機械学習モデルの判断根拠の説明

S
Satoshi HaraAssociate Professor en Osaka University
1
20 2018/12/21
n
• ~2013.3, PhD@ ,
• 2013.4~2016.3, @IBM
• 2016.4~2017.8, @ ERATO, NII
• 2017.9~, @ ,
n
•
ECML’11
AISTATS’15,17
•
AISTATS’18
AAAI’17,18
ongoing
2
•
•
•
• AISTATS’18
• AAAI’17,18
3
AI
n
•
n
•
4
…
AI
n
•
n
•
5
XX
XX
AI
n
• AI
AI
AI AI
n
• AI
•
n
6
n
•
•
• AI
•
•
7
8
EU GDPR
n GDPR-22
1. The data subject shall have the right not to be subject to a decision based
solely on automated processing, including profiling, which produces legal
effects concerning him or her or similarly significantly affects him or her.
2. Paragraph 1 shall not apply if the decision: is necessary for entering into, or
performance of, a contract between the data subject and a data controller; is
authorised by Union or Member State law to which the controller is subject
and which also lays down suitable measures to safeguard the data subject’s
rights and freedoms and legitimate interests; or is based on the data subject’s
explicit consent.
3. In the cases referred to in points (a) and (c) of paragraph 2, the data controller
shall implement suitable measures to safeguard the data subject’s rights and
freedoms and legitimate interests, at least the right to obtain human
intervention on the part of the controller, to express his or her point of view
and to contest the decision.
4. Decisions referred to in paragraph 2 shall not be based on special categories of
personal data referred to in Article 9(2)1), unless point (a) or (g) of Article 9(2)
applies and suitable measures to safeguard the data subject’s rights and
freedoms and legitimate interests are in place.
9
n 2016
• ICML, NIPS
n
• , ,
Vol.33, No.3, pages 366--369, 2018.
• , Qiita
10
n AI
11
Peeking inside the black-box: A survey on Explainable Artificial Intelligence (XAI)
https://ieeexplore.ieee.org/document/8466590/
7 SCOPUS,
IEEExplore, ACM Digital Library, Google
Scholar, Citeseer Library, ScienceDirect,
arXiv
“intelligible”,
“interpretable”, “transparency”, “black box”,
“understandable”, “comprehensible”,
“explainable” AI
“Artificial Intelligence”, “Intelligent
system”, “Machine learning”, “deep learning”,
“classifier” , “decision tree”
•
•
•
• AISTATS’18
• AAAI’17,18
12
n
•
n
• 1.
• 2.
• 3.
• 4.
• …
13
n
n /
•
n
•
•
n “ ”
•
14
1.
•
2.
•
3.
•
15
n
n Why Should I Trust You?: Explaining the Predictions of
Any Classifier, KDD'16 [Python LIME; R LIME]
n A Unified Approach to Interpreting Model Predictions,
NIPS'17 [Python SHAP]
n Anchors: High-Precision Model-Agnostic Explanations,
AAAI'18 [Python Anchor]
n Understanding Black-box Predictions via Influence
Functions, ICML’17 [Python influence-release]
16
n
n Born Again Trees
n Making Tree Ensembles Interpretable: A Bayesian Model
Selection Approach, AISTATS'18 [Python defragTrees]
17
n
n [Python+Tensorflow
saliency; DeepExplain]
• Striving for Simplicity: The All Convolutional Net
(GuidedBackprop)
• On Pixel-Wise Explanations for Non-Linear Classifier Decisions
by Layer-Wise Relevance Propagation (Epsilon-LRP)
• Axiomatic Attribution for Deep Networks (IntegratedGrad)
• SmoothGrad: Removing Noise by Adding Noise (SmoothGrad)
• Learning Important Features Through Propagating Activation
Differences (DeepLIFT)
18
19
n
n Why Should I Trust You?: Explaining the Predictions of
Any Classifier, KDD'16 [Python LIME; R LIME]
n A Unified Approach to Interpreting Model Predictions,
NIPS'17 [Python SHAP]
n Anchors: High-Precision Model-Agnostic Explanations,
AAAI'18 [Python Anchor]
n Understanding Black-box Predictions via Influence
Functions, ICML’17 [Python influence-release]
20
n
n
• LIME, SHAP, Anchor
n
• influence
21
LIME
n Why Should I Trust You?: Explaining the Predictions of
Any Classifier, KDD'16 [Python LIME; R LIME]
•
•
22
LIME
23
LIME
n 2
• One-Hot
•
n LIME
• Adult One-Hot
24
LIME
n ! !′
• LIME !′ !# ∈ {0, 1}* +
!,
#
+
n -(!) !0
• - ! ≈ 2 !# ≔ 40 + 46!# for !# ∈ NeighborOf(!0
#
)
• 4 4,
25
LIME
n !(#) #%
• ! # ≈ ' #( ≔ *% + *,#( for #( ∈ NeighborOf(#%
(
)
n *
• min
:
∑ <,<> ∈? @AB
C ! C − ' C( E
s.t. * % ≤ G
* %
@AB
C #%
H #%
26
LIME
n
n
• vs
•
→ LIME
27
SHAP
n A Unified Approach to Interpreting Model Predictions,
NIPS'17 [Python SHAP]
•
• LIME
28
SHAP
n 1
n 2
29
SHAP
n SHAP LIME
• Adult One-Hot
n . “ ”
SHAP “ ”
30
SHAP
n SHAP = LIME
• ! "# = %& + %("# = %& + ∑* %*"*
#
3
n 1. + " = ! "#
•
31
SHAP
n SHAP = LIME
• ! "# = %& + %("# = %& + ∑* %*"*
#
3
n 2. "*
#
= 0 ⇒ %* = 0
•
32
SHAP
n SHAP = LIME
• ! "# = %& + %("# = %& + ∑* %*"*
#
3
n 3. + " = +, "# + +′
+,
# "# − +,
# "# ∖ 0 ≥ +, "# − +, "# ∖ 0 ⇒ %* +# ≥ %* +
• + +′ "*
#
+′ +
+# "*
#
+
33
SHAP
n SHAP = LIME
• ! "# = %& + %("# = %& + ∑* %*"*
#
SHAP
n 3
• %* = ∑+⊆-.
+ ! 01 + 12 !
0!
(4- 5 − 4-(5 ∖ 8))
• Shapley Value
34
SHAP
n LIME
• min
$
∑&∈( ) * +, * − . *
/
• ) * =
123
1 456678 & & (1 2|&|)
n
• Linear SHAP:
• Tree SHAP:
• Deep SHAP: DeepLIFT
35
Anchor
n Anchors: High-Precision Model-Agnostic Explanations,
AAAI'18 [Python Anchor]
•
36
Anchor
37
Anchor
n Anchor LIME
• Adult One-Hot
n
• Anchor +
38
Anchor
n “ +
•
39
Anchor
n !
• " ! ! " = 1
n %(⋅ |!) !
n ! =Anchor
• Anchor ! * " +
,- * ! 1. / 0. 1 ≥ +, ! " = 1
Anchor ! "
40
Anchor
n !" # $ 1& ' (& ) ≥ +
• 1 − -
Pr !" # $ 1& ' (& ) ≥ + ≥ 1 − -
41
Anchor
n ! =
!
• !
• max
%
&' ( [!(+)] s.t. Pr &' + ! 11 ( 21 3 ≥ 5 ≥ 1 − 7
n 1.
n 2.
• Pr &' + ! 11 ( 21 3 ≥ 5 1 − 7 !
42
n
n
• LIME, SHAP, Anchor
n
• influence
43
influence
n Understanding Black-box Predictions via Influence
Functions, ICML’17 [Python influence-release]
n ("′, %′)
"
44
influence
n ("′, %′)
"
n % = (("; *+), *+
*+ = argmin
2∈4
5
67(8,9)∈:
;(<; +)
*+=6> = argmin
2∈4
5
6∈: ?@A 6B6>
;(<; +)
n <> = ("′, %′) *+
• C+=6> − C+
*+=6> − *+ <>
45
<>
= ("′, %′)
influence
n !" = (%′, (′) *+
• ,+-." − ,+
*+-." − *+ !"
n
• !" = (%′, (′) ,+-."
•
n influence
• ,+-." − ,+
,+-." − ,+ ≈ −
1
2
345
-6
78(!"; ,+)
46
influence
n Data Poisoning
•
•
47
influence
n
•
48
This looks like that: deep learning for interpretable
image recognition, arxiv: 1806.10574.
n
n
• LIME
• SHAP
• Anchor
n
• influence
49
n
• Interpretable Predictions of Tree-based Ensembles
via Actionable Feature Tweaking, KDD’17
•
50
30 200
20 200
30 300
⭕
⭕
…
…
n
• Generating Visual Explanations, ECCV‘16
•
51
52
n
n Born Again Trees
n Making Tree Ensembles Interpretable: A Bayesian Model
Selection Approach, AISTATS'18 [Python defragTrees]
53
BATrees
n Born Again Trees
•
•
n
• !
!
•
54
n
• BATrees
• defragTrees RandomForest
55
56
n
n [Python+Tensorflow
saliency; DeepExplain]
• Striving for Simplicity: The All Convolutional Net
(GuidedBackprop)
• On Pixel-Wise Explanations for Non-Linear Classifier Decisions
by Layer-Wise Relevance Propagation (Epsilon-LRP)
• Axiomatic Attribution for Deep Networks (IntegratedGrad)
• SmoothGrad: Removing Noise by Adding Noise (SmoothGrad)
• Learning Important Features Through Propagating Activation
Differences (DeepLIFT)
57
n
•
58
DNN
n
•
59
DNN
n
•
60
DNN
n DNN
61
n
•
→
•
→
62
n ! = # $
n $
n [Simonyan et al., arXiv’14]
$%
&' (
&()
•
→ →
*+ ,
*,-
→
•
→ →
&' (
&()
→
63
n [Simonyan et al., arXiv’14]
!"
#$ %
#%&
n
• GuidedBP [Springenberg et al., arXiv’14]
back propagation
• LRP [Bach et al., PloS ONE’15]
• IntegratedGrad [Sundararajan et al., arXiv’17]
• SmoothGrad [Smilkov et al., arXiv’17]
• DeepLIFT [Shrikumar et al., ICML’17]
64
n
n
[Python+Tensorflow saliency; DeepExplain]
• Striving for Simplicity: The All Convolutional Net
(GuidedBackprop)
• On Pixel-Wise Explanations for Non-Linear Classifier Decisions
by Layer-Wise Relevance Propagation (Epsilon-LRP)
• Axiomatic Attribution for Deep Networks (IntegratedGrad)
• SmoothGrad: Removing Noise by Adding Noise (SmoothGrad)
• Learning Important Features Through Propagating Activation
Differences (DeepLIFT)
65
•
•
•
• AISTATS’18
• AAAI’17,18
66
n AISTATS’18
•
n AAAI’17,18
•
67
機械学習モデルの判断根拠の説明
defragTrees
n Making Tree Ensembles Interpretable: A Bayesian Model
Selection Approach, AISTATS'18 [Python defragTrees]
•
•
n
69
when
Relationship ≠ Not-in-family, Wife
Capital Gain < 7370
when
Relationship ≠ Not-in-family
Capital Gain >= 7370
when
Relationship ≠ Not-in-family, Unmarried
Capital Gain < 5095
Capital Loss < 2114
when
Relationship = Not-in-family
Country ≠ China, Peru
Capital Gain < 5095
when
Relationship ≠ Not-in-family
Country ≠ China
Capital Gain < 5095
when
Relationship ≠ Not-in-family
Capital Gain >= 7370
…
…
n
n
•
70
y = XOR(x1 < 0.5, x2 < 0.5) + ✏
n
n
71
2017 The State of Data Science & Machine LearningYour Year on Kaggle: Most Memorable
Community Stats from 2016
n
n
72
R
n
•
•
n
73
defragTrees
n 1.
• !" #, % &)
n 2. !"( #, % ))
• !"( #, % )) ≈ !"(#, %|&) ) ≪ &
!"( #, % ))
n
• )
• Factorized
Asymptotic Bayesian (FAB) Inference
74
&
)
n
n
•
•
•
75
D
Synthetic 2 1000 1000
Spambase 57 1000 1000
MiniBooNE 50 5000 5000
Magic 11 5000 5000
Higgs 28 5000 5000
Energy 8 384 384
n
76
n
77
n
•
n
•
•
78
n AISTATS’18
•
n AAAI’17,18
•
79
機械学習モデルの判断根拠の説明
n Enumerate Lasso Solu/ons for Feature Selec/on,
AAAI’17 [Python LassoVariants].
n Approximate and Exact Enumera/on of Rule Models,
AAAI'18.
→ NO!
n
•
82
n
• →
•
n
•
83
n
•
n
•
→
84
n
•
n
•
→
85
n
•
n
•
→
86
n
•
n
•
87
•
•
Lasso
Given: !", $" ∈ ℝ'×ℝ ) = 1, 2, … , .
Find: / ∈ ℝ' s.t. !"
0
/ ≈ $ () = 1, 2, … , .)
/
n
•
•
Lasso ℓ5
/∗ = argmin
=
1
2
>/ − $ @ + B / 5
• Lasso /∗ supp(/∗) = {) ∶ /"
∗
≠ 0}
Lasso
n
•
→ Lasso
n Lasso
•
→
n
機械学習モデルの判断根拠の説明
Lasso
n ! ⊆ {$%, $', … , $)} Lasso
Lasso ! = min
3
%
'
45 − 7 ' + 9 5 % s.t. supp 5 ⊆ !
Lasso
! Lasso ! <
supp 5 = !
• 9
• 9
• $%, $', $= , $%, $', $> , $%, $>, $? , $%, $' , …
Lasso !
Lawler !-best
1. " #
2. $ ∈ #
" $ "& = " ∖ {$}
Lasso("′) #′
(#&, "′)
3.
4.
Lawler !-best
1. " #
2. $ ∈ &
' $ '( = ' ∖ {$}
Lasso('′) &′
(&(, '′)
3.
4.
& = 56, 57, 58
' = 56, 57, 59, 58, 5:
&6 = 56, 57, 58
'6 = 56, 57, 59, 58, 5:
Lawler !-best
1. " #
2. $ ∈ &
' $ '( = ' ∖ {$}
Lasso("′) #′
(#(, "′)
3.
4.
"5
( = 67, 68, 69, 6:
"7
( = 65, 68, 69, 6:
"8
(
= 65, 67, 68, 6:
"5 = 65, 67, 68, 69, 6:
#5 = 65, 67, 69
"5 = 65, 67, 68, 69, 6:
Lawler !-best
1. " #
2. $ ∈ &
" ' "( = " ∖ {'}
-.//0(2′) &′
(&(, 2′)
3.
4.
(#6
(= 78, 79, 7: , "6
()"6
( = 78, 7;, 79, 7:
"8
( = 76, 7;, 79, 7:
";
(
= 76, 78, 7;, 7:
"6 = 76, 78, 7;, 79, 7:
#6 = 76, 78, 79
"6 = 76, 78, 7;, 79, 7:
Lawler !-best
1. " #
2. $ ∈ &
" ' "( = " ∖ {'}
-.//0(2′) &′
(&(, 2′)
3.
4.
(#6
(= 78, 79, 7: , "6
()"6
( = 78, 7;, 79, 7:
"8
( = 76, 7;, 79, 7:
";
(
= 76, 78, 7;, 7:
"6 = 76, 78, 7;, 79, 7:
(#8
(= 76, 7;, 79 , "8
()
#6 = 76, 78, 79
"6 = 76, 78, 7;, 79, 7:
Lawler !-best
1. " #
2. $ ∈ &
" ' "( = " ∖ {'}
-.//0(2′) &′
(&(, 2′)
3.
4.
(#6
(= 78, 79, 7: , "6
()"6
( = 78, 7;, 79, 7:
"8
( = 76, 7;, 79, 7:
";
(
= 76, 78, 7;, 7:
"6 = 76, 78, 7;, 79, 7:
(#8
(= 76, 7;, 79 , "8
()
(#;
(= 76, 78, 7: , ";
()#6 = 76, 78, 79
"6 = 76, 78, 7;, 79, 7:
Lawler !-best
1. " #
2. $ ∈ #
" $ "& = " ∖ {$}
+,--.("′) #′
(#&, "′)
3.
4.
(#3
&= 45, 46, 47 , "3
&)
(#5
&= 43, 48, 46 , "5
&)
(#8
&= 43, 45, 47 , "8
&)
#5 = 45, 46, 47
"5 = 45, 48, 46, 47
#3 = 43, 45, 46
"3 = 43, 45, 48, 46, 47
Lawler !-best
1. " #
2. $ ∈ &
' $ '( = ' ∖ {$}
Lasso("′) #′
(#(, "′)
3.
4.
#5 = 65, 67, 68
"5 = 65, 67, 69, 68, 6:
(#7
(= 65, 69, 68 , "7
()
(#9
(= 65, 67, 6: , "9
()
#7 = 67, 68, 6:
"7 = 67, 69, 68, 6:
"8
( = 69, 68, 6:
":
(
= 67, 69, 6:
";
(
= 67, 69, 68
"7 = 67, 69, 68, 6:
Lasso % %
n
• %
• % Lasso
機械学習モデルの判断根拠の説明
1.
n Thaliana gene expression data (Atwell et al. ’10):
• ! ∈ ℝ$%&%'( 2
• ) ∈ ℝ
• 134
2.
n 20 Newsgroups Data (Lang’95); ibm vs mac
• ! ∈ ℝ$$%&' tf-idf
• ( ∈ {ibm, mac} 2
• 1168
→
bios drive ibm
ide drive ibm
dos os, drive ibm
controller drive ibm
quadra, centris 040, clock mac
windows, bios, controller disk, drive ibm
bios, help, controller disk, drive ibm
centris, pc 610 mac
n
•
n Lasso
• Lawler !-best
n
•
•
•
•
•
• AISTATS’18
• AAAI’17,18
106
n
•
•
107
n
n Sanity Checks for Saliency Maps, NeurIPS’18.
•
• Sanity Check
108
“ ”
Guided-BP
n
•
•
•
n
• Please Stop Explaining Black Box Models for High-Stakes
Decisions, arXiv:1811.10154
109
n
•
•
n
•
110
1 de 110

Recomendados

機械学習モデルの判断根拠の説明(Ver.2) por
機械学習モデルの判断根拠の説明(Ver.2)機械学習モデルの判断根拠の説明(Ver.2)
機械学習モデルの判断根拠の説明(Ver.2)Satoshi Hara
47.8K vistas81 diapositivas
深層学習の不確実性 - Uncertainty in Deep Neural Networks - por
深層学習の不確実性 - Uncertainty in Deep Neural Networks -深層学習の不確実性 - Uncertainty in Deep Neural Networks -
深層学習の不確実性 - Uncertainty in Deep Neural Networks -tmtm otm
11.6K vistas137 diapositivas
「世界モデル」と関連研究について por
「世界モデル」と関連研究について「世界モデル」と関連研究について
「世界モデル」と関連研究についてMasahiro Suzuki
13.1K vistas52 diapositivas
勾配ブースティングの基礎と最新の動向 (MIRU2020 Tutorial) por
勾配ブースティングの基礎と最新の動向 (MIRU2020 Tutorial)勾配ブースティングの基礎と最新の動向 (MIRU2020 Tutorial)
勾配ブースティングの基礎と最新の動向 (MIRU2020 Tutorial)RyuichiKanoh
25.6K vistas173 diapositivas
BlackBox モデルの説明性・解釈性技術の実装 por
BlackBox モデルの説明性・解釈性技術の実装BlackBox モデルの説明性・解釈性技術の実装
BlackBox モデルの説明性・解釈性技術の実装Deep Learning Lab(ディープラーニング・ラボ)
22.5K vistas96 diapositivas
【DL輪読会】ViT + Self Supervised Learningまとめ por
【DL輪読会】ViT + Self Supervised Learningまとめ【DL輪読会】ViT + Self Supervised Learningまとめ
【DL輪読会】ViT + Self Supervised LearningまとめDeep Learning JP
4K vistas52 diapositivas

Más contenido relacionado

La actualidad más candente

【メタサーベイ】基盤モデル / Foundation Models por
【メタサーベイ】基盤モデル / Foundation Models【メタサーベイ】基盤モデル / Foundation Models
【メタサーベイ】基盤モデル / Foundation Modelscvpaper. challenge
16.4K vistas63 diapositivas
[DL輪読会]相互情報量最大化による表現学習 por
[DL輪読会]相互情報量最大化による表現学習[DL輪読会]相互情報量最大化による表現学習
[DL輪読会]相互情報量最大化による表現学習Deep Learning JP
7.6K vistas43 diapositivas
Optimizer入門&最新動向 por
Optimizer入門&最新動向Optimizer入門&最新動向
Optimizer入門&最新動向Motokawa Tetsuya
23K vistas21 diapositivas
backbone としての timm 入門 por
backbone としての timm 入門backbone としての timm 入門
backbone としての timm 入門Takuji Tahara
7.4K vistas19 diapositivas
CV分野におけるサーベイ方法 por
CV分野におけるサーベイ方法CV分野におけるサーベイ方法
CV分野におけるサーベイ方法Hirokatsu Kataoka
23.9K vistas29 diapositivas
SSII2021 [OS2-01] 転移学習の基礎:異なるタスクの知識を利用するための機械学習の方法 por
SSII2021 [OS2-01] 転移学習の基礎:異なるタスクの知識を利用するための機械学習の方法SSII2021 [OS2-01] 転移学習の基礎:異なるタスクの知識を利用するための機械学習の方法
SSII2021 [OS2-01] 転移学習の基礎:異なるタスクの知識を利用するための機械学習の方法SSII
3.8K vistas48 diapositivas

La actualidad más candente(20)

【メタサーベイ】基盤モデル / Foundation Models por cvpaper. challenge
【メタサーベイ】基盤モデル / Foundation Models【メタサーベイ】基盤モデル / Foundation Models
【メタサーベイ】基盤モデル / Foundation Models
cvpaper. challenge16.4K vistas
[DL輪読会]相互情報量最大化による表現学習 por Deep Learning JP
[DL輪読会]相互情報量最大化による表現学習[DL輪読会]相互情報量最大化による表現学習
[DL輪読会]相互情報量最大化による表現学習
Deep Learning JP7.6K vistas
backbone としての timm 入門 por Takuji Tahara
backbone としての timm 入門backbone としての timm 入門
backbone としての timm 入門
Takuji Tahara7.4K vistas
CV分野におけるサーベイ方法 por Hirokatsu Kataoka
CV分野におけるサーベイ方法CV分野におけるサーベイ方法
CV分野におけるサーベイ方法
Hirokatsu Kataoka23.9K vistas
SSII2021 [OS2-01] 転移学習の基礎:異なるタスクの知識を利用するための機械学習の方法 por SSII
SSII2021 [OS2-01] 転移学習の基礎:異なるタスクの知識を利用するための機械学習の方法SSII2021 [OS2-01] 転移学習の基礎:異なるタスクの知識を利用するための機械学習の方法
SSII2021 [OS2-01] 転移学習の基礎:異なるタスクの知識を利用するための機械学習の方法
SSII3.8K vistas
全力解説!Transformer por Arithmer Inc.
全力解説!Transformer全力解説!Transformer
全力解説!Transformer
Arithmer Inc.9.5K vistas
畳み込みニューラルネットワークの高精度化と高速化 por Yusuke Uchida
畳み込みニューラルネットワークの高精度化と高速化畳み込みニューラルネットワークの高精度化と高速化
畳み込みニューラルネットワークの高精度化と高速化
Yusuke Uchida64.5K vistas
[DL輪読会]近年のエネルギーベースモデルの進展 por Deep Learning JP
[DL輪読会]近年のエネルギーベースモデルの進展[DL輪読会]近年のエネルギーベースモデルの進展
[DL輪読会]近年のエネルギーベースモデルの進展
Deep Learning JP2.6K vistas
SSII2021 [OS2-02] 深層学習におけるデータ拡張の原理と最新動向 por SSII
SSII2021 [OS2-02] 深層学習におけるデータ拡張の原理と最新動向SSII2021 [OS2-02] 深層学習におけるデータ拡張の原理と最新動向
SSII2021 [OS2-02] 深層学習におけるデータ拡張の原理と最新動向
SSII2.1K vistas
グラフィカルモデル入門 por Kawamoto_Kazuhiko
グラフィカルモデル入門グラフィカルモデル入門
グラフィカルモデル入門
Kawamoto_Kazuhiko117.7K vistas
【論文調査】XAI技術の効能を ユーザ実験で評価する研究 por Satoshi Hara
【論文調査】XAI技術の効能を ユーザ実験で評価する研究【論文調査】XAI技術の効能を ユーザ実験で評価する研究
【論文調査】XAI技術の効能を ユーザ実験で評価する研究
Satoshi Hara5.1K vistas
Swin Transformer (ICCV'21 Best Paper) を完璧に理解する資料 por Yusuke Uchida
Swin Transformer (ICCV'21 Best Paper) を完璧に理解する資料Swin Transformer (ICCV'21 Best Paper) を完璧に理解する資料
Swin Transformer (ICCV'21 Best Paper) を完璧に理解する資料
Yusuke Uchida16K vistas
強化学習エージェントの内発的動機付けによる探索とその応用(第4回 統計・機械学習若手シンポジウム 招待公演) por Shota Imai
強化学習エージェントの内発的動機付けによる探索とその応用(第4回 統計・機械学習若手シンポジウム 招待公演)強化学習エージェントの内発的動機付けによる探索とその応用(第4回 統計・機械学習若手シンポジウム 招待公演)
強化学習エージェントの内発的動機付けによる探索とその応用(第4回 統計・機械学習若手シンポジウム 招待公演)
Shota Imai2.3K vistas
強化学習と逆強化学習を組み合わせた模倣学習 por Eiji Uchibe
強化学習と逆強化学習を組み合わせた模倣学習強化学習と逆強化学習を組み合わせた模倣学習
強化学習と逆強化学習を組み合わせた模倣学習
Eiji Uchibe25.3K vistas
ブラックボックスからXAI (説明可能なAI) へ - LIME (Local Interpretable Model-agnostic Explanat... por 西岡 賢一郎
ブラックボックスからXAI (説明可能なAI) へ - LIME (Local Interpretable Model-agnostic Explanat...ブラックボックスからXAI (説明可能なAI) へ - LIME (Local Interpretable Model-agnostic Explanat...
ブラックボックスからXAI (説明可能なAI) へ - LIME (Local Interpretable Model-agnostic Explanat...
西岡 賢一郎1.9K vistas
[DL輪読会]Decision Transformer: Reinforcement Learning via Sequence Modeling por Deep Learning JP
[DL輪読会]Decision Transformer: Reinforcement Learning via Sequence Modeling[DL輪読会]Decision Transformer: Reinforcement Learning via Sequence Modeling
[DL輪読会]Decision Transformer: Reinforcement Learning via Sequence Modeling
Deep Learning JP2.9K vistas
Active Learning 入門 por Shuyo Nakatani
Active Learning 入門Active Learning 入門
Active Learning 入門
Shuyo Nakatani51.8K vistas
ドメイン適応の原理と応用 por Yoshitaka Ushiku
ドメイン適応の原理と応用ドメイン適応の原理と応用
ドメイン適応の原理と応用
Yoshitaka Ushiku5.5K vistas
【DL輪読会】SimCSE: Simple Contrastive Learning of Sentence Embeddings (EMNLP 2021) por Deep Learning JP
【DL輪読会】SimCSE: Simple Contrastive Learning of Sentence Embeddings  (EMNLP 2021)【DL輪読会】SimCSE: Simple Contrastive Learning of Sentence Embeddings  (EMNLP 2021)
【DL輪読会】SimCSE: Simple Contrastive Learning of Sentence Embeddings (EMNLP 2021)
Deep Learning JP3.7K vistas

Similar a 機械学習モデルの判断根拠の説明

Theoretical Linear Convergence of Unfolded ISTA and its Practical Weights and... por
Theoretical Linear Convergence of Unfolded ISTA and its Practical Weights and...Theoretical Linear Convergence of Unfolded ISTA and its Practical Weights and...
Theoretical Linear Convergence of Unfolded ISTA and its Practical Weights and...Satoshi Hara
1.6K vistas32 diapositivas
Active Neural Localization por
Active Neural LocalizationActive Neural Localization
Active Neural LocalizationHaruya Ishikawa
530 vistas37 diapositivas
(論文サーベイ)主成分分析によるオンライン外れ値検出 por
(論文サーベイ)主成分分析によるオンライン外れ値検出(論文サーベイ)主成分分析によるオンライン外れ値検出
(論文サーベイ)主成分分析によるオンライン外れ値検出kazuya_n
184 vistas24 diapositivas
Mcs011 solved assignment by divya singh por
Mcs011 solved assignment by divya singhMcs011 solved assignment by divya singh
Mcs011 solved assignment by divya singhDIVYA SINGH
79 vistas20 diapositivas
Basics in algorithms and data structure por
Basics in algorithms and data structure Basics in algorithms and data structure
Basics in algorithms and data structure Eman magdy
414 vistas132 diapositivas
(RubyConf 2020) How prime numbers keep the internet secure por
(RubyConf 2020) How prime numbers keep the internet secure(RubyConf 2020) How prime numbers keep the internet secure
(RubyConf 2020) How prime numbers keep the internet secureSun-Li Beatteay
20 vistas84 diapositivas

Similar a 機械学習モデルの判断根拠の説明(20)

Theoretical Linear Convergence of Unfolded ISTA and its Practical Weights and... por Satoshi Hara
Theoretical Linear Convergence of Unfolded ISTA and its Practical Weights and...Theoretical Linear Convergence of Unfolded ISTA and its Practical Weights and...
Theoretical Linear Convergence of Unfolded ISTA and its Practical Weights and...
Satoshi Hara1.6K vistas
(論文サーベイ)主成分分析によるオンライン外れ値検出 por kazuya_n
(論文サーベイ)主成分分析によるオンライン外れ値検出(論文サーベイ)主成分分析によるオンライン外れ値検出
(論文サーベイ)主成分分析によるオンライン外れ値検出
kazuya_n184 vistas
Mcs011 solved assignment by divya singh por DIVYA SINGH
Mcs011 solved assignment by divya singhMcs011 solved assignment by divya singh
Mcs011 solved assignment by divya singh
DIVYA SINGH79 vistas
Basics in algorithms and data structure por Eman magdy
Basics in algorithms and data structure Basics in algorithms and data structure
Basics in algorithms and data structure
Eman magdy414 vistas
(RubyConf 2020) How prime numbers keep the internet secure por Sun-Li Beatteay
(RubyConf 2020) How prime numbers keep the internet secure(RubyConf 2020) How prime numbers keep the internet secure
(RubyConf 2020) How prime numbers keep the internet secure
Sun-Li Beatteay20 vistas
Elasticsearch at EyeEm por Lars Fronius
Elasticsearch at EyeEmElasticsearch at EyeEm
Elasticsearch at EyeEm
Lars Fronius824 vistas
K02-salen: Systems Thinking in Action 2011 por pegasuscomm
K02-salen: Systems Thinking in Action 2011K02-salen: Systems Thinking in Action 2011
K02-salen: Systems Thinking in Action 2011
pegasuscomm256 vistas
Paper Reading: Pessimistic Cardinality Estimation por PingCAP
Paper Reading: Pessimistic Cardinality EstimationPaper Reading: Pessimistic Cardinality Estimation
Paper Reading: Pessimistic Cardinality Estimation
PingCAP222 vistas
Moment-Based Estimation for Hierarchical Models in Apache Spark with Kyle Sch... por Databricks
Moment-Based Estimation for Hierarchical Models in Apache Spark with Kyle Sch...Moment-Based Estimation for Hierarchical Models in Apache Spark with Kyle Sch...
Moment-Based Estimation for Hierarchical Models in Apache Spark with Kyle Sch...
Databricks664 vistas
Rob Sullivan at Heroku's Waza 2013: Your Database -- A Story of Indifference por Heroku
Rob Sullivan at Heroku's Waza 2013: Your Database -- A Story of IndifferenceRob Sullivan at Heroku's Waza 2013: Your Database -- A Story of Indifference
Rob Sullivan at Heroku's Waza 2013: Your Database -- A Story of Indifference
Heroku780 vistas
A3 sec -_regular_expressions por a3sec
A3 sec -_regular_expressionsA3 sec -_regular_expressions
A3 sec -_regular_expressions
a3sec578 vistas
(KO) 온라인 뉴스 댓글 플랫폼을 흐리는 어뷰저 분석기 / (EN) Online ... por Ji Hyung Moon
(KO) 온라인 뉴스 댓글 플랫폼을 흐리는 어뷰저 분석기 / (EN) Online ...(KO) 온라인 뉴스 댓글 플랫폼을 흐리는 어뷰저 분석기 / (EN) Online ...
(KO) 온라인 뉴스 댓글 플랫폼을 흐리는 어뷰저 분석기 / (EN) Online ...
Ji Hyung Moon1K vistas
Datamining R 2nd por sesejun
Datamining R 2ndDatamining R 2nd
Datamining R 2nd
sesejun1K vistas
Parallel Computing in R por mickey24
Parallel Computing in RParallel Computing in R
Parallel Computing in R
mickey241.5K vistas
Locality sensitive hashing por SEMINARGROOT
Locality sensitive hashingLocality sensitive hashing
Locality sensitive hashing
SEMINARGROOT102 vistas
Python Fundamentals - Basic por Wei-Yuan Chang
Python Fundamentals - BasicPython Fundamentals - Basic
Python Fundamentals - Basic
Wei-Yuan Chang389 vistas

Más de Satoshi Hara

Explanation in Machine Learning and Its Reliability por
Explanation in Machine Learning and Its ReliabilityExplanation in Machine Learning and Its Reliability
Explanation in Machine Learning and Its ReliabilitySatoshi Hara
914 vistas40 diapositivas
“機械学習の説明”の信頼性 por
“機械学習の説明”の信頼性“機械学習の説明”の信頼性
“機械学習の説明”の信頼性Satoshi Hara
4.3K vistas29 diapositivas
機械学習で嘘をつく話 por
機械学習で嘘をつく話機械学習で嘘をつく話
機械学習で嘘をつく話Satoshi Hara
5.3K vistas23 diapositivas
異常の定義と推定 por
異常の定義と推定異常の定義と推定
異常の定義と推定Satoshi Hara
7.2K vistas101 diapositivas
Convex Hull Approximation of Nearly Optimal Lasso Solutions por
Convex Hull Approximation of Nearly Optimal Lasso SolutionsConvex Hull Approximation of Nearly Optimal Lasso Solutions
Convex Hull Approximation of Nearly Optimal Lasso SolutionsSatoshi Hara
814 vistas29 diapositivas
Maximally Invariant Data Perturbation as Explanation por
Maximally Invariant Data Perturbation as ExplanationMaximally Invariant Data Perturbation as Explanation
Maximally Invariant Data Perturbation as ExplanationSatoshi Hara
1.3K vistas18 diapositivas

Más de Satoshi Hara(10)

Explanation in Machine Learning and Its Reliability por Satoshi Hara
Explanation in Machine Learning and Its ReliabilityExplanation in Machine Learning and Its Reliability
Explanation in Machine Learning and Its Reliability
Satoshi Hara914 vistas
“機械学習の説明”の信頼性 por Satoshi Hara
“機械学習の説明”の信頼性“機械学習の説明”の信頼性
“機械学習の説明”の信頼性
Satoshi Hara4.3K vistas
機械学習で嘘をつく話 por Satoshi Hara
機械学習で嘘をつく話機械学習で嘘をつく話
機械学習で嘘をつく話
Satoshi Hara5.3K vistas
異常の定義と推定 por Satoshi Hara
異常の定義と推定異常の定義と推定
異常の定義と推定
Satoshi Hara7.2K vistas
Convex Hull Approximation of Nearly Optimal Lasso Solutions por Satoshi Hara
Convex Hull Approximation of Nearly Optimal Lasso SolutionsConvex Hull Approximation of Nearly Optimal Lasso Solutions
Convex Hull Approximation of Nearly Optimal Lasso Solutions
Satoshi Hara814 vistas
Maximally Invariant Data Perturbation as Explanation por Satoshi Hara
Maximally Invariant Data Perturbation as ExplanationMaximally Invariant Data Perturbation as Explanation
Maximally Invariant Data Perturbation as Explanation
Satoshi Hara1.3K vistas
アンサンブル木モデル解釈のためのモデル簡略化法 por Satoshi Hara
アンサンブル木モデル解釈のためのモデル簡略化法アンサンブル木モデル解釈のためのモデル簡略化法
アンサンブル木モデル解釈のためのモデル簡略化法
Satoshi Hara6.3K vistas
機械学習モデルの列挙 por Satoshi Hara
機械学習モデルの列挙機械学習モデルの列挙
機械学習モデルの列挙
Satoshi Hara9.3K vistas
KDD'17読み会:Anomaly Detection with Robust Deep Autoencoders por Satoshi Hara
KDD'17読み会:Anomaly Detection with Robust Deep AutoencodersKDD'17読み会:Anomaly Detection with Robust Deep Autoencoders
KDD'17読み会:Anomaly Detection with Robust Deep Autoencoders
Satoshi Hara16.8K vistas
特徴選択のためのLasso解列挙 por Satoshi Hara
特徴選択のためのLasso解列挙特徴選択のためのLasso解列挙
特徴選択のためのLasso解列挙
Satoshi Hara4.8K vistas

Último

Igniting Next Level Productivity with AI-Infused Data Integration Workflows por
Igniting Next Level Productivity with AI-Infused Data Integration Workflows Igniting Next Level Productivity with AI-Infused Data Integration Workflows
Igniting Next Level Productivity with AI-Infused Data Integration Workflows Safe Software
225 vistas86 diapositivas
Vertical User Stories por
Vertical User StoriesVertical User Stories
Vertical User StoriesMoisés Armani Ramírez
11 vistas16 diapositivas
Tunable Laser (1).pptx por
Tunable Laser (1).pptxTunable Laser (1).pptx
Tunable Laser (1).pptxHajira Mahmood
23 vistas37 diapositivas
handbook for web 3 adoption.pdf por
handbook for web 3 adoption.pdfhandbook for web 3 adoption.pdf
handbook for web 3 adoption.pdfLiveplex
19 vistas16 diapositivas
1st parposal presentation.pptx por
1st parposal presentation.pptx1st parposal presentation.pptx
1st parposal presentation.pptxi238212
9 vistas3 diapositivas
Special_edition_innovator_2023.pdf por
Special_edition_innovator_2023.pdfSpecial_edition_innovator_2023.pdf
Special_edition_innovator_2023.pdfWillDavies22
16 vistas6 diapositivas

Último(20)

Igniting Next Level Productivity with AI-Infused Data Integration Workflows por Safe Software
Igniting Next Level Productivity with AI-Infused Data Integration Workflows Igniting Next Level Productivity with AI-Infused Data Integration Workflows
Igniting Next Level Productivity with AI-Infused Data Integration Workflows
Safe Software225 vistas
handbook for web 3 adoption.pdf por Liveplex
handbook for web 3 adoption.pdfhandbook for web 3 adoption.pdf
handbook for web 3 adoption.pdf
Liveplex19 vistas
1st parposal presentation.pptx por i238212
1st parposal presentation.pptx1st parposal presentation.pptx
1st parposal presentation.pptx
i2382129 vistas
Special_edition_innovator_2023.pdf por WillDavies22
Special_edition_innovator_2023.pdfSpecial_edition_innovator_2023.pdf
Special_edition_innovator_2023.pdf
WillDavies2216 vistas
6g - REPORT.pdf por Liveplex
6g - REPORT.pdf6g - REPORT.pdf
6g - REPORT.pdf
Liveplex9 vistas
GDG Cloud Southlake 28 Brad Taylor and Shawn Augenstein Old Problems in the N... por James Anderson
GDG Cloud Southlake 28 Brad Taylor and Shawn Augenstein Old Problems in the N...GDG Cloud Southlake 28 Brad Taylor and Shawn Augenstein Old Problems in the N...
GDG Cloud Southlake 28 Brad Taylor and Shawn Augenstein Old Problems in the N...
James Anderson33 vistas
DALI Basics Course 2023 por Ivory Egg
DALI Basics Course  2023DALI Basics Course  2023
DALI Basics Course 2023
Ivory Egg14 vistas
iSAQB Software Architecture Gathering 2023: How Process Orchestration Increas... por Bernd Ruecker
iSAQB Software Architecture Gathering 2023: How Process Orchestration Increas...iSAQB Software Architecture Gathering 2023: How Process Orchestration Increas...
iSAQB Software Architecture Gathering 2023: How Process Orchestration Increas...
Bernd Ruecker26 vistas
Automating a World-Class Technology Conference; Behind the Scenes of CiscoLive por Network Automation Forum
Automating a World-Class Technology Conference; Behind the Scenes of CiscoLiveAutomating a World-Class Technology Conference; Behind the Scenes of CiscoLive
Automating a World-Class Technology Conference; Behind the Scenes of CiscoLive
Java Platform Approach 1.0 - Picnic Meetup por Rick Ossendrijver
Java Platform Approach 1.0 - Picnic MeetupJava Platform Approach 1.0 - Picnic Meetup
Java Platform Approach 1.0 - Picnic Meetup
Rick Ossendrijver25 vistas
Voice Logger - Telephony Integration Solution at Aegis por Nirmal Sharma
Voice Logger - Telephony Integration Solution at AegisVoice Logger - Telephony Integration Solution at Aegis
Voice Logger - Telephony Integration Solution at Aegis
Nirmal Sharma17 vistas
HTTP headers that make your website go faster - devs.gent November 2023 por Thijs Feryn
HTTP headers that make your website go faster - devs.gent November 2023HTTP headers that make your website go faster - devs.gent November 2023
HTTP headers that make your website go faster - devs.gent November 2023
Thijs Feryn19 vistas
Web Dev - 1 PPT.pdf por gdsczhcet
Web Dev - 1 PPT.pdfWeb Dev - 1 PPT.pdf
Web Dev - 1 PPT.pdf
gdsczhcet55 vistas
SAP Automation Using Bar Code and FIORI.pdf por Virendra Rai, PMP
SAP Automation Using Bar Code and FIORI.pdfSAP Automation Using Bar Code and FIORI.pdf
SAP Automation Using Bar Code and FIORI.pdf
Virendra Rai, PMP19 vistas
Black and White Modern Science Presentation.pptx por maryamkhalid2916
Black and White Modern Science Presentation.pptxBlack and White Modern Science Presentation.pptx
Black and White Modern Science Presentation.pptx
maryamkhalid291614 vistas
Piloting & Scaling Successfully With Microsoft Viva por Richard Harbridge
Piloting & Scaling Successfully With Microsoft VivaPiloting & Scaling Successfully With Microsoft Viva
Piloting & Scaling Successfully With Microsoft Viva
Richard Harbridge10 vistas

機械学習モデルの判断根拠の説明

  • 2. n • ~2013.3, PhD@ , • 2013.4~2016.3, @IBM • 2016.4~2017.8, @ ERATO, NII • 2017.9~, @ , n • ECML’11 AISTATS’15,17 • AISTATS’18 AAAI’17,18 ongoing 2
  • 8. 8
  • 9. EU GDPR n GDPR-22 1. The data subject shall have the right not to be subject to a decision based solely on automated processing, including profiling, which produces legal effects concerning him or her or similarly significantly affects him or her. 2. Paragraph 1 shall not apply if the decision: is necessary for entering into, or performance of, a contract between the data subject and a data controller; is authorised by Union or Member State law to which the controller is subject and which also lays down suitable measures to safeguard the data subject’s rights and freedoms and legitimate interests; or is based on the data subject’s explicit consent. 3. In the cases referred to in points (a) and (c) of paragraph 2, the data controller shall implement suitable measures to safeguard the data subject’s rights and freedoms and legitimate interests, at least the right to obtain human intervention on the part of the controller, to express his or her point of view and to contest the decision. 4. Decisions referred to in paragraph 2 shall not be based on special categories of personal data referred to in Article 9(2)1), unless point (a) or (g) of Article 9(2) applies and suitable measures to safeguard the data subject’s rights and freedoms and legitimate interests are in place. 9
  • 10. n 2016 • ICML, NIPS n • , , Vol.33, No.3, pages 366--369, 2018. • , Qiita 10
  • 11. n AI 11 Peeking inside the black-box: A survey on Explainable Artificial Intelligence (XAI) https://ieeexplore.ieee.org/document/8466590/ 7 SCOPUS, IEEExplore, ACM Digital Library, Google Scholar, Citeseer Library, ScienceDirect, arXiv “intelligible”, “interpretable”, “transparency”, “black box”, “understandable”, “comprehensible”, “explainable” AI “Artificial Intelligence”, “Intelligent system”, “Machine learning”, “deep learning”, “classifier” , “decision tree”
  • 13. n • n • 1. • 2. • 3. • 4. • … 13
  • 16. n n Why Should I Trust You?: Explaining the Predictions of Any Classifier, KDD'16 [Python LIME; R LIME] n A Unified Approach to Interpreting Model Predictions, NIPS'17 [Python SHAP] n Anchors: High-Precision Model-Agnostic Explanations, AAAI'18 [Python Anchor] n Understanding Black-box Predictions via Influence Functions, ICML’17 [Python influence-release] 16
  • 17. n n Born Again Trees n Making Tree Ensembles Interpretable: A Bayesian Model Selection Approach, AISTATS'18 [Python defragTrees] 17
  • 18. n n [Python+Tensorflow saliency; DeepExplain] • Striving for Simplicity: The All Convolutional Net (GuidedBackprop) • On Pixel-Wise Explanations for Non-Linear Classifier Decisions by Layer-Wise Relevance Propagation (Epsilon-LRP) • Axiomatic Attribution for Deep Networks (IntegratedGrad) • SmoothGrad: Removing Noise by Adding Noise (SmoothGrad) • Learning Important Features Through Propagating Activation Differences (DeepLIFT) 18
  • 19. 19
  • 20. n n Why Should I Trust You?: Explaining the Predictions of Any Classifier, KDD'16 [Python LIME; R LIME] n A Unified Approach to Interpreting Model Predictions, NIPS'17 [Python SHAP] n Anchors: High-Precision Model-Agnostic Explanations, AAAI'18 [Python Anchor] n Understanding Black-box Predictions via Influence Functions, ICML’17 [Python influence-release] 20
  • 21. n n • LIME, SHAP, Anchor n • influence 21
  • 22. LIME n Why Should I Trust You?: Explaining the Predictions of Any Classifier, KDD'16 [Python LIME; R LIME] • • 22
  • 24. LIME n 2 • One-Hot • n LIME • Adult One-Hot 24
  • 25. LIME n ! !′ • LIME !′ !# ∈ {0, 1}* + !, # + n -(!) !0 • - ! ≈ 2 !# ≔ 40 + 46!# for !# ∈ NeighborOf(!0 # ) • 4 4, 25
  • 26. LIME n !(#) #% • ! # ≈ ' #( ≔ *% + *,#( for #( ∈ NeighborOf(#% ( ) n * • min : ∑ <,<> ∈? @AB C ! C − ' C( E s.t. * % ≤ G * % @AB C #% H #% 26
  • 28. SHAP n A Unified Approach to Interpreting Model Predictions, NIPS'17 [Python SHAP] • • LIME 28
  • 30. SHAP n SHAP LIME • Adult One-Hot n . “ ” SHAP “ ” 30
  • 31. SHAP n SHAP = LIME • ! "# = %& + %("# = %& + ∑* %*"* # 3 n 1. + " = ! "# • 31
  • 32. SHAP n SHAP = LIME • ! "# = %& + %("# = %& + ∑* %*"* # 3 n 2. "* # = 0 ⇒ %* = 0 • 32
  • 33. SHAP n SHAP = LIME • ! "# = %& + %("# = %& + ∑* %*"* # 3 n 3. + " = +, "# + +′ +, # "# − +, # "# ∖ 0 ≥ +, "# − +, "# ∖ 0 ⇒ %* +# ≥ %* + • + +′ "* # +′ + +# "* # + 33
  • 34. SHAP n SHAP = LIME • ! "# = %& + %("# = %& + ∑* %*"* # SHAP n 3 • %* = ∑+⊆-. + ! 01 + 12 ! 0! (4- 5 − 4-(5 ∖ 8)) • Shapley Value 34
  • 35. SHAP n LIME • min $ ∑&∈( ) * +, * − . * / • ) * = 123 1 456678 & & (1 2|&|) n • Linear SHAP: • Tree SHAP: • Deep SHAP: DeepLIFT 35
  • 36. Anchor n Anchors: High-Precision Model-Agnostic Explanations, AAAI'18 [Python Anchor] • 36
  • 38. Anchor n Anchor LIME • Adult One-Hot n • Anchor + 38
  • 40. Anchor n ! • " ! ! " = 1 n %(⋅ |!) ! n ! =Anchor • Anchor ! * " + ,- * ! 1. / 0. 1 ≥ +, ! " = 1 Anchor ! " 40
  • 41. Anchor n !" # $ 1& ' (& ) ≥ + • 1 − - Pr !" # $ 1& ' (& ) ≥ + ≥ 1 − - 41
  • 42. Anchor n ! = ! • ! • max % &' ( [!(+)] s.t. Pr &' + ! 11 ( 21 3 ≥ 5 ≥ 1 − 7 n 1. n 2. • Pr &' + ! 11 ( 21 3 ≥ 5 1 − 7 ! 42
  • 43. n n • LIME, SHAP, Anchor n • influence 43
  • 44. influence n Understanding Black-box Predictions via Influence Functions, ICML’17 [Python influence-release] n ("′, %′) " 44
  • 45. influence n ("′, %′) " n % = (("; *+), *+ *+ = argmin 2∈4 5 67(8,9)∈: ;(<; +) *+=6> = argmin 2∈4 5 6∈: ?@A 6B6> ;(<; +) n <> = ("′, %′) *+ • C+=6> − C+ *+=6> − *+ <> 45 <> = ("′, %′)
  • 46. influence n !" = (%′, (′) *+ • ,+-." − ,+ *+-." − *+ !" n • !" = (%′, (′) ,+-." • n influence • ,+-." − ,+ ,+-." − ,+ ≈ − 1 2 345 -6 78(!"; ,+) 46
  • 48. influence n • 48 This looks like that: deep learning for interpretable image recognition, arxiv: 1806.10574.
  • 49. n n • LIME • SHAP • Anchor n • influence 49
  • 50. n • Interpretable Predictions of Tree-based Ensembles via Actionable Feature Tweaking, KDD’17 • 50 30 200 20 200 30 300 ⭕ ⭕ … …
  • 51. n • Generating Visual Explanations, ECCV‘16 • 51
  • 52. 52
  • 53. n n Born Again Trees n Making Tree Ensembles Interpretable: A Bayesian Model Selection Approach, AISTATS'18 [Python defragTrees] 53
  • 54. BATrees n Born Again Trees • • n • ! ! • 54
  • 55. n • BATrees • defragTrees RandomForest 55
  • 56. 56
  • 57. n n [Python+Tensorflow saliency; DeepExplain] • Striving for Simplicity: The All Convolutional Net (GuidedBackprop) • On Pixel-Wise Explanations for Non-Linear Classifier Decisions by Layer-Wise Relevance Propagation (Epsilon-LRP) • Axiomatic Attribution for Deep Networks (IntegratedGrad) • SmoothGrad: Removing Noise by Adding Noise (SmoothGrad) • Learning Important Features Through Propagating Activation Differences (DeepLIFT) 57
  • 63. n ! = # $ n $ n [Simonyan et al., arXiv’14] $% &' ( &() • → → *+ , *,- → • → → &' ( &() → 63
  • 64. n [Simonyan et al., arXiv’14] !" #$ % #%& n • GuidedBP [Springenberg et al., arXiv’14] back propagation • LRP [Bach et al., PloS ONE’15] • IntegratedGrad [Sundararajan et al., arXiv’17] • SmoothGrad [Smilkov et al., arXiv’17] • DeepLIFT [Shrikumar et al., ICML’17] 64
  • 65. n n [Python+Tensorflow saliency; DeepExplain] • Striving for Simplicity: The All Convolutional Net (GuidedBackprop) • On Pixel-Wise Explanations for Non-Linear Classifier Decisions by Layer-Wise Relevance Propagation (Epsilon-LRP) • Axiomatic Attribution for Deep Networks (IntegratedGrad) • SmoothGrad: Removing Noise by Adding Noise (SmoothGrad) • Learning Important Features Through Propagating Activation Differences (DeepLIFT) 65
  • 69. defragTrees n Making Tree Ensembles Interpretable: A Bayesian Model Selection Approach, AISTATS'18 [Python defragTrees] • • n 69 when Relationship ≠ Not-in-family, Wife Capital Gain < 7370 when Relationship ≠ Not-in-family Capital Gain >= 7370 when Relationship ≠ Not-in-family, Unmarried Capital Gain < 5095 Capital Loss < 2114 when Relationship = Not-in-family Country ≠ China, Peru Capital Gain < 5095 when Relationship ≠ Not-in-family Country ≠ China Capital Gain < 5095 when Relationship ≠ Not-in-family Capital Gain >= 7370 … …
  • 70. n n • 70 y = XOR(x1 < 0.5, x2 < 0.5) + ✏
  • 71. n n 71 2017 The State of Data Science & Machine LearningYour Year on Kaggle: Most Memorable Community Stats from 2016
  • 74. defragTrees n 1. • !" #, % &) n 2. !"( #, % )) • !"( #, % )) ≈ !"(#, %|&) ) ≪ & !"( #, % )) n • ) • Factorized Asymptotic Bayesian (FAB) Inference 74 & )
  • 75. n n • • • 75 D Synthetic 2 1000 1000 Spambase 57 1000 1000 MiniBooNE 50 5000 5000 Magic 11 5000 5000 Higgs 28 5000 5000 Energy 8 384 384
  • 76. n 76
  • 77. n 77
  • 81. n Enumerate Lasso Solu/ons for Feature Selec/on, AAAI’17 [Python LassoVariants]. n Approximate and Exact Enumera/on of Rule Models, AAAI'18.
  • 89. Lasso Given: !", $" ∈ ℝ'×ℝ ) = 1, 2, … , . Find: / ∈ ℝ' s.t. !" 0 / ≈ $ () = 1, 2, … , .) / n • • Lasso ℓ5 /∗ = argmin = 1 2 >/ − $ @ + B / 5 • Lasso /∗ supp(/∗) = {) ∶ /" ∗ ≠ 0}
  • 92. Lasso n ! ⊆ {$%, $', … , $)} Lasso Lasso ! = min 3 % ' 45 − 7 ' + 9 5 % s.t. supp 5 ⊆ ! Lasso ! Lasso ! < supp 5 = ! • 9 • 9 • $%, $', $= , $%, $', $> , $%, $>, $? , $%, $' , … Lasso !
  • 93. Lawler !-best 1. " # 2. $ ∈ # " $ "& = " ∖ {$} Lasso("′) #′ (#&, "′) 3. 4.
  • 94. Lawler !-best 1. " # 2. $ ∈ & ' $ '( = ' ∖ {$} Lasso('′) &′ (&(, '′) 3. 4. & = 56, 57, 58 ' = 56, 57, 59, 58, 5: &6 = 56, 57, 58 '6 = 56, 57, 59, 58, 5:
  • 95. Lawler !-best 1. " # 2. $ ∈ & ' $ '( = ' ∖ {$} Lasso("′) #′ (#(, "′) 3. 4. "5 ( = 67, 68, 69, 6: "7 ( = 65, 68, 69, 6: "8 ( = 65, 67, 68, 6: "5 = 65, 67, 68, 69, 6: #5 = 65, 67, 69 "5 = 65, 67, 68, 69, 6:
  • 96. Lawler !-best 1. " # 2. $ ∈ & " ' "( = " ∖ {'} -.//0(2′) &′ (&(, 2′) 3. 4. (#6 (= 78, 79, 7: , "6 ()"6 ( = 78, 7;, 79, 7: "8 ( = 76, 7;, 79, 7: "; ( = 76, 78, 7;, 7: "6 = 76, 78, 7;, 79, 7: #6 = 76, 78, 79 "6 = 76, 78, 7;, 79, 7:
  • 97. Lawler !-best 1. " # 2. $ ∈ & " ' "( = " ∖ {'} -.//0(2′) &′ (&(, 2′) 3. 4. (#6 (= 78, 79, 7: , "6 ()"6 ( = 78, 7;, 79, 7: "8 ( = 76, 7;, 79, 7: "; ( = 76, 78, 7;, 7: "6 = 76, 78, 7;, 79, 7: (#8 (= 76, 7;, 79 , "8 () #6 = 76, 78, 79 "6 = 76, 78, 7;, 79, 7:
  • 98. Lawler !-best 1. " # 2. $ ∈ & " ' "( = " ∖ {'} -.//0(2′) &′ (&(, 2′) 3. 4. (#6 (= 78, 79, 7: , "6 ()"6 ( = 78, 7;, 79, 7: "8 ( = 76, 7;, 79, 7: "; ( = 76, 78, 7;, 7: "6 = 76, 78, 7;, 79, 7: (#8 (= 76, 7;, 79 , "8 () (#; (= 76, 78, 7: , "; ()#6 = 76, 78, 79 "6 = 76, 78, 7;, 79, 7:
  • 99. Lawler !-best 1. " # 2. $ ∈ # " $ "& = " ∖ {$} +,--.("′) #′ (#&, "′) 3. 4. (#3 &= 45, 46, 47 , "3 &) (#5 &= 43, 48, 46 , "5 &) (#8 &= 43, 45, 47 , "8 &) #5 = 45, 46, 47 "5 = 45, 48, 46, 47 #3 = 43, 45, 46 "3 = 43, 45, 48, 46, 47
  • 100. Lawler !-best 1. " # 2. $ ∈ & ' $ '( = ' ∖ {$} Lasso("′) #′ (#(, "′) 3. 4. #5 = 65, 67, 68 "5 = 65, 67, 69, 68, 6: (#7 (= 65, 69, 68 , "7 () (#9 (= 65, 67, 6: , "9 () #7 = 67, 68, 6: "7 = 67, 69, 68, 6: "8 ( = 69, 68, 6: ": ( = 67, 69, 6: "; ( = 67, 69, 68 "7 = 67, 69, 68, 6:
  • 101. Lasso % % n • % • % Lasso
  • 103. 1. n Thaliana gene expression data (Atwell et al. ’10): • ! ∈ ℝ$%&%'( 2 • ) ∈ ℝ • 134
  • 104. 2. n 20 Newsgroups Data (Lang’95); ibm vs mac • ! ∈ ℝ$$%&' tf-idf • ( ∈ {ibm, mac} 2 • 1168 → bios drive ibm ide drive ibm dos os, drive ibm controller drive ibm quadra, centris 040, clock mac windows, bios, controller disk, drive ibm bios, help, controller disk, drive ibm centris, pc 610 mac
  • 105. n • n Lasso • Lawler !-best n • •
  • 108. n n Sanity Checks for Saliency Maps, NeurIPS’18. • • Sanity Check 108 “ ” Guided-BP
  • 109. n • • • n • Please Stop Explaining Black Box Models for High-Stakes Decisions, arXiv:1811.10154 109