SlideShare una empresa de Scribd logo
1 de 6
Descargar para leer sin conexión
[[EN CONSTRUCCION ]] Principal Documentos Proyectos Productos Links Contacto
Compuertas lógicas.
SEPA CUALES SON
Y COMO SE COMPORTAN
LAS DISTINTAS
COMPUERTAS
LÓGICAS
INTRODUCCIÓN:
Dentro de la electrónica digital, existe un gran número de
problemas a resolver que se repiten normalmente. Por ejemplo, es
muy común que al diseñar un circuito electrónico necesitemos
tener el valor opuesto al de un punto determinado, o que cuando
un cierto número de pulsadores estén activados, una salida
permanezca apagada. Todas estas situaciones pueden ser
expresadas mediante ceros y unos, y tratadas mediante circuitos
digitales.
Los elementos básicos de cualquier circuito digital son las
compuertas lógicas.
ÍNDICE:
> Introduccion
> Compuerta IF (SI)
> Compuerta NOT (NO)
> Compuerta AND (Y)
> Compuerta OR (O)
> Compuerta NAND (NO Y)
> Compuerta NOR (NO O)
> Compuerta XOR (O Exclusivo)
> Compuerta NXOR (No O Exclusivo)
INTRODUCCIÓN:
Hay disponible una gran variedad de compuertas estándar, cada una con un comportamiento
perfectamente definido, y es posible combinarlas entre si para obtener funciones nuevas.
Desde el punto de vista practico, podemos considerar a cada compuerta como una caja negra, en la que
se introducen valores digitales en sus entradas, y el valor del resultado aparece en la salida.
Cada compuerta tiene asociada una tabla de verdad, que expresa en forma de lista el estado de su salida
para cada combinación posible de estados en la(s) entrada(s).
Si bien al pensar en la electrónica digital es muy común que asumamos que se trata de una tecnología
relativamente nueva, vale la pena recordar que Claude E. Shannon experimento con relés e
interruptores conectados en serie, paralelo u otras configuraciones para crear las primeras compuertas
lógicas funcionales. En la actualidad, una compuerta es un conjunto de transistores dentro de un circuito
integrado, que puede contener cientos de ellas. De hecho, un microprocesador no es más que un chip
compuesto por millones de compuertas lógicas.
Veremos a continuación que símbolo se utiliza para cada compuerta, y su tabla de verdad.
Compuerta IF (SI)
La compuerta IF se representa
con un triángulo.
La puerta lógica IF, llamada SI en castellano, realiza la función
booleana de la igualdad. En los esquemas de un circuito electrónico
se simboliza mediante un triangulo, cuya base corresponde a la
entrada, y el vértice opuesto la salida. Su tabla de verdad es
también sencilla: la salida toma siempre el valor de la entrada. Esto
significa que si en su entrada hay un nivel de tensión alto, también
lo habrá en su salida; y si la entrada se encuentra en nivel bajo, su
salida también estará en ese estado.
En electrónica, generalmente se utilizan compuertas IF como amplificadores de corriente (buffers en
ingles), para permitir manejar dispositivos que tienen consumos de corriente elevados desde otros que
solo pueden entregar corrientes más débiles.
Entrada A Salida S
0 1
1 0
Entrada A Entrada B Salida S
0 0 0
0 1 0
1 0 0
1 1 1
Entrada A Entrada B Entrada C Salida S
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1
Entrada A Salida A
0 0
1 1
La compuerta IF es la más sencilla de todas.
Compuerta NOT (NO)
El circulo en la salida significa
negación.
Esta compuerta presenta en su salida un valor que es el opuesto del
que esta presente en su única entrada. En efecto, su función es la
negación, y comparte con la compuerta IF la característica de tener
solo una entrada.
Se utiliza cuando es necesario tener disponible un valor lógico
opuesto a uno dado. La figura muestra el símbolo utilizado en los
esquemas de circuitos para representar esta compuerta, y su tabla
de verdad.
Se simboliza en un esquema eléctrico en el mismo símbolo que la compuerta IF, con un pequeño circulo
agregado en su salida, que representa la negación.
El estado de la salida es el opuesto al de la entrada.
Compuerta AND (Y)
Compuertas AND de 2 y 4
entradas
Con dos o más entradas, esta compuerta realiza la función
booleana de la multiplicación.
Su salida será un “1” cuando todas sus entradas también estén en
nivel alto. En cualquier otro caso, la salida será un “0”. El operador
AND se lo asocia a la multiplicación, de la misma forma que al
operador SI se lo asociaba a la igualdad.
En efecto, el resultado de multiplicar entre si diferentes valores
binarios solo dará como resultado “1” cuando todos ellos también
sean 1, como se puede ver en su tabla de verdad.
Matemáticamente se lo simboliza con el signo “x”.
Tabla de verdad de la compuerta AND de dos
entradas.
Es posible tener más de dos
entradas.
Podemos pensar en esta compuerta como una lámpara, que hace las veces de salida, en serie con la
fuente de alimentación y dos o mas interruptores, cada uno oficiando de entrada. La lámpara se
encenderá únicamente cuando todos los interruptores estén cerrados. En este ejemplo, el estado de los
interruptores es “1” cuando están cerrados y 0 cuando están abiertos. La salida esta en 1 cuando la
Entrada A Entrada B Salida S
0 0 0
0 1 1
1 0 1
1 1 1
Entrada A Entrada B Entrada C Salida S
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1
lámpara esta encendida, y en 0 cuando esta apagada.
Circuito eléctrico equivalente a una compuerta AND.
Compuerta OR (O)
La función booleana que realiza la compuerta OR es la asociada a la
suma, y matemáticamente la expresamos como “+”.
Esta compuerta presenta un estado alto en su salida cuando al
menos una de sus entradas también esta en estado alto.
En cualquier otro caso, la salida será 0.
Tal como ocurre con las compuertas AND, el número de entradas
puede ser mayor a dos.
A la izquierda, compuertas AND de 2 y 4 entradas
Tabla correspondiente a una OR de dos
entradas.
Con tres entradas, la tabla
contiene el doble de estados
posibles.
Un circuito eléctrico equivalente a esta compuerta esta compuesto por una lámpara conectada en serie
con la alimentación y con dos o mas interruptores que a su vez están conectados en paralelo entre si.
Nuevamente, los interruptores serian las entradas, y la lámpara la salida. Si seguimos las convenciones
fijadas en el ejemplo visto al explicar la compuerta AND, tenemos que si ambos interruptores están
abiertos (o en 0), la lámpara permanece apagada. Pero basta que cerremos uno o más de los
interruptores para que la lámpara se encienda.
Entrada A Entrada B Salida S
0 0 1
0 1 1
1 0 1
1 1 0
Circuito eléctrico equivalente a una compuerta OR.
Compuerta NAND (NO Y)
Agregando una etapa NOT a una
compuerta AND obtenemos una
NAND.
Cualquier compuerta lógica se puede negar, esto es, invertir el
estado de su salida, simplemente agregando una compuerta NOT
que realice esa tarea. Debido a que es una situación muy común,
se fabrican compuertas que ya están negadas internamente. Este
es el caso de la compuerta NAND: es simplemente la negación de
la compuerta AND vista anteriormente.
Esto modifica su tabla de verdad, de hecho la invierte (se dice
que la niega) quedando que la salida solo será un 0 cuando todas
sus entradas estén en 1.
El pequeño círculo en su salida es el que simboliza la negación. El
numero de entradas debe ser como mínimo de dos, pero no es
raro encontrar NAND de 3 o mas entradas.
La compuerta NAND es una AND negada.
Compuerta NOR (NO O)
De forma similar a lo explicado con la compuerta NAND, una
compuerta NOR es la negación de una compuerta OR, obtenida
agregando una etapa NOT en su salida.
Agregando una etapa NOT a una compuerta AND obtenemos
una NAND.
Entrada A Entrada B Salida S
0 0 1
0 1 0
1 0 0
1 1 0
Entrada A Entrada B Salida S
0 0 0
0 1 1
1 0 1
1 1 0
Entrada A Entrada B Salida S
0 0 1
0 1 0
Como podemos ver en su tabla de verdad, la salida de una compuerta NOR es 1 solamente cuando todas
sus entradas son 0. Igual que en casos anteriores, la negación se expresa en los esquemas mediante un
círculo en la salida. El número de entradas también puede ser mayor a dos.
Tabla de verdad de la compuerta NOR.
Compuerta XOR (O Exclusivo)
XOR es la función ideal para
sumar dígitos binarios.
La compuerta OR vista anteriormente realiza la operación lógica
correspondiente al O inclusivo, es decir, una o ambas de las
entradas deben estar en 1 para que la salida sea 1. Un ejemplo de
esta compuerta en lenguaje coloquial seria “Mañana iré de compras
o al cine”. Basta con que vaya de compras o al cine para que la
afirmación sea verdadera. En caso de que realice ambas cosas, la
afirmación también es verdadera. Aquí es donde la función XOR
difiere de la OR: en una compuerta XOR la salida será 0 siempre
que las entradas sean distintas entre si. En el ejemplo anterior, si
se tratase de la operación XOR, la salida seria 1 solamente si
fuimos de compras o si fuimos al cine, pero 0 si no fuimos a
ninguno de esos lugares, o si fuimos a ambos.
La salida es 1 solo cuando las entradas son
diferentes.
Esta característica hace de la compuerta XOR un componente imprescindible en los circuitos sumadores
de números binarios, tal como los utilizados en las calculadoras electrónicas.
Compuerta NXOR (No O Exclusivo)
XOR + NOT = NXOR
No hay mucho para decir de esta compuerta. Como se
puede deducir de los casos anteriores, una compuerta
NXOR no es más que una XOR con su salida negada, por
lo que su salida estará en estado alto solamente cuando
sus entradas son iguales, y en estado bajo para las
demás combinaciones posibles.
1 0 0
1 1 1
Tabla de verdad de la compuerta NXOR.
www.ucontrol.com.ar | Desarrollo de sistemas de automatización y control | Pehuajó - Buenos Aires - Argentina
e-mail: arielpalazzesi@gmail.com

Más contenido relacionado

La actualidad más candente

Compuertas logicas basicas_y_algebra_de_boole_2009
Compuertas logicas basicas_y_algebra_de_boole_2009Compuertas logicas basicas_y_algebra_de_boole_2009
Compuertas logicas basicas_y_algebra_de_boole_2009
Moises
 
Compuertas lógicas
Compuertas lógicasCompuertas lógicas
Compuertas lógicas
Eli Zabeth
 
Prese ntacion compuertas logicas
Prese ntacion compuertas logicasPrese ntacion compuertas logicas
Prese ntacion compuertas logicas
carlosalbertogamboa
 
Compuertas lógicas
Compuertas lógicasCompuertas lógicas
Compuertas lógicas
Ely Ch
 
Compuertas logicas
Compuertas logicasCompuertas logicas
Compuertas logicas
luisj9212
 
Compuertas Logicas
Compuertas LogicasCompuertas Logicas
Compuertas Logicas
David
 
Compuertas Logicas
Compuertas LogicasCompuertas Logicas
Compuertas Logicas
gueste89e47
 

La actualidad más candente (20)

Compuertas logicas basicas_y_algebra_de_boole_2009
Compuertas logicas basicas_y_algebra_de_boole_2009Compuertas logicas basicas_y_algebra_de_boole_2009
Compuertas logicas basicas_y_algebra_de_boole_2009
 
Puerta lógica
Puerta lógicaPuerta lógica
Puerta lógica
 
Electronica puertas lógicas
Electronica puertas lógicasElectronica puertas lógicas
Electronica puertas lógicas
 
Compuertas Lógicas NOR, XOR, NAND, XNOR
Compuertas Lógicas NOR, XOR, NAND, XNORCompuertas Lógicas NOR, XOR, NAND, XNOR
Compuertas Lógicas NOR, XOR, NAND, XNOR
 
Compuertas Lógicas (electrónica)
Compuertas Lógicas (electrónica)Compuertas Lógicas (electrónica)
Compuertas Lógicas (electrónica)
 
Compuertas Logicas
Compuertas LogicasCompuertas Logicas
Compuertas Logicas
 
Compuertas logicas
Compuertas logicasCompuertas logicas
Compuertas logicas
 
Compuertas logicas aplicacion en electronica
Compuertas logicas aplicacion en electronicaCompuertas logicas aplicacion en electronica
Compuertas logicas aplicacion en electronica
 
Compuertas lógicas
Compuertas lógicasCompuertas lógicas
Compuertas lógicas
 
Prese ntacion compuertas logicas
Prese ntacion compuertas logicasPrese ntacion compuertas logicas
Prese ntacion compuertas logicas
 
Compuertas Logicas
Compuertas LogicasCompuertas Logicas
Compuertas Logicas
 
Compuertas lógicas
Compuertas lógicasCompuertas lógicas
Compuertas lógicas
 
2. electronica digital
2. electronica digital2. electronica digital
2. electronica digital
 
Compuertas logicas
Compuertas logicasCompuertas logicas
Compuertas logicas
 
Compuertas 1
Compuertas 1Compuertas 1
Compuertas 1
 
Compuertas lógicas
Compuertas lógicasCompuertas lógicas
Compuertas lógicas
 
Las Compuertas Logicas
Las Compuertas LogicasLas Compuertas Logicas
Las Compuertas Logicas
 
Compuertas Logicas
Compuertas LogicasCompuertas Logicas
Compuertas Logicas
 
Instituto Tecnologico Sudamericano
Instituto Tecnologico SudamericanoInstituto Tecnologico Sudamericano
Instituto Tecnologico Sudamericano
 
Compuertas Logicas
Compuertas LogicasCompuertas Logicas
Compuertas Logicas
 

Similar a Compuertas (20)

Compuertas Logicas
Compuertas LogicasCompuertas Logicas
Compuertas Logicas
 
Circuitos es compuertas
Circuitos es compuertasCircuitos es compuertas
Circuitos es compuertas
 
Practica #1
Practica #1Practica #1
Practica #1
 
compuertas logicas
compuertas logicascompuertas logicas
compuertas logicas
 
Compuertas logicas
Compuertas logicasCompuertas logicas
Compuertas logicas
 
Compuertas logicas
Compuertas logicasCompuertas logicas
Compuertas logicas
 
Electricidad.pptx
Electricidad.pptxElectricidad.pptx
Electricidad.pptx
 
inicio a las Compuertas Logicas en la electricidad.pptx
inicio a las Compuertas Logicas en la electricidad.pptxinicio a las Compuertas Logicas en la electricidad.pptx
inicio a las Compuertas Logicas en la electricidad.pptx
 
Compuertas logicas
Compuertas logicas Compuertas logicas
Compuertas logicas
 
Compuertas logicas
Compuertas logicasCompuertas logicas
Compuertas logicas
 
Compuertas logicas
Compuertas logicasCompuertas logicas
Compuertas logicas
 
Compuertas logicas
Compuertas logicasCompuertas logicas
Compuertas logicas
 
Compuertas logicas
Compuertas logicasCompuertas logicas
Compuertas logicas
 
Compuertas logicas
Compuertas logicasCompuertas logicas
Compuertas logicas
 
Compuertas logicas (nx power_lite)
Compuertas logicas (nx power_lite)Compuertas logicas (nx power_lite)
Compuertas logicas (nx power_lite)
 
Compuertas logicas
Compuertas logicasCompuertas logicas
Compuertas logicas
 
Compuertas logicas
Compuertas logicasCompuertas logicas
Compuertas logicas
 
Compuertas logicas (nx power_lite)
Compuertas logicas (nx power_lite)Compuertas logicas (nx power_lite)
Compuertas logicas (nx power_lite)
 
Compuertas logicas
Compuertas logicasCompuertas logicas
Compuertas logicas
 
Compuertas logicas (nx power_lite)
Compuertas logicas (nx power_lite)Compuertas logicas (nx power_lite)
Compuertas logicas (nx power_lite)
 

Último

2 REGLAMENTO RM 0912-2024 DE MODALIDADES DE GRADUACIÓN_.pptx
2 REGLAMENTO RM 0912-2024 DE MODALIDADES DE GRADUACIÓN_.pptx2 REGLAMENTO RM 0912-2024 DE MODALIDADES DE GRADUACIÓN_.pptx
2 REGLAMENTO RM 0912-2024 DE MODALIDADES DE GRADUACIÓN_.pptx
RigoTito
 
5.- Doerr-Mide-lo-que-importa-DESARROLLO PERSONAL
5.- Doerr-Mide-lo-que-importa-DESARROLLO PERSONAL5.- Doerr-Mide-lo-que-importa-DESARROLLO PERSONAL
5.- Doerr-Mide-lo-que-importa-DESARROLLO PERSONAL
MiNeyi1
 

Último (20)

Tema 17. Biología de los microorganismos 2024
Tema 17. Biología de los microorganismos 2024Tema 17. Biología de los microorganismos 2024
Tema 17. Biología de los microorganismos 2024
 
Tema 11. Dinámica de la hidrosfera 2024
Tema 11.  Dinámica de la hidrosfera 2024Tema 11.  Dinámica de la hidrosfera 2024
Tema 11. Dinámica de la hidrosfera 2024
 
Dinámica florecillas a María en el mes d
Dinámica florecillas a María en el mes dDinámica florecillas a María en el mes d
Dinámica florecillas a María en el mes d
 
Supuestos_prácticos_funciones.docx
Supuestos_prácticos_funciones.docxSupuestos_prácticos_funciones.docx
Supuestos_prácticos_funciones.docx
 
INSTRUCCION PREPARATORIA DE TIRO .pptx
INSTRUCCION PREPARATORIA DE TIRO   .pptxINSTRUCCION PREPARATORIA DE TIRO   .pptx
INSTRUCCION PREPARATORIA DE TIRO .pptx
 
Sesión de clase: Fe contra todo pronóstico
Sesión de clase: Fe contra todo pronósticoSesión de clase: Fe contra todo pronóstico
Sesión de clase: Fe contra todo pronóstico
 
LABERINTOS DE DISCIPLINAS DEL PENTATLÓN OLÍMPICO MODERNO. Por JAVIER SOLIS NO...
LABERINTOS DE DISCIPLINAS DEL PENTATLÓN OLÍMPICO MODERNO. Por JAVIER SOLIS NO...LABERINTOS DE DISCIPLINAS DEL PENTATLÓN OLÍMPICO MODERNO. Por JAVIER SOLIS NO...
LABERINTOS DE DISCIPLINAS DEL PENTATLÓN OLÍMPICO MODERNO. Por JAVIER SOLIS NO...
 
Caja de herramientas de inteligencia artificial para la academia y la investi...
Caja de herramientas de inteligencia artificial para la academia y la investi...Caja de herramientas de inteligencia artificial para la academia y la investi...
Caja de herramientas de inteligencia artificial para la academia y la investi...
 
Prueba de evaluación Geografía e Historia Comunidad de Madrid 2º de la ESO
Prueba de evaluación Geografía e Historia Comunidad de Madrid 2º de la ESOPrueba de evaluación Geografía e Historia Comunidad de Madrid 2º de la ESO
Prueba de evaluación Geografía e Historia Comunidad de Madrid 2º de la ESO
 
AFICHE EL MANIERISMO HISTORIA DE LA ARQUITECTURA II
AFICHE EL MANIERISMO HISTORIA DE LA ARQUITECTURA IIAFICHE EL MANIERISMO HISTORIA DE LA ARQUITECTURA II
AFICHE EL MANIERISMO HISTORIA DE LA ARQUITECTURA II
 
ACERTIJO DE POSICIÓN DE CORREDORES EN LA OLIMPIADA. Por JAVIER SOLIS NOYOLA
ACERTIJO DE POSICIÓN DE CORREDORES EN LA OLIMPIADA. Por JAVIER SOLIS NOYOLAACERTIJO DE POSICIÓN DE CORREDORES EN LA OLIMPIADA. Por JAVIER SOLIS NOYOLA
ACERTIJO DE POSICIÓN DE CORREDORES EN LA OLIMPIADA. Por JAVIER SOLIS NOYOLA
 
SEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptx
SEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptxSEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptx
SEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptx
 
Feliz Día de la Madre - 5 de Mayo, 2024.pdf
Feliz Día de la Madre - 5 de Mayo, 2024.pdfFeliz Día de la Madre - 5 de Mayo, 2024.pdf
Feliz Día de la Madre - 5 de Mayo, 2024.pdf
 
Tema 8.- PROTECCION DE LOS SISTEMAS DE INFORMACIÓN.pdf
Tema 8.- PROTECCION DE LOS SISTEMAS DE INFORMACIÓN.pdfTema 8.- PROTECCION DE LOS SISTEMAS DE INFORMACIÓN.pdf
Tema 8.- PROTECCION DE LOS SISTEMAS DE INFORMACIÓN.pdf
 
Medición del Movimiento Online 2024.pptx
Medición del Movimiento Online 2024.pptxMedición del Movimiento Online 2024.pptx
Medición del Movimiento Online 2024.pptx
 
Tema 10. Dinámica y funciones de la Atmosfera 2024
Tema 10. Dinámica y funciones de la Atmosfera 2024Tema 10. Dinámica y funciones de la Atmosfera 2024
Tema 10. Dinámica y funciones de la Atmosfera 2024
 
ACRÓNIMO DE PARÍS PARA SU OLIMPIADA 2024. Por JAVIER SOLIS NOYOLA
ACRÓNIMO DE PARÍS PARA SU OLIMPIADA 2024. Por JAVIER SOLIS NOYOLAACRÓNIMO DE PARÍS PARA SU OLIMPIADA 2024. Por JAVIER SOLIS NOYOLA
ACRÓNIMO DE PARÍS PARA SU OLIMPIADA 2024. Por JAVIER SOLIS NOYOLA
 
Prueba de evaluación Geografía e Historia Comunidad de Madrid 4ºESO
Prueba de evaluación Geografía e Historia Comunidad de Madrid 4ºESOPrueba de evaluación Geografía e Historia Comunidad de Madrid 4ºESO
Prueba de evaluación Geografía e Historia Comunidad de Madrid 4ºESO
 
2 REGLAMENTO RM 0912-2024 DE MODALIDADES DE GRADUACIÓN_.pptx
2 REGLAMENTO RM 0912-2024 DE MODALIDADES DE GRADUACIÓN_.pptx2 REGLAMENTO RM 0912-2024 DE MODALIDADES DE GRADUACIÓN_.pptx
2 REGLAMENTO RM 0912-2024 DE MODALIDADES DE GRADUACIÓN_.pptx
 
5.- Doerr-Mide-lo-que-importa-DESARROLLO PERSONAL
5.- Doerr-Mide-lo-que-importa-DESARROLLO PERSONAL5.- Doerr-Mide-lo-que-importa-DESARROLLO PERSONAL
5.- Doerr-Mide-lo-que-importa-DESARROLLO PERSONAL
 

Compuertas

  • 1. [[EN CONSTRUCCION ]] Principal Documentos Proyectos Productos Links Contacto Compuertas lógicas. SEPA CUALES SON Y COMO SE COMPORTAN LAS DISTINTAS COMPUERTAS LÓGICAS INTRODUCCIÓN: Dentro de la electrónica digital, existe un gran número de problemas a resolver que se repiten normalmente. Por ejemplo, es muy común que al diseñar un circuito electrónico necesitemos tener el valor opuesto al de un punto determinado, o que cuando un cierto número de pulsadores estén activados, una salida permanezca apagada. Todas estas situaciones pueden ser expresadas mediante ceros y unos, y tratadas mediante circuitos digitales. Los elementos básicos de cualquier circuito digital son las compuertas lógicas. ÍNDICE: > Introduccion > Compuerta IF (SI) > Compuerta NOT (NO) > Compuerta AND (Y) > Compuerta OR (O) > Compuerta NAND (NO Y) > Compuerta NOR (NO O) > Compuerta XOR (O Exclusivo) > Compuerta NXOR (No O Exclusivo) INTRODUCCIÓN: Hay disponible una gran variedad de compuertas estándar, cada una con un comportamiento perfectamente definido, y es posible combinarlas entre si para obtener funciones nuevas. Desde el punto de vista practico, podemos considerar a cada compuerta como una caja negra, en la que se introducen valores digitales en sus entradas, y el valor del resultado aparece en la salida. Cada compuerta tiene asociada una tabla de verdad, que expresa en forma de lista el estado de su salida para cada combinación posible de estados en la(s) entrada(s). Si bien al pensar en la electrónica digital es muy común que asumamos que se trata de una tecnología relativamente nueva, vale la pena recordar que Claude E. Shannon experimento con relés e interruptores conectados en serie, paralelo u otras configuraciones para crear las primeras compuertas lógicas funcionales. En la actualidad, una compuerta es un conjunto de transistores dentro de un circuito integrado, que puede contener cientos de ellas. De hecho, un microprocesador no es más que un chip compuesto por millones de compuertas lógicas. Veremos a continuación que símbolo se utiliza para cada compuerta, y su tabla de verdad. Compuerta IF (SI) La compuerta IF se representa con un triángulo. La puerta lógica IF, llamada SI en castellano, realiza la función booleana de la igualdad. En los esquemas de un circuito electrónico se simboliza mediante un triangulo, cuya base corresponde a la entrada, y el vértice opuesto la salida. Su tabla de verdad es también sencilla: la salida toma siempre el valor de la entrada. Esto significa que si en su entrada hay un nivel de tensión alto, también lo habrá en su salida; y si la entrada se encuentra en nivel bajo, su salida también estará en ese estado. En electrónica, generalmente se utilizan compuertas IF como amplificadores de corriente (buffers en ingles), para permitir manejar dispositivos que tienen consumos de corriente elevados desde otros que solo pueden entregar corrientes más débiles.
  • 2. Entrada A Salida S 0 1 1 0 Entrada A Entrada B Salida S 0 0 0 0 1 0 1 0 0 1 1 1 Entrada A Entrada B Entrada C Salida S 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0 0 1 0 1 0 1 1 0 0 1 1 1 1 Entrada A Salida A 0 0 1 1 La compuerta IF es la más sencilla de todas. Compuerta NOT (NO) El circulo en la salida significa negación. Esta compuerta presenta en su salida un valor que es el opuesto del que esta presente en su única entrada. En efecto, su función es la negación, y comparte con la compuerta IF la característica de tener solo una entrada. Se utiliza cuando es necesario tener disponible un valor lógico opuesto a uno dado. La figura muestra el símbolo utilizado en los esquemas de circuitos para representar esta compuerta, y su tabla de verdad. Se simboliza en un esquema eléctrico en el mismo símbolo que la compuerta IF, con un pequeño circulo agregado en su salida, que representa la negación. El estado de la salida es el opuesto al de la entrada. Compuerta AND (Y) Compuertas AND de 2 y 4 entradas Con dos o más entradas, esta compuerta realiza la función booleana de la multiplicación. Su salida será un “1” cuando todas sus entradas también estén en nivel alto. En cualquier otro caso, la salida será un “0”. El operador AND se lo asocia a la multiplicación, de la misma forma que al operador SI se lo asociaba a la igualdad. En efecto, el resultado de multiplicar entre si diferentes valores binarios solo dará como resultado “1” cuando todos ellos también sean 1, como se puede ver en su tabla de verdad. Matemáticamente se lo simboliza con el signo “x”. Tabla de verdad de la compuerta AND de dos entradas. Es posible tener más de dos entradas. Podemos pensar en esta compuerta como una lámpara, que hace las veces de salida, en serie con la fuente de alimentación y dos o mas interruptores, cada uno oficiando de entrada. La lámpara se encenderá únicamente cuando todos los interruptores estén cerrados. En este ejemplo, el estado de los interruptores es “1” cuando están cerrados y 0 cuando están abiertos. La salida esta en 1 cuando la
  • 3. Entrada A Entrada B Salida S 0 0 0 0 1 1 1 0 1 1 1 1 Entrada A Entrada B Entrada C Salida S 0 0 0 0 0 0 1 1 0 1 0 1 0 1 1 1 1 0 0 1 1 0 1 1 1 1 0 1 1 1 1 1 lámpara esta encendida, y en 0 cuando esta apagada. Circuito eléctrico equivalente a una compuerta AND. Compuerta OR (O) La función booleana que realiza la compuerta OR es la asociada a la suma, y matemáticamente la expresamos como “+”. Esta compuerta presenta un estado alto en su salida cuando al menos una de sus entradas también esta en estado alto. En cualquier otro caso, la salida será 0. Tal como ocurre con las compuertas AND, el número de entradas puede ser mayor a dos. A la izquierda, compuertas AND de 2 y 4 entradas Tabla correspondiente a una OR de dos entradas. Con tres entradas, la tabla contiene el doble de estados posibles. Un circuito eléctrico equivalente a esta compuerta esta compuesto por una lámpara conectada en serie con la alimentación y con dos o mas interruptores que a su vez están conectados en paralelo entre si. Nuevamente, los interruptores serian las entradas, y la lámpara la salida. Si seguimos las convenciones fijadas en el ejemplo visto al explicar la compuerta AND, tenemos que si ambos interruptores están abiertos (o en 0), la lámpara permanece apagada. Pero basta que cerremos uno o más de los interruptores para que la lámpara se encienda.
  • 4. Entrada A Entrada B Salida S 0 0 1 0 1 1 1 0 1 1 1 0 Circuito eléctrico equivalente a una compuerta OR. Compuerta NAND (NO Y) Agregando una etapa NOT a una compuerta AND obtenemos una NAND. Cualquier compuerta lógica se puede negar, esto es, invertir el estado de su salida, simplemente agregando una compuerta NOT que realice esa tarea. Debido a que es una situación muy común, se fabrican compuertas que ya están negadas internamente. Este es el caso de la compuerta NAND: es simplemente la negación de la compuerta AND vista anteriormente. Esto modifica su tabla de verdad, de hecho la invierte (se dice que la niega) quedando que la salida solo será un 0 cuando todas sus entradas estén en 1. El pequeño círculo en su salida es el que simboliza la negación. El numero de entradas debe ser como mínimo de dos, pero no es raro encontrar NAND de 3 o mas entradas. La compuerta NAND es una AND negada. Compuerta NOR (NO O) De forma similar a lo explicado con la compuerta NAND, una compuerta NOR es la negación de una compuerta OR, obtenida agregando una etapa NOT en su salida. Agregando una etapa NOT a una compuerta AND obtenemos una NAND.
  • 5. Entrada A Entrada B Salida S 0 0 1 0 1 0 1 0 0 1 1 0 Entrada A Entrada B Salida S 0 0 0 0 1 1 1 0 1 1 1 0 Entrada A Entrada B Salida S 0 0 1 0 1 0 Como podemos ver en su tabla de verdad, la salida de una compuerta NOR es 1 solamente cuando todas sus entradas son 0. Igual que en casos anteriores, la negación se expresa en los esquemas mediante un círculo en la salida. El número de entradas también puede ser mayor a dos. Tabla de verdad de la compuerta NOR. Compuerta XOR (O Exclusivo) XOR es la función ideal para sumar dígitos binarios. La compuerta OR vista anteriormente realiza la operación lógica correspondiente al O inclusivo, es decir, una o ambas de las entradas deben estar en 1 para que la salida sea 1. Un ejemplo de esta compuerta en lenguaje coloquial seria “Mañana iré de compras o al cine”. Basta con que vaya de compras o al cine para que la afirmación sea verdadera. En caso de que realice ambas cosas, la afirmación también es verdadera. Aquí es donde la función XOR difiere de la OR: en una compuerta XOR la salida será 0 siempre que las entradas sean distintas entre si. En el ejemplo anterior, si se tratase de la operación XOR, la salida seria 1 solamente si fuimos de compras o si fuimos al cine, pero 0 si no fuimos a ninguno de esos lugares, o si fuimos a ambos. La salida es 1 solo cuando las entradas son diferentes. Esta característica hace de la compuerta XOR un componente imprescindible en los circuitos sumadores de números binarios, tal como los utilizados en las calculadoras electrónicas. Compuerta NXOR (No O Exclusivo) XOR + NOT = NXOR No hay mucho para decir de esta compuerta. Como se puede deducir de los casos anteriores, una compuerta NXOR no es más que una XOR con su salida negada, por lo que su salida estará en estado alto solamente cuando sus entradas son iguales, y en estado bajo para las demás combinaciones posibles.
  • 6. 1 0 0 1 1 1 Tabla de verdad de la compuerta NXOR. www.ucontrol.com.ar | Desarrollo de sistemas de automatización y control | Pehuajó - Buenos Aires - Argentina e-mail: arielpalazzesi@gmail.com