SlideShare una empresa de Scribd logo
1 de 20
Structural and mechanical properties of vanadium carbide obtained by DC reactive magnetron sputtering E. Portolan (b) , C. Aguzzoli  (a) , G. V. Soares  (a,d) , M. E. R. Dotto (c) , M. E. H. Maia da Costa (c) ,  I. J. R. Baumvol (a,d) , and  C. A. Figueroa (a) (a) Centro de Ciências Exatas e Tecnologia, Universidade de Caxias do Sul, Caxias do Sul, RS, Brazil. (b) Tramontina S.A., Farroupilha, RS, Brazil. (c) Departamento de Física, Pontifícia Universidade Católica do Rio do Janeiro, Rio de Janeiro, RJ, Brazil. (d) Instituto de Física, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil. www.plasmartecnologia.com
 
 
Motivations (*)  Lu, Selleby, Sundman, Acta Mater.  55  (2007) 1215. 1) Development of a single hard coating for tooling applications  The Caxias do Sul – Porto Alegre (RS) region concentrates the 2 nd  Brazilian metal-mechanic industrial pole. So, the main research focus is to support, technologycally, this productive chain.  Vanadium carbide (VC) is a single coating that has a relative high hardness (~ 30 GPa). (*)   Many tooling problems can be resolved by this type of coating. Example: Die for metal conformation.  2) Understand the mechanical properties from an structural point  of view Hardness is one of the most important properties of functional coatings. However, the mechanical properties can be explained from structural aspects such as grain size, stress, defects, interstitial atoms, etc.
Experimental set up and characterization Characterization: XRD, RBS, AFM, NanoIndentation  measurements. Magnetron sputtering chamber at LESTT  (UCS)  Experimental Parameters 1.  DC reactive magnetron sputtering for VC deposition 2.  Substrate: Si. 3.  Target: V. 4.  CH 4  as C source. 5.  Variable T = 100 to 500 o C. 6.  P (dep.) = 3x10 -1  Pa 7.  Power density = 5.5  W.cm -2
Structural properties: RBS-like carbon spectra from the  12 C(  ,  ) 12 C  resonant reaction (*) 15 % CH 4  at 450 o C  (*)  Driemeier and Baumvol, Nuclear Instruments and Methods in Physics Research B  266 , 2041 (2008). The carbon content is  homogeneous along the VC coating  VC Si
Structural properties: Rutherford Backscattering Spectrometry The VC stoichiometry goes towards to 1:1 at higher temperatures
Aouni, Weibecker, Loi, and Bauer-Grosse,  Thin Solid Films  469-470 , 315 (2004). Structural properties: X-ray diffraction experiments VC has a FCC crystalline structure, independently of temperature,  at 15 % CH 4 15% CH 4 Portolan,  Amorim, Soares, Aguzzoli, Perottoni, Baumvol,  Figueroa, Thin Solid Films (2009), in press.
There is a maximum of roughness at 300 o C Mechanical properties: Atomic Force Microscopy 100 °C 500 °C 300 °C
Mechanical properties: hardness and Young’s Modulus Both hardness and Young’s modulus increase at higher deposition temperatures
The best plastic resistance parameters are achieved at higher  deposition temperatures Mechanical properties: plastic resistance parameter
Up to now, higher deposition temperatures (450 – 500 o C) have provided the best properties in terms of homogeneity, stoichiometry,  and mechanical properties (hardness, H 3 /E 2 , and roughness). But, what about an structural point  of view in order to explain the  mechanical properties ? Physically, the intensity of XRD peaks depends on the constructive interference of outgoing X-ray radiation after scattering with atoms (essentially electrons) which form each atomic plane. So, the intensity must increase with the presence of more atoms in each plane. Some comments from XRD analysis
Planes (111) and (200) White dots are C atoms in octahedral sites. (111)  (200)  Plane (200) crosses octahedral interstitial positions
Planes (111) and (200) White dots are C atoms in tetrahedral sites. (111)  (200)  Plane (111) crosses tetrahedral interstitial positions
Evolution of the intensity ratio from planes (111)/(200) as a function of deposition temperature As more carbon is present in octahedral sites more the intensity of interference at plane (200) and less the intensity ratio (111)/(200) At lower T, C atoms are mostly in tetrahedral sites while that at higher T, C atoms occupy octahedral sites
Intensity ratio I 111 /I 200  for different stoichiometries and site  occupancies for carbon in vanadium carbide interstitials sites simulated with PowerCell Structural properties: XRD simulations The XRD simulations show that the intensity ratio  I 111 /I 200 decreases when C atoms goes from tetrahedral to octahedral sites.  C in interstitials sites VC stoichiometry  Intensity ratio  I 111 /I 200 All in tetrahedral V 0.400 C 0.600 3.82 All in tetrahedral V 0.500 C 0.500 3.33 Both, tetrahedral and octahedral V 0.500 C 0.500 2.32 Both, tetrahedral and octahedral V 0.455 C 0.555 1.87 All in octahedral V 0.500 C 0.500 0.92 All in octahedral V 0.540 C 0.460 1.12
Conclusions : VC coatings obtained at 15 % CH 4  have a FCC crystalline structure in the whole deposition temperature range (100 to 500 0 C).   By XRD, the intensity ratio I (111) / I (200) analysis as a function of T indicates that carbon atoms migrates from tetrahedral to  octahedral sites at higher T. So, carbon in octahedral positions increases the VC resistance to plastic deformation.   By Nano-Indentation, the mechanical properties (hardness,  Young’s modulus and H 3 /E 2 ) are the best at higher temperatures.  By RBS, the VC coating is homogenous and the 1:1 stoichiometry is achieved at higher deposition temperatures. 
Comparision between XRD simulations and measurements (111) (200)
Raman spectra show that there is not amorphous C in the VC coating
XRD measurements show that there is not graphite-type C in the VC coating  VC Graphite

Más contenido relacionado

La actualidad más candente

La actualidad más candente (17)

Spectroscopic properties of lithium borate glass containing Sm3+ and Nd3+ ions
Spectroscopic properties of lithium borate glass containing Sm3+ and Nd3+ ionsSpectroscopic properties of lithium borate glass containing Sm3+ and Nd3+ ions
Spectroscopic properties of lithium borate glass containing Sm3+ and Nd3+ ions
 
Investigation on the Growth and Physio-Chemical Properties of L-Alanine Mixed...
Investigation on the Growth and Physio-Chemical Properties of L-Alanine Mixed...Investigation on the Growth and Physio-Chemical Properties of L-Alanine Mixed...
Investigation on the Growth and Physio-Chemical Properties of L-Alanine Mixed...
 
10.1007_s11082-014-9975-2
10.1007_s11082-014-9975-210.1007_s11082-014-9975-2
10.1007_s11082-014-9975-2
 
Y04505127134
Y04505127134Y04505127134
Y04505127134
 
Growth, characterization, and antibacterial studies of L-Lysine single crysta...
Growth, characterization, and antibacterial studies of L-Lysine single crysta...Growth, characterization, and antibacterial studies of L-Lysine single crysta...
Growth, characterization, and antibacterial studies of L-Lysine single crysta...
 
Structural, Optical and Electrical Studies on Spray Deposited Mercury Doped C...
Structural, Optical and Electrical Studies on Spray Deposited Mercury Doped C...Structural, Optical and Electrical Studies on Spray Deposited Mercury Doped C...
Structural, Optical and Electrical Studies on Spray Deposited Mercury Doped C...
 
Determination of nonlinear absorption (β) and refraction (n2)by the Z-scan me...
Determination of nonlinear absorption (β) and refraction (n2)by the Z-scan me...Determination of nonlinear absorption (β) and refraction (n2)by the Z-scan me...
Determination of nonlinear absorption (β) and refraction (n2)by the Z-scan me...
 
Diopside hu y_pd
Diopside hu y_pdDiopside hu y_pd
Diopside hu y_pd
 
Surfactant Assisted Growth and Optical Studies of NiCo2O4 Nanostructures thro...
Surfactant Assisted Growth and Optical Studies of NiCo2O4 Nanostructures thro...Surfactant Assisted Growth and Optical Studies of NiCo2O4 Nanostructures thro...
Surfactant Assisted Growth and Optical Studies of NiCo2O4 Nanostructures thro...
 
C42032023
C42032023C42032023
C42032023
 
Preparation, Structure, and Characterization of Nd2mo2o9 fast Oxide Ion Condu...
Preparation, Structure, and Characterization of Nd2mo2o9 fast Oxide Ion Condu...Preparation, Structure, and Characterization of Nd2mo2o9 fast Oxide Ion Condu...
Preparation, Structure, and Characterization of Nd2mo2o9 fast Oxide Ion Condu...
 
STUDIES BY X-RAY ABSORPTION SPECTROMETRY (XAS) OF THE LOCAL ORDER AT THE ZIRO...
STUDIES BY X-RAY ABSORPTION SPECTROMETRY (XAS) OF THE LOCAL ORDER AT THE ZIRO...STUDIES BY X-RAY ABSORPTION SPECTROMETRY (XAS) OF THE LOCAL ORDER AT THE ZIRO...
STUDIES BY X-RAY ABSORPTION SPECTROMETRY (XAS) OF THE LOCAL ORDER AT THE ZIRO...
 
Infrared Spectral and EPR Studies of Mn2+ Ions Doped K2O - CdO - B2O3 - SiO2 ...
Infrared Spectral and EPR Studies of Mn2+ Ions Doped K2O - CdO - B2O3 - SiO2 ...Infrared Spectral and EPR Studies of Mn2+ Ions Doped K2O - CdO - B2O3 - SiO2 ...
Infrared Spectral and EPR Studies of Mn2+ Ions Doped K2O - CdO - B2O3 - SiO2 ...
 
Investigation of Track Formation in CR-39 for Various Hydrated Environments
Investigation of Track Formation in CR-39 for Various Hydrated EnvironmentsInvestigation of Track Formation in CR-39 for Various Hydrated Environments
Investigation of Track Formation in CR-39 for Various Hydrated Environments
 
F0363341
F0363341F0363341
F0363341
 
Synthesis and analysis of electrical properties of Lead free Ba3Sr2LaTi3V7O30...
Synthesis and analysis of electrical properties of Lead free Ba3Sr2LaTi3V7O30...Synthesis and analysis of electrical properties of Lead free Ba3Sr2LaTi3V7O30...
Synthesis and analysis of electrical properties of Lead free Ba3Sr2LaTi3V7O30...
 
Solid-Phase Epitaxy of Atomic Layer Deposited PrAlO3 Films
Solid-Phase Epitaxy of Atomic Layer Deposited PrAlO3 FilmsSolid-Phase Epitaxy of Atomic Layer Deposited PrAlO3 Films
Solid-Phase Epitaxy of Atomic Layer Deposited PrAlO3 Films
 

Destacado

Reactive Sputtering Deposition Presentation
Reactive Sputtering Deposition PresentationReactive Sputtering Deposition Presentation
Reactive Sputtering Deposition Presentation
Disheng Zheng
 
Heat treatment(Muda Ibrahim)
Heat treatment(Muda Ibrahim)Heat treatment(Muda Ibrahim)
Heat treatment(Muda Ibrahim)
Muda Ibrahim
 
Plastics Mechanical Properties
Plastics   Mechanical PropertiesPlastics   Mechanical Properties
Plastics Mechanical Properties
ibaiges
 
Mechanical properties of material
Mechanical properties of materialMechanical properties of material
Mechanical properties of material
Keval Patel
 

Destacado (20)

Oes compressed air basics
Oes  compressed air basicsOes  compressed air basics
Oes compressed air basics
 
Mechanical properties
Mechanical propertiesMechanical properties
Mechanical properties
 
Reactive Sputtering Deposition Presentation
Reactive Sputtering Deposition PresentationReactive Sputtering Deposition Presentation
Reactive Sputtering Deposition Presentation
 
Chapter 3.3 compressed air system
Chapter 3.3 compressed air systemChapter 3.3 compressed air system
Chapter 3.3 compressed air system
 
Compressed airengines seminar report
Compressed airengines seminar reportCompressed airengines seminar report
Compressed airengines seminar report
 
SESEC Training Module 3: Compressed Air
SESEC Training Module 3: Compressed AirSESEC Training Module 3: Compressed Air
SESEC Training Module 3: Compressed Air
 
Mechanical Properties of materials
Mechanical Properties of materialsMechanical Properties of materials
Mechanical Properties of materials
 
Compressed Air Purification Adsorption Technology
Compressed Air Purification   Adsorption TechnologyCompressed Air Purification   Adsorption Technology
Compressed Air Purification Adsorption Technology
 
Ch07 ppts material
Ch07 ppts materialCh07 ppts material
Ch07 ppts material
 
Mechanical properties
Mechanical propertiesMechanical properties
Mechanical properties
 
Mechanical Properties of Dental Materials
Mechanical Properties of Dental MaterialsMechanical Properties of Dental Materials
Mechanical Properties of Dental Materials
 
Mechanical properties of Material
Mechanical properties of MaterialMechanical properties of Material
Mechanical properties of Material
 
Heat treatment(Muda Ibrahim)
Heat treatment(Muda Ibrahim)Heat treatment(Muda Ibrahim)
Heat treatment(Muda Ibrahim)
 
mechanical properties
mechanical propertiesmechanical properties
mechanical properties
 
Plastics Mechanical Properties
Plastics   Mechanical PropertiesPlastics   Mechanical Properties
Plastics Mechanical Properties
 
Ch03
Ch03Ch03
Ch03
 
Mechanical properties of materials
Mechanical properties of materialsMechanical properties of materials
Mechanical properties of materials
 
Heat treatment of Steels
Heat treatment of  SteelsHeat treatment of  Steels
Heat treatment of Steels
 
Heat treatment
Heat treatmentHeat treatment
Heat treatment
 
Mechanical properties of material
Mechanical properties of materialMechanical properties of material
Mechanical properties of material
 

Similar a Structural and mechanical properties of vanadium carbide obtained by DC reactive magnetron sputtering

Low-temperature thermoelectric and magnetic characteristics of Ca2.9Bi0.1Co4-...
Low-temperature thermoelectric and magnetic characteristics of Ca2.9Bi0.1Co4-...Low-temperature thermoelectric and magnetic characteristics of Ca2.9Bi0.1Co4-...
Low-temperature thermoelectric and magnetic characteristics of Ca2.9Bi0.1Co4-...
Chih-Ju Lin
 

Similar a Structural and mechanical properties of vanadium carbide obtained by DC reactive magnetron sputtering (20)

Microstructural and Dielectric Characterization of Sr doped Ba(Fe0.5Ta0.5)O3 ...
Microstructural and Dielectric Characterization of Sr doped Ba(Fe0.5Ta0.5)O3 ...Microstructural and Dielectric Characterization of Sr doped Ba(Fe0.5Ta0.5)O3 ...
Microstructural and Dielectric Characterization of Sr doped Ba(Fe0.5Ta0.5)O3 ...
 
Role of Atomic-Scale Modeling in Materials Design Discovery.
Role of Atomic-Scale Modeling in Materials Design Discovery.Role of Atomic-Scale Modeling in Materials Design Discovery.
Role of Atomic-Scale Modeling in Materials Design Discovery.
 
Synthesis and Characterisation of Copper Oxide nanoparticles
Synthesis and Characterisation of Copper Oxide nanoparticlesSynthesis and Characterisation of Copper Oxide nanoparticles
Synthesis and Characterisation of Copper Oxide nanoparticles
 
Preparation and properties of polycrystalline YBa2Cu3o7-x and Fe mixtures
Preparation and properties of polycrystalline YBa2Cu3o7-x and Fe mixturesPreparation and properties of polycrystalline YBa2Cu3o7-x and Fe mixtures
Preparation and properties of polycrystalline YBa2Cu3o7-x and Fe mixtures
 
Physica b 08
Physica b 08Physica b 08
Physica b 08
 
Surface Ablation in Fiber-Reinforced Composite Laminates Subjected to Continu...
Surface Ablation in Fiber-Reinforced Composite Laminates Subjected to Continu...Surface Ablation in Fiber-Reinforced Composite Laminates Subjected to Continu...
Surface Ablation in Fiber-Reinforced Composite Laminates Subjected to Continu...
 
Electrical response of a columnar liquid crystal applied in a diode structure.
Electrical response of a columnar liquid crystal applied in a diode structure.Electrical response of a columnar liquid crystal applied in a diode structure.
Electrical response of a columnar liquid crystal applied in a diode structure.
 
Low-temperature thermoelectric and magnetic characteristics of Ca2.9Bi0.1Co4-...
Low-temperature thermoelectric and magnetic characteristics of Ca2.9Bi0.1Co4-...Low-temperature thermoelectric and magnetic characteristics of Ca2.9Bi0.1Co4-...
Low-temperature thermoelectric and magnetic characteristics of Ca2.9Bi0.1Co4-...
 
AIChE 2012 Presentation
AIChE 2012 PresentationAIChE 2012 Presentation
AIChE 2012 Presentation
 
N Herbots Us Patent6613667
N Herbots Us Patent6613667N Herbots Us Patent6613667
N Herbots Us Patent6613667
 
supercapacitor application for future generation
supercapacitor application for future generationsupercapacitor application for future generation
supercapacitor application for future generation
 
Basic solid state chem
Basic solid state chemBasic solid state chem
Basic solid state chem
 
Toma Susi – Atom manipulation @ MRS2018
Toma Susi – Atom manipulation @ MRS2018Toma Susi – Atom manipulation @ MRS2018
Toma Susi – Atom manipulation @ MRS2018
 
330 raman singh
330 raman singh330 raman singh
330 raman singh
 
Effect of calcination on the electrical properties and quantum confinement of...
Effect of calcination on the electrical properties and quantum confinement of...Effect of calcination on the electrical properties and quantum confinement of...
Effect of calcination on the electrical properties and quantum confinement of...
 
Effect of calcination on the electrical properties and quantum confinement of...
Effect of calcination on the electrical properties and quantum confinement of...Effect of calcination on the electrical properties and quantum confinement of...
Effect of calcination on the electrical properties and quantum confinement of...
 
A study the effect of zr o3 on the electrical and mechanical properties
A study the effect of zr o3 on the electrical and mechanical propertiesA study the effect of zr o3 on the electrical and mechanical properties
A study the effect of zr o3 on the electrical and mechanical properties
 
Ir3615081517
Ir3615081517Ir3615081517
Ir3615081517
 
Highly mismatched alloys for optoelectronics
Highly mismatched alloys for optoelectronicsHighly mismatched alloys for optoelectronics
Highly mismatched alloys for optoelectronics
 
IMPROVEMENT IN MORPHOLOGICAL AND ELECTRO-MAGNETIC BEHAVIOUR OF HARD FERRITE P...
IMPROVEMENT IN MORPHOLOGICAL AND ELECTRO-MAGNETIC BEHAVIOUR OF HARD FERRITE P...IMPROVEMENT IN MORPHOLOGICAL AND ELECTRO-MAGNETIC BEHAVIOUR OF HARD FERRITE P...
IMPROVEMENT IN MORPHOLOGICAL AND ELECTRO-MAGNETIC BEHAVIOUR OF HARD FERRITE P...
 

Más de Instituto Nacional de Engenharia de Superfícies

Demandas industriais, desafios e tendências para a pesquisa em Engenharia de ...
Demandas industriais, desafios e tendências para a pesquisa em Engenharia de ...Demandas industriais, desafios e tendências para a pesquisa em Engenharia de ...
Demandas industriais, desafios e tendências para a pesquisa em Engenharia de ...
Instituto Nacional de Engenharia de Superfícies
 

Más de Instituto Nacional de Engenharia de Superfícies (20)

Tecnologias a plasma: Aplicações em componentes mecânicos e metalização de pl...
Tecnologias a plasma: Aplicações em componentes mecânicos e metalização de pl...Tecnologias a plasma: Aplicações em componentes mecânicos e metalização de pl...
Tecnologias a plasma: Aplicações em componentes mecânicos e metalização de pl...
 
Nitretação de componentes mecânicos e revestimento para ferramentas de usinagem.
Nitretação de componentes mecânicos e revestimento para ferramentas de usinagem.Nitretação de componentes mecânicos e revestimento para ferramentas de usinagem.
Nitretação de componentes mecânicos e revestimento para ferramentas de usinagem.
 
Sobre as leis fundamentais que regem as forças de atrito
Sobre as leis fundamentais que regem as forças de atritoSobre as leis fundamentais que regem as forças de atrito
Sobre as leis fundamentais que regem as forças de atrito
 
Demandas industriais, desafios e tendências para a pesquisa em Engenharia de ...
Demandas industriais, desafios e tendências para a pesquisa em Engenharia de ...Demandas industriais, desafios e tendências para a pesquisa em Engenharia de ...
Demandas industriais, desafios e tendências para a pesquisa em Engenharia de ...
 
Friction Force and its Relationship to the Electrostatic Charges at Interfaces.
Friction Force and its Relationship to the Electrostatic Charges at Interfaces.Friction Force and its Relationship to the Electrostatic Charges at Interfaces.
Friction Force and its Relationship to the Electrostatic Charges at Interfaces.
 
Pesquisa, Desenvolvimento e Inovação em Diamante-CVD e Materiais Relacionados...
Pesquisa, Desenvolvimento e Inovação em Diamante-CVD e Materiais Relacionados...Pesquisa, Desenvolvimento e Inovação em Diamante-CVD e Materiais Relacionados...
Pesquisa, Desenvolvimento e Inovação em Diamante-CVD e Materiais Relacionados...
 
On the understanding of the SuperLubricity Phenomena in Ceramic contacts.
On the understanding of the SuperLubricity Phenomena in Ceramic contacts.On the understanding of the SuperLubricity Phenomena in Ceramic contacts.
On the understanding of the SuperLubricity Phenomena in Ceramic contacts.
 
HiPIMS: technology, physics and thin film applications.
HiPIMS: technology, physics and thin film applications.HiPIMS: technology, physics and thin film applications.
HiPIMS: technology, physics and thin film applications.
 
Tribological challenges in flex fuel engines.
Tribological challenges in flex fuel engines.Tribological challenges in flex fuel engines.
Tribological challenges in flex fuel engines.
 
Mechanical, thermal, and electronic properties of transition metal dichalcoge...
Mechanical, thermal, and electronic properties of transition metal dichalcoge...Mechanical, thermal, and electronic properties of transition metal dichalcoge...
Mechanical, thermal, and electronic properties of transition metal dichalcoge...
 
Thin films seen in the light of high energy synchrotron radiation: stress and...
Thin films seen in the light of high energy synchrotron radiation: stress and...Thin films seen in the light of high energy synchrotron radiation: stress and...
Thin films seen in the light of high energy synchrotron radiation: stress and...
 
Workshop: Documentação com fotografia 3D.
Workshop: Documentação com fotografia 3D.Workshop: Documentação com fotografia 3D.
Workshop: Documentação com fotografia 3D.
 
Leonardo da Vinci: artista, engenheiro ou cientista? Uma visão de Deniol Tanaka.
Leonardo da Vinci: artista, engenheiro ou cientista? Uma visão de Deniol Tanaka.Leonardo da Vinci: artista, engenheiro ou cientista? Uma visão de Deniol Tanaka.
Leonardo da Vinci: artista, engenheiro ou cientista? Uma visão de Deniol Tanaka.
 
Surface Enginnering on Medical Devices.
Surface Enginnering on Medical Devices. Surface Enginnering on Medical Devices.
Surface Enginnering on Medical Devices.
 
Mecânica computacional de esforços de contato.
Mecânica computacional de esforços de contato.Mecânica computacional de esforços de contato.
Mecânica computacional de esforços de contato.
 
Engenharia de nanoestruturas de superfície.
Engenharia de nanoestruturas de superfície.Engenharia de nanoestruturas de superfície.
Engenharia de nanoestruturas de superfície.
 
Instituto Senai de Inovação em Engenharia de Superfícies
Instituto Senai de Inovação em Engenharia de SuperfíciesInstituto Senai de Inovação em Engenharia de Superfícies
Instituto Senai de Inovação em Engenharia de Superfícies
 
Inovação tecnológica como foco do negócio
Inovação tecnológica como foco do negócioInovação tecnológica como foco do negócio
Inovação tecnológica como foco do negócio
 
Livro eletrônico "Engenharia de Superfícies"
Livro eletrônico "Engenharia de Superfícies"Livro eletrônico "Engenharia de Superfícies"
Livro eletrônico "Engenharia de Superfícies"
 
Analytical Capabilities of a Pulsed RF Glow Discharge Plasma Source with GD-OES
Analytical Capabilities of a Pulsed RF Glow Discharge Plasma Source with GD-OESAnalytical Capabilities of a Pulsed RF Glow Discharge Plasma Source with GD-OES
Analytical Capabilities of a Pulsed RF Glow Discharge Plasma Source with GD-OES
 

Último

Architecting Cloud Native Applications
Architecting Cloud Native ApplicationsArchitecting Cloud Native Applications
Architecting Cloud Native Applications
WSO2
 

Último (20)

Boost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfBoost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdf
 
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
 
Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)
 
Exploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone ProcessorsExploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone Processors
 
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot TakeoffStrategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
 
presentation ICT roal in 21st century education
presentation ICT roal in 21st century educationpresentation ICT roal in 21st century education
presentation ICT roal in 21st century education
 
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
 
FWD Group - Insurer Innovation Award 2024
FWD Group - Insurer Innovation Award 2024FWD Group - Insurer Innovation Award 2024
FWD Group - Insurer Innovation Award 2024
 
Architecting Cloud Native Applications
Architecting Cloud Native ApplicationsArchitecting Cloud Native Applications
Architecting Cloud Native Applications
 
Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024
 
Corporate and higher education May webinar.pptx
Corporate and higher education May webinar.pptxCorporate and higher education May webinar.pptx
Corporate and higher education May webinar.pptx
 
Apidays Singapore 2024 - Scalable LLM APIs for AI and Generative AI Applicati...
Apidays Singapore 2024 - Scalable LLM APIs for AI and Generative AI Applicati...Apidays Singapore 2024 - Scalable LLM APIs for AI and Generative AI Applicati...
Apidays Singapore 2024 - Scalable LLM APIs for AI and Generative AI Applicati...
 
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemkeProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
 
ICT role in 21st century education and its challenges
ICT role in 21st century education and its challengesICT role in 21st century education and its challenges
ICT role in 21st century education and its challenges
 
Real Time Object Detection Using Open CV
Real Time Object Detection Using Open CVReal Time Object Detection Using Open CV
Real Time Object Detection Using Open CV
 
Polkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin WoodPolkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin Wood
 
EMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWER
EMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWEREMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWER
EMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWER
 
Navi Mumbai Call Girls 🥰 8617370543 Service Offer VIP Hot Model
Navi Mumbai Call Girls 🥰 8617370543 Service Offer VIP Hot ModelNavi Mumbai Call Girls 🥰 8617370543 Service Offer VIP Hot Model
Navi Mumbai Call Girls 🥰 8617370543 Service Offer VIP Hot Model
 
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
 
MS Copilot expands with MS Graph connectors
MS Copilot expands with MS Graph connectorsMS Copilot expands with MS Graph connectors
MS Copilot expands with MS Graph connectors
 

Structural and mechanical properties of vanadium carbide obtained by DC reactive magnetron sputtering

  • 1. Structural and mechanical properties of vanadium carbide obtained by DC reactive magnetron sputtering E. Portolan (b) , C. Aguzzoli (a) , G. V. Soares (a,d) , M. E. R. Dotto (c) , M. E. H. Maia da Costa (c) , I. J. R. Baumvol (a,d) , and C. A. Figueroa (a) (a) Centro de Ciências Exatas e Tecnologia, Universidade de Caxias do Sul, Caxias do Sul, RS, Brazil. (b) Tramontina S.A., Farroupilha, RS, Brazil. (c) Departamento de Física, Pontifícia Universidade Católica do Rio do Janeiro, Rio de Janeiro, RJ, Brazil. (d) Instituto de Física, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil. www.plasmartecnologia.com
  • 2.  
  • 3.  
  • 4. Motivations (*) Lu, Selleby, Sundman, Acta Mater. 55 (2007) 1215. 1) Development of a single hard coating for tooling applications The Caxias do Sul – Porto Alegre (RS) region concentrates the 2 nd Brazilian metal-mechanic industrial pole. So, the main research focus is to support, technologycally, this productive chain. Vanadium carbide (VC) is a single coating that has a relative high hardness (~ 30 GPa). (*) Many tooling problems can be resolved by this type of coating. Example: Die for metal conformation. 2) Understand the mechanical properties from an structural point of view Hardness is one of the most important properties of functional coatings. However, the mechanical properties can be explained from structural aspects such as grain size, stress, defects, interstitial atoms, etc.
  • 5. Experimental set up and characterization Characterization: XRD, RBS, AFM, NanoIndentation measurements. Magnetron sputtering chamber at LESTT (UCS) Experimental Parameters 1. DC reactive magnetron sputtering for VC deposition 2. Substrate: Si. 3. Target: V. 4. CH 4 as C source. 5. Variable T = 100 to 500 o C. 6. P (dep.) = 3x10 -1 Pa 7. Power density = 5.5 W.cm -2
  • 6. Structural properties: RBS-like carbon spectra from the 12 C(  ,  ) 12 C resonant reaction (*) 15 % CH 4 at 450 o C (*) Driemeier and Baumvol, Nuclear Instruments and Methods in Physics Research B 266 , 2041 (2008). The carbon content is homogeneous along the VC coating VC Si
  • 7. Structural properties: Rutherford Backscattering Spectrometry The VC stoichiometry goes towards to 1:1 at higher temperatures
  • 8. Aouni, Weibecker, Loi, and Bauer-Grosse, Thin Solid Films 469-470 , 315 (2004). Structural properties: X-ray diffraction experiments VC has a FCC crystalline structure, independently of temperature, at 15 % CH 4 15% CH 4 Portolan, Amorim, Soares, Aguzzoli, Perottoni, Baumvol, Figueroa, Thin Solid Films (2009), in press.
  • 9. There is a maximum of roughness at 300 o C Mechanical properties: Atomic Force Microscopy 100 °C 500 °C 300 °C
  • 10. Mechanical properties: hardness and Young’s Modulus Both hardness and Young’s modulus increase at higher deposition temperatures
  • 11. The best plastic resistance parameters are achieved at higher deposition temperatures Mechanical properties: plastic resistance parameter
  • 12. Up to now, higher deposition temperatures (450 – 500 o C) have provided the best properties in terms of homogeneity, stoichiometry, and mechanical properties (hardness, H 3 /E 2 , and roughness). But, what about an structural point of view in order to explain the mechanical properties ? Physically, the intensity of XRD peaks depends on the constructive interference of outgoing X-ray radiation after scattering with atoms (essentially electrons) which form each atomic plane. So, the intensity must increase with the presence of more atoms in each plane. Some comments from XRD analysis
  • 13. Planes (111) and (200) White dots are C atoms in octahedral sites. (111) (200) Plane (200) crosses octahedral interstitial positions
  • 14. Planes (111) and (200) White dots are C atoms in tetrahedral sites. (111) (200) Plane (111) crosses tetrahedral interstitial positions
  • 15. Evolution of the intensity ratio from planes (111)/(200) as a function of deposition temperature As more carbon is present in octahedral sites more the intensity of interference at plane (200) and less the intensity ratio (111)/(200) At lower T, C atoms are mostly in tetrahedral sites while that at higher T, C atoms occupy octahedral sites
  • 16. Intensity ratio I 111 /I 200 for different stoichiometries and site occupancies for carbon in vanadium carbide interstitials sites simulated with PowerCell Structural properties: XRD simulations The XRD simulations show that the intensity ratio I 111 /I 200 decreases when C atoms goes from tetrahedral to octahedral sites. C in interstitials sites VC stoichiometry Intensity ratio I 111 /I 200 All in tetrahedral V 0.400 C 0.600 3.82 All in tetrahedral V 0.500 C 0.500 3.33 Both, tetrahedral and octahedral V 0.500 C 0.500 2.32 Both, tetrahedral and octahedral V 0.455 C 0.555 1.87 All in octahedral V 0.500 C 0.500 0.92 All in octahedral V 0.540 C 0.460 1.12
  • 17. Conclusions : VC coatings obtained at 15 % CH 4 have a FCC crystalline structure in the whole deposition temperature range (100 to 500 0 C).  By XRD, the intensity ratio I (111) / I (200) analysis as a function of T indicates that carbon atoms migrates from tetrahedral to octahedral sites at higher T. So, carbon in octahedral positions increases the VC resistance to plastic deformation.  By Nano-Indentation, the mechanical properties (hardness, Young’s modulus and H 3 /E 2 ) are the best at higher temperatures.  By RBS, the VC coating is homogenous and the 1:1 stoichiometry is achieved at higher deposition temperatures. 
  • 18. Comparision between XRD simulations and measurements (111) (200)
  • 19. Raman spectra show that there is not amorphous C in the VC coating
  • 20. XRD measurements show that there is not graphite-type C in the VC coating VC Graphite