  embedded   columns,  there  is  very  liNle  experimental  data  and  no  true  design   guidelines  on  this  type  of  connecJon.    What  this  invesJgaJon  will  do   is  develop  a  fundamental  understanding  of  the  force  transfer   mechanisms  and  demonstrate  strength,  sJffness,  ducJlity,  and   damage  states  that  occur  in  embedded  columns.    To  do  this,  five   realisJcally-­‐sized  embedded  columns  will  be  taken  to  a  strong   reacJon  floor  to  be  subjected  to  various  combinaJons  of  axial   compression  or  tension  with  cyclic  lateral  loading.    Data  from  these   tests  will  be  recorded  as  lateral  force-­‐displacement  hystereJc  curves,   stress  distribuJons  over  the  embedded  part  of  the  columns,  and   observed  failure  modes.   Abstract   •  Use  calibraJon  plots  to  convert  future  voltage  data  into  values  of   distance  and  strain.   •  Determine  strength,  sJffness,  and  damage  states   •  Develop  equaJons  for  strength  and  update  building  codes,   standards,  and  specificaJons   Next  Steps   A  special  thanks  to:     •  Professor  Amit  Kanvinde  and  David  Grilli   •  Cal  NERDS   •  UC  LEADS   Acknowledgements   Background   •  Column  base  connecJons  are  some  of  the  most  crucial  connecJons   in  a  steel  frame  since  they  transfer  forces  from  the  enJre  structure   to  the  foundaJon.   •  Earthquakes  are  known  to  produce  large  moment  and  shear  forces   in  a  building  which  can  place  a  risk  on  the  safety  of  people  and  the   building  itself.   •  The  two  most  frequent  types  of  connecJon  used  in  pracJce  are  the   exposed  column  base  connecJon  and  the  embedded  column  base   connecJon.   •  For  the  steel  frame,  the  embedded  column  base  connecJon  is  the   most  effecJve  type  of  base  connecJon  for  buildings  in  earthquake   prone  regions  because  of  their  ability  to  resist  moment  and  shear.        Figure  1.                                Figure  2.   Figure  1  is  an  example  of  an  embedded  connecJon  while  Figure  2  is   an  example  of  an  exposed  connecJon.    These  are  the  two  most   commonly  used  connecJons  for  steel  frames.   Methods   For  this  experiment,  5  steel  columns  will  be  used  with  varying  heights   of  12  to  14  feet.    Each  column  will  be  embedded  into  a  block  of   concrete.    The  steel  column  specimens  will  be  tested  on  a  strong   reacJon  floor  where  a  hydraulic  actuator,  capable  of  producing  200   kips  of  force,  will  generate  cyclic  lateral  forces.    Along  with  being   subjected  to  a  lateral  force,  the  specimens  will  also  be  subjected  to   either  axial  tension  (Figure  3.)  or  compression  (Figure  4.)                      Figure  3.                                      Figure  4.   Each  specimen  will  be  a  different  combinaJon  of  lateral  force  and   axial  force  as  shown  in  Table  1  below.                                          Table  1.   The  data  that  will  be  collected  from  these  specimens  will  be   displacement  along  the  length  of  the  column  and  stress  values  in  the   embedded  porJon  of  the  column.    Linear  potenJometers  and  string   potenJometers  will  be  used  to  measure  displacement  while  strain   gauges  will  be  measuring  strain.  The  types  of  instruments  and  their   placement  on  the  specimen  are  shown  below  in  Figures  5  and  6.                                      Figure  5.            Figure  6.                      Top  View  of  Column  Specimen      Side  View  of                Embedded                                            PorJon  of  Column   Test  #   Column  Size   Loading  (kips)   Embedment  (in.)   1   W14x370   Axial  0  +  Lat.   40   2   W14x370   Axial  500  (C)  +  Lat.   40   3   W14x370   Axial  500  (T)  +  Lat.   40   4   W14x370   Axial  500  (C)  +  Lat.   20   5   W18x311   Axial  500  (T)  +  Lat.   20   Preliminary  Results                                Figure  7.        Figure  8.   Figures  7  and  8  are  voltage  vs.  distance  plots  for  2  string  potenJometers.                              Figure  9.            Figure  10.   Figures  9  and  10  are  voltage  vs.  posiJon  plots  for  2  linear  potenJometers.   y  =  0.0954x  +  0.0401   0   0.5   1   1.5   2   2.5   3   3.5   4   4.5   5   0   10   20   30   40   50   60   Voltage  (V)   Distance  (in.)   Calibra8on  Plot  for  SP1   y  =  0.0952x  +  0.0505   0   0.5   1   1.5   2   2.5   3   3.5   4   4.5   5   0   10   20   30   40   50   60   Voltage  (V)   Distance  (in.)   Calibra8on  Plot  for  SP2   y  =  3.2471x  -­‐  0.8103   0   1   2   3   4   5   6   0   0.2   0.4   0.6   0.8   1   1.2   1.4   1.6   1.8   2   Voltage  (V)   Posi8on  (in.)   Calibra8on  Plot  for  LP1   y  =  3.3119x  -­‐  1.0336   0   1   2   3   4   5   6   0   0.2   0.4   0.6   0.8   1   1.2   1.4   1.6   1.8   2   Voltage  (V)   Posi8on  (in.)   Calibra8on  Plot  for  LP2   Conclusions   There  is  a  strong  linear  correlaJon  between  voltage  and  distance  for  the   string  potenJometers.    This  strong  linear  correlaJon  also  appears   between  voltage  and  posiJon  for  the  linear  potenJometers.    The  voltage   vs.  distance  plots  are  unique  and  correspond  to  only  one  string   potenJometer.    This  is  also  true  for  the  voltage  vs.  posiJon  plots  for  linear   potenJometers.   Photo  Credits:   •  Images  used  to  design  the  poster  (sidebar)  were  taken  on  (September  27,  2013)  from  top  to  boNom:   hNp://upload.wikimedia.org/wikipedia/commons/1/1b/Los_Angeles_Library_Tower_%28small%29_crop.jpg,  hNp://upload.wikimedia.org/wikipedia/en/thumb/5/51/ Wilshire_Grand_Center.jpg/220px-­‐Wilshire_Grand_Center.jpg  ,hNp://upload.wikimedia.org/wikipedia/commons/c/c9/Taipei101.portrait.altonthompson.jpg,  hNp:// upload.wikimedia.org/wikipedia/en/b/bc/Transamerica_Pyramid1.jpg,  hNp://upload.wikimedia.org/wikipedia/commons/7/70/Downtown_Los_Angeles_-­‐_Aon_Center.jpg   References   Cui,  Yao,  Takuya  Nagae,  and  Masayoshi  Nakashima.  “HystereJc  Behavior  and   Strength  Capacity  of  Shallowly  Embedded  Steel  Column  Bases.”  Journal  of  Structural   Engineering  135.10  (2009).  1231-­‐1238.  Print.     Gong,  Bingnian  and  Bahram  M.  Shahrooz.  “Concrete-­‐Steel  Composite  Coupling   Beams  I:  Component  TesJng.”  Journal  of  Structural  Engineering  127.6  (2001).   625-­‐631.  Print.     Pertold,  J.,  et  al.  “Embedded  Steel  Column  Bases.”  Journal  of  Construc3on  Steel   Research  56  (2000).  271-­‐286.  Print.