SlideShare una empresa de Scribd logo
1 de 48
Descargar para leer sin conexión
5 - ANALISIS KESTABILAN SISTEM PENGENDALIAN UMPAN BALIK – DR. ENG. Y. D. HERMAWAN INDALPRO / 1
Analisis Kestabilan Sistem
Pengendalian Umpan Balik
05
05
Tujuan
Tujuan: Mhs mampu menganalisis kestabilan sistem
pengendalian umpan balik
Materi
Materi:
1. Konsep Kestabilan Sistem Loop Tertutup (Stability Concept
of The Closed Loop System)
2. Persamaan Karakteristik (Characteristic Equation)
3. Kestabilan Berdasarkan Ultimate Response
4. Kriteria Kestabilan Routh-Hurwitz
5. Analisis Kestabilan dengan Root Locus
5 - ANALISIS KESTABILAN SISTEM PENGENDALIAN UMPAN BALIK – DR. ENG. Y. D. HERMAWAN INDALPRO / 2
5.1 Konsep Kestabilan Sistem
Loop Tertutup
• Designing a FBC (i.e. selecting its
components and tuning its controller)
seriously affects its stability characteristics.
• The notion of stability and the stability
characteristics of closed loop systems is
therefore considered to be useful.
Notion of Stability Ξ Pemahaman Kestabilan
Stability Characteristic Ξ Karakteristik Kestabilan
5 - ANALISIS KESTABILAN SISTEM PENGENDALIAN UMPAN BALIK – DR. ENG. Y. D. HERMAWAN INDALPRO / 3
The Notion of Stability
(Pemahaman Kestabilan)
• How to define about stable and unstable?
Æ A dynamic system is considered to be
stable IF every bounded input produces
bounded output
• Bounded : input that always remains
between an upper and a lower limit
Æ sinusoidal, step, but not the rump
5.1 Konsep Kestabilan Sistem Loop Tertutup
5 - ANALISIS KESTABILAN SISTEM PENGENDALIAN UMPAN BALIK – DR. ENG. Y. D. HERMAWAN INDALPRO / 4
Gambar 5.1.1. Bounded Input
Input
m(t)
time
Upper Limit
Lower Limit
sinusoidal
step
5.1 Konsep Kestabilan Sistem Loop Tertutup
5 - ANALISIS KESTABILAN SISTEM PENGENDALIAN UMPAN BALIK – DR. ENG. Y. D. HERMAWAN INDALPRO / 5
Gambar 5.1.2. Tanggapan (response) stabil dan tidak stabil
y
time
Desired value
Stable
Unstable
Unstable
5.1 Konsep Kestabilan Sistem Loop Tertutup
5 - ANALISIS KESTABILAN SISTEM PENGENDALIAN UMPAN BALIK – DR. ENG. Y. D. HERMAWAN INDALPRO / 6
Transfer
Function
• m = input, and y = output
• If G(s) has a pole with positive real part, it gives
rise to a term C1ept which grows continuously
with time Æ unstable
)
(
)
(
)
( s
m
s
G
s
y =
If TF of dynamic system has even one pole with
positive real part, the system is UNSTABLE
∴ all poles of TF must be in the left-hand part
of a complex plane, for the system to be
STABLE
5.1 Konsep Kestabilan Sistem Loop Tertutup
5 - ANALISIS KESTABILAN SISTEM PENGENDALIAN UMPAN BALIK – DR. ENG. Y. D. HERMAWAN INDALPRO / 7
Gambar 5.1.3. Complex Plane
Imaginary
Real
Stable Unstable
5.1 Konsep Kestabilan Sistem Loop Tertutup
5 - ANALISIS KESTABILAN SISTEM PENGENDALIAN UMPAN BALIK – DR. ENG. Y. D. HERMAWAN INDALPRO / 8
Example 5.1.1: Stabilization of an unstable process
with P Control
Let’s consider a process with the following response:
)
(
1
5
)
(
1
10
)
( s
d
s
s
m
s
s
y
−
+
−
=
Pole has positive root s – 1 = 0 Æ s = +1
y(t) = C1 et
Open loop unstable response
5.1 Konsep Kestabilan Sistem Loop Tertutup
5 - ANALISIS KESTABILAN SISTEM PENGENDALIAN UMPAN BALIK – DR. ENG. Y. D. HERMAWAN INDALPRO / 9
Gambar 5.1.4. Tanggapan sistem tak-terkendali terhadap
perubahan satu unit gangguan dengan fungsi tahap
0 0.5 1 1.5 2
0
10
20
30
40
Time
y
unstable
Example 5.1.1 (Continued)
5.1 Konsep Kestabilan Sistem Loop Tertutup
5 - ANALISIS KESTABILAN SISTEM PENGENDALIAN UMPAN BALIK – DR. ENG. Y. D. HERMAWAN INDALPRO / 10
The closed loop response:
( ) ( )
)
(
10
1
5
)
(
10
1
10
)
( s
d
K
s
s
y
K
s
K
s
y
c
sp
c
c
−
−
+
−
−
=
( )
c
c
sp
K
s
K
s
G
10
1
10
)
(
−
−
=
( )
c
load
K
s
s
G
10
1
5
)
(
−
−
=
Example 5.1.1 (Continued)
and
The transfer function:
The closed loop will have negative pole if
10
1
>
c
K STABLE
5.1 Konsep Kestabilan Sistem Loop Tertutup
5 - ANALISIS KESTABILAN SISTEM PENGENDALIAN UMPAN BALIK – DR. ENG. Y. D. HERMAWAN INDALPRO / 11
Gambar 5.1.5. Penerapan FBC
Note: P only controller with Kc = 1
Example 5.1.1 (Continued)
5.1 Konsep Kestabilan Sistem Loop Tertutup
5 - ANALISIS KESTABILAN SISTEM PENGENDALIAN UMPAN BALIK – DR. ENG. Y. D. HERMAWAN INDALPRO / 12
Gambar 5.1.6. Tanggapan dinamik sistem terkendali terhadap
perubahan satu unit gangguan dengan fungsi tahap
0 0.5 1 1.5 2
0
0.2
0.4
0.6
0.8
1
Time
y
Note: Regulatory problem; with Kc = 1
Stable
offset
5.1 Konsep Kestabilan Sistem Loop Tertutup
5 - ANALISIS KESTABILAN SISTEM PENGENDALIAN UMPAN BALIK – DR. ENG. Y. D. HERMAWAN INDALPRO / 13
Example 5.1.2: Destabilization of a stable process
with PI Control
• process with 2nd order TF:
2
2
1
)
( 2
+
+
=
s
s
s
Gp
• System has two complex poles:
• Therefore, System is stable
p1 = -1 + j
p2 = -1 − j
0 2 4 6 8 10
0
0.1
0.2
0.3
0.4
0.5
0.6
Time (second)
y
Gambar 5.1.7. Tanggapan stabil
loop terbuka terhadap perubahan
satu unit gangguan dengan fungsi
tahap
5.1 Konsep Kestabilan Sistem Loop Tertutup
5 - ANALISIS KESTABILAN SISTEM PENGENDALIAN UMPAN BALIK – DR. ENG. Y. D. HERMAWAN INDALPRO / 14
Example 5.1.2 (Continued)
• Implementation of PI Control ⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
+
=
s
K
s
G
I
C
C
τ
1
1
)
(
• Assume that Gm = Gf = 1
• The closed loop
response for servo
problem
)
(
)
(
)
(
1
)
( s
y
s
G
s
y
G
G
G
G
s
y sp
sp
sp
c
p
c
p
=
+
=
( )
( )
I
c
c
I
I
c
I
I
c
I
I
c
sp
K
s
K
s
s
s
K
s
s
K
s
s
s
s
K
s
s
s
G
τ
τ
τ
τ
τ
τ
τ
+
+
+
+
+
=
+
+
+
+
+
+
+
=
2
2
1
1
2
2
1
1
1
2
2
1
)
(
2
3
2
2
5.1 Konsep Kestabilan Sistem Loop Tertutup
5 - ANALISIS KESTABILAN SISTEM PENGENDALIAN UMPAN BALIK – DR. ENG. Y. D. HERMAWAN INDALPRO / 15
Example 5.1.2 (Continued)
• Let Kc = 100 and τI = 0.1
• Poles of Gsp: s3 + 2s2 + (2+100)s + 100/0.1
• P1 = -7.18 ; p2 = 2.59 + 11.5j ; P3 = 2.59 – 11.5j
0 0.2 0.4 0.6 0.8 1
-10
-5
0
5
10
Time (second)
y
Gambar 5.1.8. Tanggapan tidak stabil dari loop tertutup
5.1 Konsep Kestabilan Sistem Loop Tertutup
5 - ANALISIS KESTABILAN SISTEM PENGENDALIAN UMPAN BALIK – DR. ENG. Y. D. HERMAWAN INDALPRO / 16
Example 5.1.2 (Continued)
0 5 10 15 20 25 30 35 40
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
Time (second)
y
Gambar 5.1.9. Tanggapan stabil loop tertutup
Kc = 10 and τI = 0.5
5.1 Konsep Kestabilan Sistem Loop Tertutup
5 - ANALISIS KESTABILAN SISTEM PENGENDALIAN UMPAN BALIK – DR. ENG. Y. D. HERMAWAN INDALPRO / 17
5.2 The Characteristic Equation
)
(
1
)
(
1
)
( s
d
G
G
G
G
G
s
y
G
G
G
G
G
G
G
s
y
m
c
f
p
d
sp
m
c
f
p
c
f
p
+
+
+
=
)
(
)
(
)
(
)
(
)
( s
d
s
G
s
y
s
G
s
y load
sp
sp +
=
The closed loop response of FBC :
The characteristic equation :
1 + GpGfGcGm = 0
denominator
5 - ANALISIS KESTABILAN SISTEM PENGENDALIAN UMPAN BALIK – DR. ENG. Y. D. HERMAWAN INDALPRO / 18
Let p1, p2, …, pn be the n roots of the
Characteristic Equation
1 + GpGfGcGm = (s – p1) (s – p2) … (s – pn)
Stability criterion of a closed loop system
A FBC system is stable if all the roots of its
characteristic equation have negative real
part (i.e. are to the left of the imaginary axis)
5.2 Persamaan Karakteristik
5 - ANALISIS KESTABILAN SISTEM PENGENDALIAN UMPAN BALIK – DR. ENG. Y. D. HERMAWAN INDALPRO / 19
Example 5.2.1: Stability analysis of FBC based
on characteristic equation
c
c
m
f
p K
G
G
G
s
G =
=
=
−
= 1
1
1
10
( )( )( ) 0
1
1
1
10
1
1 =
⎟
⎠
⎞
⎜
⎝
⎛
−
+
=
+ c
m
c
f
p K
s
G
G
G
G
Again, consider Ex. 5.1.1
characteristic equation:
Which has the root: p = 1 – 10Kc
∴ The system is stable IF p < 0
10
1
>
c
K
5.2 Persamaan Karakteristik
5 - ANALISIS KESTABILAN SISTEM PENGENDALIAN UMPAN BALIK – DR. ENG. Y. D. HERMAWAN INDALPRO / 20
Example 5.2.1 (Continued)
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
+
=
=
=
+
+
=
s
K
G
G
G
s
s
G
I
c
c
m
f
p
τ
1
1
;
1
;
1
;
2
2
1
2
( )( ) 0
1
1
2
2
1
1
1 2
=
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛ +
⎟
⎠
⎞
⎜
⎝
⎛
+
+
+
=
+
s
K
s
K
s
s
G
G
G
G
I
c
I
c
m
c
f
p
τ
τ
Again, consider Ex. 5.1.2
characteristic equation:
Which has three roots,
Æ Kc and τI affect the value of roots
(i.e. positive or negative)
( ) 0
2
2 2
3
=
+
+
+
+
I
c
c
K
s
K
s
s
τ
5.2 Persamaan Karakteristik
5 - ANALISIS KESTABILAN SISTEM PENGENDALIAN UMPAN BALIK – DR. ENG. Y. D. HERMAWAN INDALPRO / 21
5.3 Kestabilan Berdasarkan Ultimate
Response
Pada bagian ini kita akan membahas batasan kestabilan berdasarkan respon
kritis (ultimate response).
Ingat kembali! Respon stabil jika akar-akar denominator pada FT adalah
negatif (di sebelah kiri sumbu imaginer pada bidang kompleks).
Metode Substitusi Langsung
Metode ini sangat mudah untuk mencari parameter-parameter
pengendalian yang mana dapat menghasilkan respon stabil.
Jika pers. karakteristik mempunyai satu atau dua akar yang terletak tepat
pada sumbu imaginer, maka menghasilkan respon kritis (osilasi terjaga).
Ultimate Gain, Kcu: gain pengendali yang mana dapat menghasilkan
respon kritis.
5 - ANALISIS KESTABILAN SISTEM PENGENDALIAN UMPAN BALIK – DR. ENG. Y. D. HERMAWAN INDALPRO / 22
5.3 Kestabilan Berdasarkan Ultimate Response
Gambar 5.3.1 respon loop tertutup dengan Kc = Kcu
( ) ( )
θ
ω +
= t
t
C u
sin
u
u
T
ω
π
2
=
-1.1
-1
-0.9
-0.8
-0.7
-0.6
-0.5
-0.4
-0.3
-0.2
-0.1
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
1.1
0 5 10 15 20 25 30
c(t)
Tu
t
Ultimate period
ωu = ultimate frequency
5 - ANALISIS KESTABILAN SISTEM PENGENDALIAN UMPAN BALIK – DR. ENG. Y. D. HERMAWAN INDALPRO / 23
( ) ( ) ( ) ( ) 0
1 =
+ s
G
s
G
s
G
s
G m
c
f
p
Persamaan Karakteristik loop tertutup: denominator dari FT loop tertutup
... (5.3.1)
Substitusi langsung: s = i ωu
Bagian real = 0
Bagian imaginer = 0
Penyelesaian secara simultan
menghasilkan ultimate gain, Kcu
Contoh 5.3.1: mencari Kcu dan ωu untuk pengendali suhu pada HE
Steam
Process fluid
Ti(t), oC
Condensate
TC
W(t), kg/s
To(t), oC
TT
To
set (t), oC
Ws(t), kg/s
M(t), %CO
C(t), %TO
5.3 Kestabilan Berdasarkan Ultimate Response
5 - ANALISIS KESTABILAN SISTEM PENGENDALIAN UMPAN BALIK – DR. ENG. Y. D. HERMAWAN INDALPRO / 24
( )
TO
CO
K
s
G c
c
%
%
=
( )
CO
s
kg
s
s
Gv
%
/
1
3
016
.
0
+
=
( )
s
kg
C
s
s
G
o
S
/
1
30
50
+
=
( )
C
TO
s
s
G o
m
%
1
10
1
+
=
+
W(s)
+
C(s), %TO
M(s)
E(s)
R(s) +
−
Gc(s)
Gm(s)
Gv(s)
Ksp
%TO %CO
GS(s)
Gw(s)
Ws (s)
kg/s
To(t), oC
To
set (t), oC
%TO
kg/s
Gambar 5.3.2. Diagram blok pengendali suhu pada HE
P Control
dimana:
5.3 Kestabilan Berdasarkan Ultimate Response
5 - ANALISIS KESTABILAN SISTEM PENGENDALIAN UMPAN BALIK – DR. ENG. Y. D. HERMAWAN INDALPRO / 25
( ) ( ) ( ) ( ) 0
1 =
+ s
G
s
G
s
G
s
G c
v
S
m
Persamaan Karakteristik loop tertutup:
0
80
.
0
1
43
420
900 2
3
=
+
+
+
+ c
K
s
s
s
0
1
3
016
.
0
1
30
50
1
10
1
1 =
⎟
⎠
⎞
⎜
⎝
⎛
+
⎟
⎠
⎞
⎜
⎝
⎛
+
⎟
⎠
⎞
⎜
⎝
⎛
+
+ c
K
s
s
s
Penyusunan kembali persamaan di atas diperoleh:
( )( )( ) 0
80
.
0
1
3
1
30
1
10 =
+
+
+
+ c
K
s
s
s
Substitusi s = i ωu pada Kc = Kcu:
0
80
.
0
1
43
420
900 2
2
3
3
=
+
+
+
+ c
u
u
u K
i
i
i ω
ω
ω
( ) ( ) 0
0
43
900
80
.
0
1
420 3
2
i
i
K u
u
c
u +
=
+
−
+
+
+
− ω
ω
ω
i2 = –1
5.3 Kestabilan Berdasarkan Ultimate Response
5 - ANALISIS KESTABILAN SISTEM PENGENDALIAN UMPAN BALIK – DR. ENG. Y. D. HERMAWAN INDALPRO / 26
Bagian real dan imaginer harus sama dengan nol:
0
80
.
0
1
420 2
=
+
+
− c
u K
ω
0
43
900 3
=
+
− u
u ω
ω
Kedua pers. di atas diselesaikan secara simultan, menghasilkan:
ωu = 0 Kcu = –1.25 %CO/TO
ωu = 0.2186 rad/sec Kcu = 23.8 %CO/TO relevant
Jadi diperoleh ultimate period:
sec
7
.
28
2186
.
0
2
=
=
π
u
T
Jika diinginkan
respon STABIL,
maka Kc < Kcu
5.3 Kestabilan Berdasarkan Ultimate Response
5 - ANALISIS KESTABILAN SISTEM PENGENDALIAN UMPAN BALIK – DR. ENG. Y. D. HERMAWAN INDALPRO / 27
0 50 100 150 200
-0.5
0
0.5
1
Temperature
[degC]
Time [sec]
0 50 100 150 200
-0.2
-0.1
0
Steam
[kg/sec]
Time [sec]
Gambar 5.3.3. Tanggapan kritis pengendali suhu terhadap perubahan
satu unit set point dengan fungsi tahap (Contoh 5.3.1)
Kc = Kcu = 23.8
5.3 Kestabilan Berdasarkan Ultimate Response
5 - ANALISIS KESTABILAN SISTEM PENGENDALIAN UMPAN BALIK – DR. ENG. Y. D. HERMAWAN INDALPRO / 28
0 50 100 150 200
-1
0
1
2
Temperature
[degC]
Time [sec]
0 50 100 150 200
-0.2
-0.1
0
Steam
[kg/sec]
Time [sec]
Gambar 5.3.4. Tanggapan stabil pengendali suhu terhadap perubahan
satu unit set point dengan fungsi tahap (Contoh 5.3.1)
Kc = 10
5.3 Kestabilan Berdasarkan Ultimate Response
5 - ANALISIS KESTABILAN SISTEM PENGENDALIAN UMPAN BALIK – DR. ENG. Y. D. HERMAWAN INDALPRO / 29
0 50 100 150 200
-5
0
5
Temperature
[degC]
Time [sec]
0 50 100 150 200
-1
-0.5
0
0.5
Steam
[kg/sec]
Time [sec]
5.3 Kestabilan Berdasarkan Ultimate Response
Gambar 5.3.5. Tanggapan tidak stabil pengendali suhu terhadap
perubahan satu unit set point dengan fungsi tahap (Contoh 5.3.1)
Kc = 30
5 - ANALISIS KESTABILAN SISTEM PENGENDALIAN UMPAN BALIK – DR. ENG. Y. D. HERMAWAN INDALPRO / 30
5.4 Routh-Hurwitz Stability Criterion
• Does not require calculation of actual
values of the roots of the characteristic
equation.
• But, it only requires that we know if any
root is to the right of imaginary axis
• Make a conclusion as to the stability of
closed loop system quickly without
computing the actual values of the roots
5 - ANALISIS KESTABILAN SISTEM PENGENDALIAN UMPAN BALIK – DR. ENG. Y. D. HERMAWAN INDALPRO / 31
Expand the characteristic eq. into the following
polynomial form
1 + GpGfGcGm ≡ ao sn + a1 sn-1 + … + an-1 s + an = 0
Let ao be positive, if it is negative, multiply both
sides of equation by −1.
First Test: If any of coefficients a1 , a2 , … , an-1 , an is
negative; there is at least one root of the characteristic
eq. which has positive real part Æ UNSTABLE
Second Test: If all coefficients a1 , a2 , … , an-1 , an are
positive; Then, from the 1st test we cannot conclude
anything about the location of the roots. Form the
following array (known as Routh array):
5.4 Kriteria Kestabilan Routh-Harwitz
5 - ANALISIS KESTABILAN SISTEM PENGENDALIAN UMPAN BALIK – DR. ENG. Y. D. HERMAWAN INDALPRO / 32
Routh Array
…
.
.
W2
W1
n+1
.
.
.
.
…
.
A3
C2
C1
5
…
.
B3
B2
B1
4
…
.
A3
A2
A1
3
…
a7
a5
a3
a1
2
…
a6
a4
a2
a0
1
Row
5.4 Kriteria Kestabilan Routh-Harwitz
5 - ANALISIS KESTABILAN SISTEM PENGENDALIAN UMPAN BALIK – DR. ENG. Y. D. HERMAWAN INDALPRO / 33
Where
1
3
0
2
1
1
a
a
a
a
a
A
−
=
1
5
0
4
1
2
a
a
a
a
a
A
−
=
1
7
0
6
1
3
a
a
a
a
a
A
−
=
1
2
1
3
1
1
A
A
a
a
A
B
−
=
1
3
1
5
1
2
A
A
a
a
A
B
−
=
1
2
1
2
1
1
B
B
A
A
B
C
−
=
1
3
1
3
1
2
B
B
A
A
B
C
−
=
. . .
. . .
. . .
etc.
5.4 Kriteria Kestabilan Routh-Harwitz
5 - ANALISIS KESTABILAN SISTEM PENGENDALIAN UMPAN BALIK – DR. ENG. Y. D. HERMAWAN INDALPRO / 34
Examine the elements of the first
column of the array above
• If any of these elements is negative, we have at
least one root to the right of the imaginary axis
and the system is UNSTABLE
• The number of sign changes in the elements of
the first column is equal to the number of roots
to the right of the imaginary axis
a0 a1 A1 B1 C1 . . . W1
∴ A system is STABLE IF all the elements in the
first column of the Routh Array are POSITIVE
5.4 Kriteria Kestabilan Routh-Harwitz
5 - ANALISIS KESTABILAN SISTEM PENGENDALIAN UMPAN BALIK – DR. ENG. Y. D. HERMAWAN INDALPRO / 35
Example 5.4.1: Stability Analysis with the Routh-
Hurwitz Criterion
( ) 0
2
2 2
3
=
+
+
+
+
I
c
c
K
s
K
s
s
τ
I
c
K
τ
Consider FBC system in Ex. 5.1.2, Its Characteristic eq. is
( )
2
2
2
I
c
c
K
K
τ
−
+
I
c
K
τ
Routh array is:
Row
1st Column
1
2
3
4
1
2
2 + Kc
0
5.4 Kriteria Kestabilan Routh-Harwitz
5 - ANALISIS KESTABILAN SISTEM PENGENDALIAN UMPAN BALIK – DR. ENG. Y. D. HERMAWAN INDALPRO / 36
Example 5.4.1 (Continued)
( )
⎥
⎥
⎥
⎦
⎤
⎢
⎢
⎢
⎣
⎡ −
+
I
c
I
c
c K
K
K
τ
τ
,
2
2
2
,
2
,
1
The elements of the first column are:
Third element can be positive or negative
depending on the values of Kc and τI
The system is STABLE if Kc and τI satisfy
the condition: ( )
I
c
c
K
K
τ
>
+
2
2
5.4 Kriteria Kestabilan Routh-Harwitz
5 - ANALISIS KESTABILAN SISTEM PENGENDALIAN UMPAN BALIK – DR. ENG. Y. D. HERMAWAN INDALPRO / 37
Example 5.4.2: Critical stability Conditions for FBC
Return to Ex.5.4.1, and Let τI= 0.1
( )
2
10
2
2 c
c K
K −
+
3rd element becomes:
IF Kc = 0.5 Æ third element = 0 Æ critical condition,
two roots on imaginary axis (pure
imaginary) Æ ± j(1.58)
Æ sustained sinusoidal response
IF Kc < 0.5 Æ third element is positive Æ STABLE
IF Kc > 0.5 Æ third element is negative Æ UNSTABLE
5.4 Kriteria Kestabilan Routh-Harwitz
5 - ANALISIS KESTABILAN SISTEM PENGENDALIAN UMPAN BALIK – DR. ENG. Y. D. HERMAWAN INDALPRO / 38
5.3 Kestabilan Berdasarkan Ultimate Response
Gambar 5.4.1. Tanggapan kritis dari sistem terkendali terhadap
perubahan satu unit set point dengan fungsi tahap (Contoh 5.4.1)
Kc = 0.5 ; thoi = 0.1
0 5 10 15
0
0.5
1
1.5
2
CV
Time [sec]
0 5 10 15
-2
0
2
4
6
MV
Time [sec]
5 - ANALISIS KESTABILAN SISTEM PENGENDALIAN UMPAN BALIK – DR. ENG. Y. D. HERMAWAN INDALPRO / 39
5.3 Kestabilan Berdasarkan Ultimate Response
Gambar 5.4.2. Tanggapan stabil dari sistem terkendali terhadap
perubahan satu unit set point dengan fungsi tahap (Contoh 5.4.1)
Kc = 0.1 ; thoi = 0.1
0 5 10 15
0
0.5
1
1.5
CV
Time [sec]
0 5 10 15
0
1
2
3
MV
Time [sec]
5 - ANALISIS KESTABILAN SISTEM PENGENDALIAN UMPAN BALIK – DR. ENG. Y. D. HERMAWAN INDALPRO / 40
5.3 Kestabilan Berdasarkan Ultimate Response
Gambar 5.4.3. Tanggapan tidak stabil dari sistem terkendali terhadap
perubahan satu unit set point dengan fungsi tahap (Contoh 5.4.1)
Kc = 1 ; thoi = 0.1
0 5 10 15
-20
-10
0
10
20
CV
Time [sec]
0 5 10 15
-200
-100
0
100
MV
Time [sec]
5 - ANALISIS KESTABILAN SISTEM PENGENDALIAN UMPAN BALIK – DR. ENG. Y. D. HERMAWAN INDALPRO / 41
5.5 Root-Locus Analysis
• Root Locus is a graphical technique that
consists of graphing the roots of the
characteristic equation
• The resulting graph allows to see whether
a root crosses the imaginary axis to the
right hand side of the s-plane
5.5 Analisis Kestabilan dengan Root-Locus
5 - ANALISIS KESTABILAN SISTEM PENGENDALIAN UMPAN BALIK – DR. ENG. Y. D. HERMAWAN INDALPRO / 42
Example 5.5.1: Root locus for a Reactor with P Control
R A
Flow rate = m
Flow rate = F – m
Flow rate = F
Concentration in C = y
Reactions:
A + R Æ B
B + R Æ C
C + R Æ D
D + R Æ E
The control objective is to keep the concentration of
the desired product C as close as possible to its set
point by manipulating the flow rate of A
5.5 Analisis Kestabilan dengan Root-Locus
5 - ANALISIS KESTABILAN SISTEM PENGENDALIAN UMPAN BALIK – DR. ENG. Y. D. HERMAWAN INDALPRO / 43
Example 5.5.1: (Continued)
( )
( )( ) ( )
35
.
4
85
.
2
45
.
1
25
.
2
98
.
2
)
(
)
(
)
( 2
+
+
+
+
=
=
s
s
s
s
s
m
s
y
s
Gp
TF of the process:
( )
( )( ) ( )
0
35
.
4
85
.
2
45
.
1
25
.
2
98
.
2
1 2
=
+
+
+
+
+ c
K
s
s
s
s
Implementation of P Control with Gc(s) = Kc , and
Assume that Gm = Gf = 1, we have the following
characteristic equation:
S4 + 11.5 s3 + 47.49 s2 + (2.98Kc + 83.0633)s
+ (6.705Kc + 51.2327) = 0
5.5 Analisis Kestabilan dengan Root-Locus
5 - ANALISIS KESTABILAN SISTEM PENGENDALIAN UMPAN BALIK – DR. ENG. Y. D. HERMAWAN INDALPRO / 44
Roots of the characteristic equation
(for ex. 5.5.1)
−9.85
+0.30 − 5.70 j
+0.30 + 5.70 j
−2.25
100
−8.49
−0.38 − 4.48 j
−0.38 + 4.48 j
−2.24
50
−7.14
−1.06 − 3.23 j
−1.06 + 3.23 j
−2.23
20
−5.77
−1.76 − 1.88 j
−1.76 + 1.88 j
−2.20
5
−4.89
−2.34 − 0.82 j
−2.34 + 0.82 j
−1.92
1
−2.85
−2.85
−2.85
− 1.45
0
p4
p3
p2
p1
Kc
5.5 Analisis Kestabilan dengan Root-Locus
5 - ANALISIS KESTABILAN SISTEM PENGENDALIAN UMPAN BALIK – DR. ENG. Y. D. HERMAWAN INDALPRO / 45
Gambar 5.5.1. Root-Locus of the reactor in Ex. 5.5.1
-20 -15 -10 -5 0 5 10 15
-20
-15
-10
-5
0
5
10
15
20
Root Locus
Real Axis
Imaginary
Axis
5.5 Analisis Kestabilan dengan Root-Locus
5 - ANALISIS KESTABILAN SISTEM PENGENDALIAN UMPAN BALIK – DR. ENG. Y. D. HERMAWAN INDALPRO / 46
Gambar 5.5.2. Tanggapan stabil loop terkendali terhadap
perubahan satu unit set-point (Ex. 5.5.1)
Kc = 50
Kc = 20
Kc = 5
Kc = 1
0 2 4 6 8 10 12 14 16 18 20
0
0.5
1
1.5
Time (Sec)
y
Offset
New set-point
5.5 Analisis Kestabilan dengan Root-Locus
5 - ANALISIS KESTABILAN SISTEM PENGENDALIAN UMPAN BALIK – DR. ENG. Y. D. HERMAWAN INDALPRO / 47
0 2 4 6 8 10 12 14 16 18 20
0
0.5
1
1.5
2
Time (Sec)
y
Critical condition Kc = 75
5.5 Analisis Kestabilan dengan Root-Locus
Gambar 5.5.3. Tanggapan kritis dari loop terkendali
terhadap perubahan satu unit set-point (Ex. 5.5.1)
5 - ANALISIS KESTABILAN SISTEM PENGENDALIAN UMPAN BALIK – DR. ENG. Y. D. HERMAWAN INDALPRO / 48
0 2 4 6 8 10 12 14 16 18 20
-300
-200
-100
0
100
200
300
Time (Sec)
y
Kc = 100
5.5 Analisis Kestabilan dengan Root-Locus
Gambar 5.5.4. Tanggapan tak-stabil dari loop terkendali
terhadap perubahan satu unit set-point (Ex. 5.5.1)

Más contenido relacionado

Similar a BAB 7 analisis-kestabilan (Materi tambahan) (1).pdf

Fuzzy control design_tutorial
Fuzzy control design_tutorialFuzzy control design_tutorial
Fuzzy control design_tutorialResul Çöteli
 
KNL3353_Control_System_Engineering_Lectu.ppt
KNL3353_Control_System_Engineering_Lectu.pptKNL3353_Control_System_Engineering_Lectu.ppt
KNL3353_Control_System_Engineering_Lectu.pptSherAli984263
 
Hybrid Fuzzy Sliding Mode Controller for Timedelay System
Hybrid Fuzzy Sliding Mode Controller for Timedelay SystemHybrid Fuzzy Sliding Mode Controller for Timedelay System
Hybrid Fuzzy Sliding Mode Controller for Timedelay Systemijaia
 
STABILIZATION AT UPRIGHT EQUILIBRIUM POSITION OF A DOUBLE INVERTED PENDULUM W...
STABILIZATION AT UPRIGHT EQUILIBRIUM POSITION OF A DOUBLE INVERTED PENDULUM W...STABILIZATION AT UPRIGHT EQUILIBRIUM POSITION OF A DOUBLE INVERTED PENDULUM W...
STABILIZATION AT UPRIGHT EQUILIBRIUM POSITION OF A DOUBLE INVERTED PENDULUM W...ijcsa
 
Analysis & Control of Inverted Pendulum System Using PID Controller
Analysis & Control of Inverted Pendulum System Using PID ControllerAnalysis & Control of Inverted Pendulum System Using PID Controller
Analysis & Control of Inverted Pendulum System Using PID ControllerIJERA Editor
 
Time response of discrete systems 4th lecture
Time response of discrete systems 4th lectureTime response of discrete systems 4th lecture
Time response of discrete systems 4th lecturekhalaf Gaeid
 
Recurrent fuzzy neural network backstepping control for the prescribed output...
Recurrent fuzzy neural network backstepping control for the prescribed output...Recurrent fuzzy neural network backstepping control for the prescribed output...
Recurrent fuzzy neural network backstepping control for the prescribed output...ISA Interchange
 
Disturbance Rejection with a Highly Oscillating Second-Order Process, Part I...
Disturbance Rejection with a Highly Oscillating Second-Order  Process, Part I...Disturbance Rejection with a Highly Oscillating Second-Order  Process, Part I...
Disturbance Rejection with a Highly Oscillating Second-Order Process, Part I...Scientific Review SR
 
The Controller Design For Linear System: A State Space Approach
The Controller Design For Linear System: A State Space ApproachThe Controller Design For Linear System: A State Space Approach
The Controller Design For Linear System: A State Space ApproachYang Hong
 
Inverted Pendulum Control: A Brief Overview
Inverted Pendulum Control: A Brief OverviewInverted Pendulum Control: A Brief Overview
Inverted Pendulum Control: A Brief OverviewIJMER
 
Modified smith predictor based cascade control of unstable time delay processes
Modified smith predictor based cascade control of unstable time delay processesModified smith predictor based cascade control of unstable time delay processes
Modified smith predictor based cascade control of unstable time delay processesISA Interchange
 
Integral Backstepping Sliding Mode Control of Chaotic Forced Van Der Pol Osci...
Integral Backstepping Sliding Mode Control of Chaotic Forced Van Der Pol Osci...Integral Backstepping Sliding Mode Control of Chaotic Forced Van Der Pol Osci...
Integral Backstepping Sliding Mode Control of Chaotic Forced Van Der Pol Osci...ijctcm
 
Feedback control of_dynamic_systems
Feedback control of_dynamic_systemsFeedback control of_dynamic_systems
Feedback control of_dynamic_systemskarina G
 
Linear Control Hard-Disk Read/Write Controller Assignment
Linear Control Hard-Disk Read/Write Controller AssignmentLinear Control Hard-Disk Read/Write Controller Assignment
Linear Control Hard-Disk Read/Write Controller AssignmentIsham Rashik
 
Closed-loop step response for tuning PID fractional-order filter controllers
Closed-loop step response for tuning PID fractional-order filter controllersClosed-loop step response for tuning PID fractional-order filter controllers
Closed-loop step response for tuning PID fractional-order filter controllersISA Interchange
 

Similar a BAB 7 analisis-kestabilan (Materi tambahan) (1).pdf (20)

Fuzzy control design_tutorial
Fuzzy control design_tutorialFuzzy control design_tutorial
Fuzzy control design_tutorial
 
KNL3353_Control_System_Engineering_Lectu.ppt
KNL3353_Control_System_Engineering_Lectu.pptKNL3353_Control_System_Engineering_Lectu.ppt
KNL3353_Control_System_Engineering_Lectu.ppt
 
Uqp 2 m unit 1
Uqp 2 m unit 1Uqp 2 m unit 1
Uqp 2 m unit 1
 
Hybrid Fuzzy Sliding Mode Controller for Timedelay System
Hybrid Fuzzy Sliding Mode Controller for Timedelay SystemHybrid Fuzzy Sliding Mode Controller for Timedelay System
Hybrid Fuzzy Sliding Mode Controller for Timedelay System
 
STABILIZATION AT UPRIGHT EQUILIBRIUM POSITION OF A DOUBLE INVERTED PENDULUM W...
STABILIZATION AT UPRIGHT EQUILIBRIUM POSITION OF A DOUBLE INVERTED PENDULUM W...STABILIZATION AT UPRIGHT EQUILIBRIUM POSITION OF A DOUBLE INVERTED PENDULUM W...
STABILIZATION AT UPRIGHT EQUILIBRIUM POSITION OF A DOUBLE INVERTED PENDULUM W...
 
Analysis & Control of Inverted Pendulum System Using PID Controller
Analysis & Control of Inverted Pendulum System Using PID ControllerAnalysis & Control of Inverted Pendulum System Using PID Controller
Analysis & Control of Inverted Pendulum System Using PID Controller
 
Min Max Model Predictive Control for Polysolenoid Linear Motor
Min Max Model Predictive Control for Polysolenoid Linear MotorMin Max Model Predictive Control for Polysolenoid Linear Motor
Min Max Model Predictive Control for Polysolenoid Linear Motor
 
G010525868
G010525868G010525868
G010525868
 
Time response of discrete systems 4th lecture
Time response of discrete systems 4th lectureTime response of discrete systems 4th lecture
Time response of discrete systems 4th lecture
 
Recurrent fuzzy neural network backstepping control for the prescribed output...
Recurrent fuzzy neural network backstepping control for the prescribed output...Recurrent fuzzy neural network backstepping control for the prescribed output...
Recurrent fuzzy neural network backstepping control for the prescribed output...
 
Disturbance Rejection with a Highly Oscillating Second-Order Process, Part I...
Disturbance Rejection with a Highly Oscillating Second-Order  Process, Part I...Disturbance Rejection with a Highly Oscillating Second-Order  Process, Part I...
Disturbance Rejection with a Highly Oscillating Second-Order Process, Part I...
 
The Controller Design For Linear System: A State Space Approach
The Controller Design For Linear System: A State Space ApproachThe Controller Design For Linear System: A State Space Approach
The Controller Design For Linear System: A State Space Approach
 
Chapter10
Chapter10Chapter10
Chapter10
 
Inverted Pendulum Control: A Brief Overview
Inverted Pendulum Control: A Brief OverviewInverted Pendulum Control: A Brief Overview
Inverted Pendulum Control: A Brief Overview
 
1413570.ppt
1413570.ppt1413570.ppt
1413570.ppt
 
Modified smith predictor based cascade control of unstable time delay processes
Modified smith predictor based cascade control of unstable time delay processesModified smith predictor based cascade control of unstable time delay processes
Modified smith predictor based cascade control of unstable time delay processes
 
Integral Backstepping Sliding Mode Control of Chaotic Forced Van Der Pol Osci...
Integral Backstepping Sliding Mode Control of Chaotic Forced Van Der Pol Osci...Integral Backstepping Sliding Mode Control of Chaotic Forced Van Der Pol Osci...
Integral Backstepping Sliding Mode Control of Chaotic Forced Van Der Pol Osci...
 
Feedback control of_dynamic_systems
Feedback control of_dynamic_systemsFeedback control of_dynamic_systems
Feedback control of_dynamic_systems
 
Linear Control Hard-Disk Read/Write Controller Assignment
Linear Control Hard-Disk Read/Write Controller AssignmentLinear Control Hard-Disk Read/Write Controller Assignment
Linear Control Hard-Disk Read/Write Controller Assignment
 
Closed-loop step response for tuning PID fractional-order filter controllers
Closed-loop step response for tuning PID fractional-order filter controllersClosed-loop step response for tuning PID fractional-order filter controllers
Closed-loop step response for tuning PID fractional-order filter controllers
 

Último

Insurers' journeys to build a mastery in the IoT usage
Insurers' journeys to build a mastery in the IoT usageInsurers' journeys to build a mastery in the IoT usage
Insurers' journeys to build a mastery in the IoT usageMatteo Carbone
 
Call Girls In DLf Gurgaon ➥99902@11544 ( Best price)100% Genuine Escort In 24...
Call Girls In DLf Gurgaon ➥99902@11544 ( Best price)100% Genuine Escort In 24...Call Girls In DLf Gurgaon ➥99902@11544 ( Best price)100% Genuine Escort In 24...
Call Girls In DLf Gurgaon ➥99902@11544 ( Best price)100% Genuine Escort In 24...lizamodels9
 
Organizational Transformation Lead with Culture
Organizational Transformation Lead with CultureOrganizational Transformation Lead with Culture
Organizational Transformation Lead with CultureSeta Wicaksana
 
M.C Lodges -- Guest House in Jhang.
M.C Lodges --  Guest House in Jhang.M.C Lodges --  Guest House in Jhang.
M.C Lodges -- Guest House in Jhang.Aaiza Hassan
 
Pharma Works Profile of Karan Communications
Pharma Works Profile of Karan CommunicationsPharma Works Profile of Karan Communications
Pharma Works Profile of Karan Communicationskarancommunications
 
VIP Call Girls In Saharaganj ( Lucknow ) 🔝 8923113531 🔝 Cash Payment (COD) 👒
VIP Call Girls In Saharaganj ( Lucknow  ) 🔝 8923113531 🔝  Cash Payment (COD) 👒VIP Call Girls In Saharaganj ( Lucknow  ) 🔝 8923113531 🔝  Cash Payment (COD) 👒
VIP Call Girls In Saharaganj ( Lucknow ) 🔝 8923113531 🔝 Cash Payment (COD) 👒anilsa9823
 
RSA Conference Exhibitor List 2024 - Exhibitors Data
RSA Conference Exhibitor List 2024 - Exhibitors DataRSA Conference Exhibitor List 2024 - Exhibitors Data
RSA Conference Exhibitor List 2024 - Exhibitors DataExhibitors Data
 
Best VIP Call Girls Noida Sector 40 Call Me: 8448380779
Best VIP Call Girls Noida Sector 40 Call Me: 8448380779Best VIP Call Girls Noida Sector 40 Call Me: 8448380779
Best VIP Call Girls Noida Sector 40 Call Me: 8448380779Delhi Call girls
 
HONOR Veterans Event Keynote by Michael Hawkins
HONOR Veterans Event Keynote by Michael HawkinsHONOR Veterans Event Keynote by Michael Hawkins
HONOR Veterans Event Keynote by Michael HawkinsMichael W. Hawkins
 
Call Girls Pune Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Pune Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Pune Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Pune Just Call 9907093804 Top Class Call Girl Service AvailableDipal Arora
 
Dr. Admir Softic_ presentation_Green Club_ENG.pdf
Dr. Admir Softic_ presentation_Green Club_ENG.pdfDr. Admir Softic_ presentation_Green Club_ENG.pdf
Dr. Admir Softic_ presentation_Green Club_ENG.pdfAdmir Softic
 
0183760ssssssssssssssssssssssssssss00101011 (27).pdf
0183760ssssssssssssssssssssssssssss00101011 (27).pdf0183760ssssssssssssssssssssssssssss00101011 (27).pdf
0183760ssssssssssssssssssssssssssss00101011 (27).pdfRenandantas16
 
Regression analysis: Simple Linear Regression Multiple Linear Regression
Regression analysis:  Simple Linear Regression Multiple Linear RegressionRegression analysis:  Simple Linear Regression Multiple Linear Regression
Regression analysis: Simple Linear Regression Multiple Linear RegressionRavindra Nath Shukla
 
Call Girls Navi Mumbai Just Call 9907093804 Top Class Call Girl Service Avail...
Call Girls Navi Mumbai Just Call 9907093804 Top Class Call Girl Service Avail...Call Girls Navi Mumbai Just Call 9907093804 Top Class Call Girl Service Avail...
Call Girls Navi Mumbai Just Call 9907093804 Top Class Call Girl Service Avail...Dipal Arora
 
Russian Call Girls In Gurgaon ❤️8448577510 ⊹Best Escorts Service In 24/7 Delh...
Russian Call Girls In Gurgaon ❤️8448577510 ⊹Best Escorts Service In 24/7 Delh...Russian Call Girls In Gurgaon ❤️8448577510 ⊹Best Escorts Service In 24/7 Delh...
Russian Call Girls In Gurgaon ❤️8448577510 ⊹Best Escorts Service In 24/7 Delh...lizamodels9
 
Enhancing and Restoring Safety & Quality Cultures - Dave Litwiller - May 2024...
Enhancing and Restoring Safety & Quality Cultures - Dave Litwiller - May 2024...Enhancing and Restoring Safety & Quality Cultures - Dave Litwiller - May 2024...
Enhancing and Restoring Safety & Quality Cultures - Dave Litwiller - May 2024...Dave Litwiller
 
7.pdf This presentation captures many uses and the significance of the number...
7.pdf This presentation captures many uses and the significance of the number...7.pdf This presentation captures many uses and the significance of the number...
7.pdf This presentation captures many uses and the significance of the number...Paul Menig
 
Value Proposition canvas- Customer needs and pains
Value Proposition canvas- Customer needs and painsValue Proposition canvas- Customer needs and pains
Value Proposition canvas- Customer needs and painsP&CO
 

Último (20)

Insurers' journeys to build a mastery in the IoT usage
Insurers' journeys to build a mastery in the IoT usageInsurers' journeys to build a mastery in the IoT usage
Insurers' journeys to build a mastery in the IoT usage
 
Call Girls In DLf Gurgaon ➥99902@11544 ( Best price)100% Genuine Escort In 24...
Call Girls In DLf Gurgaon ➥99902@11544 ( Best price)100% Genuine Escort In 24...Call Girls In DLf Gurgaon ➥99902@11544 ( Best price)100% Genuine Escort In 24...
Call Girls In DLf Gurgaon ➥99902@11544 ( Best price)100% Genuine Escort In 24...
 
Organizational Transformation Lead with Culture
Organizational Transformation Lead with CultureOrganizational Transformation Lead with Culture
Organizational Transformation Lead with Culture
 
M.C Lodges -- Guest House in Jhang.
M.C Lodges --  Guest House in Jhang.M.C Lodges --  Guest House in Jhang.
M.C Lodges -- Guest House in Jhang.
 
Mifty kit IN Salmiya (+918133066128) Abortion pills IN Salmiyah Cytotec pills
Mifty kit IN Salmiya (+918133066128) Abortion pills IN Salmiyah Cytotec pillsMifty kit IN Salmiya (+918133066128) Abortion pills IN Salmiyah Cytotec pills
Mifty kit IN Salmiya (+918133066128) Abortion pills IN Salmiyah Cytotec pills
 
Pharma Works Profile of Karan Communications
Pharma Works Profile of Karan CommunicationsPharma Works Profile of Karan Communications
Pharma Works Profile of Karan Communications
 
VIP Call Girls In Saharaganj ( Lucknow ) 🔝 8923113531 🔝 Cash Payment (COD) 👒
VIP Call Girls In Saharaganj ( Lucknow  ) 🔝 8923113531 🔝  Cash Payment (COD) 👒VIP Call Girls In Saharaganj ( Lucknow  ) 🔝 8923113531 🔝  Cash Payment (COD) 👒
VIP Call Girls In Saharaganj ( Lucknow ) 🔝 8923113531 🔝 Cash Payment (COD) 👒
 
RSA Conference Exhibitor List 2024 - Exhibitors Data
RSA Conference Exhibitor List 2024 - Exhibitors DataRSA Conference Exhibitor List 2024 - Exhibitors Data
RSA Conference Exhibitor List 2024 - Exhibitors Data
 
Best VIP Call Girls Noida Sector 40 Call Me: 8448380779
Best VIP Call Girls Noida Sector 40 Call Me: 8448380779Best VIP Call Girls Noida Sector 40 Call Me: 8448380779
Best VIP Call Girls Noida Sector 40 Call Me: 8448380779
 
HONOR Veterans Event Keynote by Michael Hawkins
HONOR Veterans Event Keynote by Michael HawkinsHONOR Veterans Event Keynote by Michael Hawkins
HONOR Veterans Event Keynote by Michael Hawkins
 
Call Girls Pune Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Pune Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Pune Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Pune Just Call 9907093804 Top Class Call Girl Service Available
 
Dr. Admir Softic_ presentation_Green Club_ENG.pdf
Dr. Admir Softic_ presentation_Green Club_ENG.pdfDr. Admir Softic_ presentation_Green Club_ENG.pdf
Dr. Admir Softic_ presentation_Green Club_ENG.pdf
 
unwanted pregnancy Kit [+918133066128] Abortion Pills IN Dubai UAE Abudhabi
unwanted pregnancy Kit [+918133066128] Abortion Pills IN Dubai UAE Abudhabiunwanted pregnancy Kit [+918133066128] Abortion Pills IN Dubai UAE Abudhabi
unwanted pregnancy Kit [+918133066128] Abortion Pills IN Dubai UAE Abudhabi
 
0183760ssssssssssssssssssssssssssss00101011 (27).pdf
0183760ssssssssssssssssssssssssssss00101011 (27).pdf0183760ssssssssssssssssssssssssssss00101011 (27).pdf
0183760ssssssssssssssssssssssssssss00101011 (27).pdf
 
Regression analysis: Simple Linear Regression Multiple Linear Regression
Regression analysis:  Simple Linear Regression Multiple Linear RegressionRegression analysis:  Simple Linear Regression Multiple Linear Regression
Regression analysis: Simple Linear Regression Multiple Linear Regression
 
Call Girls Navi Mumbai Just Call 9907093804 Top Class Call Girl Service Avail...
Call Girls Navi Mumbai Just Call 9907093804 Top Class Call Girl Service Avail...Call Girls Navi Mumbai Just Call 9907093804 Top Class Call Girl Service Avail...
Call Girls Navi Mumbai Just Call 9907093804 Top Class Call Girl Service Avail...
 
Russian Call Girls In Gurgaon ❤️8448577510 ⊹Best Escorts Service In 24/7 Delh...
Russian Call Girls In Gurgaon ❤️8448577510 ⊹Best Escorts Service In 24/7 Delh...Russian Call Girls In Gurgaon ❤️8448577510 ⊹Best Escorts Service In 24/7 Delh...
Russian Call Girls In Gurgaon ❤️8448577510 ⊹Best Escorts Service In 24/7 Delh...
 
Enhancing and Restoring Safety & Quality Cultures - Dave Litwiller - May 2024...
Enhancing and Restoring Safety & Quality Cultures - Dave Litwiller - May 2024...Enhancing and Restoring Safety & Quality Cultures - Dave Litwiller - May 2024...
Enhancing and Restoring Safety & Quality Cultures - Dave Litwiller - May 2024...
 
7.pdf This presentation captures many uses and the significance of the number...
7.pdf This presentation captures many uses and the significance of the number...7.pdf This presentation captures many uses and the significance of the number...
7.pdf This presentation captures many uses and the significance of the number...
 
Value Proposition canvas- Customer needs and pains
Value Proposition canvas- Customer needs and painsValue Proposition canvas- Customer needs and pains
Value Proposition canvas- Customer needs and pains
 

BAB 7 analisis-kestabilan (Materi tambahan) (1).pdf

  • 1. 5 - ANALISIS KESTABILAN SISTEM PENGENDALIAN UMPAN BALIK – DR. ENG. Y. D. HERMAWAN INDALPRO / 1 Analisis Kestabilan Sistem Pengendalian Umpan Balik 05 05 Tujuan Tujuan: Mhs mampu menganalisis kestabilan sistem pengendalian umpan balik Materi Materi: 1. Konsep Kestabilan Sistem Loop Tertutup (Stability Concept of The Closed Loop System) 2. Persamaan Karakteristik (Characteristic Equation) 3. Kestabilan Berdasarkan Ultimate Response 4. Kriteria Kestabilan Routh-Hurwitz 5. Analisis Kestabilan dengan Root Locus
  • 2. 5 - ANALISIS KESTABILAN SISTEM PENGENDALIAN UMPAN BALIK – DR. ENG. Y. D. HERMAWAN INDALPRO / 2 5.1 Konsep Kestabilan Sistem Loop Tertutup • Designing a FBC (i.e. selecting its components and tuning its controller) seriously affects its stability characteristics. • The notion of stability and the stability characteristics of closed loop systems is therefore considered to be useful. Notion of Stability Ξ Pemahaman Kestabilan Stability Characteristic Ξ Karakteristik Kestabilan
  • 3. 5 - ANALISIS KESTABILAN SISTEM PENGENDALIAN UMPAN BALIK – DR. ENG. Y. D. HERMAWAN INDALPRO / 3 The Notion of Stability (Pemahaman Kestabilan) • How to define about stable and unstable? Æ A dynamic system is considered to be stable IF every bounded input produces bounded output • Bounded : input that always remains between an upper and a lower limit Æ sinusoidal, step, but not the rump 5.1 Konsep Kestabilan Sistem Loop Tertutup
  • 4. 5 - ANALISIS KESTABILAN SISTEM PENGENDALIAN UMPAN BALIK – DR. ENG. Y. D. HERMAWAN INDALPRO / 4 Gambar 5.1.1. Bounded Input Input m(t) time Upper Limit Lower Limit sinusoidal step 5.1 Konsep Kestabilan Sistem Loop Tertutup
  • 5. 5 - ANALISIS KESTABILAN SISTEM PENGENDALIAN UMPAN BALIK – DR. ENG. Y. D. HERMAWAN INDALPRO / 5 Gambar 5.1.2. Tanggapan (response) stabil dan tidak stabil y time Desired value Stable Unstable Unstable 5.1 Konsep Kestabilan Sistem Loop Tertutup
  • 6. 5 - ANALISIS KESTABILAN SISTEM PENGENDALIAN UMPAN BALIK – DR. ENG. Y. D. HERMAWAN INDALPRO / 6 Transfer Function • m = input, and y = output • If G(s) has a pole with positive real part, it gives rise to a term C1ept which grows continuously with time Æ unstable ) ( ) ( ) ( s m s G s y = If TF of dynamic system has even one pole with positive real part, the system is UNSTABLE ∴ all poles of TF must be in the left-hand part of a complex plane, for the system to be STABLE 5.1 Konsep Kestabilan Sistem Loop Tertutup
  • 7. 5 - ANALISIS KESTABILAN SISTEM PENGENDALIAN UMPAN BALIK – DR. ENG. Y. D. HERMAWAN INDALPRO / 7 Gambar 5.1.3. Complex Plane Imaginary Real Stable Unstable 5.1 Konsep Kestabilan Sistem Loop Tertutup
  • 8. 5 - ANALISIS KESTABILAN SISTEM PENGENDALIAN UMPAN BALIK – DR. ENG. Y. D. HERMAWAN INDALPRO / 8 Example 5.1.1: Stabilization of an unstable process with P Control Let’s consider a process with the following response: ) ( 1 5 ) ( 1 10 ) ( s d s s m s s y − + − = Pole has positive root s – 1 = 0 Æ s = +1 y(t) = C1 et Open loop unstable response 5.1 Konsep Kestabilan Sistem Loop Tertutup
  • 9. 5 - ANALISIS KESTABILAN SISTEM PENGENDALIAN UMPAN BALIK – DR. ENG. Y. D. HERMAWAN INDALPRO / 9 Gambar 5.1.4. Tanggapan sistem tak-terkendali terhadap perubahan satu unit gangguan dengan fungsi tahap 0 0.5 1 1.5 2 0 10 20 30 40 Time y unstable Example 5.1.1 (Continued) 5.1 Konsep Kestabilan Sistem Loop Tertutup
  • 10. 5 - ANALISIS KESTABILAN SISTEM PENGENDALIAN UMPAN BALIK – DR. ENG. Y. D. HERMAWAN INDALPRO / 10 The closed loop response: ( ) ( ) ) ( 10 1 5 ) ( 10 1 10 ) ( s d K s s y K s K s y c sp c c − − + − − = ( ) c c sp K s K s G 10 1 10 ) ( − − = ( ) c load K s s G 10 1 5 ) ( − − = Example 5.1.1 (Continued) and The transfer function: The closed loop will have negative pole if 10 1 > c K STABLE 5.1 Konsep Kestabilan Sistem Loop Tertutup
  • 11. 5 - ANALISIS KESTABILAN SISTEM PENGENDALIAN UMPAN BALIK – DR. ENG. Y. D. HERMAWAN INDALPRO / 11 Gambar 5.1.5. Penerapan FBC Note: P only controller with Kc = 1 Example 5.1.1 (Continued) 5.1 Konsep Kestabilan Sistem Loop Tertutup
  • 12. 5 - ANALISIS KESTABILAN SISTEM PENGENDALIAN UMPAN BALIK – DR. ENG. Y. D. HERMAWAN INDALPRO / 12 Gambar 5.1.6. Tanggapan dinamik sistem terkendali terhadap perubahan satu unit gangguan dengan fungsi tahap 0 0.5 1 1.5 2 0 0.2 0.4 0.6 0.8 1 Time y Note: Regulatory problem; with Kc = 1 Stable offset 5.1 Konsep Kestabilan Sistem Loop Tertutup
  • 13. 5 - ANALISIS KESTABILAN SISTEM PENGENDALIAN UMPAN BALIK – DR. ENG. Y. D. HERMAWAN INDALPRO / 13 Example 5.1.2: Destabilization of a stable process with PI Control • process with 2nd order TF: 2 2 1 ) ( 2 + + = s s s Gp • System has two complex poles: • Therefore, System is stable p1 = -1 + j p2 = -1 − j 0 2 4 6 8 10 0 0.1 0.2 0.3 0.4 0.5 0.6 Time (second) y Gambar 5.1.7. Tanggapan stabil loop terbuka terhadap perubahan satu unit gangguan dengan fungsi tahap 5.1 Konsep Kestabilan Sistem Loop Tertutup
  • 14. 5 - ANALISIS KESTABILAN SISTEM PENGENDALIAN UMPAN BALIK – DR. ENG. Y. D. HERMAWAN INDALPRO / 14 Example 5.1.2 (Continued) • Implementation of PI Control ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ + = s K s G I C C τ 1 1 ) ( • Assume that Gm = Gf = 1 • The closed loop response for servo problem ) ( ) ( ) ( 1 ) ( s y s G s y G G G G s y sp sp sp c p c p = + = ( ) ( ) I c c I I c I I c I I c sp K s K s s s K s s K s s s s K s s s G τ τ τ τ τ τ τ + + + + + = + + + + + + + = 2 2 1 1 2 2 1 1 1 2 2 1 ) ( 2 3 2 2 5.1 Konsep Kestabilan Sistem Loop Tertutup
  • 15. 5 - ANALISIS KESTABILAN SISTEM PENGENDALIAN UMPAN BALIK – DR. ENG. Y. D. HERMAWAN INDALPRO / 15 Example 5.1.2 (Continued) • Let Kc = 100 and τI = 0.1 • Poles of Gsp: s3 + 2s2 + (2+100)s + 100/0.1 • P1 = -7.18 ; p2 = 2.59 + 11.5j ; P3 = 2.59 – 11.5j 0 0.2 0.4 0.6 0.8 1 -10 -5 0 5 10 Time (second) y Gambar 5.1.8. Tanggapan tidak stabil dari loop tertutup 5.1 Konsep Kestabilan Sistem Loop Tertutup
  • 16. 5 - ANALISIS KESTABILAN SISTEM PENGENDALIAN UMPAN BALIK – DR. ENG. Y. D. HERMAWAN INDALPRO / 16 Example 5.1.2 (Continued) 0 5 10 15 20 25 30 35 40 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 Time (second) y Gambar 5.1.9. Tanggapan stabil loop tertutup Kc = 10 and τI = 0.5 5.1 Konsep Kestabilan Sistem Loop Tertutup
  • 17. 5 - ANALISIS KESTABILAN SISTEM PENGENDALIAN UMPAN BALIK – DR. ENG. Y. D. HERMAWAN INDALPRO / 17 5.2 The Characteristic Equation ) ( 1 ) ( 1 ) ( s d G G G G G s y G G G G G G G s y m c f p d sp m c f p c f p + + + = ) ( ) ( ) ( ) ( ) ( s d s G s y s G s y load sp sp + = The closed loop response of FBC : The characteristic equation : 1 + GpGfGcGm = 0 denominator
  • 18. 5 - ANALISIS KESTABILAN SISTEM PENGENDALIAN UMPAN BALIK – DR. ENG. Y. D. HERMAWAN INDALPRO / 18 Let p1, p2, …, pn be the n roots of the Characteristic Equation 1 + GpGfGcGm = (s – p1) (s – p2) … (s – pn) Stability criterion of a closed loop system A FBC system is stable if all the roots of its characteristic equation have negative real part (i.e. are to the left of the imaginary axis) 5.2 Persamaan Karakteristik
  • 19. 5 - ANALISIS KESTABILAN SISTEM PENGENDALIAN UMPAN BALIK – DR. ENG. Y. D. HERMAWAN INDALPRO / 19 Example 5.2.1: Stability analysis of FBC based on characteristic equation c c m f p K G G G s G = = = − = 1 1 1 10 ( )( )( ) 0 1 1 1 10 1 1 = ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ − + = + c m c f p K s G G G G Again, consider Ex. 5.1.1 characteristic equation: Which has the root: p = 1 – 10Kc ∴ The system is stable IF p < 0 10 1 > c K 5.2 Persamaan Karakteristik
  • 20. 5 - ANALISIS KESTABILAN SISTEM PENGENDALIAN UMPAN BALIK – DR. ENG. Y. D. HERMAWAN INDALPRO / 20 Example 5.2.1 (Continued) ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ + = = = + + = s K G G G s s G I c c m f p τ 1 1 ; 1 ; 1 ; 2 2 1 2 ( )( ) 0 1 1 2 2 1 1 1 2 = ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ + ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ + + + = + s K s K s s G G G G I c I c m c f p τ τ Again, consider Ex. 5.1.2 characteristic equation: Which has three roots, Æ Kc and τI affect the value of roots (i.e. positive or negative) ( ) 0 2 2 2 3 = + + + + I c c K s K s s τ 5.2 Persamaan Karakteristik
  • 21. 5 - ANALISIS KESTABILAN SISTEM PENGENDALIAN UMPAN BALIK – DR. ENG. Y. D. HERMAWAN INDALPRO / 21 5.3 Kestabilan Berdasarkan Ultimate Response Pada bagian ini kita akan membahas batasan kestabilan berdasarkan respon kritis (ultimate response). Ingat kembali! Respon stabil jika akar-akar denominator pada FT adalah negatif (di sebelah kiri sumbu imaginer pada bidang kompleks). Metode Substitusi Langsung Metode ini sangat mudah untuk mencari parameter-parameter pengendalian yang mana dapat menghasilkan respon stabil. Jika pers. karakteristik mempunyai satu atau dua akar yang terletak tepat pada sumbu imaginer, maka menghasilkan respon kritis (osilasi terjaga). Ultimate Gain, Kcu: gain pengendali yang mana dapat menghasilkan respon kritis.
  • 22. 5 - ANALISIS KESTABILAN SISTEM PENGENDALIAN UMPAN BALIK – DR. ENG. Y. D. HERMAWAN INDALPRO / 22 5.3 Kestabilan Berdasarkan Ultimate Response Gambar 5.3.1 respon loop tertutup dengan Kc = Kcu ( ) ( ) θ ω + = t t C u sin u u T ω π 2 = -1.1 -1 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 0 5 10 15 20 25 30 c(t) Tu t Ultimate period ωu = ultimate frequency
  • 23. 5 - ANALISIS KESTABILAN SISTEM PENGENDALIAN UMPAN BALIK – DR. ENG. Y. D. HERMAWAN INDALPRO / 23 ( ) ( ) ( ) ( ) 0 1 = + s G s G s G s G m c f p Persamaan Karakteristik loop tertutup: denominator dari FT loop tertutup ... (5.3.1) Substitusi langsung: s = i ωu Bagian real = 0 Bagian imaginer = 0 Penyelesaian secara simultan menghasilkan ultimate gain, Kcu Contoh 5.3.1: mencari Kcu dan ωu untuk pengendali suhu pada HE Steam Process fluid Ti(t), oC Condensate TC W(t), kg/s To(t), oC TT To set (t), oC Ws(t), kg/s M(t), %CO C(t), %TO 5.3 Kestabilan Berdasarkan Ultimate Response
  • 24. 5 - ANALISIS KESTABILAN SISTEM PENGENDALIAN UMPAN BALIK – DR. ENG. Y. D. HERMAWAN INDALPRO / 24 ( ) TO CO K s G c c % % = ( ) CO s kg s s Gv % / 1 3 016 . 0 + = ( ) s kg C s s G o S / 1 30 50 + = ( ) C TO s s G o m % 1 10 1 + = + W(s) + C(s), %TO M(s) E(s) R(s) + − Gc(s) Gm(s) Gv(s) Ksp %TO %CO GS(s) Gw(s) Ws (s) kg/s To(t), oC To set (t), oC %TO kg/s Gambar 5.3.2. Diagram blok pengendali suhu pada HE P Control dimana: 5.3 Kestabilan Berdasarkan Ultimate Response
  • 25. 5 - ANALISIS KESTABILAN SISTEM PENGENDALIAN UMPAN BALIK – DR. ENG. Y. D. HERMAWAN INDALPRO / 25 ( ) ( ) ( ) ( ) 0 1 = + s G s G s G s G c v S m Persamaan Karakteristik loop tertutup: 0 80 . 0 1 43 420 900 2 3 = + + + + c K s s s 0 1 3 016 . 0 1 30 50 1 10 1 1 = ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ + ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ + ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ + + c K s s s Penyusunan kembali persamaan di atas diperoleh: ( )( )( ) 0 80 . 0 1 3 1 30 1 10 = + + + + c K s s s Substitusi s = i ωu pada Kc = Kcu: 0 80 . 0 1 43 420 900 2 2 3 3 = + + + + c u u u K i i i ω ω ω ( ) ( ) 0 0 43 900 80 . 0 1 420 3 2 i i K u u c u + = + − + + + − ω ω ω i2 = –1 5.3 Kestabilan Berdasarkan Ultimate Response
  • 26. 5 - ANALISIS KESTABILAN SISTEM PENGENDALIAN UMPAN BALIK – DR. ENG. Y. D. HERMAWAN INDALPRO / 26 Bagian real dan imaginer harus sama dengan nol: 0 80 . 0 1 420 2 = + + − c u K ω 0 43 900 3 = + − u u ω ω Kedua pers. di atas diselesaikan secara simultan, menghasilkan: ωu = 0 Kcu = –1.25 %CO/TO ωu = 0.2186 rad/sec Kcu = 23.8 %CO/TO relevant Jadi diperoleh ultimate period: sec 7 . 28 2186 . 0 2 = = π u T Jika diinginkan respon STABIL, maka Kc < Kcu 5.3 Kestabilan Berdasarkan Ultimate Response
  • 27. 5 - ANALISIS KESTABILAN SISTEM PENGENDALIAN UMPAN BALIK – DR. ENG. Y. D. HERMAWAN INDALPRO / 27 0 50 100 150 200 -0.5 0 0.5 1 Temperature [degC] Time [sec] 0 50 100 150 200 -0.2 -0.1 0 Steam [kg/sec] Time [sec] Gambar 5.3.3. Tanggapan kritis pengendali suhu terhadap perubahan satu unit set point dengan fungsi tahap (Contoh 5.3.1) Kc = Kcu = 23.8 5.3 Kestabilan Berdasarkan Ultimate Response
  • 28. 5 - ANALISIS KESTABILAN SISTEM PENGENDALIAN UMPAN BALIK – DR. ENG. Y. D. HERMAWAN INDALPRO / 28 0 50 100 150 200 -1 0 1 2 Temperature [degC] Time [sec] 0 50 100 150 200 -0.2 -0.1 0 Steam [kg/sec] Time [sec] Gambar 5.3.4. Tanggapan stabil pengendali suhu terhadap perubahan satu unit set point dengan fungsi tahap (Contoh 5.3.1) Kc = 10 5.3 Kestabilan Berdasarkan Ultimate Response
  • 29. 5 - ANALISIS KESTABILAN SISTEM PENGENDALIAN UMPAN BALIK – DR. ENG. Y. D. HERMAWAN INDALPRO / 29 0 50 100 150 200 -5 0 5 Temperature [degC] Time [sec] 0 50 100 150 200 -1 -0.5 0 0.5 Steam [kg/sec] Time [sec] 5.3 Kestabilan Berdasarkan Ultimate Response Gambar 5.3.5. Tanggapan tidak stabil pengendali suhu terhadap perubahan satu unit set point dengan fungsi tahap (Contoh 5.3.1) Kc = 30
  • 30. 5 - ANALISIS KESTABILAN SISTEM PENGENDALIAN UMPAN BALIK – DR. ENG. Y. D. HERMAWAN INDALPRO / 30 5.4 Routh-Hurwitz Stability Criterion • Does not require calculation of actual values of the roots of the characteristic equation. • But, it only requires that we know if any root is to the right of imaginary axis • Make a conclusion as to the stability of closed loop system quickly without computing the actual values of the roots
  • 31. 5 - ANALISIS KESTABILAN SISTEM PENGENDALIAN UMPAN BALIK – DR. ENG. Y. D. HERMAWAN INDALPRO / 31 Expand the characteristic eq. into the following polynomial form 1 + GpGfGcGm ≡ ao sn + a1 sn-1 + … + an-1 s + an = 0 Let ao be positive, if it is negative, multiply both sides of equation by −1. First Test: If any of coefficients a1 , a2 , … , an-1 , an is negative; there is at least one root of the characteristic eq. which has positive real part Æ UNSTABLE Second Test: If all coefficients a1 , a2 , … , an-1 , an are positive; Then, from the 1st test we cannot conclude anything about the location of the roots. Form the following array (known as Routh array): 5.4 Kriteria Kestabilan Routh-Harwitz
  • 32. 5 - ANALISIS KESTABILAN SISTEM PENGENDALIAN UMPAN BALIK – DR. ENG. Y. D. HERMAWAN INDALPRO / 32 Routh Array … . . W2 W1 n+1 . . . . … . A3 C2 C1 5 … . B3 B2 B1 4 … . A3 A2 A1 3 … a7 a5 a3 a1 2 … a6 a4 a2 a0 1 Row 5.4 Kriteria Kestabilan Routh-Harwitz
  • 33. 5 - ANALISIS KESTABILAN SISTEM PENGENDALIAN UMPAN BALIK – DR. ENG. Y. D. HERMAWAN INDALPRO / 33 Where 1 3 0 2 1 1 a a a a a A − = 1 5 0 4 1 2 a a a a a A − = 1 7 0 6 1 3 a a a a a A − = 1 2 1 3 1 1 A A a a A B − = 1 3 1 5 1 2 A A a a A B − = 1 2 1 2 1 1 B B A A B C − = 1 3 1 3 1 2 B B A A B C − = . . . . . . . . . etc. 5.4 Kriteria Kestabilan Routh-Harwitz
  • 34. 5 - ANALISIS KESTABILAN SISTEM PENGENDALIAN UMPAN BALIK – DR. ENG. Y. D. HERMAWAN INDALPRO / 34 Examine the elements of the first column of the array above • If any of these elements is negative, we have at least one root to the right of the imaginary axis and the system is UNSTABLE • The number of sign changes in the elements of the first column is equal to the number of roots to the right of the imaginary axis a0 a1 A1 B1 C1 . . . W1 ∴ A system is STABLE IF all the elements in the first column of the Routh Array are POSITIVE 5.4 Kriteria Kestabilan Routh-Harwitz
  • 35. 5 - ANALISIS KESTABILAN SISTEM PENGENDALIAN UMPAN BALIK – DR. ENG. Y. D. HERMAWAN INDALPRO / 35 Example 5.4.1: Stability Analysis with the Routh- Hurwitz Criterion ( ) 0 2 2 2 3 = + + + + I c c K s K s s τ I c K τ Consider FBC system in Ex. 5.1.2, Its Characteristic eq. is ( ) 2 2 2 I c c K K τ − + I c K τ Routh array is: Row 1st Column 1 2 3 4 1 2 2 + Kc 0 5.4 Kriteria Kestabilan Routh-Harwitz
  • 36. 5 - ANALISIS KESTABILAN SISTEM PENGENDALIAN UMPAN BALIK – DR. ENG. Y. D. HERMAWAN INDALPRO / 36 Example 5.4.1 (Continued) ( ) ⎥ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎢ ⎣ ⎡ − + I c I c c K K K τ τ , 2 2 2 , 2 , 1 The elements of the first column are: Third element can be positive or negative depending on the values of Kc and τI The system is STABLE if Kc and τI satisfy the condition: ( ) I c c K K τ > + 2 2 5.4 Kriteria Kestabilan Routh-Harwitz
  • 37. 5 - ANALISIS KESTABILAN SISTEM PENGENDALIAN UMPAN BALIK – DR. ENG. Y. D. HERMAWAN INDALPRO / 37 Example 5.4.2: Critical stability Conditions for FBC Return to Ex.5.4.1, and Let τI= 0.1 ( ) 2 10 2 2 c c K K − + 3rd element becomes: IF Kc = 0.5 Æ third element = 0 Æ critical condition, two roots on imaginary axis (pure imaginary) Æ ± j(1.58) Æ sustained sinusoidal response IF Kc < 0.5 Æ third element is positive Æ STABLE IF Kc > 0.5 Æ third element is negative Æ UNSTABLE 5.4 Kriteria Kestabilan Routh-Harwitz
  • 38. 5 - ANALISIS KESTABILAN SISTEM PENGENDALIAN UMPAN BALIK – DR. ENG. Y. D. HERMAWAN INDALPRO / 38 5.3 Kestabilan Berdasarkan Ultimate Response Gambar 5.4.1. Tanggapan kritis dari sistem terkendali terhadap perubahan satu unit set point dengan fungsi tahap (Contoh 5.4.1) Kc = 0.5 ; thoi = 0.1 0 5 10 15 0 0.5 1 1.5 2 CV Time [sec] 0 5 10 15 -2 0 2 4 6 MV Time [sec]
  • 39. 5 - ANALISIS KESTABILAN SISTEM PENGENDALIAN UMPAN BALIK – DR. ENG. Y. D. HERMAWAN INDALPRO / 39 5.3 Kestabilan Berdasarkan Ultimate Response Gambar 5.4.2. Tanggapan stabil dari sistem terkendali terhadap perubahan satu unit set point dengan fungsi tahap (Contoh 5.4.1) Kc = 0.1 ; thoi = 0.1 0 5 10 15 0 0.5 1 1.5 CV Time [sec] 0 5 10 15 0 1 2 3 MV Time [sec]
  • 40. 5 - ANALISIS KESTABILAN SISTEM PENGENDALIAN UMPAN BALIK – DR. ENG. Y. D. HERMAWAN INDALPRO / 40 5.3 Kestabilan Berdasarkan Ultimate Response Gambar 5.4.3. Tanggapan tidak stabil dari sistem terkendali terhadap perubahan satu unit set point dengan fungsi tahap (Contoh 5.4.1) Kc = 1 ; thoi = 0.1 0 5 10 15 -20 -10 0 10 20 CV Time [sec] 0 5 10 15 -200 -100 0 100 MV Time [sec]
  • 41. 5 - ANALISIS KESTABILAN SISTEM PENGENDALIAN UMPAN BALIK – DR. ENG. Y. D. HERMAWAN INDALPRO / 41 5.5 Root-Locus Analysis • Root Locus is a graphical technique that consists of graphing the roots of the characteristic equation • The resulting graph allows to see whether a root crosses the imaginary axis to the right hand side of the s-plane 5.5 Analisis Kestabilan dengan Root-Locus
  • 42. 5 - ANALISIS KESTABILAN SISTEM PENGENDALIAN UMPAN BALIK – DR. ENG. Y. D. HERMAWAN INDALPRO / 42 Example 5.5.1: Root locus for a Reactor with P Control R A Flow rate = m Flow rate = F – m Flow rate = F Concentration in C = y Reactions: A + R Æ B B + R Æ C C + R Æ D D + R Æ E The control objective is to keep the concentration of the desired product C as close as possible to its set point by manipulating the flow rate of A 5.5 Analisis Kestabilan dengan Root-Locus
  • 43. 5 - ANALISIS KESTABILAN SISTEM PENGENDALIAN UMPAN BALIK – DR. ENG. Y. D. HERMAWAN INDALPRO / 43 Example 5.5.1: (Continued) ( ) ( )( ) ( ) 35 . 4 85 . 2 45 . 1 25 . 2 98 . 2 ) ( ) ( ) ( 2 + + + + = = s s s s s m s y s Gp TF of the process: ( ) ( )( ) ( ) 0 35 . 4 85 . 2 45 . 1 25 . 2 98 . 2 1 2 = + + + + + c K s s s s Implementation of P Control with Gc(s) = Kc , and Assume that Gm = Gf = 1, we have the following characteristic equation: S4 + 11.5 s3 + 47.49 s2 + (2.98Kc + 83.0633)s + (6.705Kc + 51.2327) = 0 5.5 Analisis Kestabilan dengan Root-Locus
  • 44. 5 - ANALISIS KESTABILAN SISTEM PENGENDALIAN UMPAN BALIK – DR. ENG. Y. D. HERMAWAN INDALPRO / 44 Roots of the characteristic equation (for ex. 5.5.1) −9.85 +0.30 − 5.70 j +0.30 + 5.70 j −2.25 100 −8.49 −0.38 − 4.48 j −0.38 + 4.48 j −2.24 50 −7.14 −1.06 − 3.23 j −1.06 + 3.23 j −2.23 20 −5.77 −1.76 − 1.88 j −1.76 + 1.88 j −2.20 5 −4.89 −2.34 − 0.82 j −2.34 + 0.82 j −1.92 1 −2.85 −2.85 −2.85 − 1.45 0 p4 p3 p2 p1 Kc 5.5 Analisis Kestabilan dengan Root-Locus
  • 45. 5 - ANALISIS KESTABILAN SISTEM PENGENDALIAN UMPAN BALIK – DR. ENG. Y. D. HERMAWAN INDALPRO / 45 Gambar 5.5.1. Root-Locus of the reactor in Ex. 5.5.1 -20 -15 -10 -5 0 5 10 15 -20 -15 -10 -5 0 5 10 15 20 Root Locus Real Axis Imaginary Axis 5.5 Analisis Kestabilan dengan Root-Locus
  • 46. 5 - ANALISIS KESTABILAN SISTEM PENGENDALIAN UMPAN BALIK – DR. ENG. Y. D. HERMAWAN INDALPRO / 46 Gambar 5.5.2. Tanggapan stabil loop terkendali terhadap perubahan satu unit set-point (Ex. 5.5.1) Kc = 50 Kc = 20 Kc = 5 Kc = 1 0 2 4 6 8 10 12 14 16 18 20 0 0.5 1 1.5 Time (Sec) y Offset New set-point 5.5 Analisis Kestabilan dengan Root-Locus
  • 47. 5 - ANALISIS KESTABILAN SISTEM PENGENDALIAN UMPAN BALIK – DR. ENG. Y. D. HERMAWAN INDALPRO / 47 0 2 4 6 8 10 12 14 16 18 20 0 0.5 1 1.5 2 Time (Sec) y Critical condition Kc = 75 5.5 Analisis Kestabilan dengan Root-Locus Gambar 5.5.3. Tanggapan kritis dari loop terkendali terhadap perubahan satu unit set-point (Ex. 5.5.1)
  • 48. 5 - ANALISIS KESTABILAN SISTEM PENGENDALIAN UMPAN BALIK – DR. ENG. Y. D. HERMAWAN INDALPRO / 48 0 2 4 6 8 10 12 14 16 18 20 -300 -200 -100 0 100 200 300 Time (Sec) y Kc = 100 5.5 Analisis Kestabilan dengan Root-Locus Gambar 5.5.4. Tanggapan tak-stabil dari loop terkendali terhadap perubahan satu unit set-point (Ex. 5.5.1)