SlideShare una empresa de Scribd logo
1 de 7
Descargar para leer sin conexión
IOSR Journal of Engineering (IOSRJEN) www.iosrjen.org
ISSN (e): 2250-3021, ISSN (p): 2278-8719
Vol. 05, Issue 03 (March. 2015), ||V3|| PP 01-07
International organization of Scientific Research 1 | P a g e
wavelet collocation method for solving integro-differential
equation.
Asmaa Abdalelah Abdalrehman
University of Technology Applied Science Department
Abstract: - Wavelet collocation method for numerical solution nth order Volterra integro diferential equations
(VIDE) by expanding the unknown functions, as series in terms of chebyshev wavelets second kind with
unknown coefficients. The aim of this paper is to state and prove the uniform convergence theorem and
accuracy estimation for series above. Finally, some illustrative examples are given to demonstrate the validity
and applicability of the proposed method.
Keywords: chebyshev wavelets second kind; integro-differential equation; operational matrix of integrations;
uniform convergence; accuracy estimation.
I. INTRODUCTION
Basic wavelet theory is a natural topic. By name, wavelets date back only to the 1980s. on the
boundary between mathematics and engineering, wavelet theory shows students that mathematics research is
still thriving, with important applications in areas such as image compression and the numerical solution of
differential equations [1], integral equation [2],and integro differential equations [3,8]. The author believes that
the essentials of wavelet theory are sufficiently elementary to be taught successfully to advanced
undergraduates [4].
Orthgonal functions and polynomials series have received considerable attention in dealing with
various problems wavelets permit the accurate representation of a functions and operators. Special attention has
been given to application of the Legendre wavelets [5], Harr wavelets [6] and Sine-Cosine wavelets [7].
The solution of integro-differential equations have a major role in the fields of science and ingineering
when aphysical system is modeled under the differential sense, it finally gives a differential equation, an
integral equation or an integro-differential equations mostly appear in the last equation [8].
In this paper the operational matrix of integration for Hermite wavelets is derived and used it for
obtaining approximate solution of the following nth order VIDE.
u(n)
(x)=g(x)+ 𝑘 𝑥, 𝑡 𝑢(𝑠)
𝑡 𝑑𝑡
𝑥
0
(1)
where 𝑛 ≥ 𝑠 k(x,t) and g(x) are known functions, and u(x) is an unknown function.
II.SOME PROPERTIES OF SECOND CHEBYSHEV WAVELETS
Wavelets constitute a family of functions constructed from dilation and traslation of a single function
 t called the mother wavelet.When the dilation parameter a and the translation parameter b vary continuously
we have the following family of continuous wavelets as [9].
 𝑎,𝑏 t = a
−1
2 
t−b
a
, a, b ∈ R, a ≠ 0.
The second chebyshev wavelets 2
𝑛,𝑚 t = (𝑘, 𝑛, 𝑚, 𝑡) involve four arguments,
𝑛 = 1, … , 2 𝑘−1
, k is assumed any positive integer, 𝑚 is the degree of the second chebyshev polynomials and t
is the normalized time. They are defined on the interval 0,1)as
2
𝑛,𝑚 t = 2
𝑘
2 𝑈 𝑚 2 𝑘
𝑡 − 2𝑛 + 1 ,
𝑛−1
2 𝑘−1 ≤ 𝑡 <
𝑛
2 𝑘−1
0 𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒
(2)
where 𝑈 𝑚 𝑡 =
2
𝜋
𝑈 𝑚 𝑡 𝑚 = 0,1, … , 𝑀 − 1 (3)
here 𝑈 𝑚 𝑡 are the second chebyshev polynomialsof degree m with respect to the weight function 𝑤 𝑡 =
1 − 𝑡2 on the interval [-1,1] and satisfy the following recursive formula
𝑈0 𝑡 = 1, 𝑈1 𝑡 = 2𝑡,
𝑈 𝑚+1 𝑡 = 2𝑡𝑈 𝑚 𝑡 − 𝑈 𝑚−1 𝑡 , 𝑚 = 1,2, …
The set of chebyshev wavelets are an orthonirmal set with respect to the weight function
𝑤𝑛 𝑡 = 𝑤𝑛 (2 𝑘
𝑡 − 2𝑛 + 1) .
wavelet collocation method for solving integro-differential equation.
International organization of Scientific Research 2 | P a g e
III.FUNCTION APPROXIMAT
A function 𝑓(𝑡) defined over [0, 1) may be expanded as
𝑓 𝑡 = 𝐶𝑛𝑚 𝑛𝑚
2
(𝑡)∞
𝑚=0
∞
𝑛=1 (4)
𝑤𝑕𝑒𝑟𝑒 𝐶𝑛𝑚 = (𝑓 𝑡 , 𝑛𝑚
2
𝑡 )
In which . , . denoted the inner product in 𝐿 𝑤 𝑛
2
[0,1). If the infinite series equation (2.34) is truncated,
then it can be written
𝑓 𝑡 = 𝐶𝑛𝑚 𝑛𝑚
2
𝑡 = 𝐶 𝑇
2
(𝑡)𝑀−1
𝑚=0
2 𝑘−1
𝑛=1 (5)
𝐶 = 𝐶10, 𝐶11, … , 𝐶1(𝑀−1), 𝐶20,… , 𝐶2(𝑀−1), … , 𝐶2 𝑘−1 , … , 𝐶2 𝑘−1 𝑀−1
𝑇
2
(t) =
10
2
(𝑡), 11
2
(𝑡), … , 1𝑀−1
2
(𝑡), 20
2
(𝑡), … , 2 𝑘−1 𝑀−1
2
(𝑡), … 2 𝑘−10
2
(𝑡), … 2 𝑘−1 𝑀−1
2
(𝑡)
𝑇
Convergence Analysis
for Chebyshev wavelets of Second kind.
A function 𝑓 𝑡 defined over 0,1 may be expanded as:
𝑓 𝑡 = 𝑓𝑛𝑚 𝑛𝑚
2
𝑡∞
𝑚=0
∞
𝑛=1 (6)
where
𝑓𝑛𝑚 = 𝑓 𝑡 , 𝑛𝑚
2
𝑡 (7)
In eq.(5). . , . denotes the inner product with weight function 𝑤𝑛 𝑡 .
If the infinite series in eq.(4) is trancated then eq.(4) can be written as:
𝑓 𝑡 − 𝑓2 𝑘−1 𝑀−1 𝑡 = 𝑓𝑛𝑚 𝑛𝑚
2𝑀−1
𝑚=0
2 𝑘−1
𝑛=1
=𝐹 𝑇
𝑛𝑚
2
where F and  𝑛𝑚
2
are 2 𝑘
𝑀 × 1 matrices given by
𝐹 = 𝑓10, 𝑓11 , … , 𝑓1𝑀 , 𝑓20 , … , 𝑓2𝑀−1, … , 𝑓2 𝑘0, … , 𝑓2 𝑘−1 𝑀−1
𝑇
(8)
2
(t)= 10
2
𝑡 , 11
2
𝑡 , … , 1𝑀−1
2
𝑡 , 20
2
𝑡 , … , 2𝑀−1
2
𝑡 , 2 𝑘−1
2
𝑡 , … , 2 𝑘−1 𝑀−1
2
𝑡
𝑇
Theorem(1): (Convergence Analysis theorm)
Assume that a function f(t) ∈ 𝐿 𝑤 ∗
2
0,1 , 𝑤∗
= 1 − 𝑡2 with 𝑓" 𝑡 ≤ 𝐿, can be expanded as infinite series
of second kind chebyshev wavelets, then the series converges uniformly to f(t).
Proof: since 𝑓𝑛𝑚 = 𝑓 𝑡 ,  𝑛𝑚
2
(𝑡)
then
𝑓𝑛𝑚 = 𝑓(𝑡)
1
0
 𝑛𝑚
2
(𝑡)𝑤𝑛 𝑡 𝑑𝑡
=
2
𝑘+1
2
𝜋
𝑓(𝑡)𝑈 𝑚 2 𝑘
𝑡 − 2𝑛 + 1 𝑤 2 𝑘
𝑡 − 2𝑛 + 1 𝑑𝑡
𝑛
2 𝑘−1
𝑛−1
2 𝑘−1
(9)
If we make use of the substitution 2 𝑘
𝑡 − 2𝑛 + 1 = cos 𝜃 in (5), yields
𝑓𝑛𝑚 =
2
2
𝑘
2 𝜋
𝑓
cos 𝜃 + 2𝑛 − 1
2 𝑘
sin 𝜃 sin 𝑚 + 1 𝜃 𝑑𝜃
𝜋
0
(10)
By using the integration by parts,
Then eq.(10) becomes
𝑓𝑛𝑚 =
1
2 2
𝑘
2 𝜋
𝑓
cos 𝜃 + 2𝑛 − 1
2 𝑘
sin 𝑚𝜃
𝑚
−
sin 𝑚 + 2 𝜃
𝑚 + 2 0
𝜋
+
1
2 2
3𝑘
2 𝜋
𝑓′
𝜋
0
cos 𝜃 + 2𝑛 − 1
2 𝑘
sin 𝜃
sin 𝑚𝜃
𝑚
−
sin 𝑚 + 2 𝜃
𝑚 + 2
𝑑𝜃
𝑓𝑛𝑚 =
1
𝑚 2 2
3𝑘
2 𝜋
𝑓′
𝜋
0
cos 𝜃 + 2𝑛 − 1
2 𝑘
sin 𝜃 sin 𝑚𝜃𝑑𝜃
−
1
𝑚 + 2 2 2
3𝑘
2 𝜋
𝑓′
𝜋
0
cos 𝜃 + 2𝑛 − 1
2 𝑘
sin 𝜃 sin 𝑚 + 2 𝜃𝑑𝜃
(11)
After performing integration by parts again yields,
wavelet collocation method for solving integro-differential equation.
International organization of Scientific Research 3 | P a g e
𝑓𝑛𝑚 =
1
𝑚2
3
2 2
5𝑘
2 𝜋
𝑓"
cos 𝜃 + 2𝑛 − 1
2 𝑘
cos 𝑚 − 2 𝜃 − cos 𝑚𝜃
𝑚 − 1
−
cos 𝑚𝜃 − cos 𝑚 + 2 𝜃
𝑚 + 1
𝑑𝜃
𝜋
0
−
1
𝑚 + 2 2
3
2 2
5𝑘
2 𝜋
𝑓"
cos 𝜃 + 2𝑛 − 1
2 𝑘
cos 𝑚 𝜃 − cos 𝑚 + 2 𝜃
𝑚 + 1
𝜋
0
−
cos 𝑚 + 2 𝜃 − cos 𝑚 + 4 𝜃
𝑚 + 3
𝑑𝜃
(12)
Consider:
𝑓"
cos 𝜃 + 2𝑛 − 1
2 𝑘
cos 𝑚 − 2 𝜃 − cos 𝑚𝜃
𝑚 − 1
−
cos 𝑚𝜃 − cos 𝑚 + 2 𝜃
𝑚 + 1
𝑑𝜃
𝜋
0
2
= 𝑓"
cos 𝜃 + 2𝑛 − 1
2 𝑘
cos 𝑚 − 2 𝜃 − cos 𝑚𝜃
𝑚 − 1
−
cos 𝑚𝜃 − cos 𝑚 + 2 𝜃
𝑚 + 1
𝑑𝜃
𝜋
0
2
≤ 𝑓"
cos 𝜃 + 2𝑛 − 1
2 𝑘
2
𝑑𝜃
𝜋
0
×
𝑚 − 1 cos 𝑚 + 2 𝜃 − 2𝑚 cos 𝑚 𝜃 + 𝑚 + 1 cos 𝑚 − 2 𝜃
𝑚 − 1 𝑚 + 1
2
𝑑𝜃
𝜋
0
< 𝜋𝐿2
𝑚 − 1 2
cos2
𝑚 + 2 𝜃 + 4𝑚2
cos2
𝑚𝜃 + 𝑚 + 1 2
cos2
𝑚 − 1
𝑚 − 1 2 𝑚 + 1 2
𝑑𝜃
𝜋
0
=
𝜋𝐿2
𝑚 − 1 2 𝑚 + 1 2
𝜋
2
𝑚 − 1 2
+
𝜋
2
4𝑚2
+
𝜋
2
𝑚 + 1 2
=
𝜋2
𝐿2
𝑚 − 1 2 𝑚 + 1 2
3𝑚2
+ 1
Thus, we get
𝑓"
cos 𝜃 + 2𝑛 − 1
2 𝑘
cos 𝑚 − 2 𝜃 − cos 𝑚𝜃
𝑚 − 1
−
cos 𝑚𝜃 − cos 𝑚 + 2 𝜃
𝑚 + 1
𝑑𝜃
𝜋
0
<
𝜋𝐿 3𝑚2
+ 1 1 2
𝑚 − 1 𝑚 + 1
(13)
Similarly,
𝑓"
𝜋
0
cos 𝜃 + 2𝑛 − 1
2 𝑘
cos 𝑚 𝜃 − cos 𝑚 + 2 𝜃
𝑚 + 1
−
cos 𝑚 + 2 𝜃 − cos 𝑚 + 4 𝜃
𝑚 + 3
𝑑𝜃
2
= 𝑓"
𝜋
0
cos 𝜃 + 2𝑛 − 1
2 𝑘
×
𝑚 + 1 cos 𝑚 + 4 𝜃 − (𝑚 + 1) cos 𝑚 + 2 𝜃 + 𝑚 + 3 cos 𝑚 + 2 𝜃 + 𝑚 + 3 cos 𝑚 𝜃
(𝑚 + 1) 𝑚 + 3
2
≤ 𝑓"
cos 𝜃 + 2𝑛 − 1
2 𝑘
2
𝑑𝜃
𝜋
0
×
𝑚 cos 𝑚 + 3 𝜃 − 2𝑚 − 2 cos 𝑚 + 1 𝜃 + 𝑚 + 2𝜃 cos 𝑚 − 1 𝜃
𝑚 𝑚 + 2
2𝜋
0
< 𝜋𝐿2
𝑚 + 1 2
cos2
𝑚 + 4 𝜃 + 2𝑚 + 4 2
cos2
𝑚 + 2 𝜃 + 𝑚 + 3 2
cos2
𝑚 𝜃
𝑚 + 1 2 𝑚 + 3 2
𝜋
0
=
𝜋2
𝐿2
2 𝑚 + 1 2 𝑚 + 3 2
6𝑚2
+ 24𝑚 + 26
=
𝜋2
𝐿2
𝑚 + 1 2 𝑚 + 3 2
3𝑚2
+ 12𝑚 + 13
Thus we get
𝑓"
𝜋
0
cos 𝜃 + 2𝑛 − 1
2 𝑘
cos 𝑚 𝜃 − cos 𝑚 + 2 𝜃
𝑚 + 1
−
cos 𝑚 + 2 𝜃 − cos 𝑚 + 4 𝜃
𝑚 + 3
𝑑𝜃
<
𝜋𝐿
𝑚 + 1 𝑚 + 3
3𝑚2
+ 12𝑚 + 13 1 2
(14)
Using eqs.(13)and(14), one can get
wavelet collocation method for solving integro-differential equation.
International organization of Scientific Research 4 | P a g e
𝑓𝑛𝑚 < 2−
5𝑘−3
2 𝜋
1
2
𝜋𝐿 3𝑚2
+ 1
1
2
𝑚 𝑚 − 1 𝑚 + 1
−
𝜋𝐿 3𝑚2
+ 12𝑚 + 13
1
2
𝑚 + 2 𝑚 + 1 𝑚 + 3
𝑓𝑛𝑚 <
2
−
5𝑘
2 𝜋
1
2
2
3
2 𝑚+1
2 𝑚+1
𝑚−1 2 =
2
−
5𝑘
2 𝜋
1
2 𝐿
2
1
2 𝑚−1 2
Finally since 𝑛 ≤ 2 𝑘
− 1,then
𝑓𝑛𝑚 <
𝜋
1
2 𝐿 𝑛+1
−
5
2
2 𝑚−1 2
Accuracy Estimation of  𝒏𝒎
𝟐
(𝒙):
If the function f(x) is expanded interms of fourth kind chebyshev wavelets,
𝑓 𝑥 = 𝑓𝑛𝑚 𝑛𝑚
2
(𝑥)∞
𝑚=0
∞
𝑛=1 (15)
It is not possible to perform computation an infinite number of terms, therfore we must truncate the series
in (15). In place of (5), we take
𝑓𝑀 𝑥 = 𝑓𝑛𝑚 𝑛𝑚
2
(𝑥)𝑀−1
𝑚=0
2 𝑘−1
𝑛=1 (16)
so that
𝑓 𝑥 = 𝑓𝑀 𝑥 + 𝑓𝑛𝑚 𝑛𝑚
2
(𝑥)∞
𝑚=𝑀
∞
𝑛=2 𝑘−1+1
or 𝑓 𝑥 − 𝑓𝑀 𝑥 = 𝑟(𝑥) (17)
where r(x) is the residual function
𝑟 𝑥 = 𝑓𝑛𝑚 𝑛𝑚
2
(𝑥)∞
𝑚=𝑀
∞
𝑛=2 𝑘−1+1 (18)
we must select coefficients in eqs.(17) and (18) such that the norm of the residual function 𝑟(𝑥) is less than
some convergence criterion ∈,that is
𝑓 𝑥 − 𝑓𝑀
2
𝑤𝑛 𝑥 𝑑𝑥
1
0
1
2
<∈
for all M greater than some value 𝑀0.
Theorem (2)
Let f(x) be a continuaus function defined on [0,1), and 𝑓′′
(𝑥) < 𝐿, then we have the following accuracy
estimation
𝑐 𝑘,𝑀 <
𝜋𝐿
2 2
1
𝑛+1 5
1
𝑚−1 4
∞
𝑚=𝑀
∞
𝑛−2 𝑘−1+1 (19)
where
𝑐 𝑘,𝑀 = 𝑟 𝑥
21
0
𝑤𝑛 𝑥 𝑑𝑥
1
2
Proof:-
Since 𝑪 𝒌𝒎 = 𝒓 𝒙
𝟐
𝒘 𝒏 𝒙 𝒅𝒙
𝟏
𝟎
𝟏
𝟐
𝐶𝑘𝑚
2
= 𝑟 𝑥
2
𝑤𝑛 𝑥 𝒅𝒙
1
0
= 𝑓𝑛𝑚
2
2
𝑤𝑛 𝑥 𝑑𝑥∞
𝑚=𝑀
∞
𝑛=2 𝑘−1+1
1
0
= 𝑓𝑛𝑚
2
𝑛𝑚
2
(𝑥) 2
𝑤𝑛 𝑥
1
0
𝑑𝑥∞
𝑚=𝑀
∞
𝑛=2 𝑘−1+1
or
𝐶𝑘𝑚
2
= 𝑓𝑛𝑚
2
2 2
𝑤𝑛 𝑥 𝑑𝑥
1
0
∞
𝑚=𝑀
∞
𝑛=2 𝑘−1+1
𝐶𝑘𝑚
2
= 𝑓2
2
𝑘
2
2
𝑈 𝑚 2 𝑘
𝑥 − 2𝑛 + 1 2
1 − 2 𝑘 𝑥 − 2𝑛 + 1 2 𝑑𝑥
𝑛
2 𝑘−1
𝑛−1
2 𝑘−1
∞
𝑚=𝑀
∞
𝑛=2 𝑘−1+1
Let 𝑡 = 2 𝑘
𝑥 − 2𝑛 + 1,
𝐶𝑘𝑚
2
= 𝑓2
𝑈 𝑚
2
𝑡 1 − 𝑡2 𝑑𝑥
1
−1
∞
𝑚=𝑀
∞
𝑛=2 𝑘−1+1
we have,
𝑈 𝑚
2
𝑡 1 − 𝑡2 𝑑𝑥
1
−1
=
𝜋
2
then
𝐶𝑘𝑚
2
= 𝑓2∞
𝑚=𝑀
∞
𝑛=2 𝑘−1+1
𝜋
2
𝐶𝑘𝑚
2
<
𝜋2 𝐿2 𝑚+1 −5
8 𝑚−1 4
∞
𝑚=𝑀
∞
𝑛=2 𝑘−1+1 .
wavelet collocation method for solving integro-differential equation.
International organization of Scientific Research 5 | P a g e
wavelet collocation method for VIDE with mth order:
In this section the introduced wavelets collocation will be applied to solve VIDE with mth order,
𝑢𝑖
(𝑛)
𝑥 = 𝑔𝑖 𝑥 + 𝐾𝑖,𝑗 𝑥, 𝑡 𝑢𝑖
(𝑠)
𝑡 𝑑𝑡
𝑥
0
, 𝑛 ≥ 𝑠 (20)
With the following conditions 𝑢𝑖
𝑠
0 = 𝑎𝑖𝑠 𝑖 = 1,2, … , 𝑙 𝑠 = 0,1,2,… , 𝑛 − 1
Afunction 𝑢𝑖
𝑛
𝑥 which is defined on the interval 𝑥 ∈ 0,1 can be expanded into the second chebyshev
wavelet series
𝑢𝑖
𝑛
𝑥 = 𝑐𝑖𝑖 (𝑡)𝑀
𝑖=1 (21)
Where ci are the wavelet coefficients.
Integrate eq.(21) m times,yields
𝑢 𝑥 = 𝑐𝑖 …
𝑥
0
𝑖 𝑡 𝑑𝑡
𝑥
0
+
𝑥 𝑗
𝑗 !
𝑎 𝑚−𝑗
𝑚−1
𝑗=0
𝑀
𝑖=0 (22)
Using the following formula
…
𝑥
0
𝑖 𝑡 𝑑𝑡
𝑥
0
=
1
(𝑛 − 1)!
𝑥 − 𝑡 𝑛−1
𝑖 (𝑡)𝑑𝑡
𝑥
0
therefore eq.(22) becomes
𝑢 𝑥 = 𝑐𝑖
1
(𝑛−1)!
𝑥 − 𝑡 𝑛−1
𝑖 (𝑡)𝑑𝑡
𝑥
0
+
𝑥 𝑗
𝑗 !
𝑎 𝑛−𝑗
𝑛−1
𝑗=0
𝑀
𝑖=0 (23)
Let 𝐾𝑛 𝑥, 𝑡 =
𝑥−𝑡 𝑛−1
𝑛−1 !
and 𝐿𝑖
𝑛
= 𝐾𝑛 𝑥, 𝑡 𝑕𝑖 𝑡 𝑑𝑡
𝑥
0
i=0,1,…,M
This leads to
𝑢 𝑥 = 𝑐𝑖 𝐿𝑖
𝑛
+
𝑥 𝑗
𝑗 !
𝑎 𝑛−𝑗
𝑛−1
𝑗=0
𝑀
𝑖=0
In similar way, we can get
𝑢(𝑠)
𝑥 = 𝑐𝑖 𝐿𝑖
𝑛−𝑠
+
𝑥 𝑗
𝑗 !
𝑎 𝑛−𝑠−𝑗
𝑛−𝑠−1
𝑗=0
𝑀
𝑖=0 (24)
Substituting eqs (22) and (24) in (20), yield
𝑐𝑖𝑖 (𝑡)𝑀
𝑖=1 = 𝑔𝑖 𝑥 + 𝐾𝑖,𝑗 𝑥, 𝑡 𝑐𝑖 𝐿𝑖
𝑛−𝑠
+
𝑥 𝑗
𝑗 !
𝑎 𝑛−𝑠−𝑗
𝑛−𝑠−1
𝑗=0
𝑀
𝑖=0 𝑑𝑡
𝑥
0
(25)
or 𝑐𝑖𝑖 (𝑡)𝑀
𝑖=1 − 𝐴𝑖 𝑥 = 𝑔𝑖 𝑥 +
𝑎 𝑛−𝑠−𝑗
𝑗 !
𝐵𝑗 (𝑥)𝑛−𝑠−1
𝑗=0 (26)
where 𝐴𝑖 𝑥 = 𝐾𝑛 𝑥, 𝑡 𝐿𝑖
𝑛−𝑠
𝑡 𝑑𝑡
𝑥
0
i=0,1,2,…,M
𝐵𝑗 𝑥 = 𝐾𝑛 𝑥, 𝑡 𝑡 𝑗
𝑑𝑡
𝑥
0
j=0,1,2,…,n-s-1 (27)
Next the interval 𝑥 ∈ 0,1 is devided in to 𝑙 ∆𝑥 =
1
𝑙
and introduce the collocation points
𝑥 𝑘 =
𝑘−1
𝑙
, k=1,2,…,l eq(21) is satisfied only at the collocation points we get asystem of linear equations
ci[i(x)M
i=1 − Ai x ] = gi x +
an−s−j
j!
Bj(x)n−s−1
j=0 (28)
The matrix form of this system
is C F=G+
an −s−j
j!
Bj(x)n−s−1
j=0 where F= (x), G=g(x)
1.Design of the matrix A:-
When chebyshev wavelets second kind are integrated m times, the following integral must be
evaluated.
𝐿𝑖
𝑛
= 𝐾𝑛 𝑥, 𝑡 𝑖 𝑡 𝑑𝑡
𝑥
0
, i=0, 1, 2, …, M
𝐿𝑖
𝑛
𝑥 =
𝑥−𝑡 𝑛
2 𝑘 𝑛−1 !
1
1
2
0 … 0 ⋮ 2 0 … 0
−3
4
0
1
4
… 0 ⋮ 0 0 0 0
1
3
−
1
6
0 … 0 ⋮ 0 0 0 0
⋮ ⋮ ⋮ ⋱
1
2(𝑀−1)
⋮ ⋮ ⋮ ⋱ ⋮
−1 𝑀−2
𝑀
0 0 … 0 ⋮ 0 0 … 0
𝑙−1
2 𝑘 ≤ 𝑥 <
𝑙
2 𝑘
Therefore the matrix Ai x can be constructed as follows
Since 𝐴𝑖 𝑥 = 𝐾𝑛 𝑥, 𝑡 𝐿𝑖
𝑛−𝑠
𝑡 𝑑𝑡
𝑥
0
i=0,1,2,…,M
wavelet collocation method for solving integro-differential equation.
International organization of Scientific Research 6 | P a g e
𝐴𝑖 𝑥 =
𝐾𝑛 𝑥0, 𝑡 𝐿𝑖
𝑛−𝑠
𝑡 𝑑𝑡 𝑖 = 0
𝑥0
0
𝐾𝑛 𝑥𝑖, 𝑡 𝐿𝑖
𝑛−𝑠
𝑡 𝑑𝑡 𝑖 > 0
𝑥 𝑛
0
IV. WAVELETS METHOD FOR VIDE WITH NTH ORDER
For solving VIDE with mth order the matrix 𝐿𝑖
𝑛
𝑥 in section above will be followed to get
ci[i(xL
M
i=1 − AL)] = g xL +
an−s−j
j!
Bj(xL)n−s−1
j=0 𝐿 ∈ 𝑎, 𝑏
But 𝐴𝑖 𝑥 𝐿 = 𝐾𝑛 xL, 𝑡 𝐿𝑖
𝑛−𝑠
𝑡 𝑑𝑡
𝑥 𝐿
0
where i=0,…,M
Bj(xL)= 𝐾𝑛 xL, 𝑡 𝑡 𝑛−𝑠
𝑑𝑡
𝑥 𝐿
0
where 𝐿𝑖
𝑛−𝑠
𝑡 as in eq(17),(18)
that is 𝐴𝑖 𝑥 𝐿 = 𝐴 𝐿 , 𝐹𝑖 𝑥 𝐿 = 𝑖 𝑥 𝐿 − 𝐴𝑖 𝑥 𝐿 = 𝐹𝐿
Numerical Results:
In this section VIDE is considered and solved by the introduced method. parameters k and M are
considered to be 1 and 3 respectively.
Example 1: Consider the following VIDE:
U′′
𝑥 = 𝑒2𝑥
− 𝑒2(𝑥−𝑡)
𝑈′
𝑡 𝑑𝑡
𝑥
0
Initial conditions 𝑈(0) = 0, 𝑈’(0) = 0.
The exact solution 𝑈 𝑥 = 𝑥𝑒 𝑥
− 𝑒 𝑥
+ 1. Table 1 shows the numerical results for this example with k=2,
M=3 with error =10-3
and k=2, M=4, with error =10-4
are compared with exact solution graphically in fig.
Table 1:some numerical results for example 1
x Exact solution Approximat solution
k=2,M=3
Approximat solution
k=2,M=4
0 0.00000000 0.00000001 0.00000001
0.2 0.02287779 0.02280000 0.02287000
0.4 0.10940518 0.10945544 0.10940544
0.6 0.27115248 0.25826756 0.27826756
0.8 0.55489181 0.54330957 0.55330957
1 1.00000000 0.99999995 0.99999998
Fig 1:Approximate solution for example 1
Example 2: Consider the following VIDE :
U(5)
𝑥 = −2 sin 𝑥 + 2 cos 𝑥 − 𝑥 + (𝑥 − 𝑡)𝑈(3)
𝑡 𝑑𝑡
𝑥
0
Initial conditions 𝑈(0) = 1, 𝑈’(0) = 0, 𝑈"(0) = −1, 𝑈3
(0) = 0.
The exact solution 𝑈 𝑥 = cos 𝑥. Table 2 shows the numerical results for this example with k=2, M=3 with
error=10-3
and k=2, M=4, with error =10-4
are compared with exact solution graphically in fig, 2.
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
wavelet collocation method for solving integro-differential equation.
International organization of Scientific Research 7 | P a g e
Table 2:some numerical results for example 2
x Exact solution Approximat solution
k=2,M=3
Approximat solution
k=2,M=4
0 1.00000000 0.99812235 0.99999875
0.2 0.98006658 0.98024711 0.98005541
0.4 0.92106099 0.92158990 0.92104326
0.6 0.82533561 0.82479820 0.82535367
0.8 0.69670671 0.69689632 0.69678976
1 0.54030231 0.54032879 0.54035879
Fig 2:Approximate solution for example
V. CONCLUSION
This work proposes a powerful technique for solving VIDE second kind using wavelet in collocation
method comparison of the approximate solutions and the exact solutions shows that the proposed method is
more faster algorithms than ordinary ones. The convergence and accuracy estimation of this method was
examined for several numerical examples.
REFERENCES
[1] Asmaa A. A , 2014, Numerical, Solution of Optimal Control Problems Using New Third kind
Chebyshev Wavelets Operational Matrix of Integration, Eng&Tech journal,Vol 32,part(B),1:145-156.
[2] Tao. X. and Yuan. L. 2012. Numerical Solution of Fredholm Integral Equation of Second kind by
General Legendre Wavelets, Int. J. Inn. Comp and Cont. 8(1): 799-805.
[3] A.Barzkar, M.K.Oshagh, 2012, Numerical solution of the nonlinear Fredholm integro-differential
equation of second kind using chebysheve wavelets, World Applied Scinces Journal (WASJ),Vol.18,
N(12):1774-1782.
[4] E.Johansson, 2005, Wavelet Theory and some of its Applications.
[5] Jafari. H and Hosseinzadeh. H. 2010. Numerical Solution of System of Linear Integral Equations by
using Legendre Wavelets, Int. J. Open Problems Compt. Math., 3(5): 1998-6262 .
[6] Shihab. S. N. and Mohammed. A. 2012. An Efficient Algorithm for nth
Order Integro- Differential
Equations Using New Haar Wavelets Matrix Designation, International Journal of Emerging &
Technologies in Computational and Applied Sciences (IJETCAS). 12(209): 32-35.
[7] M.Razzaghi & S.Yousefi. 2002. Sin-Cosine wavelets operational matrix of integration and it’s
applications in the calculus of variations. Vol 33. No 10: 805-810.
[8] A.Arikoglu & I.Ozkol. 2008. Solution of integral integro-differential equation systems by using
differential transform method. Vol 56,Issue 9.2411-2417.
[9] Arsalani. M. & Vali. M. A.,2011 Numerical Solution of Nonlinear Problems With Moving Boundary
Conditions by Using Chebyshev Wavelets, Applied Mathematical Sciences,Vol.5(20): 947-964.
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.5
0.55
0.6
0.65
0.7
0.75
0.8
0.85
0.9
0.95
1

Más contenido relacionado

La actualidad más candente

New Information on the Generalized Euler-Tricomi Equation
New Information on the Generalized Euler-Tricomi Equation New Information on the Generalized Euler-Tricomi Equation
New Information on the Generalized Euler-Tricomi Equation Lossian Barbosa Bacelar Miranda
 
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICSBSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICSRai University
 
Btech_II_ engineering mathematics_unit2
Btech_II_ engineering mathematics_unit2Btech_II_ engineering mathematics_unit2
Btech_II_ engineering mathematics_unit2Rai University
 
Gamma beta functions-1
Gamma   beta functions-1Gamma   beta functions-1
Gamma beta functions-1Selvaraj John
 
Numerical solution of system of linear equations
Numerical solution of system of linear equationsNumerical solution of system of linear equations
Numerical solution of system of linear equationsreach2arkaELECTRICAL
 
B.Tech-II_Unit-III
B.Tech-II_Unit-IIIB.Tech-II_Unit-III
B.Tech-II_Unit-IIIKundan Kumar
 
BSC_COMPUTER _SCIENCE_UNIT-5_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-5_DISCRETE MATHEMATICSBSC_COMPUTER _SCIENCE_UNIT-5_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-5_DISCRETE MATHEMATICSRai University
 
3 capitulo-iii-matriz-asociada-sem-11-t-l-a (1)
3 capitulo-iii-matriz-asociada-sem-11-t-l-a (1)3 capitulo-iii-matriz-asociada-sem-11-t-l-a (1)
3 capitulo-iii-matriz-asociada-sem-11-t-l-a (1)FernandoDanielMamani1
 
Vector calculus
Vector calculusVector calculus
Vector calculussujathavvv
 
B.tech ii unit-5 material vector integration
B.tech ii unit-5 material vector integrationB.tech ii unit-5 material vector integration
B.tech ii unit-5 material vector integrationRai University
 
Numerical solutions for linear system of equations
Numerical solutions for linear system of equationsNumerical solutions for linear system of equations
Numerical solutions for linear system of equationsMohamed Mohamed El-Sayed
 
Inner product space
Inner product spaceInner product space
Inner product spaceSheharBano31
 
Engineering Mathematics-IV_B.Tech_Semester-IV_Unit-II
Engineering Mathematics-IV_B.Tech_Semester-IV_Unit-IIEngineering Mathematics-IV_B.Tech_Semester-IV_Unit-II
Engineering Mathematics-IV_B.Tech_Semester-IV_Unit-IIRai University
 
Btech_II_ engineering mathematics_unit4
Btech_II_ engineering mathematics_unit4Btech_II_ engineering mathematics_unit4
Btech_II_ engineering mathematics_unit4Rai University
 
Paper id 71201914
Paper id 71201914Paper id 71201914
Paper id 71201914IJRAT
 

La actualidad más candente (20)

New Information on the Generalized Euler-Tricomi Equation
New Information on the Generalized Euler-Tricomi Equation New Information on the Generalized Euler-Tricomi Equation
New Information on the Generalized Euler-Tricomi Equation
 
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICSBSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
 
Btech_II_ engineering mathematics_unit2
Btech_II_ engineering mathematics_unit2Btech_II_ engineering mathematics_unit2
Btech_II_ engineering mathematics_unit2
 
Gamma beta functions-1
Gamma   beta functions-1Gamma   beta functions-1
Gamma beta functions-1
 
Numerical solution of system of linear equations
Numerical solution of system of linear equationsNumerical solution of system of linear equations
Numerical solution of system of linear equations
 
B.Tech-II_Unit-III
B.Tech-II_Unit-IIIB.Tech-II_Unit-III
B.Tech-II_Unit-III
 
BSC_COMPUTER _SCIENCE_UNIT-5_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-5_DISCRETE MATHEMATICSBSC_COMPUTER _SCIENCE_UNIT-5_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-5_DISCRETE MATHEMATICS
 
3 capitulo-iii-matriz-asociada-sem-11-t-l-a (1)
3 capitulo-iii-matriz-asociada-sem-11-t-l-a (1)3 capitulo-iii-matriz-asociada-sem-11-t-l-a (1)
3 capitulo-iii-matriz-asociada-sem-11-t-l-a (1)
 
Vector calculus
Vector calculusVector calculus
Vector calculus
 
Bender schmidt method
Bender schmidt methodBender schmidt method
Bender schmidt method
 
B.Tech-II_Unit-V
B.Tech-II_Unit-VB.Tech-II_Unit-V
B.Tech-II_Unit-V
 
B.tech ii unit-5 material vector integration
B.tech ii unit-5 material vector integrationB.tech ii unit-5 material vector integration
B.tech ii unit-5 material vector integration
 
Numerical solutions for linear system of equations
Numerical solutions for linear system of equationsNumerical solutions for linear system of equations
Numerical solutions for linear system of equations
 
Inner product space
Inner product spaceInner product space
Inner product space
 
Engineering Mathematics-IV_B.Tech_Semester-IV_Unit-II
Engineering Mathematics-IV_B.Tech_Semester-IV_Unit-IIEngineering Mathematics-IV_B.Tech_Semester-IV_Unit-II
Engineering Mathematics-IV_B.Tech_Semester-IV_Unit-II
 
Maths digital text
Maths digital textMaths digital text
Maths digital text
 
B.Tech-II_Unit-IV
B.Tech-II_Unit-IVB.Tech-II_Unit-IV
B.Tech-II_Unit-IV
 
Fismat chapter 4
Fismat chapter 4Fismat chapter 4
Fismat chapter 4
 
Btech_II_ engineering mathematics_unit4
Btech_II_ engineering mathematics_unit4Btech_II_ engineering mathematics_unit4
Btech_II_ engineering mathematics_unit4
 
Paper id 71201914
Paper id 71201914Paper id 71201914
Paper id 71201914
 

Similar a A05330107

Lesson 3: Problem Set 4
Lesson 3: Problem Set 4Lesson 3: Problem Set 4
Lesson 3: Problem Set 4Kevin Johnson
 
Matlab lab manual
Matlab lab manualMatlab lab manual
Matlab lab manualnmahi96
 
A Probabilistic Algorithm for Computation of Polynomial Greatest Common with ...
A Probabilistic Algorithm for Computation of Polynomial Greatest Common with ...A Probabilistic Algorithm for Computation of Polynomial Greatest Common with ...
A Probabilistic Algorithm for Computation of Polynomial Greatest Common with ...mathsjournal
 
Application of Integration
Application of IntegrationApplication of Integration
Application of IntegrationRaymundo Raymund
 
Some properties of two-fuzzy Nor med spaces
Some properties of two-fuzzy Nor med spacesSome properties of two-fuzzy Nor med spaces
Some properties of two-fuzzy Nor med spacesIOSR Journals
 
Engineering Analysis -Third Class.ppsx
Engineering Analysis -Third Class.ppsxEngineering Analysis -Third Class.ppsx
Engineering Analysis -Third Class.ppsxHebaEng
 
ملزمة الرياضيات للصف السادس التطبيقي الفصل الاول الاعداد المركبة 2022
 ملزمة الرياضيات للصف السادس التطبيقي الفصل الاول الاعداد المركبة 2022 ملزمة الرياضيات للصف السادس التطبيقي الفصل الاول الاعداد المركبة 2022
ملزمة الرياضيات للصف السادس التطبيقي الفصل الاول الاعداد المركبة 2022anasKhalaf4
 
Dual Spaces of Generalized Cesaro Sequence Space and Related Matrix Mapping
Dual Spaces of Generalized Cesaro Sequence Space and Related Matrix MappingDual Spaces of Generalized Cesaro Sequence Space and Related Matrix Mapping
Dual Spaces of Generalized Cesaro Sequence Space and Related Matrix Mappinginventionjournals
 
One solution for many linear partial differential equations with terms of equ...
One solution for many linear partial differential equations with terms of equ...One solution for many linear partial differential equations with terms of equ...
One solution for many linear partial differential equations with terms of equ...Lossian Barbosa Bacelar Miranda
 
ملزمة الرياضيات للصف السادس الاحيائي الفصل الاول
ملزمة الرياضيات للصف السادس الاحيائي الفصل الاولملزمة الرياضيات للصف السادس الاحيائي الفصل الاول
ملزمة الرياضيات للصف السادس الاحيائي الفصل الاولanasKhalaf4
 
Maths-MS_Term2 (1).pdf
Maths-MS_Term2 (1).pdfMaths-MS_Term2 (1).pdf
Maths-MS_Term2 (1).pdfAnuBajpai5
 
math1مرحلة اولى -compressed.pdf
math1مرحلة اولى -compressed.pdfmath1مرحلة اولى -compressed.pdf
math1مرحلة اولى -compressed.pdfHebaEng
 
ANALISIS RIIL 1 3.2 ROBERT G BARTLE
ANALISIS RIIL 1 3.2 ROBERT G BARTLEANALISIS RIIL 1 3.2 ROBERT G BARTLE
ANALISIS RIIL 1 3.2 ROBERT G BARTLEMuhammad Nur Chalim
 
Study Material Numerical Differentiation and Integration
Study Material Numerical Differentiation and IntegrationStudy Material Numerical Differentiation and Integration
Study Material Numerical Differentiation and IntegrationMeenakshisundaram N
 
On The Distribution of Non - Zero Zeros of Generalized Mittag – Leffler Funct...
On The Distribution of Non - Zero Zeros of Generalized Mittag – Leffler Funct...On The Distribution of Non - Zero Zeros of Generalized Mittag – Leffler Funct...
On The Distribution of Non - Zero Zeros of Generalized Mittag – Leffler Funct...IJERA Editor
 
Sistempertidaksamaanduavariabel2122
Sistempertidaksamaanduavariabel2122Sistempertidaksamaanduavariabel2122
Sistempertidaksamaanduavariabel2122Franxisca Kurniawati
 
A Coupled Thermoelastic Problem of A Half – Space Due To Thermal Shock on the...
A Coupled Thermoelastic Problem of A Half – Space Due To Thermal Shock on the...A Coupled Thermoelastic Problem of A Half – Space Due To Thermal Shock on the...
A Coupled Thermoelastic Problem of A Half – Space Due To Thermal Shock on the...iosrjce
 

Similar a A05330107 (20)

Periodic Solutions for Nonlinear Systems of Integro-Differential Equations of...
Periodic Solutions for Nonlinear Systems of Integro-Differential Equations of...Periodic Solutions for Nonlinear Systems of Integro-Differential Equations of...
Periodic Solutions for Nonlinear Systems of Integro-Differential Equations of...
 
Lesson 3: Problem Set 4
Lesson 3: Problem Set 4Lesson 3: Problem Set 4
Lesson 3: Problem Set 4
 
Matlab lab manual
Matlab lab manualMatlab lab manual
Matlab lab manual
 
A Probabilistic Algorithm for Computation of Polynomial Greatest Common with ...
A Probabilistic Algorithm for Computation of Polynomial Greatest Common with ...A Probabilistic Algorithm for Computation of Polynomial Greatest Common with ...
A Probabilistic Algorithm for Computation of Polynomial Greatest Common with ...
 
Application of Integration
Application of IntegrationApplication of Integration
Application of Integration
 
Some properties of two-fuzzy Nor med spaces
Some properties of two-fuzzy Nor med spacesSome properties of two-fuzzy Nor med spaces
Some properties of two-fuzzy Nor med spaces
 
Engineering Analysis -Third Class.ppsx
Engineering Analysis -Third Class.ppsxEngineering Analysis -Third Class.ppsx
Engineering Analysis -Third Class.ppsx
 
ملزمة الرياضيات للصف السادس التطبيقي الفصل الاول الاعداد المركبة 2022
 ملزمة الرياضيات للصف السادس التطبيقي الفصل الاول الاعداد المركبة 2022 ملزمة الرياضيات للصف السادس التطبيقي الفصل الاول الاعداد المركبة 2022
ملزمة الرياضيات للصف السادس التطبيقي الفصل الاول الاعداد المركبة 2022
 
Dual Spaces of Generalized Cesaro Sequence Space and Related Matrix Mapping
Dual Spaces of Generalized Cesaro Sequence Space and Related Matrix MappingDual Spaces of Generalized Cesaro Sequence Space and Related Matrix Mapping
Dual Spaces of Generalized Cesaro Sequence Space and Related Matrix Mapping
 
lec38.ppt
lec38.pptlec38.ppt
lec38.ppt
 
HERMITE SERIES
HERMITE SERIESHERMITE SERIES
HERMITE SERIES
 
One solution for many linear partial differential equations with terms of equ...
One solution for many linear partial differential equations with terms of equ...One solution for many linear partial differential equations with terms of equ...
One solution for many linear partial differential equations with terms of equ...
 
ملزمة الرياضيات للصف السادس الاحيائي الفصل الاول
ملزمة الرياضيات للصف السادس الاحيائي الفصل الاولملزمة الرياضيات للصف السادس الاحيائي الفصل الاول
ملزمة الرياضيات للصف السادس الاحيائي الفصل الاول
 
Maths-MS_Term2 (1).pdf
Maths-MS_Term2 (1).pdfMaths-MS_Term2 (1).pdf
Maths-MS_Term2 (1).pdf
 
math1مرحلة اولى -compressed.pdf
math1مرحلة اولى -compressed.pdfmath1مرحلة اولى -compressed.pdf
math1مرحلة اولى -compressed.pdf
 
ANALISIS RIIL 1 3.2 ROBERT G BARTLE
ANALISIS RIIL 1 3.2 ROBERT G BARTLEANALISIS RIIL 1 3.2 ROBERT G BARTLE
ANALISIS RIIL 1 3.2 ROBERT G BARTLE
 
Study Material Numerical Differentiation and Integration
Study Material Numerical Differentiation and IntegrationStudy Material Numerical Differentiation and Integration
Study Material Numerical Differentiation and Integration
 
On The Distribution of Non - Zero Zeros of Generalized Mittag – Leffler Funct...
On The Distribution of Non - Zero Zeros of Generalized Mittag – Leffler Funct...On The Distribution of Non - Zero Zeros of Generalized Mittag – Leffler Funct...
On The Distribution of Non - Zero Zeros of Generalized Mittag – Leffler Funct...
 
Sistempertidaksamaanduavariabel2122
Sistempertidaksamaanduavariabel2122Sistempertidaksamaanduavariabel2122
Sistempertidaksamaanduavariabel2122
 
A Coupled Thermoelastic Problem of A Half – Space Due To Thermal Shock on the...
A Coupled Thermoelastic Problem of A Half – Space Due To Thermal Shock on the...A Coupled Thermoelastic Problem of A Half – Space Due To Thermal Shock on the...
A Coupled Thermoelastic Problem of A Half – Space Due To Thermal Shock on the...
 

Más de IOSR-JEN

Más de IOSR-JEN (20)

C05921721
C05921721C05921721
C05921721
 
B05921016
B05921016B05921016
B05921016
 
A05920109
A05920109A05920109
A05920109
 
J05915457
J05915457J05915457
J05915457
 
I05914153
I05914153I05914153
I05914153
 
H05913540
H05913540H05913540
H05913540
 
G05913234
G05913234G05913234
G05913234
 
F05912731
F05912731F05912731
F05912731
 
E05912226
E05912226E05912226
E05912226
 
D05911621
D05911621D05911621
D05911621
 
C05911315
C05911315C05911315
C05911315
 
B05910712
B05910712B05910712
B05910712
 
A05910106
A05910106A05910106
A05910106
 
B05840510
B05840510B05840510
B05840510
 
I05844759
I05844759I05844759
I05844759
 
H05844346
H05844346H05844346
H05844346
 
G05843942
G05843942G05843942
G05843942
 
F05843238
F05843238F05843238
F05843238
 
E05842831
E05842831E05842831
E05842831
 
D05842227
D05842227D05842227
D05842227
 

Último

TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc
 
2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...Martijn de Jong
 
AWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of TerraformAWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of TerraformAndrey Devyatkin
 
ICT role in 21st century education and its challenges
ICT role in 21st century education and its challengesICT role in 21st century education and its challenges
ICT role in 21st century education and its challengesrafiqahmad00786416
 
A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?Igalia
 
A Beginners Guide to Building a RAG App Using Open Source Milvus
A Beginners Guide to Building a RAG App Using Open Source MilvusA Beginners Guide to Building a RAG App Using Open Source Milvus
A Beginners Guide to Building a RAG App Using Open Source MilvusZilliz
 
Apidays Singapore 2024 - Modernizing Securities Finance by Madhu Subbu
Apidays Singapore 2024 - Modernizing Securities Finance by Madhu SubbuApidays Singapore 2024 - Modernizing Securities Finance by Madhu Subbu
Apidays Singapore 2024 - Modernizing Securities Finance by Madhu Subbuapidays
 
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...DianaGray10
 
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...Jeffrey Haguewood
 
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data DiscoveryTrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data DiscoveryTrustArc
 
Ransomware_Q4_2023. The report. [EN].pdf
Ransomware_Q4_2023. The report. [EN].pdfRansomware_Q4_2023. The report. [EN].pdf
Ransomware_Q4_2023. The report. [EN].pdfOverkill Security
 
Navi Mumbai Call Girls 🥰 8617370543 Service Offer VIP Hot Model
Navi Mumbai Call Girls 🥰 8617370543 Service Offer VIP Hot ModelNavi Mumbai Call Girls 🥰 8617370543 Service Offer VIP Hot Model
Navi Mumbai Call Girls 🥰 8617370543 Service Offer VIP Hot ModelDeepika Singh
 
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemkeProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemkeProduct Anonymous
 
FWD Group - Insurer Innovation Award 2024
FWD Group - Insurer Innovation Award 2024FWD Group - Insurer Innovation Award 2024
FWD Group - Insurer Innovation Award 2024The Digital Insurer
 
AXA XL - Insurer Innovation Award Americas 2024
AXA XL - Insurer Innovation Award Americas 2024AXA XL - Insurer Innovation Award Americas 2024
AXA XL - Insurer Innovation Award Americas 2024The Digital Insurer
 
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...apidays
 
Apidays Singapore 2024 - Scalable LLM APIs for AI and Generative AI Applicati...
Apidays Singapore 2024 - Scalable LLM APIs for AI and Generative AI Applicati...Apidays Singapore 2024 - Scalable LLM APIs for AI and Generative AI Applicati...
Apidays Singapore 2024 - Scalable LLM APIs for AI and Generative AI Applicati...apidays
 
Corporate and higher education May webinar.pptx
Corporate and higher education May webinar.pptxCorporate and higher education May webinar.pptx
Corporate and higher education May webinar.pptxRustici Software
 
Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024The Digital Insurer
 

Último (20)

TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
 
2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...
 
AWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of TerraformAWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of Terraform
 
ICT role in 21st century education and its challenges
ICT role in 21st century education and its challengesICT role in 21st century education and its challenges
ICT role in 21st century education and its challenges
 
A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?
 
A Beginners Guide to Building a RAG App Using Open Source Milvus
A Beginners Guide to Building a RAG App Using Open Source MilvusA Beginners Guide to Building a RAG App Using Open Source Milvus
A Beginners Guide to Building a RAG App Using Open Source Milvus
 
Apidays Singapore 2024 - Modernizing Securities Finance by Madhu Subbu
Apidays Singapore 2024 - Modernizing Securities Finance by Madhu SubbuApidays Singapore 2024 - Modernizing Securities Finance by Madhu Subbu
Apidays Singapore 2024 - Modernizing Securities Finance by Madhu Subbu
 
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
 
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
 
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data DiscoveryTrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
 
Ransomware_Q4_2023. The report. [EN].pdf
Ransomware_Q4_2023. The report. [EN].pdfRansomware_Q4_2023. The report. [EN].pdf
Ransomware_Q4_2023. The report. [EN].pdf
 
Navi Mumbai Call Girls 🥰 8617370543 Service Offer VIP Hot Model
Navi Mumbai Call Girls 🥰 8617370543 Service Offer VIP Hot ModelNavi Mumbai Call Girls 🥰 8617370543 Service Offer VIP Hot Model
Navi Mumbai Call Girls 🥰 8617370543 Service Offer VIP Hot Model
 
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
 
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemkeProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
 
FWD Group - Insurer Innovation Award 2024
FWD Group - Insurer Innovation Award 2024FWD Group - Insurer Innovation Award 2024
FWD Group - Insurer Innovation Award 2024
 
AXA XL - Insurer Innovation Award Americas 2024
AXA XL - Insurer Innovation Award Americas 2024AXA XL - Insurer Innovation Award Americas 2024
AXA XL - Insurer Innovation Award Americas 2024
 
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
 
Apidays Singapore 2024 - Scalable LLM APIs for AI and Generative AI Applicati...
Apidays Singapore 2024 - Scalable LLM APIs for AI and Generative AI Applicati...Apidays Singapore 2024 - Scalable LLM APIs for AI and Generative AI Applicati...
Apidays Singapore 2024 - Scalable LLM APIs for AI and Generative AI Applicati...
 
Corporate and higher education May webinar.pptx
Corporate and higher education May webinar.pptxCorporate and higher education May webinar.pptx
Corporate and higher education May webinar.pptx
 
Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024
 

A05330107

  • 1. IOSR Journal of Engineering (IOSRJEN) www.iosrjen.org ISSN (e): 2250-3021, ISSN (p): 2278-8719 Vol. 05, Issue 03 (March. 2015), ||V3|| PP 01-07 International organization of Scientific Research 1 | P a g e wavelet collocation method for solving integro-differential equation. Asmaa Abdalelah Abdalrehman University of Technology Applied Science Department Abstract: - Wavelet collocation method for numerical solution nth order Volterra integro diferential equations (VIDE) by expanding the unknown functions, as series in terms of chebyshev wavelets second kind with unknown coefficients. The aim of this paper is to state and prove the uniform convergence theorem and accuracy estimation for series above. Finally, some illustrative examples are given to demonstrate the validity and applicability of the proposed method. Keywords: chebyshev wavelets second kind; integro-differential equation; operational matrix of integrations; uniform convergence; accuracy estimation. I. INTRODUCTION Basic wavelet theory is a natural topic. By name, wavelets date back only to the 1980s. on the boundary between mathematics and engineering, wavelet theory shows students that mathematics research is still thriving, with important applications in areas such as image compression and the numerical solution of differential equations [1], integral equation [2],and integro differential equations [3,8]. The author believes that the essentials of wavelet theory are sufficiently elementary to be taught successfully to advanced undergraduates [4]. Orthgonal functions and polynomials series have received considerable attention in dealing with various problems wavelets permit the accurate representation of a functions and operators. Special attention has been given to application of the Legendre wavelets [5], Harr wavelets [6] and Sine-Cosine wavelets [7]. The solution of integro-differential equations have a major role in the fields of science and ingineering when aphysical system is modeled under the differential sense, it finally gives a differential equation, an integral equation or an integro-differential equations mostly appear in the last equation [8]. In this paper the operational matrix of integration for Hermite wavelets is derived and used it for obtaining approximate solution of the following nth order VIDE. u(n) (x)=g(x)+ 𝑘 𝑥, 𝑡 𝑢(𝑠) 𝑡 𝑑𝑡 𝑥 0 (1) where 𝑛 ≥ 𝑠 k(x,t) and g(x) are known functions, and u(x) is an unknown function. II.SOME PROPERTIES OF SECOND CHEBYSHEV WAVELETS Wavelets constitute a family of functions constructed from dilation and traslation of a single function  t called the mother wavelet.When the dilation parameter a and the translation parameter b vary continuously we have the following family of continuous wavelets as [9].  𝑎,𝑏 t = a −1 2  t−b a , a, b ∈ R, a ≠ 0. The second chebyshev wavelets 2 𝑛,𝑚 t = (𝑘, 𝑛, 𝑚, 𝑡) involve four arguments, 𝑛 = 1, … , 2 𝑘−1 , k is assumed any positive integer, 𝑚 is the degree of the second chebyshev polynomials and t is the normalized time. They are defined on the interval 0,1)as 2 𝑛,𝑚 t = 2 𝑘 2 𝑈 𝑚 2 𝑘 𝑡 − 2𝑛 + 1 , 𝑛−1 2 𝑘−1 ≤ 𝑡 < 𝑛 2 𝑘−1 0 𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒 (2) where 𝑈 𝑚 𝑡 = 2 𝜋 𝑈 𝑚 𝑡 𝑚 = 0,1, … , 𝑀 − 1 (3) here 𝑈 𝑚 𝑡 are the second chebyshev polynomialsof degree m with respect to the weight function 𝑤 𝑡 = 1 − 𝑡2 on the interval [-1,1] and satisfy the following recursive formula 𝑈0 𝑡 = 1, 𝑈1 𝑡 = 2𝑡, 𝑈 𝑚+1 𝑡 = 2𝑡𝑈 𝑚 𝑡 − 𝑈 𝑚−1 𝑡 , 𝑚 = 1,2, … The set of chebyshev wavelets are an orthonirmal set with respect to the weight function 𝑤𝑛 𝑡 = 𝑤𝑛 (2 𝑘 𝑡 − 2𝑛 + 1) .
  • 2. wavelet collocation method for solving integro-differential equation. International organization of Scientific Research 2 | P a g e III.FUNCTION APPROXIMAT A function 𝑓(𝑡) defined over [0, 1) may be expanded as 𝑓 𝑡 = 𝐶𝑛𝑚 𝑛𝑚 2 (𝑡)∞ 𝑚=0 ∞ 𝑛=1 (4) 𝑤𝑕𝑒𝑟𝑒 𝐶𝑛𝑚 = (𝑓 𝑡 , 𝑛𝑚 2 𝑡 ) In which . , . denoted the inner product in 𝐿 𝑤 𝑛 2 [0,1). If the infinite series equation (2.34) is truncated, then it can be written 𝑓 𝑡 = 𝐶𝑛𝑚 𝑛𝑚 2 𝑡 = 𝐶 𝑇 2 (𝑡)𝑀−1 𝑚=0 2 𝑘−1 𝑛=1 (5) 𝐶 = 𝐶10, 𝐶11, … , 𝐶1(𝑀−1), 𝐶20,… , 𝐶2(𝑀−1), … , 𝐶2 𝑘−1 , … , 𝐶2 𝑘−1 𝑀−1 𝑇 2 (t) = 10 2 (𝑡), 11 2 (𝑡), … , 1𝑀−1 2 (𝑡), 20 2 (𝑡), … , 2 𝑘−1 𝑀−1 2 (𝑡), … 2 𝑘−10 2 (𝑡), … 2 𝑘−1 𝑀−1 2 (𝑡) 𝑇 Convergence Analysis for Chebyshev wavelets of Second kind. A function 𝑓 𝑡 defined over 0,1 may be expanded as: 𝑓 𝑡 = 𝑓𝑛𝑚 𝑛𝑚 2 𝑡∞ 𝑚=0 ∞ 𝑛=1 (6) where 𝑓𝑛𝑚 = 𝑓 𝑡 , 𝑛𝑚 2 𝑡 (7) In eq.(5). . , . denotes the inner product with weight function 𝑤𝑛 𝑡 . If the infinite series in eq.(4) is trancated then eq.(4) can be written as: 𝑓 𝑡 − 𝑓2 𝑘−1 𝑀−1 𝑡 = 𝑓𝑛𝑚 𝑛𝑚 2𝑀−1 𝑚=0 2 𝑘−1 𝑛=1 =𝐹 𝑇 𝑛𝑚 2 where F and  𝑛𝑚 2 are 2 𝑘 𝑀 × 1 matrices given by 𝐹 = 𝑓10, 𝑓11 , … , 𝑓1𝑀 , 𝑓20 , … , 𝑓2𝑀−1, … , 𝑓2 𝑘0, … , 𝑓2 𝑘−1 𝑀−1 𝑇 (8) 2 (t)= 10 2 𝑡 , 11 2 𝑡 , … , 1𝑀−1 2 𝑡 , 20 2 𝑡 , … , 2𝑀−1 2 𝑡 , 2 𝑘−1 2 𝑡 , … , 2 𝑘−1 𝑀−1 2 𝑡 𝑇 Theorem(1): (Convergence Analysis theorm) Assume that a function f(t) ∈ 𝐿 𝑤 ∗ 2 0,1 , 𝑤∗ = 1 − 𝑡2 with 𝑓" 𝑡 ≤ 𝐿, can be expanded as infinite series of second kind chebyshev wavelets, then the series converges uniformly to f(t). Proof: since 𝑓𝑛𝑚 = 𝑓 𝑡 ,  𝑛𝑚 2 (𝑡) then 𝑓𝑛𝑚 = 𝑓(𝑡) 1 0  𝑛𝑚 2 (𝑡)𝑤𝑛 𝑡 𝑑𝑡 = 2 𝑘+1 2 𝜋 𝑓(𝑡)𝑈 𝑚 2 𝑘 𝑡 − 2𝑛 + 1 𝑤 2 𝑘 𝑡 − 2𝑛 + 1 𝑑𝑡 𝑛 2 𝑘−1 𝑛−1 2 𝑘−1 (9) If we make use of the substitution 2 𝑘 𝑡 − 2𝑛 + 1 = cos 𝜃 in (5), yields 𝑓𝑛𝑚 = 2 2 𝑘 2 𝜋 𝑓 cos 𝜃 + 2𝑛 − 1 2 𝑘 sin 𝜃 sin 𝑚 + 1 𝜃 𝑑𝜃 𝜋 0 (10) By using the integration by parts, Then eq.(10) becomes 𝑓𝑛𝑚 = 1 2 2 𝑘 2 𝜋 𝑓 cos 𝜃 + 2𝑛 − 1 2 𝑘 sin 𝑚𝜃 𝑚 − sin 𝑚 + 2 𝜃 𝑚 + 2 0 𝜋 + 1 2 2 3𝑘 2 𝜋 𝑓′ 𝜋 0 cos 𝜃 + 2𝑛 − 1 2 𝑘 sin 𝜃 sin 𝑚𝜃 𝑚 − sin 𝑚 + 2 𝜃 𝑚 + 2 𝑑𝜃 𝑓𝑛𝑚 = 1 𝑚 2 2 3𝑘 2 𝜋 𝑓′ 𝜋 0 cos 𝜃 + 2𝑛 − 1 2 𝑘 sin 𝜃 sin 𝑚𝜃𝑑𝜃 − 1 𝑚 + 2 2 2 3𝑘 2 𝜋 𝑓′ 𝜋 0 cos 𝜃 + 2𝑛 − 1 2 𝑘 sin 𝜃 sin 𝑚 + 2 𝜃𝑑𝜃 (11) After performing integration by parts again yields,
  • 3. wavelet collocation method for solving integro-differential equation. International organization of Scientific Research 3 | P a g e 𝑓𝑛𝑚 = 1 𝑚2 3 2 2 5𝑘 2 𝜋 𝑓" cos 𝜃 + 2𝑛 − 1 2 𝑘 cos 𝑚 − 2 𝜃 − cos 𝑚𝜃 𝑚 − 1 − cos 𝑚𝜃 − cos 𝑚 + 2 𝜃 𝑚 + 1 𝑑𝜃 𝜋 0 − 1 𝑚 + 2 2 3 2 2 5𝑘 2 𝜋 𝑓" cos 𝜃 + 2𝑛 − 1 2 𝑘 cos 𝑚 𝜃 − cos 𝑚 + 2 𝜃 𝑚 + 1 𝜋 0 − cos 𝑚 + 2 𝜃 − cos 𝑚 + 4 𝜃 𝑚 + 3 𝑑𝜃 (12) Consider: 𝑓" cos 𝜃 + 2𝑛 − 1 2 𝑘 cos 𝑚 − 2 𝜃 − cos 𝑚𝜃 𝑚 − 1 − cos 𝑚𝜃 − cos 𝑚 + 2 𝜃 𝑚 + 1 𝑑𝜃 𝜋 0 2 = 𝑓" cos 𝜃 + 2𝑛 − 1 2 𝑘 cos 𝑚 − 2 𝜃 − cos 𝑚𝜃 𝑚 − 1 − cos 𝑚𝜃 − cos 𝑚 + 2 𝜃 𝑚 + 1 𝑑𝜃 𝜋 0 2 ≤ 𝑓" cos 𝜃 + 2𝑛 − 1 2 𝑘 2 𝑑𝜃 𝜋 0 × 𝑚 − 1 cos 𝑚 + 2 𝜃 − 2𝑚 cos 𝑚 𝜃 + 𝑚 + 1 cos 𝑚 − 2 𝜃 𝑚 − 1 𝑚 + 1 2 𝑑𝜃 𝜋 0 < 𝜋𝐿2 𝑚 − 1 2 cos2 𝑚 + 2 𝜃 + 4𝑚2 cos2 𝑚𝜃 + 𝑚 + 1 2 cos2 𝑚 − 1 𝑚 − 1 2 𝑚 + 1 2 𝑑𝜃 𝜋 0 = 𝜋𝐿2 𝑚 − 1 2 𝑚 + 1 2 𝜋 2 𝑚 − 1 2 + 𝜋 2 4𝑚2 + 𝜋 2 𝑚 + 1 2 = 𝜋2 𝐿2 𝑚 − 1 2 𝑚 + 1 2 3𝑚2 + 1 Thus, we get 𝑓" cos 𝜃 + 2𝑛 − 1 2 𝑘 cos 𝑚 − 2 𝜃 − cos 𝑚𝜃 𝑚 − 1 − cos 𝑚𝜃 − cos 𝑚 + 2 𝜃 𝑚 + 1 𝑑𝜃 𝜋 0 < 𝜋𝐿 3𝑚2 + 1 1 2 𝑚 − 1 𝑚 + 1 (13) Similarly, 𝑓" 𝜋 0 cos 𝜃 + 2𝑛 − 1 2 𝑘 cos 𝑚 𝜃 − cos 𝑚 + 2 𝜃 𝑚 + 1 − cos 𝑚 + 2 𝜃 − cos 𝑚 + 4 𝜃 𝑚 + 3 𝑑𝜃 2 = 𝑓" 𝜋 0 cos 𝜃 + 2𝑛 − 1 2 𝑘 × 𝑚 + 1 cos 𝑚 + 4 𝜃 − (𝑚 + 1) cos 𝑚 + 2 𝜃 + 𝑚 + 3 cos 𝑚 + 2 𝜃 + 𝑚 + 3 cos 𝑚 𝜃 (𝑚 + 1) 𝑚 + 3 2 ≤ 𝑓" cos 𝜃 + 2𝑛 − 1 2 𝑘 2 𝑑𝜃 𝜋 0 × 𝑚 cos 𝑚 + 3 𝜃 − 2𝑚 − 2 cos 𝑚 + 1 𝜃 + 𝑚 + 2𝜃 cos 𝑚 − 1 𝜃 𝑚 𝑚 + 2 2𝜋 0 < 𝜋𝐿2 𝑚 + 1 2 cos2 𝑚 + 4 𝜃 + 2𝑚 + 4 2 cos2 𝑚 + 2 𝜃 + 𝑚 + 3 2 cos2 𝑚 𝜃 𝑚 + 1 2 𝑚 + 3 2 𝜋 0 = 𝜋2 𝐿2 2 𝑚 + 1 2 𝑚 + 3 2 6𝑚2 + 24𝑚 + 26 = 𝜋2 𝐿2 𝑚 + 1 2 𝑚 + 3 2 3𝑚2 + 12𝑚 + 13 Thus we get 𝑓" 𝜋 0 cos 𝜃 + 2𝑛 − 1 2 𝑘 cos 𝑚 𝜃 − cos 𝑚 + 2 𝜃 𝑚 + 1 − cos 𝑚 + 2 𝜃 − cos 𝑚 + 4 𝜃 𝑚 + 3 𝑑𝜃 < 𝜋𝐿 𝑚 + 1 𝑚 + 3 3𝑚2 + 12𝑚 + 13 1 2 (14) Using eqs.(13)and(14), one can get
  • 4. wavelet collocation method for solving integro-differential equation. International organization of Scientific Research 4 | P a g e 𝑓𝑛𝑚 < 2− 5𝑘−3 2 𝜋 1 2 𝜋𝐿 3𝑚2 + 1 1 2 𝑚 𝑚 − 1 𝑚 + 1 − 𝜋𝐿 3𝑚2 + 12𝑚 + 13 1 2 𝑚 + 2 𝑚 + 1 𝑚 + 3 𝑓𝑛𝑚 < 2 − 5𝑘 2 𝜋 1 2 2 3 2 𝑚+1 2 𝑚+1 𝑚−1 2 = 2 − 5𝑘 2 𝜋 1 2 𝐿 2 1 2 𝑚−1 2 Finally since 𝑛 ≤ 2 𝑘 − 1,then 𝑓𝑛𝑚 < 𝜋 1 2 𝐿 𝑛+1 − 5 2 2 𝑚−1 2 Accuracy Estimation of  𝒏𝒎 𝟐 (𝒙): If the function f(x) is expanded interms of fourth kind chebyshev wavelets, 𝑓 𝑥 = 𝑓𝑛𝑚 𝑛𝑚 2 (𝑥)∞ 𝑚=0 ∞ 𝑛=1 (15) It is not possible to perform computation an infinite number of terms, therfore we must truncate the series in (15). In place of (5), we take 𝑓𝑀 𝑥 = 𝑓𝑛𝑚 𝑛𝑚 2 (𝑥)𝑀−1 𝑚=0 2 𝑘−1 𝑛=1 (16) so that 𝑓 𝑥 = 𝑓𝑀 𝑥 + 𝑓𝑛𝑚 𝑛𝑚 2 (𝑥)∞ 𝑚=𝑀 ∞ 𝑛=2 𝑘−1+1 or 𝑓 𝑥 − 𝑓𝑀 𝑥 = 𝑟(𝑥) (17) where r(x) is the residual function 𝑟 𝑥 = 𝑓𝑛𝑚 𝑛𝑚 2 (𝑥)∞ 𝑚=𝑀 ∞ 𝑛=2 𝑘−1+1 (18) we must select coefficients in eqs.(17) and (18) such that the norm of the residual function 𝑟(𝑥) is less than some convergence criterion ∈,that is 𝑓 𝑥 − 𝑓𝑀 2 𝑤𝑛 𝑥 𝑑𝑥 1 0 1 2 <∈ for all M greater than some value 𝑀0. Theorem (2) Let f(x) be a continuaus function defined on [0,1), and 𝑓′′ (𝑥) < 𝐿, then we have the following accuracy estimation 𝑐 𝑘,𝑀 < 𝜋𝐿 2 2 1 𝑛+1 5 1 𝑚−1 4 ∞ 𝑚=𝑀 ∞ 𝑛−2 𝑘−1+1 (19) where 𝑐 𝑘,𝑀 = 𝑟 𝑥 21 0 𝑤𝑛 𝑥 𝑑𝑥 1 2 Proof:- Since 𝑪 𝒌𝒎 = 𝒓 𝒙 𝟐 𝒘 𝒏 𝒙 𝒅𝒙 𝟏 𝟎 𝟏 𝟐 𝐶𝑘𝑚 2 = 𝑟 𝑥 2 𝑤𝑛 𝑥 𝒅𝒙 1 0 = 𝑓𝑛𝑚 2 2 𝑤𝑛 𝑥 𝑑𝑥∞ 𝑚=𝑀 ∞ 𝑛=2 𝑘−1+1 1 0 = 𝑓𝑛𝑚 2 𝑛𝑚 2 (𝑥) 2 𝑤𝑛 𝑥 1 0 𝑑𝑥∞ 𝑚=𝑀 ∞ 𝑛=2 𝑘−1+1 or 𝐶𝑘𝑚 2 = 𝑓𝑛𝑚 2 2 2 𝑤𝑛 𝑥 𝑑𝑥 1 0 ∞ 𝑚=𝑀 ∞ 𝑛=2 𝑘−1+1 𝐶𝑘𝑚 2 = 𝑓2 2 𝑘 2 2 𝑈 𝑚 2 𝑘 𝑥 − 2𝑛 + 1 2 1 − 2 𝑘 𝑥 − 2𝑛 + 1 2 𝑑𝑥 𝑛 2 𝑘−1 𝑛−1 2 𝑘−1 ∞ 𝑚=𝑀 ∞ 𝑛=2 𝑘−1+1 Let 𝑡 = 2 𝑘 𝑥 − 2𝑛 + 1, 𝐶𝑘𝑚 2 = 𝑓2 𝑈 𝑚 2 𝑡 1 − 𝑡2 𝑑𝑥 1 −1 ∞ 𝑚=𝑀 ∞ 𝑛=2 𝑘−1+1 we have, 𝑈 𝑚 2 𝑡 1 − 𝑡2 𝑑𝑥 1 −1 = 𝜋 2 then 𝐶𝑘𝑚 2 = 𝑓2∞ 𝑚=𝑀 ∞ 𝑛=2 𝑘−1+1 𝜋 2 𝐶𝑘𝑚 2 < 𝜋2 𝐿2 𝑚+1 −5 8 𝑚−1 4 ∞ 𝑚=𝑀 ∞ 𝑛=2 𝑘−1+1 .
  • 5. wavelet collocation method for solving integro-differential equation. International organization of Scientific Research 5 | P a g e wavelet collocation method for VIDE with mth order: In this section the introduced wavelets collocation will be applied to solve VIDE with mth order, 𝑢𝑖 (𝑛) 𝑥 = 𝑔𝑖 𝑥 + 𝐾𝑖,𝑗 𝑥, 𝑡 𝑢𝑖 (𝑠) 𝑡 𝑑𝑡 𝑥 0 , 𝑛 ≥ 𝑠 (20) With the following conditions 𝑢𝑖 𝑠 0 = 𝑎𝑖𝑠 𝑖 = 1,2, … , 𝑙 𝑠 = 0,1,2,… , 𝑛 − 1 Afunction 𝑢𝑖 𝑛 𝑥 which is defined on the interval 𝑥 ∈ 0,1 can be expanded into the second chebyshev wavelet series 𝑢𝑖 𝑛 𝑥 = 𝑐𝑖𝑖 (𝑡)𝑀 𝑖=1 (21) Where ci are the wavelet coefficients. Integrate eq.(21) m times,yields 𝑢 𝑥 = 𝑐𝑖 … 𝑥 0 𝑖 𝑡 𝑑𝑡 𝑥 0 + 𝑥 𝑗 𝑗 ! 𝑎 𝑚−𝑗 𝑚−1 𝑗=0 𝑀 𝑖=0 (22) Using the following formula … 𝑥 0 𝑖 𝑡 𝑑𝑡 𝑥 0 = 1 (𝑛 − 1)! 𝑥 − 𝑡 𝑛−1 𝑖 (𝑡)𝑑𝑡 𝑥 0 therefore eq.(22) becomes 𝑢 𝑥 = 𝑐𝑖 1 (𝑛−1)! 𝑥 − 𝑡 𝑛−1 𝑖 (𝑡)𝑑𝑡 𝑥 0 + 𝑥 𝑗 𝑗 ! 𝑎 𝑛−𝑗 𝑛−1 𝑗=0 𝑀 𝑖=0 (23) Let 𝐾𝑛 𝑥, 𝑡 = 𝑥−𝑡 𝑛−1 𝑛−1 ! and 𝐿𝑖 𝑛 = 𝐾𝑛 𝑥, 𝑡 𝑕𝑖 𝑡 𝑑𝑡 𝑥 0 i=0,1,…,M This leads to 𝑢 𝑥 = 𝑐𝑖 𝐿𝑖 𝑛 + 𝑥 𝑗 𝑗 ! 𝑎 𝑛−𝑗 𝑛−1 𝑗=0 𝑀 𝑖=0 In similar way, we can get 𝑢(𝑠) 𝑥 = 𝑐𝑖 𝐿𝑖 𝑛−𝑠 + 𝑥 𝑗 𝑗 ! 𝑎 𝑛−𝑠−𝑗 𝑛−𝑠−1 𝑗=0 𝑀 𝑖=0 (24) Substituting eqs (22) and (24) in (20), yield 𝑐𝑖𝑖 (𝑡)𝑀 𝑖=1 = 𝑔𝑖 𝑥 + 𝐾𝑖,𝑗 𝑥, 𝑡 𝑐𝑖 𝐿𝑖 𝑛−𝑠 + 𝑥 𝑗 𝑗 ! 𝑎 𝑛−𝑠−𝑗 𝑛−𝑠−1 𝑗=0 𝑀 𝑖=0 𝑑𝑡 𝑥 0 (25) or 𝑐𝑖𝑖 (𝑡)𝑀 𝑖=1 − 𝐴𝑖 𝑥 = 𝑔𝑖 𝑥 + 𝑎 𝑛−𝑠−𝑗 𝑗 ! 𝐵𝑗 (𝑥)𝑛−𝑠−1 𝑗=0 (26) where 𝐴𝑖 𝑥 = 𝐾𝑛 𝑥, 𝑡 𝐿𝑖 𝑛−𝑠 𝑡 𝑑𝑡 𝑥 0 i=0,1,2,…,M 𝐵𝑗 𝑥 = 𝐾𝑛 𝑥, 𝑡 𝑡 𝑗 𝑑𝑡 𝑥 0 j=0,1,2,…,n-s-1 (27) Next the interval 𝑥 ∈ 0,1 is devided in to 𝑙 ∆𝑥 = 1 𝑙 and introduce the collocation points 𝑥 𝑘 = 𝑘−1 𝑙 , k=1,2,…,l eq(21) is satisfied only at the collocation points we get asystem of linear equations ci[i(x)M i=1 − Ai x ] = gi x + an−s−j j! Bj(x)n−s−1 j=0 (28) The matrix form of this system is C F=G+ an −s−j j! Bj(x)n−s−1 j=0 where F= (x), G=g(x) 1.Design of the matrix A:- When chebyshev wavelets second kind are integrated m times, the following integral must be evaluated. 𝐿𝑖 𝑛 = 𝐾𝑛 𝑥, 𝑡 𝑖 𝑡 𝑑𝑡 𝑥 0 , i=0, 1, 2, …, M 𝐿𝑖 𝑛 𝑥 = 𝑥−𝑡 𝑛 2 𝑘 𝑛−1 ! 1 1 2 0 … 0 ⋮ 2 0 … 0 −3 4 0 1 4 … 0 ⋮ 0 0 0 0 1 3 − 1 6 0 … 0 ⋮ 0 0 0 0 ⋮ ⋮ ⋮ ⋱ 1 2(𝑀−1) ⋮ ⋮ ⋮ ⋱ ⋮ −1 𝑀−2 𝑀 0 0 … 0 ⋮ 0 0 … 0 𝑙−1 2 𝑘 ≤ 𝑥 < 𝑙 2 𝑘 Therefore the matrix Ai x can be constructed as follows Since 𝐴𝑖 𝑥 = 𝐾𝑛 𝑥, 𝑡 𝐿𝑖 𝑛−𝑠 𝑡 𝑑𝑡 𝑥 0 i=0,1,2,…,M
  • 6. wavelet collocation method for solving integro-differential equation. International organization of Scientific Research 6 | P a g e 𝐴𝑖 𝑥 = 𝐾𝑛 𝑥0, 𝑡 𝐿𝑖 𝑛−𝑠 𝑡 𝑑𝑡 𝑖 = 0 𝑥0 0 𝐾𝑛 𝑥𝑖, 𝑡 𝐿𝑖 𝑛−𝑠 𝑡 𝑑𝑡 𝑖 > 0 𝑥 𝑛 0 IV. WAVELETS METHOD FOR VIDE WITH NTH ORDER For solving VIDE with mth order the matrix 𝐿𝑖 𝑛 𝑥 in section above will be followed to get ci[i(xL M i=1 − AL)] = g xL + an−s−j j! Bj(xL)n−s−1 j=0 𝐿 ∈ 𝑎, 𝑏 But 𝐴𝑖 𝑥 𝐿 = 𝐾𝑛 xL, 𝑡 𝐿𝑖 𝑛−𝑠 𝑡 𝑑𝑡 𝑥 𝐿 0 where i=0,…,M Bj(xL)= 𝐾𝑛 xL, 𝑡 𝑡 𝑛−𝑠 𝑑𝑡 𝑥 𝐿 0 where 𝐿𝑖 𝑛−𝑠 𝑡 as in eq(17),(18) that is 𝐴𝑖 𝑥 𝐿 = 𝐴 𝐿 , 𝐹𝑖 𝑥 𝐿 = 𝑖 𝑥 𝐿 − 𝐴𝑖 𝑥 𝐿 = 𝐹𝐿 Numerical Results: In this section VIDE is considered and solved by the introduced method. parameters k and M are considered to be 1 and 3 respectively. Example 1: Consider the following VIDE: U′′ 𝑥 = 𝑒2𝑥 − 𝑒2(𝑥−𝑡) 𝑈′ 𝑡 𝑑𝑡 𝑥 0 Initial conditions 𝑈(0) = 0, 𝑈’(0) = 0. The exact solution 𝑈 𝑥 = 𝑥𝑒 𝑥 − 𝑒 𝑥 + 1. Table 1 shows the numerical results for this example with k=2, M=3 with error =10-3 and k=2, M=4, with error =10-4 are compared with exact solution graphically in fig. Table 1:some numerical results for example 1 x Exact solution Approximat solution k=2,M=3 Approximat solution k=2,M=4 0 0.00000000 0.00000001 0.00000001 0.2 0.02287779 0.02280000 0.02287000 0.4 0.10940518 0.10945544 0.10940544 0.6 0.27115248 0.25826756 0.27826756 0.8 0.55489181 0.54330957 0.55330957 1 1.00000000 0.99999995 0.99999998 Fig 1:Approximate solution for example 1 Example 2: Consider the following VIDE : U(5) 𝑥 = −2 sin 𝑥 + 2 cos 𝑥 − 𝑥 + (𝑥 − 𝑡)𝑈(3) 𝑡 𝑑𝑡 𝑥 0 Initial conditions 𝑈(0) = 1, 𝑈’(0) = 0, 𝑈"(0) = −1, 𝑈3 (0) = 0. The exact solution 𝑈 𝑥 = cos 𝑥. Table 2 shows the numerical results for this example with k=2, M=3 with error=10-3 and k=2, M=4, with error =10-4 are compared with exact solution graphically in fig, 2. 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
  • 7. wavelet collocation method for solving integro-differential equation. International organization of Scientific Research 7 | P a g e Table 2:some numerical results for example 2 x Exact solution Approximat solution k=2,M=3 Approximat solution k=2,M=4 0 1.00000000 0.99812235 0.99999875 0.2 0.98006658 0.98024711 0.98005541 0.4 0.92106099 0.92158990 0.92104326 0.6 0.82533561 0.82479820 0.82535367 0.8 0.69670671 0.69689632 0.69678976 1 0.54030231 0.54032879 0.54035879 Fig 2:Approximate solution for example V. CONCLUSION This work proposes a powerful technique for solving VIDE second kind using wavelet in collocation method comparison of the approximate solutions and the exact solutions shows that the proposed method is more faster algorithms than ordinary ones. The convergence and accuracy estimation of this method was examined for several numerical examples. REFERENCES [1] Asmaa A. A , 2014, Numerical, Solution of Optimal Control Problems Using New Third kind Chebyshev Wavelets Operational Matrix of Integration, Eng&Tech journal,Vol 32,part(B),1:145-156. [2] Tao. X. and Yuan. L. 2012. Numerical Solution of Fredholm Integral Equation of Second kind by General Legendre Wavelets, Int. J. Inn. Comp and Cont. 8(1): 799-805. [3] A.Barzkar, M.K.Oshagh, 2012, Numerical solution of the nonlinear Fredholm integro-differential equation of second kind using chebysheve wavelets, World Applied Scinces Journal (WASJ),Vol.18, N(12):1774-1782. [4] E.Johansson, 2005, Wavelet Theory and some of its Applications. [5] Jafari. H and Hosseinzadeh. H. 2010. Numerical Solution of System of Linear Integral Equations by using Legendre Wavelets, Int. J. Open Problems Compt. Math., 3(5): 1998-6262 . [6] Shihab. S. N. and Mohammed. A. 2012. An Efficient Algorithm for nth Order Integro- Differential Equations Using New Haar Wavelets Matrix Designation, International Journal of Emerging & Technologies in Computational and Applied Sciences (IJETCAS). 12(209): 32-35. [7] M.Razzaghi & S.Yousefi. 2002. Sin-Cosine wavelets operational matrix of integration and it’s applications in the calculus of variations. Vol 33. No 10: 805-810. [8] A.Arikoglu & I.Ozkol. 2008. Solution of integral integro-differential equation systems by using differential transform method. Vol 56,Issue 9.2411-2417. [9] Arsalani. M. & Vali. M. A.,2011 Numerical Solution of Nonlinear Problems With Moving Boundary Conditions by Using Chebyshev Wavelets, Applied Mathematical Sciences,Vol.5(20): 947-964. 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1