SlideShare una empresa de Scribd logo
1 de 102
Descargar para leer sin conexión
Bernoulli trials
If a set has n elements then the total number of its subsets
consisting of k elements each equals

n
k

=
n!
k!(n − k)!
Example:
If we place at random n points in the interval [0, T]. What is
the probability that k of these points are in the interval
(t1, t2)?
solution:
A = {a point is in the interval(t1, t2)} ⇒ P(A) = t2−t1
T
,
A occurs k times, it means that k of the n points
AKU-EE/1-9/HA, 1st Semester, 85-86 – p.1/102
lie in the interval (t1, t2) and the rest; (n − k) points are
outside of this interval with probability q = 1 − p
Prob(A) =

n
k

pk
qn−k
Example:
An order of 104
parts is received. The probability of the
even A that the part is defective equals 0.1. Find the
probability that in 104
trials, A will occur at most 1000 times.
Solution:
p = 0.1, n = 104
Prob{0 6 n 6 1000} =
1000
X
n=0

104
k

0.1k
0.9104−k
AKU-EE/1-9/HA, 1st Semester, 85-86 – p.2/102
g(x) =
1
√
2π
e−x2/2
, G(x) =
Z x
−∞
g(y)dy
G(∞) = 1, G(0) = 0.5, G(−∞) = 0, G(−x) = 1 − G(x)
1
σ
√
2π
Z x2
x1
exp

−(x − µ)2
2σ2

dx = G

x2 − µ
σ

−G

x1 − µ
σ

erf(x) =
1
√
2π
Z x
0
e−y2/2
dy =
1
√
2π
Z x
−∞
e−y2/2
dy −
Z 0
−∞
e−y2/2
dy

= G(x) − 0.5
erfc(x) =
1
√
2π
Z ∞
x
e−y2/2
dy, erf(x) =
2
√
2π
Z ∞
x
e−y2/2
dy
AKU-EE/1-9/HA, 1st Semester, 85-86 – p.3/102
Z
e−x2/2
dx =
Z 
−1
x
 
e−x2/2
′
dx
Using integration by parts:
R
udv = uv −
R
vdu
Q(x) =
1
√
2π
Z ∞
x
e−y2/2
dy =
e−x2/2
x
√
2π

1 −
1
x2
+
1 · 3
x4
−
1 · ·5
x6
+ · · ·

Q(x) = 0.5erfc(x/
√
2)
AKU-EE/1-9/HA, 1st Semester, 85-86 – p.4/102
Watson’s lemma
I(x) =
Z b
0
f(t)e−xt
dt, b  0
Watson’s lemma gives the full asymptotic expansion of
I(x) provided f(t) is continuous on the interval 0 6 t 6 b
and f(t) has the asymptotic series expansion
f(t) ∼ tα
∞
X
n=0
antβn
t → 0+
⇒
I(x) ∼
∞
X
n=0
an
Γ(α + βn + 1)
xα+βn+1
, x → ∞
AKU-EE/1-9/HA, 1st Semester, 85-86 – p.5/102
Q(x) =
1
√
2π
Z ∞
x
e−y2/2
dy, u = y − x
=
1
√
2π
e−x2/2
Z ∞
0
e−u2/2
e−xu
du
=
1
√
2π
e−x2/2
∞
X
n=0
(−1)n
n!2n
Z ∞
0
u2n
e−ux
du
Related topics: Laplace’s and Fourier’s methods, steepest
descent and saddle point approximation
AKU-EE/1-9/HA, 1st Semester, 85-86 – p.6/102
DeMoivre-Laplace theorem
if npq  1, and np −
√
npq 6 k 6 np +
√
npq ⇒

n
k

pk
qn−k
≈
1
√
2πnpq
exp

−(k − np)2
2npq

Example:
A fair coin is tossed 1000 times. Find the probability that
heads show 510 times.
n = 1000, p = 0.5, np = 500,
√
npq = 5
√
10 = 15.81
Solution:

1000
500

.5500
.5500
≈
e−100/500
√
2πnpq
= 0.0207
AKU-EE/1-9/HA, 1st Semester, 85-86 – p.7/102
Example:
A fair coin is tossed 104
times. Find the probability that
number of heads is between 4995 and 5005.
n = 104
, np = 5000, npq = 50,
√
npq = 7.07
Solution:
Prob{4995 6 k 6 5005} =
5005
X
k=4995

104
k

0.5k
0.5104−k
k2
X
k=k1
g

k − np
√
npq

≈
Z k2
k1
g

x − np
√
npq

dx
= G

k2 − np
√
npq

− G

k1 − np
√
npq

= 0.041
AKU-EE/1-9/HA, 1st Semester, 85-86 – p.8/102
Law of large numbers
An event A with Prob{A} = p occurs k times in n trials ⇒
k ≃ np , this is a heuristic statement. Let A denote an
event whose probability of occurrence in a single trial is p.
If k denotes the number of occurrences of A in n
independent trials, then
lim
n→∞
Prob{k = np} ≃
1
√
2πnpq
→ 0 Never occurs!
The approximation k ≃ np means that the ratio k/n is close
to p in the sense that, for any ǫ  0,
lim
n→∞
Prob
k
n
− p
ǫ

→ 1, ∀ǫ  0
AKU-EE/1-9/HA, 1st Semester, 85-86 – p.9/102
k
n
− p
ǫ ⇒ −ǫ 6
k
n
− p 6 ǫ ⇒ n(p − ǫ) 6 k 6 n(p + ǫ)
Prob
k
n
− p
ǫ

= Prob{k1 6 k 6 k2}
k2
X
k=k1

n
k

pk
qn−k
≈ G

k2 − np
√
npq

− G

k1 − np
√
npq

,

k2−np =nǫ,
k1−np=nǫ
= 2G

nǫ
√
npq

− 1, G(−x) = 1 − G(x)
lim
n→∞

2G

nǫ
√
npq

− 1

= 2 − 1 = 1
AKU-EE/1-9/HA, 1st Semester, 85-86 – p.10/102
Example: p = 0.5, ǫ = 0.05
n(p − ǫ) = 0.45n, n(p + ǫ) = 0.55n, ǫ
r
n
pq
= 0.1
√
n
Solution:
n 100 900
0.1
√
n 1 3
2G(0.1
√
n) − 1 0.682 0.997
The last row indicates that after 900 independent trials we
may have some confidence in accepting k/n ≈ p
AKU-EE/1-9/HA, 1st Semester, 85-86 – p.11/102
Generalized Bernoulli trials
U = {A1 occurs k1 times, A2 occurs k2 times, · · · , Ar occurs kr times}
The number of occurrence of U is
n!
k1!k2! · · · kr!
, n =
r
X
i=1
ki
Since the trials are independent, the probability of each
event is pk1
1 pk2
2 · · · pkr
r ⇒
Prob{U} =
n!
k1!k2! · · · kr!
pk1
1 pk2
2 · · · pkr
r
AKU-EE/1-9/HA, 1st Semester, 85-86 – p.12/102
Example:
A fair die is rolled 10 times. Determine the probability that
ones shows 3 times, and an even number shows 6 times.
Solution:
A1 = {1}, A2 = {2, 4, 6}, A3 = {3, 5} ⇒
p1 =
1
6
, p2 =
3
6
, p3 =
2
6
k1 = 3, k2 = 6, k3 = 1
Prob{U} =
10!
3!6!1!

1
6
3 
1
2
6 
1
3

= 0.0203
AKU-EE/1-9/HA, 1st Semester, 85-86 – p.13/102
Poisson theorem
Prob{An event A occurs k times in n trials} =

n
k

pk
qn−k
if p  1 and n → ∞ ⇒ np ≈ npq  1. However, if np is of
order 1, then the Gaussian approximation is no longer
valid. We use the following

n
k

pk
qn−k
≈ e−np (np)k
k!
, Poisson theorem
if k is of order np, then k  n and kp  1 and
n(n − 1)(n − 2) · · · (n − k + 1) ≈ n · n · n · · · n = nk
and
q = 1 − p ≈ e−p
, qn−k
≈ e−(n−k)p
≈ e−np
. Hence, we have

n
k

pk
qn−k
≈ e−np (np)k
k!
AKU-EE/1-9/HA, 1st Semester, 85-86 – p.14/102
Binomial(n, k)= as n → ∞, p → 0
n!
(n − k)!k!
λk
nk

1 −
λ
n
n−k
√
2πne−n
nn
√
2π(n − k)n−k+0.5e−n+knk
λk
nk
e−λ
1
(1 − λ
n
)nek
λk
k!
e−λ
AKU-EE/1-9/HA, 1st Semester, 85-86 – p.15/102
n → ∞, p → 0, np → a

n
k

pk
qn−k
→ e−a ak
k!
Example:
A system contains 1000 components. Each component
fails independently of the others and the probability its
failure in one month equals 10−3
. Find the probability that
the system will function at the end of one month.
Solution: This can be considered as a problem in repeated
trials with p = 10−3
, q = 0.999, n = 1000, k = 0
AKU-EE/1-9/HA, 1st Semester, 85-86 – p.16/102
Prob{k = 0} =

1000
0

p0
q1000
= 0.9991000
, Exact
Prob{k = 0} ≈ e−1 (np)0
0!
= 0.368
Applying the same idea as before:
Prob{k1 6 k 6 k2} =
k2
X
k=k1

n
k

pk
qn−k
≈ e−np
k2
X
k=k1
(np)k
k!
AKU-EE/1-9/HA, 1st Semester, 85-86 – p.17/102
Generalization of Poisson theorem
Let’s assume A1, A2, · · · ,Am+1, are the m + 1 events of a
partition with Prob{Ai} = pi, pm+1 = 1 −
Pm
i=1 pi.
we can show that
n!
k1! · · · km+1!
pk1
1 · · · p
km+1
m+1 ≈
e−a1
ak1
1
k1!
· · ·
e−am
akm
m
km!
where ai = npi. The reason for having m terms on the right
hand side whereas m + 1 terms on the left hand side is
pm+1 = 1 −
Pm
i=1 pi
AKU-EE/1-9/HA, 1st Semester, 85-86 – p.18/102
Random Poisson points
n random points in the interval (−T/2, T/2).
Prob{k points in ta = t2 − t1} =

n
k

pk
qn−k
, p =
ta
T
If n, T → ∞, Prob{k points in ta =} ≈ e−nta
T
(nta
T
)k
k!
If λ = n/T, the rate at which the events occur, is constant,
the resulting process is an infinite set of points covering the
entire t axis from −∞ to ∞.
Prob{k points in ta} = e−λta
(λta)k
k!
AKU-EE/1-9/HA, 1st Semester, 85-86 – p.19/102
Points in non overlapping intervals
Let’s consider the interval (−T/2, T/2) containing n points,
and two non-overlapping intervals ta tb
Prob{ka points in ta, kb points in tb} =
n!
ka!kb!kc!

ta
T
ka

tb
T
kb
(1−
ta
T
−
tb
T
)kc
Suppose now that, λ = n/T, n, T → ∞ we have
nta/T = λta, ntb/T = λtb we can conclude that
Prob{ka points in ta, kb points in tb} ≈ e−λta
(λta)ka
ka!
e−λtb
(λtb)kb
kb!
AKU-EE/1-9/HA, 1st Semester, 85-86 – p.20/102
Prob{ka points in ta,kb points in tb}= Prob{ka points in ta} Prob{kb points in tb}
then the events {ka in ta} and {kb in tb} are independent.
These outcomes are called random Poisson points.
Properties:
1. Prob{ka points in ta} = e−λta (λta)ka
ka!
2. if two intervals (t1, t2) and (t3, t4) are non-overlapping
then the events in these intervals are independent.
Telephone calls, car crossing a bridge, shot noise, . . .
AKU-EE/1-9/HA, 1st Semester, 85-86 – p.21/102
Baye’s theorem
Let’s assume we have a pile of m coins. The probability of
“heads” of the ith coin equals pi. We select from this pile
one coin and we toss it n times. We observe that heads
show k times. On the basis of this observation, we find the
probability Xr we selected the rth coin
Prob{rth coin selected and that heads showed up k times} =
Prob{rth coin|k heads} =
pk
r (1 − pr)n−k
Pm
i=1 pk
i (1 − pi)n−k
=
Prob{k heads|rth coin}Prob{rth coin}
Prob{k heads}
Prob{k heads} =
m
X
i=1
Prob{k heads|ith coin}Prob{ith coin}
AKU-EE/1-9/HA, 1st Semester, 85-86 – p.22/102
Example:
Number of showing, k=490, number of tossing, n=1000,
number of coins, m=10, the specific coin, rth, r=5.
Xr =
Prob{5th coin out of 10 coins that 490 times heads showed
up in 1000 tossing} Solution:
p1 = p2 = · · · = p10 = 0.5, Prob{ith coin} = 0.1
Xr =
p490
5 (1 − p5)510 1
10
P10
i=1 p490
i (1 − pi)1000−490 1
10
= 0.1
AKU-EE/1-9/HA, 1st Semester, 85-86 – p.23/102
Random variable
A random variable is a number assigned to every outcome
of an experiment.
Prob{x 6 x} of an event {x 6 x} is a number that
depends on x. This number is denoted by Fx(x) and is
called CDF of RV x.
Properties of CDF:
1. F(∞) = 1, F(−∞) = 0
2. x1 6 x2 ⇒ F(x1) 6 F(x2)
3. Prob{x} = 1 − Fx(x)
4. F(x+
) = F(x), F(x) is continuous from the right
5. Prob{x1 6 x 6 x2} = F(x2) − F(x1)
AKU-EE/1-9/HA, 1st Semester, 85-86 – p.24/102
We say the statistics of an RV are known if we can
determine the Prob{x ∈ S}
We say that an RV x is continuous type if Fx(x) is
continuous.
We say that an RV x is discrete type if Fx(x) is staircase.
We say that an RV x is mixed type if Fx(x) is a
combination of continuous and staircase function.
fx(x) = d
dx
Fx(x) is the PDF for a continuous random
variable, and for a discrete random variable
f(x) =
P
i piδ(x − xi) where pi=Prob{x = xi}
AKU-EE/1-9/HA, 1st Semester, 85-86 – p.25/102
Properties:
1. f(x)  0, F(x) =
R x
−∞
f(ξ)dξ,
F(x2) − F(x1) =
R x2
x1
f(x)dx
2. Prob{x 6 x 6 x + ∆x} ≈ f(x)∆x
3. f(x) = lim
∆x→0
Prob{x 6 x 6 x + ∆x}
∆x
The mode or the most likely value of x is where f(x) is
maximum. An RV is unimodal if it has only a single mode.
AKU-EE/1-9/HA, 1st Semester, 85-86 – p.26/102
Special RV
Normal: f(x) = 1
σ
√
2π
exp

−(x−η)2
2σ2

Uniform: f(x) =
 1
x2−x1
, x1 6 x 6 x2
0, otherwise
Rayleigh: f(x) = x
σ2 e−x2/2σ2
, x  0
Lognormal: f(x) =
1
σx
√
2π
e−
(ln x−η)2
2σ2
, x  0
Cauchy: f(x) =
1
π(x2 + 1)
Gamma: f(x) =
cb+1
Γ(b + 1)
xb
e−cx
, x  0, Γ(b+1) = bΓ(b),
if b=an integer, it is called Erlang density.
AKU-EE/1-9/HA, 1st Semester, 85-86 – p.27/102
Laplace: f(x) = 0.5e−|x|
Chi and Chi-square: χ =
pPn
i=1 x2
i , y = χ2
,
f(χ) = 2aχn−1
e−χ2/2σ2
f(y) = ayn/2−1
e−y/2σ2
, a = 1
Γ(n/2)(σ
√
2)2
Geometric: Prob{x = k} = pqk
, k = 0, 1, · · · , ∞
Binomial:
Prob{x = k} =

n
k

pk
(1 − p)n−k
, k = 0, 1, · · · , n
x is of lattice type and its density is a sum of impulses,
f(x) =
n
X
k=0

n
k

pk
(1 − p)n−k
δ(x − k)
AKU-EE/1-9/HA, 1st Semester, 85-86 – p.28/102
Negative Binomial:

n + k − 1
k

pn
(1 − p)k
, k = 0, 1, · · · , ∞
Poisson: Prob{x = k} = e−a ak
k!
, k = 0, 1, · · ·
The density function is Prob{x = k} = e−a
∞
X
k=0
ak
k!
δ(x − k)
Example1:
Given a constant t0, we define a RV n such that its value
equals the number of points in the interval (0, t0), find the
probability that the number of points in this interval is k
Solution:
Prob{n = k} = e−λt0
(λt0)k
k! AKU-EE/1-9/HA, 1st Semester, 85-86 – p.29/102
Example2:
If t1 is the first random point to the right of the fixed point t0
and we define RV x as the distance from t0 to t1, determine
the PDF and CDF for x
Solution:
F(x)=probability that there are at least one point between
t0 and t0 + x, 1 − F(x) is the probability that there are no
points=Prob{n = 0} = e−λx
, F(x) = 1 − e−λx
, f(x) =
λe−λx
u(x)
AKU-EE/1-9/HA, 1st Semester, 85-86 – p.30/102
Conditional distribution
Baye’s rule: Prob{A|B} =
Prob{AB}
Prob{B} 6= 0
⇒ conditional
CDF: F(x|B) = Prob{x 6 x|B} =
Prob{x 6 x, B}
Prob{B}
,
{x 6 x, B} is the intersection of {x 6 x} and B
F(∞|B) = 1, F(−∞|B) = 0, Prob{x1 6 x 6 x2|B} =
F(x 6 x2|B) − F(x 6 x1|B) =
Prob{x1 6 x 6 x2, B}
Prob(B)
Conditional PDF: f(x|B) =
d
dx
F(x|B). To find F(x|B) in
general we must know about the experiment. However, if B
can be expressed in terms of x, then, for determination of
F(x|B), knowledge of F(x) is enough AKU-EE/1-9/HA, 1st Semester, 85-86 – p.31/102
Important cases
B = {x 6 a}, F(x|B) =
Prob{x 6 x, x 6 a}
Prob{x 6 a}
, if x  a ⇒
{x 6 x, x 6 a} = {x 6 a} ⇒ F(x|B) = 1, x  a,
if x  a ⇒
{x 6 x, x 6 a} = {x 6 x} ⇒ F(x|x 6 a) = F(x)
F(a)
, x  a
f(x|x 6 a) =
(
d
dx
{F(x|x 6 a)} = f(x)
F(a)
, x  a
0, x  a
Example: Determine f(x||x − η| 6 kσ), x ∼ N(η; σ)
Solution:
−kσ + η 6 x 6 kσ + η ⇒ f(x||x − η| 6 kσ) =
f(x)
F(|x − η| 6 kσ)
=
N(η; σ)
G(k) − G(−k)
, if x ∋ |x − η| 6 kσ ⇒
f(x||x − η| 6 kσ) = 0 AKU-EE/1-9/HA, 1st Semester, 85-86 – p.32/102
Total probability
If {A1, A2, · · · , An} are disjoint and partition the whole
space:
Prob{x 6 x} =
n
X
i=1
Prob{x 6 x|Ai}Prob(Ai)
F(x) =
n
X
i=1
F(x 6 x|Ai)Prob(Ai)
f(x) =
n
X
i=1
f(x 6 x|Ai)Prob(Ai)
AKU-EE/1-9/HA, 1st Semester, 85-86 – p.33/102
Gaussian mixture
Binary case:
f(x|B) = N(η1; σ1), f(x|B̄) = N(η2; σ2) ⇒
f(x) = pN(η1; σ1) + (1 − p)N(η2; σ2)
f(x) is a multimodal distribution.
Generally, we can have:
f(x) =
n
X
i=1
piN(ηi; σi),
n
X
i=1
pi = 1
AKU-EE/1-9/HA, 1st Semester, 85-86 – p.34/102
The Prob{A|x = x} cannot be defined. But, it can be
defined as a limit.
Prob{A|x1 6 x 6 x2} =
Prob{x1 6 x 6 x2|A}Prob{A}
Prob{x1 6 x 6 x2}
=
F(x2|A) − F(x1|A)
F(x2) − F(x1)
Prob{A} (1)
Let x = x1 and x + ∆x = x2 and divide the numerator and
denominator of (1) by ∆x → 0, then, we have
Prob{A|x = x} =
f(x|A)
f(x)
Prob{A} (2)
AKU-EE/1-9/HA, 1st Semester, 85-86 – p.35/102
From (2), we have
f(x|A) =
Prob{A|x = x}
Prob{A}
f(x)
=
Prob{A|x = x}
R ∞
−∞
Prob{A|x = x}f(x) dx
Example:
A={k heads in n tossing in a specific order} where
probability of a head showing, p, is a RV with PDF f(p).
What is f(p|A)
Solution:
Prob{A|P = p} = pk
(1 − p)n−k
, P is a RV with f(p)
AKU-EE/1-9/HA, 1st Semester, 85-86 – p.36/102
From (2), we have
f(p|A) =
pk
(1 − p)n−k
f(p)
R 1
0
pk(1 − p)n−kf(p) dp
f(p|A) is called a posteriori density, and f(p) is called a
priori density for RV P .
AKU-EE/1-9/HA, 1st Semester, 85-86 – p.37/102
For large n, pk
(1 − p)n−k
has a sharp maximum at p = k/n.
f(p)pk
(1 − p)n−k
is highly concentrated near p = k/n. If
f(p) has a sharp peak at p = 0.5, the coin is reasonably
fair, then, for moderate values of n, f(p)pk
(1 − p)n−k
has
two peaks; one near p = k/n and the other near p = 0.5.
As n increases sharpness of pk
(1 − p)n−k
prevails and the
resulting a posteriori density f(p|A) has the maximum near
k/n
AKU-EE/1-9/HA, 1st Semester, 85-86 – p.38/102
If the probability of heads in coin tossing experiment is not
a number, but an RV P with density f(p). In the
experiment of the tossing of a randomly selected coin,
show that Prob{head}=
R 1
0
pf(p) dp
Solution:
A = {head} ⇒, the conditional probability of A is the
probability of heads if the coin with P = p is tossed. In
other words, Prob{A|P = p} = p
R 1
0
Prob{A|P = p}f(p) dp =
R 1
0
pf(p) dp = Prob{A}
This is the probability that at the next tossing head will show.
AKU-EE/1-9/HA, 1st Semester, 85-86 – p.39/102
Example:
If P is a uniform RV, determine the posteriori density.
Solution:
A={k heads in n tossing in a specific order}
f(p|A) =
pk
(1 − p)n−k
R 1
0
pk(1 − p)n−k dp
=
(n + 1)!
k!(n − k)!
pk
(1 − p)n−k
, Beta density
AKU-EE/1-9/HA, 1st Semester, 85-86 – p.40/102
Example:
Assuming that the coin was tossed n times and heads
showed k times, what is the probability that at the next
tossing heads would show?
Solution:
Z 1
0
pf(p|A) dp =
(n + 1)!
k!(n − k)!
Z 1
0
p pk
(1 − p)n−k
dp
=
k + 1
n + 2
, almost the common sense!
This is called the law of succession.
AKU-EE/1-9/HA, 1st Semester, 85-86 – p.41/102
Function of a RV
y = g(x), x is a RV.
F(y) = Prob{y 6 y} = Prob{g(x) 6 y}
Example:
y = ax + b, x ∼ f(x)
Fy(y) = Prob{ax + b 6 y} = Prob

x 6
y − b
a

, a  0
= Fx

y − b
a

, a  0
= 1 − Fx

y − b
a

, a  0
AKU-EE/1-9/HA, 1st Semester, 85-86 – p.42/102
Example:
y=x2
, x ∼ fx(x)
Fy(y) = Prob{x2
6 y} = Prob{−
√
y 6 x 6
√
y} =
Fx(
√
y) − Fx(−
√
y), y  0, Fy(y) = 0, y  0
AKU-EE/1-9/HA, 1st Semester, 85-86 – p.43/102
Example: Hard limiter
y = g(x) =

1, x  0
−1, x 6 0
Fy(y) = Prob{y = 1} = Prob{x  0} = 1 − Fx(0)
Fy(y) = Prob{y = −1} = Prob{x 6 0} = Fx(0)
Example: Quantization
y = g(x) = ns, (n − 1)s  x  ns
Prob{y = ns} = Prob{(n−1)s  x  ns} = Fx(ns)−Fx((n−1)s)
AKU-EE/1-9/HA, 1st Semester, 85-86 – p.44/102
PDF determination
y = g(x), fy(y) =
n
X
i=1
fx(xi)
|g′(xi)|
,
where xi are the roots of y = g(x).
Example:
y = ex
, x ∼ N(0; σ2
)
There is only one roots: x = log y
y = ex
⇒ g′
(x) = ex
= y ⇒ fy(y) =
fx(log y)
y
, y  0
AKU-EE/1-9/HA, 1st Semester, 85-86 – p.45/102
If x is an arbitrary RV with continuous distribution Fx(x)
and y = Fx(x) then y is a uniform RV in the interval [0, 1]
If 0  y  1 then y = Fx(x) has only a single solution for x1.
g′
(x) = F′
x(x) = fx(x) then
fy(y) =
fx(x1)
|g′(x1)|
=
fx(x1)
fx(x1)
= 1, 0  y  1
If y  0 or y  1 then y = Fx(x) has no real solution then
fy(y) = 0.
AKU-EE/1-9/HA, 1st Semester, 85-86 – p.46/102
Example
Now, If we are given two distribution functions F1(x) and
F2(y), Find a monotonically increasing function g(x) such
that, if y = g(x) and Fx(x) = F1(x) then Fy(y) = F2(y).
Solution
We maintain that g(x) must be such that F2[g(x)] = F1(x)
Fy(y) = Prob{y 6 y} = Prob{g(x) 6 g(x)} =
Prob{x 6 x} = Fx(x)
therefore, if a particular CDF Fy(y) is given then RV that
with such CDF is: Because Fy(y) is a uniform RV then
x ∼ Unif[0, 1] ⇒ y = F−1
y (x)
AKU-EE/1-9/HA, 1st Semester, 85-86 – p.47/102
For continuous RV:
E(x) = η =
Z ∞
−∞
xfx(x)dx
For discrete type:
fx(x) =
X
i
piδ(x − xi), E(x) =
X
i
pixi
Conditional mean:
E(x|M) =
Z ∞
−∞
xf(x|M)dx
AKU-EE/1-9/HA, 1st Semester, 85-86 – p.48/102
Mean of a function of a RV:
y = g(x), E(y) =
Z ∞
−∞
yfy(y)dy =
Z ∞
−∞
g(x)fx(x)dx
For continuous RV, variance:
σ2
=
Z ∞
−∞
(x − η)2
fx(x)dx
For discrete type:
σ2
=
X
i
pi(xi − η)2
AKU-EE/1-9/HA, 1st Semester, 85-86 – p.49/102
Moments:
E(xn
) = µn =
Z ∞
−∞
xn
fx(x)dx
Central moments:
E{(x − η)n
} =
Z ∞
−∞
(x − η)n
fx(x)dx
AKU-EE/1-9/HA, 1st Semester, 85-86 – p.50/102
Prob{|x − η|  ε} 6
σ2
ε2
, Tchebycheff inequality
Prob{|x − η|  ε} =
R
|x−η|ε
fx(x)dx, and by definition
σ2
=
R ∞
−∞
(x − η)2
fx(x)dx then σ2

R
|x−η|ε
(x − η)2
fx(x)dx,
and by assumption |x − η|  ε then
σ2

Z
|x−η|ε
(x − η)2
fx(x)dx  ε2
Z
|x−η|ε
fx(x)dx =
ε2
Prob{|x − η|  ε}
AKU-EE/1-9/HA, 1st Semester, 85-86 – p.51/102
Characteristic function:
E(e−jωx
) = Φ(ω) =
Z ∞
−∞
fx(x)e−jωx
dx, |Φ(ω)| 6 Φ(0) = 1
Moment Generating function:
Φ(s) =
Z ∞
−∞
fx(x)e−sx
dx
Second moment generating function:
Ψ(s) = ln Φ(s)
AKU-EE/1-9/HA, 1st Semester, 85-86 – p.52/102
Φ(n)
(s) = E{(−1)n
xn
e−sx
} ⇒ (−1)n
Φ(n)
(0) = E{xn
}
Φ(s) =
∞
X
n=0
(−1)n E(xn
)
n!
sn
, s → 0
This is true if moments are finite and then the series
converges absolutely near s = 0
For continuous RV, Cumulants:
γn =
dn
dsn
Ψ(s) |s=0 , Ψ(s) =
∞
X
n=1
(−1)n γn
n!
sn
AKU-EE/1-9/HA, 1st Semester, 85-86 – p.53/102
For discrete RV, Characteristic function:
Φ(ω) = E(e−jωx
) =
X
i
pie−jωxi
, DFT of pi sequence
If n is of lattice type RV:
Γ(z) = E(zn
) =
∞
X
n=−∞
pnzn
then Γ(1/z) is z transform of the sequence
pn = Prob{n = n}
AKU-EE/1-9/HA, 1st Semester, 85-86 – p.54/102
Example
For Binomial, and Poisson RV find Γ(z)
Solution:
pk =

n
k

pk
qn−k
⇒ Γ(z) = (pz + q)n
pk = e−λ λk
k!
⇒ Γ(z) = eλ(z−1)
Moments:
E(kn
) = Γ(n)
(z = 1)
AKU-EE/1-9/HA, 1st Semester, 85-86 – p.55/102
F(x, y) = Prob(x 6 x, y 6 y)
F(−∞, y) = 0, F(x, −∞) = 0, F(∞, ∞) = 1,
F(∞, y) = Fy(y), F(x, ∞) = Fx(x)
AKU-EE/1-9/HA, 1st Semester, 85-86 – p.56/102
Prob{x1 6 x 6 x2, y} = F(x2, y) − F(x1, y)
Prob{x, y1 6 y 6 y2} = F(x, y2) − F(x, y1)
Prob{x1 6 x 6 x2, y1 6 y 6 y2}
= F(x2, y2) − F(x2, y1) − [F(x1, y2) − F(x1, y1)]
AKU-EE/1-9/HA, 1st Semester, 85-86 – p.57/102
f(x, y) =
∂2
∂x∂y
F(x, y) ⇔ F(x, y) =
Z x
−∞
Z y
−∞
f(x, y)dxdy
Prob{(x, y) ∈ D} =
Z
D
Z
f(x, y)dxdy
f(x) =
Z ∞
−∞
f(x, y)dy, f(y) =
Z ∞
−∞
f(x, y)dx, marginal PDF
AKU-EE/1-9/HA, 1st Semester, 85-86 – p.58/102
Joint Normality: f(x, y) = N(η1, η2; σ1, σ2; r)
f(x, y) =
exp









(x − η1)2
σ2
1
− 2r
(x − η1)(y − η2)
σ1σ2
+
(y − η2)2
σ2
2


−2(1 − r2
)







2πσ1σ2
√
1 − r2
, |r|  1
Marginal densities:
f(x) = N(η1, σ1), f(y) = N(η2, σ2)
AKU-EE/1-9/HA, 1st Semester, 85-86 – p.59/102
Example
f(x, y) =
1
2πσ2
exp

−
x2
+ y2
2σ2

Determine Prob{x2
+ y2
6 z2
}
Solution:
Prob{x2
+ y2
6 z2
| {z }
D
} =
Z
D
Z
f(x, y)dxdy
x = r cos θ, y = r sin θ ⇒
Prob{x2
+y2
6 z2
} =
1
2πσ2
Z z
0
Z 2π
0
e−r2/2σ2
rdrdθ = 1−e−z2/2σ2
, (Rayleigh)
AKU-EE/1-9/HA, 1st Semester, 85-86 – p.60/102
Example
f(x, y) =
1
2πσ2
exp

−
(x − ηx)2
+ (y − ηy)2
2σ2

Determine Prob{x2
+ y2
6 z2
}
Solution:
Prob{x2
+ y2
6 z2
| {z }
D
} =
Z
D
Z
f(x, y)dxdy
x = z cos θ, y = z sin θ, η =
q
η2
x + η2
y, ηx = η cos φ, ηy = η sin φ,
Fz(z) =
1
2πσ2
Z z
0
Z 2π
0
exp

v2
− 2zηx cos θ − 2zηy sin θ + η2
−2σ2

vdvdθ
AKU-EE/1-9/HA, 1st Semester, 85-86 – p.61/102
fz(z) =
z
2σ2π
exp

−
z2
+ η2
2σ2
 Z 2π
0
exp

vη cos(θ − φ)
σ2

dθ
fz(z) =
z
σ2
exp

−
z2
+ η2
2σ2
 Z 2π
0
exp vη cos ω
σ2

2π
dω
fz(z) =
z
σ2
exp

−
z2
+ η2
2σ2

I0(
zη
σ2
), (Rician)
As η → 0 Rician RV approaches a Rayleigh RV.
AKU-EE/1-9/HA, 1st Semester, 85-86 – p.62/102
z = g(x, y), w = h(x, y)
Joint CDF:
Fzw(z, w) = Prob{(x, y) ∈ Dzw} =
Z
D zw
Z
fxy(x, y)dxdy
Example:
z =
p
x2 + y2, w =
y
x
Joint PDF:
z = g(xn, yn), w = h(xn, yn), xn, yn are the roots ⇒
AKU-EE/1-9/HA, 1st Semester, 85-86 – p.63/102
fzw(z, w) =
n
X
i=1
fxy(x, y)
J(xi, yi)
Jacobian: J(x, y) =
∂z
∂x
∂z
∂y
∂w
∂x
∂w
∂y
=

Más contenido relacionado

La actualidad más candente

Row Reducing
Row ReducingRow Reducing
Row Reducing
nicholsm
 
Introduction to random variables
Introduction to random variablesIntroduction to random variables
Introduction to random variables
Hadley Wickham
 
law of large number and central limit theorem
 law of large number and central limit theorem law of large number and central limit theorem
law of large number and central limit theorem
lovemucheca
 

La actualidad más candente (20)

Row Reducing
Row ReducingRow Reducing
Row Reducing
 
AI 10 | Naive Bayes Classifier
AI 10 | Naive Bayes ClassifierAI 10 | Naive Bayes Classifier
AI 10 | Naive Bayes Classifier
 
The method of frobenius
The method of frobeniusThe method of frobenius
The method of frobenius
 
The partial derivative of the binary Cross-entropy loss function
The partial derivative of the binary Cross-entropy loss functionThe partial derivative of the binary Cross-entropy loss function
The partial derivative of the binary Cross-entropy loss function
 
Gamma, Expoential, Poisson And Chi Squared Distributions
Gamma, Expoential, Poisson And Chi Squared DistributionsGamma, Expoential, Poisson And Chi Squared Distributions
Gamma, Expoential, Poisson And Chi Squared Distributions
 
Unit 1: Topological spaces (its definition and definition of open sets)
Unit 1:  Topological spaces (its definition and definition of open sets)Unit 1:  Topological spaces (its definition and definition of open sets)
Unit 1: Topological spaces (its definition and definition of open sets)
 
Decision Tree Analysis with EMV
Decision Tree Analysis with EMVDecision Tree Analysis with EMV
Decision Tree Analysis with EMV
 
Matlab lecture 5 bisection method@taj
Matlab lecture 5  bisection method@tajMatlab lecture 5  bisection method@taj
Matlab lecture 5 bisection method@taj
 
4 stochastic processes
4 stochastic processes4 stochastic processes
4 stochastic processes
 
Lesson 8 general annuity
Lesson 8   general annuityLesson 8   general annuity
Lesson 8 general annuity
 
Section 7.4 trigonometric identities
Section 7.4 trigonometric identities Section 7.4 trigonometric identities
Section 7.4 trigonometric identities
 
Introduction to random variables
Introduction to random variablesIntroduction to random variables
Introduction to random variables
 
Probability distribution for Dummies
Probability distribution for DummiesProbability distribution for Dummies
Probability distribution for Dummies
 
Fuzzy logic-introduction
Fuzzy logic-introductionFuzzy logic-introduction
Fuzzy logic-introduction
 
law of large number and central limit theorem
 law of large number and central limit theorem law of large number and central limit theorem
law of large number and central limit theorem
 
Discrete distributions: Binomial, Poisson & Hypergeometric distributions
Discrete distributions:  Binomial, Poisson & Hypergeometric distributionsDiscrete distributions:  Binomial, Poisson & Hypergeometric distributions
Discrete distributions: Binomial, Poisson & Hypergeometric distributions
 
Poisson Distribution, Poisson Process & Geometric Distribution
Poisson Distribution, Poisson Process & Geometric DistributionPoisson Distribution, Poisson Process & Geometric Distribution
Poisson Distribution, Poisson Process & Geometric Distribution
 
【材料力学】主応力と主せん断応力 (II-09-2 2020)
【材料力学】主応力と主せん断応力 (II-09-2 2020)【材料力学】主応力と主せん断応力 (II-09-2 2020)
【材料力学】主応力と主せん断応力 (II-09-2 2020)
 
The Normal Distribution and Other Continuous Distributions
The Normal Distribution and Other Continuous DistributionsThe Normal Distribution and Other Continuous Distributions
The Normal Distribution and Other Continuous Distributions
 
Mコネクタの特性インピーダンス
Mコネクタの特性インピーダンスMコネクタの特性インピーダンス
Mコネクタの特性インピーダンス
 

Similar a Random Variables

Analysis Of Algorithms Ii
Analysis Of Algorithms IiAnalysis Of Algorithms Ii
Analysis Of Algorithms Ii
Sri Prasanna
 
Solutions of AHSEC Mathematics Paper 2015
Solutions of AHSEC Mathematics Paper 2015Solutions of AHSEC Mathematics Paper 2015
Solutions of AHSEC Mathematics Paper 2015
Nayanmani Sarma
 
Bath_IMI_Summer_Project
Bath_IMI_Summer_ProjectBath_IMI_Summer_Project
Bath_IMI_Summer_Project
Josh Young
 
Fft presentation
Fft presentationFft presentation
Fft presentation
ilker Şin
 

Similar a Random Variables (20)

Stochastic Processes - part 3
Stochastic Processes - part 3Stochastic Processes - part 3
Stochastic Processes - part 3
 
Implementation of parallel randomized algorithm for skew-symmetric matrix game
Implementation of parallel randomized algorithm for skew-symmetric matrix gameImplementation of parallel randomized algorithm for skew-symmetric matrix game
Implementation of parallel randomized algorithm for skew-symmetric matrix game
 
Analysis Of Algorithms Ii
Analysis Of Algorithms IiAnalysis Of Algorithms Ii
Analysis Of Algorithms Ii
 
04_AJMS_330_21.pdf
04_AJMS_330_21.pdf04_AJMS_330_21.pdf
04_AJMS_330_21.pdf
 
calculus-4c-1.pdf
calculus-4c-1.pdfcalculus-4c-1.pdf
calculus-4c-1.pdf
 
Solutions of AHSEC Mathematics Paper 2015
Solutions of AHSEC Mathematics Paper 2015Solutions of AHSEC Mathematics Paper 2015
Solutions of AHSEC Mathematics Paper 2015
 
Capitulo 2, 7ma edición
Capitulo 2, 7ma ediciónCapitulo 2, 7ma edición
Capitulo 2, 7ma edición
 
Heuristics for counterexamples to the Agrawal Conjecture
Heuristics for counterexamples to the Agrawal ConjectureHeuristics for counterexamples to the Agrawal Conjecture
Heuristics for counterexamples to the Agrawal Conjecture
 
Statistics for Economics Midterm 2 Cheat Sheet
Statistics for Economics Midterm 2 Cheat SheetStatistics for Economics Midterm 2 Cheat Sheet
Statistics for Economics Midterm 2 Cheat Sheet
 
Stochastic Processes - part 5
Stochastic Processes - part 5Stochastic Processes - part 5
Stochastic Processes - part 5
 
Bath_IMI_Summer_Project
Bath_IMI_Summer_ProjectBath_IMI_Summer_Project
Bath_IMI_Summer_Project
 
On Spaces of Entire Functions Having Slow Growth Represented By Dirichlet Series
On Spaces of Entire Functions Having Slow Growth Represented By Dirichlet SeriesOn Spaces of Entire Functions Having Slow Growth Represented By Dirichlet Series
On Spaces of Entire Functions Having Slow Growth Represented By Dirichlet Series
 
opt_slides_ump.pdf
opt_slides_ump.pdfopt_slides_ump.pdf
opt_slides_ump.pdf
 
3.pdf
3.pdf3.pdf
3.pdf
 
Multivriada ppt ms
Multivriada   ppt msMultivriada   ppt ms
Multivriada ppt ms
 
Factorials as sums
Factorials as sumsFactorials as sums
Factorials as sums
 
gft_handout2_06.pptx
gft_handout2_06.pptxgft_handout2_06.pptx
gft_handout2_06.pptx
 
LDP.pdf
LDP.pdfLDP.pdf
LDP.pdf
 
Recurrences
RecurrencesRecurrences
Recurrences
 
Fft presentation
Fft presentationFft presentation
Fft presentation
 

Más de HAmindavarLectures

Más de HAmindavarLectures (10)

"Digital communications" undergarduate course lecture notes
"Digital communications" undergarduate course lecture notes"Digital communications" undergarduate course lecture notes
"Digital communications" undergarduate course lecture notes
 
Wavelet Signal Processing
Wavelet Signal ProcessingWavelet Signal Processing
Wavelet Signal Processing
 
Stochastic Processes - part 6
Stochastic Processes - part 6Stochastic Processes - part 6
Stochastic Processes - part 6
 
Stochastic Processes - part 4
Stochastic Processes - part 4Stochastic Processes - part 4
Stochastic Processes - part 4
 
Stochastic Processes - part 2
Stochastic Processes - part 2Stochastic Processes - part 2
Stochastic Processes - part 2
 
Detection & Estimation Theory
Detection & Estimation TheoryDetection & Estimation Theory
Detection & Estimation Theory
 
Cyclo-stationary processes
Cyclo-stationary processesCyclo-stationary processes
Cyclo-stationary processes
 
Multivariate Gaussin, Rayleigh & Rician distributions
Multivariate Gaussin, Rayleigh & Rician distributionsMultivariate Gaussin, Rayleigh & Rician distributions
Multivariate Gaussin, Rayleigh & Rician distributions
 
Introduction to communication systems
Introduction to communication systemsIntroduction to communication systems
Introduction to communication systems
 
Advanced Communications Theory
Advanced Communications Theory Advanced Communications Theory
Advanced Communications Theory
 

Último

AKTU Computer Networks notes --- Unit 3.pdf
AKTU Computer Networks notes ---  Unit 3.pdfAKTU Computer Networks notes ---  Unit 3.pdf
AKTU Computer Networks notes --- Unit 3.pdf
ankushspencer015
 
notes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.pptnotes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.ppt
MsecMca
 
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
dollysharma2066
 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
ssuser89054b
 
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
dharasingh5698
 

Último (20)

data_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfdata_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdf
 
Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Booking
 
Booking open Available Pune Call Girls Pargaon 6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Pargaon  6297143586 Call Hot Indian Gi...Booking open Available Pune Call Girls Pargaon  6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Pargaon 6297143586 Call Hot Indian Gi...
 
AKTU Computer Networks notes --- Unit 3.pdf
AKTU Computer Networks notes ---  Unit 3.pdfAKTU Computer Networks notes ---  Unit 3.pdf
AKTU Computer Networks notes --- Unit 3.pdf
 
chapter 5.pptx: drainage and irrigation engineering
chapter 5.pptx: drainage and irrigation engineeringchapter 5.pptx: drainage and irrigation engineering
chapter 5.pptx: drainage and irrigation engineering
 
Water Industry Process Automation & Control Monthly - April 2024
Water Industry Process Automation & Control Monthly - April 2024Water Industry Process Automation & Control Monthly - April 2024
Water Industry Process Automation & Control Monthly - April 2024
 
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete RecordCCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
 
notes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.pptnotes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.ppt
 
Intze Overhead Water Tank Design by Working Stress - IS Method.pdf
Intze Overhead Water Tank  Design by Working Stress - IS Method.pdfIntze Overhead Water Tank  Design by Working Stress - IS Method.pdf
Intze Overhead Water Tank Design by Working Stress - IS Method.pdf
 
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
 
Generative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPTGenerative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPT
 
(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
 
Block diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.pptBlock diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.ppt
 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
 
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
 
(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7
(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7
(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7
 
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
 
Thermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.pptThermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.ppt
 
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
 
Unleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leapUnleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leap
 

Random Variables

  • 1. Bernoulli trials If a set has n elements then the total number of its subsets consisting of k elements each equals n k = n! k!(n − k)! Example: If we place at random n points in the interval [0, T]. What is the probability that k of these points are in the interval (t1, t2)? solution: A = {a point is in the interval(t1, t2)} ⇒ P(A) = t2−t1 T , A occurs k times, it means that k of the n points AKU-EE/1-9/HA, 1st Semester, 85-86 – p.1/102
  • 2. lie in the interval (t1, t2) and the rest; (n − k) points are outside of this interval with probability q = 1 − p Prob(A) = n k pk qn−k Example: An order of 104 parts is received. The probability of the even A that the part is defective equals 0.1. Find the probability that in 104 trials, A will occur at most 1000 times. Solution: p = 0.1, n = 104 Prob{0 6 n 6 1000} = 1000 X n=0 104 k 0.1k 0.9104−k AKU-EE/1-9/HA, 1st Semester, 85-86 – p.2/102
  • 3. g(x) = 1 √ 2π e−x2/2 , G(x) = Z x −∞ g(y)dy G(∞) = 1, G(0) = 0.5, G(−∞) = 0, G(−x) = 1 − G(x) 1 σ √ 2π Z x2 x1 exp −(x − µ)2 2σ2 dx = G x2 − µ σ −G x1 − µ σ erf(x) = 1 √ 2π Z x 0 e−y2/2 dy = 1 √ 2π Z x −∞ e−y2/2 dy − Z 0 −∞ e−y2/2 dy = G(x) − 0.5 erfc(x) = 1 √ 2π Z ∞ x e−y2/2 dy, erf(x) = 2 √ 2π Z ∞ x e−y2/2 dy AKU-EE/1-9/HA, 1st Semester, 85-86 – p.3/102
  • 4. Z e−x2/2 dx = Z −1 x e−x2/2 ′ dx Using integration by parts: R udv = uv − R vdu Q(x) = 1 √ 2π Z ∞ x e−y2/2 dy = e−x2/2 x √ 2π 1 − 1 x2 + 1 · 3 x4 − 1 · ·5 x6 + · · · Q(x) = 0.5erfc(x/ √ 2) AKU-EE/1-9/HA, 1st Semester, 85-86 – p.4/102
  • 5. Watson’s lemma I(x) = Z b 0 f(t)e−xt dt, b 0 Watson’s lemma gives the full asymptotic expansion of I(x) provided f(t) is continuous on the interval 0 6 t 6 b and f(t) has the asymptotic series expansion f(t) ∼ tα ∞ X n=0 antβn t → 0+ ⇒ I(x) ∼ ∞ X n=0 an Γ(α + βn + 1) xα+βn+1 , x → ∞ AKU-EE/1-9/HA, 1st Semester, 85-86 – p.5/102
  • 6. Q(x) = 1 √ 2π Z ∞ x e−y2/2 dy, u = y − x = 1 √ 2π e−x2/2 Z ∞ 0 e−u2/2 e−xu du = 1 √ 2π e−x2/2 ∞ X n=0 (−1)n n!2n Z ∞ 0 u2n e−ux du Related topics: Laplace’s and Fourier’s methods, steepest descent and saddle point approximation AKU-EE/1-9/HA, 1st Semester, 85-86 – p.6/102
  • 7. DeMoivre-Laplace theorem if npq 1, and np − √ npq 6 k 6 np + √ npq ⇒ n k pk qn−k ≈ 1 √ 2πnpq exp −(k − np)2 2npq Example: A fair coin is tossed 1000 times. Find the probability that heads show 510 times. n = 1000, p = 0.5, np = 500, √ npq = 5 √ 10 = 15.81 Solution: 1000 500 .5500 .5500 ≈ e−100/500 √ 2πnpq = 0.0207 AKU-EE/1-9/HA, 1st Semester, 85-86 – p.7/102
  • 8. Example: A fair coin is tossed 104 times. Find the probability that number of heads is between 4995 and 5005. n = 104 , np = 5000, npq = 50, √ npq = 7.07 Solution: Prob{4995 6 k 6 5005} = 5005 X k=4995 104 k 0.5k 0.5104−k k2 X k=k1 g k − np √ npq ≈ Z k2 k1 g x − np √ npq dx = G k2 − np √ npq − G k1 − np √ npq = 0.041 AKU-EE/1-9/HA, 1st Semester, 85-86 – p.8/102
  • 9. Law of large numbers An event A with Prob{A} = p occurs k times in n trials ⇒ k ≃ np , this is a heuristic statement. Let A denote an event whose probability of occurrence in a single trial is p. If k denotes the number of occurrences of A in n independent trials, then lim n→∞ Prob{k = np} ≃ 1 √ 2πnpq → 0 Never occurs! The approximation k ≃ np means that the ratio k/n is close to p in the sense that, for any ǫ 0, lim n→∞ Prob
  • 10.
  • 11.
  • 12.
  • 14.
  • 15.
  • 16.
  • 17. ǫ → 1, ∀ǫ 0 AKU-EE/1-9/HA, 1st Semester, 85-86 – p.9/102
  • 18.
  • 19.
  • 20.
  • 21.
  • 23.
  • 24.
  • 25.
  • 26. ǫ ⇒ −ǫ 6 k n − p 6 ǫ ⇒ n(p − ǫ) 6 k 6 n(p + ǫ) Prob
  • 27.
  • 28.
  • 29.
  • 31.
  • 32.
  • 33.
  • 34. ǫ = Prob{k1 6 k 6 k2} k2 X k=k1 n k pk qn−k ≈ G k2 − np √ npq − G k1 − np √ npq , k2−np =nǫ, k1−np=nǫ = 2G nǫ √ npq − 1, G(−x) = 1 − G(x) lim n→∞ 2G nǫ √ npq − 1 = 2 − 1 = 1 AKU-EE/1-9/HA, 1st Semester, 85-86 – p.10/102
  • 35. Example: p = 0.5, ǫ = 0.05 n(p − ǫ) = 0.45n, n(p + ǫ) = 0.55n, ǫ r n pq = 0.1 √ n Solution: n 100 900 0.1 √ n 1 3 2G(0.1 √ n) − 1 0.682 0.997 The last row indicates that after 900 independent trials we may have some confidence in accepting k/n ≈ p AKU-EE/1-9/HA, 1st Semester, 85-86 – p.11/102
  • 36. Generalized Bernoulli trials U = {A1 occurs k1 times, A2 occurs k2 times, · · · , Ar occurs kr times} The number of occurrence of U is n! k1!k2! · · · kr! , n = r X i=1 ki Since the trials are independent, the probability of each event is pk1 1 pk2 2 · · · pkr r ⇒ Prob{U} = n! k1!k2! · · · kr! pk1 1 pk2 2 · · · pkr r AKU-EE/1-9/HA, 1st Semester, 85-86 – p.12/102
  • 37. Example: A fair die is rolled 10 times. Determine the probability that ones shows 3 times, and an even number shows 6 times. Solution: A1 = {1}, A2 = {2, 4, 6}, A3 = {3, 5} ⇒ p1 = 1 6 , p2 = 3 6 , p3 = 2 6 k1 = 3, k2 = 6, k3 = 1 Prob{U} = 10! 3!6!1! 1 6 3 1 2 6 1 3 = 0.0203 AKU-EE/1-9/HA, 1st Semester, 85-86 – p.13/102
  • 38. Poisson theorem Prob{An event A occurs k times in n trials} = n k pk qn−k if p 1 and n → ∞ ⇒ np ≈ npq 1. However, if np is of order 1, then the Gaussian approximation is no longer valid. We use the following n k pk qn−k ≈ e−np (np)k k! , Poisson theorem if k is of order np, then k n and kp 1 and n(n − 1)(n − 2) · · · (n − k + 1) ≈ n · n · n · · · n = nk and q = 1 − p ≈ e−p , qn−k ≈ e−(n−k)p ≈ e−np . Hence, we have n k pk qn−k ≈ e−np (np)k k! AKU-EE/1-9/HA, 1st Semester, 85-86 – p.14/102
  • 39. Binomial(n, k)= as n → ∞, p → 0 n! (n − k)!k! λk nk 1 − λ n n−k √ 2πne−n nn √ 2π(n − k)n−k+0.5e−n+knk λk nk e−λ 1 (1 − λ n )nek λk k! e−λ AKU-EE/1-9/HA, 1st Semester, 85-86 – p.15/102
  • 40. n → ∞, p → 0, np → a n k pk qn−k → e−a ak k! Example: A system contains 1000 components. Each component fails independently of the others and the probability its failure in one month equals 10−3 . Find the probability that the system will function at the end of one month. Solution: This can be considered as a problem in repeated trials with p = 10−3 , q = 0.999, n = 1000, k = 0 AKU-EE/1-9/HA, 1st Semester, 85-86 – p.16/102
  • 41. Prob{k = 0} = 1000 0 p0 q1000 = 0.9991000 , Exact Prob{k = 0} ≈ e−1 (np)0 0! = 0.368 Applying the same idea as before: Prob{k1 6 k 6 k2} = k2 X k=k1 n k pk qn−k ≈ e−np k2 X k=k1 (np)k k! AKU-EE/1-9/HA, 1st Semester, 85-86 – p.17/102
  • 42. Generalization of Poisson theorem Let’s assume A1, A2, · · · ,Am+1, are the m + 1 events of a partition with Prob{Ai} = pi, pm+1 = 1 − Pm i=1 pi. we can show that n! k1! · · · km+1! pk1 1 · · · p km+1 m+1 ≈ e−a1 ak1 1 k1! · · · e−am akm m km! where ai = npi. The reason for having m terms on the right hand side whereas m + 1 terms on the left hand side is pm+1 = 1 − Pm i=1 pi AKU-EE/1-9/HA, 1st Semester, 85-86 – p.18/102
  • 43. Random Poisson points n random points in the interval (−T/2, T/2). Prob{k points in ta = t2 − t1} = n k pk qn−k , p = ta T If n, T → ∞, Prob{k points in ta =} ≈ e−nta T (nta T )k k! If λ = n/T, the rate at which the events occur, is constant, the resulting process is an infinite set of points covering the entire t axis from −∞ to ∞. Prob{k points in ta} = e−λta (λta)k k! AKU-EE/1-9/HA, 1st Semester, 85-86 – p.19/102
  • 44. Points in non overlapping intervals Let’s consider the interval (−T/2, T/2) containing n points, and two non-overlapping intervals ta tb Prob{ka points in ta, kb points in tb} = n! ka!kb!kc! ta T ka tb T kb (1− ta T − tb T )kc Suppose now that, λ = n/T, n, T → ∞ we have nta/T = λta, ntb/T = λtb we can conclude that Prob{ka points in ta, kb points in tb} ≈ e−λta (λta)ka ka! e−λtb (λtb)kb kb! AKU-EE/1-9/HA, 1st Semester, 85-86 – p.20/102
  • 45. Prob{ka points in ta,kb points in tb}= Prob{ka points in ta} Prob{kb points in tb} then the events {ka in ta} and {kb in tb} are independent. These outcomes are called random Poisson points. Properties: 1. Prob{ka points in ta} = e−λta (λta)ka ka! 2. if two intervals (t1, t2) and (t3, t4) are non-overlapping then the events in these intervals are independent. Telephone calls, car crossing a bridge, shot noise, . . . AKU-EE/1-9/HA, 1st Semester, 85-86 – p.21/102
  • 46. Baye’s theorem Let’s assume we have a pile of m coins. The probability of “heads” of the ith coin equals pi. We select from this pile one coin and we toss it n times. We observe that heads show k times. On the basis of this observation, we find the probability Xr we selected the rth coin Prob{rth coin selected and that heads showed up k times} = Prob{rth coin|k heads} = pk r (1 − pr)n−k Pm i=1 pk i (1 − pi)n−k = Prob{k heads|rth coin}Prob{rth coin} Prob{k heads} Prob{k heads} = m X i=1 Prob{k heads|ith coin}Prob{ith coin} AKU-EE/1-9/HA, 1st Semester, 85-86 – p.22/102
  • 47. Example: Number of showing, k=490, number of tossing, n=1000, number of coins, m=10, the specific coin, rth, r=5. Xr = Prob{5th coin out of 10 coins that 490 times heads showed up in 1000 tossing} Solution: p1 = p2 = · · · = p10 = 0.5, Prob{ith coin} = 0.1 Xr = p490 5 (1 − p5)510 1 10 P10 i=1 p490 i (1 − pi)1000−490 1 10 = 0.1 AKU-EE/1-9/HA, 1st Semester, 85-86 – p.23/102
  • 48. Random variable A random variable is a number assigned to every outcome of an experiment. Prob{x 6 x} of an event {x 6 x} is a number that depends on x. This number is denoted by Fx(x) and is called CDF of RV x. Properties of CDF: 1. F(∞) = 1, F(−∞) = 0 2. x1 6 x2 ⇒ F(x1) 6 F(x2) 3. Prob{x} = 1 − Fx(x) 4. F(x+ ) = F(x), F(x) is continuous from the right 5. Prob{x1 6 x 6 x2} = F(x2) − F(x1) AKU-EE/1-9/HA, 1st Semester, 85-86 – p.24/102
  • 49. We say the statistics of an RV are known if we can determine the Prob{x ∈ S} We say that an RV x is continuous type if Fx(x) is continuous. We say that an RV x is discrete type if Fx(x) is staircase. We say that an RV x is mixed type if Fx(x) is a combination of continuous and staircase function. fx(x) = d dx Fx(x) is the PDF for a continuous random variable, and for a discrete random variable f(x) = P i piδ(x − xi) where pi=Prob{x = xi} AKU-EE/1-9/HA, 1st Semester, 85-86 – p.25/102
  • 50. Properties: 1. f(x) 0, F(x) = R x −∞ f(ξ)dξ, F(x2) − F(x1) = R x2 x1 f(x)dx 2. Prob{x 6 x 6 x + ∆x} ≈ f(x)∆x 3. f(x) = lim ∆x→0 Prob{x 6 x 6 x + ∆x} ∆x The mode or the most likely value of x is where f(x) is maximum. An RV is unimodal if it has only a single mode. AKU-EE/1-9/HA, 1st Semester, 85-86 – p.26/102
  • 51. Special RV Normal: f(x) = 1 σ √ 2π exp −(x−η)2 2σ2 Uniform: f(x) = 1 x2−x1 , x1 6 x 6 x2 0, otherwise Rayleigh: f(x) = x σ2 e−x2/2σ2 , x 0 Lognormal: f(x) = 1 σx √ 2π e− (ln x−η)2 2σ2 , x 0 Cauchy: f(x) = 1 π(x2 + 1) Gamma: f(x) = cb+1 Γ(b + 1) xb e−cx , x 0, Γ(b+1) = bΓ(b), if b=an integer, it is called Erlang density. AKU-EE/1-9/HA, 1st Semester, 85-86 – p.27/102
  • 52. Laplace: f(x) = 0.5e−|x| Chi and Chi-square: χ = pPn i=1 x2 i , y = χ2 , f(χ) = 2aχn−1 e−χ2/2σ2 f(y) = ayn/2−1 e−y/2σ2 , a = 1 Γ(n/2)(σ √ 2)2 Geometric: Prob{x = k} = pqk , k = 0, 1, · · · , ∞ Binomial: Prob{x = k} = n k pk (1 − p)n−k , k = 0, 1, · · · , n x is of lattice type and its density is a sum of impulses, f(x) = n X k=0 n k pk (1 − p)n−k δ(x − k) AKU-EE/1-9/HA, 1st Semester, 85-86 – p.28/102
  • 53. Negative Binomial: n + k − 1 k pn (1 − p)k , k = 0, 1, · · · , ∞ Poisson: Prob{x = k} = e−a ak k! , k = 0, 1, · · · The density function is Prob{x = k} = e−a ∞ X k=0 ak k! δ(x − k) Example1: Given a constant t0, we define a RV n such that its value equals the number of points in the interval (0, t0), find the probability that the number of points in this interval is k Solution: Prob{n = k} = e−λt0 (λt0)k k! AKU-EE/1-9/HA, 1st Semester, 85-86 – p.29/102
  • 54. Example2: If t1 is the first random point to the right of the fixed point t0 and we define RV x as the distance from t0 to t1, determine the PDF and CDF for x Solution: F(x)=probability that there are at least one point between t0 and t0 + x, 1 − F(x) is the probability that there are no points=Prob{n = 0} = e−λx , F(x) = 1 − e−λx , f(x) = λe−λx u(x) AKU-EE/1-9/HA, 1st Semester, 85-86 – p.30/102
  • 55. Conditional distribution Baye’s rule: Prob{A|B} = Prob{AB} Prob{B} 6= 0 ⇒ conditional CDF: F(x|B) = Prob{x 6 x|B} = Prob{x 6 x, B} Prob{B} , {x 6 x, B} is the intersection of {x 6 x} and B F(∞|B) = 1, F(−∞|B) = 0, Prob{x1 6 x 6 x2|B} = F(x 6 x2|B) − F(x 6 x1|B) = Prob{x1 6 x 6 x2, B} Prob(B) Conditional PDF: f(x|B) = d dx F(x|B). To find F(x|B) in general we must know about the experiment. However, if B can be expressed in terms of x, then, for determination of F(x|B), knowledge of F(x) is enough AKU-EE/1-9/HA, 1st Semester, 85-86 – p.31/102
  • 56. Important cases B = {x 6 a}, F(x|B) = Prob{x 6 x, x 6 a} Prob{x 6 a} , if x a ⇒ {x 6 x, x 6 a} = {x 6 a} ⇒ F(x|B) = 1, x a, if x a ⇒ {x 6 x, x 6 a} = {x 6 x} ⇒ F(x|x 6 a) = F(x) F(a) , x a f(x|x 6 a) = ( d dx {F(x|x 6 a)} = f(x) F(a) , x a 0, x a Example: Determine f(x||x − η| 6 kσ), x ∼ N(η; σ) Solution: −kσ + η 6 x 6 kσ + η ⇒ f(x||x − η| 6 kσ) = f(x) F(|x − η| 6 kσ) = N(η; σ) G(k) − G(−k) , if x ∋ |x − η| 6 kσ ⇒ f(x||x − η| 6 kσ) = 0 AKU-EE/1-9/HA, 1st Semester, 85-86 – p.32/102
  • 57. Total probability If {A1, A2, · · · , An} are disjoint and partition the whole space: Prob{x 6 x} = n X i=1 Prob{x 6 x|Ai}Prob(Ai) F(x) = n X i=1 F(x 6 x|Ai)Prob(Ai) f(x) = n X i=1 f(x 6 x|Ai)Prob(Ai) AKU-EE/1-9/HA, 1st Semester, 85-86 – p.33/102
  • 58. Gaussian mixture Binary case: f(x|B) = N(η1; σ1), f(x|B̄) = N(η2; σ2) ⇒ f(x) = pN(η1; σ1) + (1 − p)N(η2; σ2) f(x) is a multimodal distribution. Generally, we can have: f(x) = n X i=1 piN(ηi; σi), n X i=1 pi = 1 AKU-EE/1-9/HA, 1st Semester, 85-86 – p.34/102
  • 59. The Prob{A|x = x} cannot be defined. But, it can be defined as a limit. Prob{A|x1 6 x 6 x2} = Prob{x1 6 x 6 x2|A}Prob{A} Prob{x1 6 x 6 x2} = F(x2|A) − F(x1|A) F(x2) − F(x1) Prob{A} (1) Let x = x1 and x + ∆x = x2 and divide the numerator and denominator of (1) by ∆x → 0, then, we have Prob{A|x = x} = f(x|A) f(x) Prob{A} (2) AKU-EE/1-9/HA, 1st Semester, 85-86 – p.35/102
  • 60. From (2), we have f(x|A) = Prob{A|x = x} Prob{A} f(x) = Prob{A|x = x} R ∞ −∞ Prob{A|x = x}f(x) dx Example: A={k heads in n tossing in a specific order} where probability of a head showing, p, is a RV with PDF f(p). What is f(p|A) Solution: Prob{A|P = p} = pk (1 − p)n−k , P is a RV with f(p) AKU-EE/1-9/HA, 1st Semester, 85-86 – p.36/102
  • 61. From (2), we have f(p|A) = pk (1 − p)n−k f(p) R 1 0 pk(1 − p)n−kf(p) dp f(p|A) is called a posteriori density, and f(p) is called a priori density for RV P . AKU-EE/1-9/HA, 1st Semester, 85-86 – p.37/102
  • 62. For large n, pk (1 − p)n−k has a sharp maximum at p = k/n. f(p)pk (1 − p)n−k is highly concentrated near p = k/n. If f(p) has a sharp peak at p = 0.5, the coin is reasonably fair, then, for moderate values of n, f(p)pk (1 − p)n−k has two peaks; one near p = k/n and the other near p = 0.5. As n increases sharpness of pk (1 − p)n−k prevails and the resulting a posteriori density f(p|A) has the maximum near k/n AKU-EE/1-9/HA, 1st Semester, 85-86 – p.38/102
  • 63. If the probability of heads in coin tossing experiment is not a number, but an RV P with density f(p). In the experiment of the tossing of a randomly selected coin, show that Prob{head}= R 1 0 pf(p) dp Solution: A = {head} ⇒, the conditional probability of A is the probability of heads if the coin with P = p is tossed. In other words, Prob{A|P = p} = p R 1 0 Prob{A|P = p}f(p) dp = R 1 0 pf(p) dp = Prob{A} This is the probability that at the next tossing head will show. AKU-EE/1-9/HA, 1st Semester, 85-86 – p.39/102
  • 64. Example: If P is a uniform RV, determine the posteriori density. Solution: A={k heads in n tossing in a specific order} f(p|A) = pk (1 − p)n−k R 1 0 pk(1 − p)n−k dp = (n + 1)! k!(n − k)! pk (1 − p)n−k , Beta density AKU-EE/1-9/HA, 1st Semester, 85-86 – p.40/102
  • 65. Example: Assuming that the coin was tossed n times and heads showed k times, what is the probability that at the next tossing heads would show? Solution: Z 1 0 pf(p|A) dp = (n + 1)! k!(n − k)! Z 1 0 p pk (1 − p)n−k dp = k + 1 n + 2 , almost the common sense! This is called the law of succession. AKU-EE/1-9/HA, 1st Semester, 85-86 – p.41/102
  • 66. Function of a RV y = g(x), x is a RV. F(y) = Prob{y 6 y} = Prob{g(x) 6 y} Example: y = ax + b, x ∼ f(x) Fy(y) = Prob{ax + b 6 y} = Prob x 6 y − b a , a 0 = Fx y − b a , a 0 = 1 − Fx y − b a , a 0 AKU-EE/1-9/HA, 1st Semester, 85-86 – p.42/102
  • 67. Example: y=x2 , x ∼ fx(x) Fy(y) = Prob{x2 6 y} = Prob{− √ y 6 x 6 √ y} = Fx( √ y) − Fx(− √ y), y 0, Fy(y) = 0, y 0 AKU-EE/1-9/HA, 1st Semester, 85-86 – p.43/102
  • 68. Example: Hard limiter y = g(x) = 1, x 0 −1, x 6 0 Fy(y) = Prob{y = 1} = Prob{x 0} = 1 − Fx(0) Fy(y) = Prob{y = −1} = Prob{x 6 0} = Fx(0) Example: Quantization y = g(x) = ns, (n − 1)s x ns Prob{y = ns} = Prob{(n−1)s x ns} = Fx(ns)−Fx((n−1)s) AKU-EE/1-9/HA, 1st Semester, 85-86 – p.44/102
  • 69. PDF determination y = g(x), fy(y) = n X i=1 fx(xi) |g′(xi)| , where xi are the roots of y = g(x). Example: y = ex , x ∼ N(0; σ2 ) There is only one roots: x = log y y = ex ⇒ g′ (x) = ex = y ⇒ fy(y) = fx(log y) y , y 0 AKU-EE/1-9/HA, 1st Semester, 85-86 – p.45/102
  • 70. If x is an arbitrary RV with continuous distribution Fx(x) and y = Fx(x) then y is a uniform RV in the interval [0, 1] If 0 y 1 then y = Fx(x) has only a single solution for x1. g′ (x) = F′ x(x) = fx(x) then fy(y) = fx(x1) |g′(x1)| = fx(x1) fx(x1) = 1, 0 y 1 If y 0 or y 1 then y = Fx(x) has no real solution then fy(y) = 0. AKU-EE/1-9/HA, 1st Semester, 85-86 – p.46/102
  • 71. Example Now, If we are given two distribution functions F1(x) and F2(y), Find a monotonically increasing function g(x) such that, if y = g(x) and Fx(x) = F1(x) then Fy(y) = F2(y). Solution We maintain that g(x) must be such that F2[g(x)] = F1(x) Fy(y) = Prob{y 6 y} = Prob{g(x) 6 g(x)} = Prob{x 6 x} = Fx(x) therefore, if a particular CDF Fy(y) is given then RV that with such CDF is: Because Fy(y) is a uniform RV then x ∼ Unif[0, 1] ⇒ y = F−1 y (x) AKU-EE/1-9/HA, 1st Semester, 85-86 – p.47/102
  • 72. For continuous RV: E(x) = η = Z ∞ −∞ xfx(x)dx For discrete type: fx(x) = X i piδ(x − xi), E(x) = X i pixi Conditional mean: E(x|M) = Z ∞ −∞ xf(x|M)dx AKU-EE/1-9/HA, 1st Semester, 85-86 – p.48/102
  • 73. Mean of a function of a RV: y = g(x), E(y) = Z ∞ −∞ yfy(y)dy = Z ∞ −∞ g(x)fx(x)dx For continuous RV, variance: σ2 = Z ∞ −∞ (x − η)2 fx(x)dx For discrete type: σ2 = X i pi(xi − η)2 AKU-EE/1-9/HA, 1st Semester, 85-86 – p.49/102
  • 74. Moments: E(xn ) = µn = Z ∞ −∞ xn fx(x)dx Central moments: E{(x − η)n } = Z ∞ −∞ (x − η)n fx(x)dx AKU-EE/1-9/HA, 1st Semester, 85-86 – p.50/102
  • 75. Prob{|x − η| ε} 6 σ2 ε2 , Tchebycheff inequality Prob{|x − η| ε} = R |x−η|ε fx(x)dx, and by definition σ2 = R ∞ −∞ (x − η)2 fx(x)dx then σ2 R |x−η|ε (x − η)2 fx(x)dx, and by assumption |x − η| ε then σ2 Z |x−η|ε (x − η)2 fx(x)dx ε2 Z |x−η|ε fx(x)dx = ε2 Prob{|x − η| ε} AKU-EE/1-9/HA, 1st Semester, 85-86 – p.51/102
  • 76. Characteristic function: E(e−jωx ) = Φ(ω) = Z ∞ −∞ fx(x)e−jωx dx, |Φ(ω)| 6 Φ(0) = 1 Moment Generating function: Φ(s) = Z ∞ −∞ fx(x)e−sx dx Second moment generating function: Ψ(s) = ln Φ(s) AKU-EE/1-9/HA, 1st Semester, 85-86 – p.52/102
  • 77. Φ(n) (s) = E{(−1)n xn e−sx } ⇒ (−1)n Φ(n) (0) = E{xn } Φ(s) = ∞ X n=0 (−1)n E(xn ) n! sn , s → 0 This is true if moments are finite and then the series converges absolutely near s = 0 For continuous RV, Cumulants: γn = dn dsn Ψ(s) |s=0 , Ψ(s) = ∞ X n=1 (−1)n γn n! sn AKU-EE/1-9/HA, 1st Semester, 85-86 – p.53/102
  • 78. For discrete RV, Characteristic function: Φ(ω) = E(e−jωx ) = X i pie−jωxi , DFT of pi sequence If n is of lattice type RV: Γ(z) = E(zn ) = ∞ X n=−∞ pnzn then Γ(1/z) is z transform of the sequence pn = Prob{n = n} AKU-EE/1-9/HA, 1st Semester, 85-86 – p.54/102
  • 79. Example For Binomial, and Poisson RV find Γ(z) Solution: pk = n k pk qn−k ⇒ Γ(z) = (pz + q)n pk = e−λ λk k! ⇒ Γ(z) = eλ(z−1) Moments: E(kn ) = Γ(n) (z = 1) AKU-EE/1-9/HA, 1st Semester, 85-86 – p.55/102
  • 80. F(x, y) = Prob(x 6 x, y 6 y) F(−∞, y) = 0, F(x, −∞) = 0, F(∞, ∞) = 1, F(∞, y) = Fy(y), F(x, ∞) = Fx(x) AKU-EE/1-9/HA, 1st Semester, 85-86 – p.56/102
  • 81. Prob{x1 6 x 6 x2, y} = F(x2, y) − F(x1, y) Prob{x, y1 6 y 6 y2} = F(x, y2) − F(x, y1) Prob{x1 6 x 6 x2, y1 6 y 6 y2} = F(x2, y2) − F(x2, y1) − [F(x1, y2) − F(x1, y1)] AKU-EE/1-9/HA, 1st Semester, 85-86 – p.57/102
  • 82. f(x, y) = ∂2 ∂x∂y F(x, y) ⇔ F(x, y) = Z x −∞ Z y −∞ f(x, y)dxdy Prob{(x, y) ∈ D} = Z D Z f(x, y)dxdy f(x) = Z ∞ −∞ f(x, y)dy, f(y) = Z ∞ −∞ f(x, y)dx, marginal PDF AKU-EE/1-9/HA, 1st Semester, 85-86 – p.58/102
  • 83. Joint Normality: f(x, y) = N(η1, η2; σ1, σ2; r) f(x, y) = exp          (x − η1)2 σ2 1 − 2r (x − η1)(y − η2) σ1σ2 + (y − η2)2 σ2 2   −2(1 − r2 )        2πσ1σ2 √ 1 − r2 , |r| 1 Marginal densities: f(x) = N(η1, σ1), f(y) = N(η2, σ2) AKU-EE/1-9/HA, 1st Semester, 85-86 – p.59/102
  • 84. Example f(x, y) = 1 2πσ2 exp − x2 + y2 2σ2 Determine Prob{x2 + y2 6 z2 } Solution: Prob{x2 + y2 6 z2 | {z } D } = Z D Z f(x, y)dxdy x = r cos θ, y = r sin θ ⇒ Prob{x2 +y2 6 z2 } = 1 2πσ2 Z z 0 Z 2π 0 e−r2/2σ2 rdrdθ = 1−e−z2/2σ2 , (Rayleigh) AKU-EE/1-9/HA, 1st Semester, 85-86 – p.60/102
  • 85. Example f(x, y) = 1 2πσ2 exp − (x − ηx)2 + (y − ηy)2 2σ2 Determine Prob{x2 + y2 6 z2 } Solution: Prob{x2 + y2 6 z2 | {z } D } = Z D Z f(x, y)dxdy x = z cos θ, y = z sin θ, η = q η2 x + η2 y, ηx = η cos φ, ηy = η sin φ, Fz(z) = 1 2πσ2 Z z 0 Z 2π 0 exp v2 − 2zηx cos θ − 2zηy sin θ + η2 −2σ2 vdvdθ AKU-EE/1-9/HA, 1st Semester, 85-86 – p.61/102
  • 86. fz(z) = z 2σ2π exp − z2 + η2 2σ2 Z 2π 0 exp vη cos(θ − φ) σ2 dθ fz(z) = z σ2 exp − z2 + η2 2σ2 Z 2π 0 exp vη cos ω σ2 2π dω fz(z) = z σ2 exp − z2 + η2 2σ2 I0( zη σ2 ), (Rician) As η → 0 Rician RV approaches a Rayleigh RV. AKU-EE/1-9/HA, 1st Semester, 85-86 – p.62/102
  • 87. z = g(x, y), w = h(x, y) Joint CDF: Fzw(z, w) = Prob{(x, y) ∈ Dzw} = Z D zw Z fxy(x, y)dxdy Example: z = p x2 + y2, w = y x Joint PDF: z = g(xn, yn), w = h(xn, yn), xn, yn are the roots ⇒ AKU-EE/1-9/HA, 1st Semester, 85-86 – p.63/102
  • 88. fzw(z, w) = n X i=1 fxy(x, y) J(xi, yi) Jacobian: J(x, y) =
  • 89.
  • 90.
  • 91.
  • 92.
  • 93.
  • 94.
  • 96.
  • 97.
  • 98.
  • 99.
  • 100.
  • 101.
  • 102. =
  • 103.
  • 104.
  • 105.
  • 106.
  • 107.
  • 108.
  • 110.
  • 111.
  • 112.
  • 113.
  • 114.
  • 115.
  • 116. −1 Example: Find the PDF for z z = xy Solution: Assume an auxiliary RV w = x AKU-EE/1-9/HA, 1st Semester, 85-86 – p.64/102
  • 117. There is only a single solution: x = w and y = z/w J(x, y) =
  • 118.
  • 119.
  • 120.
  • 122.
  • 123.
  • 124.
  • 125. = −w fzw(z, w) = 1 |w| fxy(w, z/w) ⇒ fz(z) = Z ∞ −∞ fxy(w, z/w) |w| dw AKU-EE/1-9/HA, 1st Semester, 85-86 – p.65/102
  • 126. Let x ∼ U(0, 1), y ∼ U(0, 1). Suppose X and Y are independent. Define Z = X + Y, W = X − Y . Show that Z and W are dependent, but uncorrelated RVs. Solution: x = z + w 2 , y = z − w 2 . 0 z 2, −1 w 1, z+w 6 2, z−w 6 2, z |w|, |J(z, w)| = 1/2. fZW (z, w) = 1/2, 0 z 2, − 1 w 1, z + w 6 2, z − w 6 2, |w| z, 0, otherwise, AKU-EE/1-9/HA, 1st Semester, 85-86 – p.66/102
  • 127. z w - - × fZ(z) = Z fZW (z, w)dw =      R z −z 1 2 dw = z, 0 z 1, R 2−z z−2 1 2 dw = 2 − z, 1 z 2, AKU-EE/1-9/HA, 1st Semester, 85-86 – p.67/102
  • 128. Or, fZ(z) = fX(z) ⊗ fY (z) =    z, 0 z 1, 2 − z, 1 z 2, 0, otherwise, Clearly, fZW (z, w) 6= fZ(z)fW (w), Z and W are not independent. However, E(ZW) = E [(X + Y )(X − Y )] = E(X2 ) − E(Y 2 ) = 0, E(W) = E(X − Y ) = 0, Cov(Z, W) = E(ZW) − E(Z)E(W) = 0 AKU-EE/1-9/HA, 1st Semester, 85-86 – p.68/102
  • 129. z = g(x, y) Mean: E{z} = R ∞ −∞ R ∞ −∞ g(x, y)f(x, y)dxdy Covariance: C = E{(x − ηx)(y − ηy)} Correlation coefficient: r = C/σxσy, |r| 6 1 Uncorrelatedness: if C = 0 or r = 0 Orthogonality: E{xy} = 0 ⇔ x⊥y Moments: E{xk yr } = R ∞ −∞ R ∞ −∞ xk yr f(x, y)dxdy Joint MGF: Φ(s, u) = E{e−(sx+uy) }, s, u ∈ C Marginal MGF: Φx(s) = Φ(s, 0), Φy(u) = Φ(0, u) AKU-EE/1-9/HA, 1st Semester, 85-86 – p.69/102
  • 130. Joint characteristic functions (i.e, JMGF) are useful in determining the PDF of linear combinations of RVs. Example: With X and Y as independent Poisson RVs with parameters λ1 and λ2 respectively, and Z = X + Y Solution: Z = X + Y ⇒ ΦZ(ω) = ΦX(ω)ΦY (ω) ΦX(ω) = eλ1(e−jω−1) , ΦY (ω) = eλ2(e−jω−1) ⇒ Φz(ω) = e(λ1+λ2)(e−jω−1) ⇒ Z ∼ Poiss(λ1 + λ2) AKU-EE/1-9/HA, 1st Semester, 85-86 – p.70/102
  • 131. Fy(y|x1 6 x 6 x2) = Prob{x1 6 x 6 x2, y y} Prob{x1 x x2} = F(x2, y) − F(x1, y) | {z } R y −∞ R x2 x1 f(x,y)dxdy F(x2) − F(x1) Differentiating from both sides with respect to y, we have: fy(y|x1 x x2) = R x2 x1 f(x, y)dx F(x2) − F(x1) As x1 → x2 we have: f(y|x = x) = f(x, y) fx(x) = f(y|x) AKU-EE/1-9/HA, 1st Semester, 85-86 – p.71/102
  • 132. Similarly, we have f(x, y) = f(x|y)fy(y) = f(y|x)fx(x) If x and y are independent we have: f(x|y) = fx(x), f(y|x) = fy(y) Baye’s theorem for PDF: f(x|y) = f(x, y) fy(y) = f(x, y) R ∞ −∞ f(y|x)fx(x)dx AKU-EE/1-9/HA, 1st Semester, 85-86 – p.72/102
  • 133. Example: determine f(x|y), f(y|x) fXY (x, y) = k, 0 x y 1, 0, otherwise, Z Z fXY (x, y)dxdy = Z 1 0 Z y 0 kdxdy = Z 1 0 kydy = k 2 = 1 ⇒ k = 2 fX(x) = Z fXY (x, y)dy = Z 1 x kdy = k(1 − x), 0 x 1, fY (y) = Z fXY (x, y)dx = Z y 0 kdx = ky, 0 y 1. AKU-EE/1-9/HA, 1st Semester, 85-86 – p.73/102
  • 134. fX|Y (x|y) = fXY (x, y) fY (y) = 1 y , 0 x y 1, fY |X(y|x) = fXY (x, y) fX(x) = 1 1 − x , 0 x y 1. AKU-EE/1-9/HA, 1st Semester, 85-86 – p.74/102
  • 135. Example: Poisson sum of Bernoulli random variables. Let Xi, i = 1, 2, 3, · · · represent independent, identically distributed Bernoulli random variables with P(Xi = 1) = p, P(Xi = 0) = 1 − p = q and N a Poisson random variable with parameter λ that is independent of all Xi. Consider the random variables Y = N X i=1 Xi, Z = N − Y. Show that Y and Z are independent Poisson random vari- ables. AKU-EE/1-9/HA, 1st Semester, 85-86 – p.75/102
  • 136. Solution: To determine the joint probability mass function of Y and Z, consider P(Y = m, Z = n) = P(Y = m, N − Y = n) = P(Y = m, N = m + n) = P(Y = m |N = m + n)P(N = m + n) = P( N P i=1 Xi = m |N = m + n)P(N = m + n) = P( m+n P i=1 Xi = m)P(N = m + n) (Note that m+n X i=1 Xi ∼ B(m+n, p) and Xis are independent of N) AKU-EE/1-9/HA, 1st Semester, 85-86 – p.76/102
  • 137. = (m + n)! m!n! pm qn e−λ λm+n (m + n)! = e−pλ (pλ)m m! e−qλ (qλ)n n! = P(Y = m)P(Z = n) = Y ∼ P(pλ) and Z ∼ P(qλ) AKU-EE/1-9/HA, 1st Semester, 85-86 – p.77/102
  • 138. The conditional expected values: E{g(y)|M} = Z ∞ −∞ g(y)f(y|M)dy The conditional mean(regression curve) and variance: ηy|x = E{y|x = x} = Z ∞ −∞ yf(y|x)dy σ2 y|x = E{(y − ηy|x)2 } = Z ∞ −∞ (y − ηy|x)2 f(y|x)dy AKU-EE/1-9/HA, 1st Semester, 85-86 – p.78/102
  • 139. Example: Determine E{X|Y } and E{Y |X}. fXY (x, y) = 1, 0 |y| x 1, 0, otherwise. x y - - × AKU-EE/1-9/HA, 1st Semester, 85-86 – p.79/102
  • 140. Solution: fX(x) = Z x −x fXY (x, y)dy = 2x, 0 x 1, fY (y) = Z 1 |y| 1dx = 1 − |y|, |y| 1, fX|Y (x|y) = fXY (x, y) fY (y) = 1 1 − |y| , 0 |y| x 1, fY |X(y|x) = fXY (x, y) fX(x) = 1 2x , 0 |y| x 1. AKU-EE/1-9/HA, 1st Semester, 85-86 – p.80/102
  • 141. E(X|Y ) = R xfX|Y (x|y)dx = R 1 |y| x (1−|y|) dx = 1 (1−|y|) x2 2
  • 142.
  • 143.
  • 144. 1 |y| = 1−|y|2 2(1−|y|) = 1+|y| 2 , |y| 1. E(Y |X) = Z yfY |X(y|x)dy = Z x −x y 2x dy = 1 2x y2 2
  • 145.
  • 146.
  • 147.
  • 148. x −x = 0, 0 x 1 AKU-EE/1-9/HA, 1st Semester, 85-86 – p.81/102
  • 149. φ(x) = E{y|x} = a function of x (3) φ(x) = E{y|x} = a function of RV x (4) For (4), we have: E{φ(x)} = Z ∞ −∞ φ(x)f(x)dx = Z ∞ −∞ f(x)dx Z ∞ −∞ yf(y|x)dy | {z } φ(x) = E{E{y|x} | {z } φ(x) } Therefore, we have: Ey{Ex{y|x}} = Z ∞ −∞ yf(x, y)dydx = E{y} AKU-EE/1-9/HA, 1st Semester, 85-86 – p.82/102
  • 150. This result can be generalized: E{g(x, y)|x} = a function of x = Z ∞ −∞ f(x) Z ∞ −∞ g(x, y)f(y|x)dydx (5) The last equation is obtained via: E{g(x, y)|M} = Z ∞ −∞ Z ∞ −∞ g(x, y)f(x, y|M)dydx (5) is: Z ∞ −∞ Z ∞ −∞ g(x, y)f(x, y)dydx = E{g(x, y)} (6) AKU-EE/1-9/HA, 1st Semester, 85-86 – p.83/102
  • 151. because of (6), we have E{Ex{g(x, y)|x}} = E{g(x, y)} Note that the following are the extensions of above: E{g1(x)g2(y)} = E{E{g1(x)g2(y)|x}} = Ex{g1(x)Ey{g2(y)|x}} AKU-EE/1-9/HA, 1st Semester, 85-86 – p.84/102
  • 152. Is it possible to estimate a RV? The answer is yes, but some estimation tools are required. One of the important estimation tools is called mean square estimation(MSE) principle. If a RV y is to be estimated by a constant c based on MSE principle we have the following: e = E{(y − c)2 } = Z ∞ −∞ (y − c)2 f(y)dy ⇒ We then minimize e with respect to the unknown c. ∂e ∂c = −2 Z ∞ −∞ (y−c)f(y)dy = 0 ⇒ c = Z ∞ −∞ yf(y)dy, (Mean value) AKU-EE/1-9/HA, 1st Semester, 85-86 – p.85/102
  • 153. If a RV y is to be estimated by a function of another RV x based on MSE principle we have the following: e = E{(y − c(x))2 } = Z ∞ −∞ Z ∞ −∞ (y − c(x))2 f(x, y)dydx = Z ∞ −∞ f(x) Z ∞ −∞ (y − c(x))2 f(y|x)dy | {z } 0 dx The integral is minimum if the inner integral is minimum, for ∀x. This can only occur if min c(x) J = Z ∞ −∞ (y − c(x))2 f(y|x)dy, ∀x AKU-EE/1-9/HA, 1st Semester, 85-86 – p.86/102
  • 154. ∂J ∂c = 0 ⇒ c(x) = Z ∞ −∞ yf(y|x)dy, (Conditional mean) AKU-EE/1-9/HA, 1st Semester, 85-86 – p.87/102
  • 155. Linear scenario: J = E{[y − (Ax + B)]2 } Orthogonality principle: Data⊥error AKU-EE/1-9/HA, 1st Semester, 85-86 – p.88/102
  • 156. A random sequence − → X = [x1, x2, · · · , xn] Prob{ − → X ∈ D} = Z · · · D Z f( − → X)d − → X F(X) = F(x1, x2, · · · , xn) = Prob{x1 6 x1, · · · , xn 6 xn} F(x1) = F(x1, ∞, · · · , ∞), f(x1, x2) = Z Z f(x1, x2, x3, x4)dx3dx4 AKU-EE/1-9/HA, 1st Semester, 85-86 – p.89/102
  • 157. Function of a sequence of RV: − → X = [x1, x2, · · · , xn] y1 = g1( − → X), y2 = g2( − → X), · · · , yk = gk( − → X) If k = n: f− → Y (Y ) = f− → X (X) |J(X)| , J(X) =
  • 158.
  • 159.
  • 160.
  • 161.
  • 162.
  • 163.
  • 164. ∂g1 ∂x1 · · · ∂g1 ∂xn . . . . . . . . . ∂gn ∂x1 · · · ∂gn ∂xn
  • 165.
  • 166.
  • 167.
  • 168.
  • 169.
  • 170.
  • 171. AKU-EE/1-9/HA, 1st Semester, 85-86 – p.90/102
  • 172. Example: yk = x1 + x2 + · · · + xk, k = n, xi are independent. Solution: x1 = y1, x2 = y2 − y1, · · · , xk = yk − yk−1, J = 1 fY (y1, · · · , yn) = fx1 (y1)fx2 (y2 − y1) · · · fxn (yn − yn−1) AKU-EE/1-9/HA, 1st Semester, 85-86 – p.91/102
  • 173. Order statistics sequence: y1 = x1 y2 = x2 · · · yn = xn fyk dy = Prob(y 6 yk 6 y + dy | {z } B ) A1 = {x 6 y}, A2 = {y 6 x 6 y + dy} Prob(A1) = Fx(y), Prob(A2) = fx(y)dy, Prob(A3) = 1−Fx(y) B occurs iff A1 occurs k − 1 times A2 occurs 1 time, and A3 occurs n − k times Prob(B) = n! (k − 1)!1!(n − k)! Probk−1 (A1)Prob(A1)Probn−k (A3) AKU-EE/1-9/HA, 1st Semester, 85-86 – p.92/102
  • 174. fyk (y) = n! (k − 1)!1!(n − k)! Fk−1 x (y)fx(y)[1 − Fx(y)]n−k Example1: Minimum, median, and maximum. fy1 (y) = nfx(y)(1 − Fx(y))n−1 fym+1 (y) = n!Fm x (y)(1 − Fx(y))n−m−1 fx(y) m!(n − m − 1)! , n = 2m+1, median = ym+1 fyn (y) = nFn−1 x (y)fx(y) AKU-EE/1-9/HA, 1st Semester, 85-86 – p.93/102
  • 175. Example2: {x1, x2, · · · , xn} are IID uniform(0,1) RV, the sorted RV, {y1, y2, · · · , yn} fy1 (y) = n(1 − y)n−1 , 0 6 y 6 1 fyn (y) = nyn−1 , 0 6 y 6 1 AKU-EE/1-9/HA, 1st Semester, 85-86 – p.94/102
  • 176. Covariance, and correlation matrix: Cij = E{(xi − ηi)(xj − ηj)}, Rij = E{xixj}, C = R − ηT η Correlation matrix is a positive semidefinite matrix: Eigenvalues of R are nonnegative. Characteristic function of a sequence: Φ(Ω) = E{e−jΩxT }, x = [x1, · · · , xn], Ω = [ω1, · · · , ωn] AKU-EE/1-9/HA, 1st Semester, 85-86 – p.95/102
  • 177. A Gaussian sequence: f(X) = 1 p (2π)n∆ exp −0.5(X − η)C−1 (X − η)T Φ(Ω) = exp −0.5ΩCΩT exp −jηΩT AKU-EE/1-9/HA, 1st Semester, 85-86 – p.96/102
  • 178. Central Limit Theorem: Suppose x1, x2, · · · , xn are a set of zero mean independent, identically distributed (IID) random variables with some common distribution. Consider their scaled sum x = x1 + x2 + · · · + xn √ n . Then asymptotically as n → ∞ ⇒ x ∼ N(0, σ2 ) AKU-EE/1-9/HA, 1st Semester, 85-86 – p.97/102
  • 179. Proof: Although the theorem is true under even more general conditions, we shall prove it here under the independence assumption. Let σ2 represent their common variance. Since E{xi} = 0 ⇒ E{x2 i } = σ2 we have Φx(u) = E{e−jux } = n Y i=1 E{e−ju/ √ nxi } = Φxi (u/ √ n) n E(ejxiu/ √ n ) = E 1 − jxiu √ n + j2 x2 i u2 2!n + j3 x3 i u3 3!n3/2 + · · · AKU-EE/1-9/HA, 1st Semester, 85-86 – p.98/102
  • 180. = 1 − σ2 u2 2n + o 1 n3/2 , Φx(u) = 1 − σ2 u2 2n + o 1 n3/2 n , lim n→∞ 1 − z n n = e−z lim n→∞ Φx(u) → e−σ2u2/2 , The central limit theorem states that a large sum of inde- pendent random variables each with finite variance tends to behave like a normal random variable. AKU-EE/1-9/HA, 1st Semester, 85-86 – p.99/102
  • 181. Thus the individual PDFs become unimportant to analyze the collective sum behavior. If we model the noise phenomenon as the sum of a large number of independent random variables (eg: electron motion in resistor components), then this theorem allows us to conclude that noise behaves like a Gaussian RV AKU-EE/1-9/HA, 1st Semester, 85-86 – p.100/102
  • 182. Caution: It may be remarked that the finite variance assumption is necessary for the theorem to hold good. To prove its importance, consider the RVs to be Cauchy distributed, and let Φxi (u) = e−α|u| , where xi ∼ C(α) Φx(u) = n Y i=1 Φx(u/ √ n) = e−α|u|/ √ n n ∼ C(α √ n), AKU-EE/1-9/HA, 1st Semester, 85-86 – p.101/102
  • 183. which shows that x is still Cauchy with parameter In other words, central limit theorem does not hold good for a set of Cauchy RVs as their variances are undefined. AKU-EE/1-9/HA, 1st Semester, 85-86 – p.102/102