SlideShare una empresa de Scribd logo
1 de 63
DUAL ENERGY CT
Sudil Paudyal
M.Sc.MIT (12)
IOM, MMC
1
SINGLE ENERGY CT
2
CHALLENGES WITH SINGLE ENERGY CT
 Tissue characterization
 Lesion detection (small lesion)
 Image noise and quality at low kV scanning
 Complex scanning protocols
 Multiphase imaging
 Radiation dose
3
ATTENUATION ON CT
4
 Material differentiation on CT is based on x-ray
attenuation
 Attenuation is caused by absorption and scattering
of radiation
 Two main mechanisms: compton scatter and
photoelectric effect
 Compton effect is energy independent
 Photoelectric effect is strongly energy dependent and its
likelihood increases as the energy of incident photon
approximates the K-shell binding energy of an electron.
 Changing the kV setting results in an alteration of
photon energy
BASIS OF DECT
 Attenuation is energy dependent- at 80 kVp, iodine signal is
2X of 140 kVp
 CT numbers donot vary with beam energy for soft tissues but
do for high “z” materials
 By analyzing absorption properties of different material at
different x-ray energies, materials can be distinguished. (basis
material decomposition)
 Human body is made up of many different elements- mainly
carbon, oxygen , hydrogen , nitrogen, phosphorous and
calcuim- which are arranged in many different combinations.
 Hydrogen, carbon, nitrogen and oxygen have similar k- edges
which are well below the energies currently used in DECT (80
kVp and 140 kVp), thus not well appreciated.
 The k edges of calcium and iodine are higher than those of
soft tissues and although they are lower than those, they are
distinguished from soft tissues at DE imaging.
5
6
The settings of 80 and 140
kVp are generally used
because they provide
maximum difference and
least overlap between the
spectra with standard tubes.
PRINCIPLE OF DECT
The principle of dual energy CT is based on differential absorption of
energy(Linear attenuation coefficient) at variable KVP settings.
For example: Let us consider a substance (A)with K-edge at 60 kv
another (B)with K-edge 130 kv, if we imagine multiple combination of A
and/or B at 80KVp and 140KVp ,there will be differential attenuation at both
these energy settings.
The object containing larger amount of substance A will show higher
attenuation at 80KVp and lower attenuation at 140 KVp, whereas object
containing larger amount of substance B will show higher attenuation at
80KVp and at 140KVp as well.
The CT number of blood mixed iodine becomes 1550HU similar to the
value of bone at 140 kvp. so it is nearly impossible to determine weather the
object of interest is bone or iodine blood mixed structure.
If we take another scan of same object with on 80kvp setting , the
measures CT number will be different .if the object of interest is made with
bone the CT number will be 2200HU and the object is mixture of iodine and
blood , the CT number will be 2800HU due to different behavior of linear
attenuation co-efficient as a function of energy for different materials.
8
TECHNICAL APPROACHES TO DECT
 Five approaches : (currently only former three are
commercially available)
 Sequential acquisition
 Rapid voltage switching
 DSCT
 Layer detectors and
 Energy resolving or quantum counting detectors
9
SEQUENTIAL ACQUISTION
 Requires least hardware effort.
 Achieved either as two subsequent helical scans or
as a sequence with subsequent rotations at
alternating tube voltages and stepwise table feed.
 Disadvantage is rather long delay between both
acquisitions, causing artifacts from cardiac or
respiratory motion or changes in CM opacification.
 But, a viable option for clinical applications w/o CM
such as metal artifact removal or kidney stone
differentiation.
11
RAPID VOLTAGE SWITCHING
 Tube voltage alternates between a high value (140kV)
and a low value (80 kV) and data are collected twice for
every projection.
 Rotation speed of system must be reduced to account
for the acquistion of these additional projections and rise
and fall times of voltage modulation.
 To account for the higher tube output at 140 kVp, the
exposure time ratio is varied between the 80-kVp and
the 140-kVp acquisitions to maximize the contrast-to-
noise ratio: typically, 65% of the exposure time is used
for the 80-kVp acquisition, and 35%, for the 140-kVp
acquisition.
 A detector with a fast response and a data acquisition
system with a fast sampling capability are used to
capture the alternating high- and low-energy data.
12
 The advantages of dual-energy CT with fast kilovoltage
switching are good temporal registration between high-
and low-energy datasets, which are obtained nearly
simultaneously, and the availability of the full 50-cm
field of view for use in image analysis.
 Limited photon output at low voltages which results in
high noise and necessity to choose a relatively high
current and consequently high dose.
 So requires additional dose because other dose
reduction features(ATCM) or optimized filtration are not
possible.
 However, because a single x-ray source is used,
individual modification of the high- and low-energy x-ray
beams is difficult (not yet possible on commercially
available scanners), and spectral overlap is increased.
13
14
DUAL SOURCE CT
 Two tubes running at different voltages and corresponding
detectors mounted orthogonally in one gantry.
 High-energy scans are obtained at 120 or 140 kVp, and low-
energy scans are obtained simultaneously at 80 or 100 kVp.
 One detector somewhat smaller than other, resulting in 33 cm
FOV.
 Nearly twofold investments in hardware but offers important
advantages for DECT:
 Voltage, current and filter can be chosen independently for both
tubes to achieve an optimal contrast .
 Although there is an angular offset between both spiral paths,
there is no temporal offset in data acquisition because equivalent
z-axis positions are scanned at same time.
 Disadvantage is cross-scatter radiation, which partially hits the
noncorresponding orthogonal detector and requires
correction.
15
16
LAYER DETECTOR
 Uses an energy resolving detector with
polychromatic spectrum of one tube.
 The sensitivity of two layers is determined by the
scintillator material : for eg: consisting of ZnSe or
CsI in the top layer and Gd2O2S in the bottom
layer.
 The scintillator materials determine the spectral
resolution and sensitivity profiles of available
materials have a rather broad overlap.
 Therefore the contrast of spectral information is
limited or requires high additional dose.
 Not yet available for clinical use.
17
QUANTUM COUNTING DETECTOR
 Resolve the energy of each individual impacting
photon.
 Used to differentiate more than two photon
energies and is very quantum efficient.
 But detector materials eg; CdZnTe get saturated
rather quickly, resulting in a rapid drift of the
measured signal.
 Thus used to scan small animals, but cannot
handle a photon flux required for clinical CT.
18
19
RADIATION EXPOSURE
 Direct comparison of different DECT approaches should
include both spectral contrast and dose optimally quantified as
CNR per dose.
 Comparison for different scanner setups is made based on
Monte-Carlo simulations.
 Currently a maximum spectral contrast is achieved with a
DSCT with optimized voltage, current and filtration.
 Technologic strategies that allow dose reduction include; tube
current modulation, iterative reconstruction techniques and
new detector application- specific integrated circuits (ASICs)
integrating photodiode and analog digital converters.
 These features offer special benefits for DECT because CNR
is improved in both half-dose acquisitions with the two energy
spectra so the gain in dose efficieny is even greater than
single energy CT for DSCT. 20
POSTPROCESSING
 Two approaches:
1. Data-domain or projection-space decomposition:
 To subtract equivalent projections and apply filtered
back projection to reconstruct the difference as
spectral information.
 i.e. dual energy data sets are reconstructed before
images are reconstructed from high- and low-energy
sinograms.
 Used for material analysis of dual-energy CT images
obtained with fast kilovoltage switching.
 Projection-space decomposition is preferred because
it enables greater flexibility in material decomposition
and permits the preprocessing correction of data to
minimize beam-hardening artifacts 21
2. Image-domain decomposition:
 First reconstruct standard CT images consisting of
voxels in HU and then to use postprocessing
algorithms to extract specific spectral information from
the difference between the corresponding voxels.
 Dual-energy datasets are processed after the
reconstruction of high- and low-energy images.
 Used for material analysis of images obtained with a
dual-source or dual-layer dual-energy CT scanner
 IRS provides low and high kV images and a series of
weighted average images. The average series
integrates both acquisitions in a low noise image for
immediate evaluation.
 DE analysis is then performed on the dual kV series
using imaging based algorithms.
22
 3 main types of algorithm are in use:
 Optimization : First type optimizes images
 Results in altered gray level CT images
 Monoenergetic images in which the density for each voxel is
extrapolated to a certain energy from the two density values at
the acquired photon energies, and non linear blending algorithms
which combine high iodine contrast and low noise referred to as
optimum contrast.
 Differentiation : Second type identifies or differentiates
certain materials
 Define a slope between the density values at both acquired
spectra and differentiate material on the basis of the
photoelectric effect within a certain density range- that is, colors
are assigned on both sides of the slope.
 Another possibility is to eliminate certain substances from a
dataset by identifying the substance and then filling in for
example air density for the corresponding voxels. 23
24
• Quantification: Third type quantifies a substance in the
data set.
• Use a three material decomposition, quantifying one of three
materials.
• A slope is defined by the density of two basic components and a
second slope is defined by the photoelectric effect of the contrast
material being quantified.
• The density values measured at both energies are then interpreted
as a displacement from the first slope along the second one.
• This enhancement is then color coded or is also subtracted from the
image.
IMAGE RECONSTRUCTION
 In fast kV switching, 140 kV images are reconstructed
immediately at the scanner console, and are only used
to verify the adequacy of anatomic coverage.
 To facilitate workflow, 80 kV images are not routinely
reconstructed.
 Calibration correction are applied to the high and low
energy datasets, which are aligned in projection space
and transformed into material basis pair projections,
which are then used to reconstruct two main types of
images:
 Material density images, which provide material specific
information and
 Monochromatic images which provide energy selective
information.
25
 Generation of material density images is based on the
theory of basis material decomposition, which proposes
that the attenuation coefficients of any material can be
computed as a weighted sum of the attenuation
coefficients of two basis materials as long as the k-edge
of the material is not within the evaluated energy range.
 The two basis materials should have substantially
different mass attenuation coefficients; thus the material
pairs chosen usually differ greatly in efffective atomic
numaber.
 Substances other than chosen basis materials are
considered to contain combinations of both selected
material densities.
 Two sets of material density images are then generated
each demonstrating the presence or absence of each
basis material selected.
26
 Two commonly selected dual energy CT basis material
pairs are
 Iodine and calcium and
 Iodine and water
 when iodine (high atomic number) is paired with water
(low atomic number), two separate sets of images (a set
of iodine density images and a set of water density
images) are generated.
 On the water density image, voxels that show an energy
dependent change in attenuation resembiling the
attenuation of iodine are removed and represented
instead on the iodine density image.
 The virtual unenhanced images thus generated from CE
dual energy data set can provide information equivalent
to that obtainable from unenhanced images.
 Iodine density images are used to asses structures for
areas of enhancement. Only lesions that contain iodine
will show higher density. 27
28
 DECT images can be processed to obtain images
at any specified single photon energy. Such images
are called monochromatic images.
 Monochromatic projections can be generated
during the processing of material density image
data by calcualting the linear attenuation coefficinet
of an object.
 Because they are generated from projection space
data, monochromatic images are less affected by
beam hardening artifact and provide more accurate
CT numbers than do standard CT images.
 These advantages can improve the characterization
of renal lesions by decreasing pseudoenhancement
in simple renal cysts. 29
30
 With DSDECT, images are generated by linear or
nonlinear sigmoidal blending of high and low
energy image datasets.
 Material specific images are generated by
measuring the differences in attenuation and either
highlighting the pixels corresponding to the selected
material or subtracting the pixels corresponding to
the other materials.
 For abdominal applications, a three material
decomposition (soft tissue, fat and iodine) process
is usually used to generate the virtual unenhanced
images.
 A color coded overlay image also can be generated
which enables visualization of the distribution of a
selected material across entire CT volume.
31
32
33
DIFFERENCE BETN VIRTUAL UNENHANCED IMAGE
OBTAINED WITH DSDECT AND SSDECT.
34
CLINICAL APPLICATIONS
35
NEURORADIOLOGY
 Neurological applications permit the
generation of virtual non-contrast
images for the detection of brain
hemorrhages in patients who undergo
CTA.
 Also allow the removal of bone and
calcium from the carotid and brain
CTA.
 Possible to detect a brain hemorrhage
on virtual non-contrast images.
 Comparison of dual energy bone
removal to digital subtraction CTA and
automatic bone removal reveals
superiority of dual energy technique,
particularly at the level of skull base.
 Radiation dose was also reduced as
compared to digital subtraction CTA.
36
37
THORAX APPLICATIONS
 Lack of misregistration and visualization of lung perfusion and
ventilation.
 Misregistration avoided due to simultaneous acquisition of 80
and 140 kVp images.
 In pt.s with pulmonary thromboembolism, DECT may allow the
detection of subtle emboli by revealing perfusion defects.
 Assessment of lung perfusion can allow the visualization of
pathologies that have been perviously unknown, particularly in
pt.s with ILDs, emphysema, asthma or chronic
thromboembolic disease and in patients with tumors.
 Xenon DECT enables collection of ventilation perfusion CT
acquisitions and in future may replace ventilation perfusion
scintigraphy.
 Superior registration of DECT may demonstrate the presence
or lack of enhancement of sub-centimeter and solitary lung
nodules.
38
39
CARDIAC APPLICATIONS
 Dual energy perfusion with or without the adenosine
stress test, viability imaging and cardiac iron detection.
 To decrease image noise, 100 and 140 kVp acquisitions
are preferred.
 Addition of an iterative reconstruction technique may
allow a better image quality for cardiac applications.
 Can be difficult in patients with elevated heart rates due
to a worsening of the temporal resolution from 83 to 165
ms in DSCT.
 Also for the characterization of plaques, for calcific
plaque removal from coronary arteries and for
evalutation of coronary stents.
40
41
VASCULAR APPLICATIONS
 Imaging protocol for aortic aneurysms consists of
unenhanced, arterial and venous phase images, which
exposes the patient to a high radiation burden because
it is repeated every six months after aortic stent grafting.
 DE aortic stent graft protocol may obviate the need for
unenhanced CT and iodine map images may facilitate
the recognition of endoleaks.
 Can also permit the faster removal of calcific plaques in
large arteries and bony structures in cranial region.
 However the use of this technique seems difficult for
small sized arteries.
 Also no sytdy has demonstrated any advantage of dual
energy CTA for peripheral artery applications.
42
43
GI AND ABDOMINAL APPLICATIONS
 The use of dual energy has revealed that 80 kVp
images demonstrate a better contrast than do 140
kVp images.
 Useful for evaluation of enhanced liver lesions in
the arterial phase in HCC and in hypervascular liver
metastases.
 Also used for the diagnosis of liver iron and fat,
which display opposite spectral patterns.
 The measured denisty of a liver increases with
decreasing kVp and keV in patients with hepatic
iron overload, but the measured density of a liver
decreases with decreasing kVp and kev in patients
with steatosis. 44
 DE cholangiography may facilitate the detection of
bile ducts and the measurement of biliary segment
dimensions.
 Invitro studies have been performed to characterize
the dual energy of gall stones and a similar protocol
may be used for patients with biliary dilation and a
suspected choleduct stone.
 The use of 80 kvp data obtainde by DECT may
permit a better distinction of pancreatic
adenocarcinoma from the adjacent normal
parenchyma by increasing the conspicuity of the
masses. 45
46
DECT COLONOSCOPY
 Obviates the non-contrast prone images from
diagnostic CT colonoscopy protocols.
 Colonic polyps and masses are enhanced approx.
40-50 HU on post contrast images. Thus the
enhancement of colonic masses can be
differentiated from stool through the use of iodine
DECT images and non cathartic DECT colonoscopy
may be feasible, esp. in elderly patients.
47
48
MSK APPLICATIONS
 Most useful MSK application is the differentiation of
gout and pseudogout via the diagnosis of uric acid
and calcium crystals in the joint space.
 Tendon and ligament visualization has been
proposed by CT vendors but few studies have
evaluated this application.
 Metal artifact reduction has been proposed for the
fast kVp switching technique, wich emplyos images
with a low keV.
49
50
URINARY APPLICATIONS
Renal mass characterization:
 Paired iodine and water density images obtained at contrast enhanced
DECT can help distinguish hyper attenuating cysts from enhancing
masses without the need for an unenhanced scanning phase.
 The greater brightness of renal masses on iodine density images helps
distinguish them from non enhancing cysts even when their attenuation
measurements on CECT images are similar.
 Color coded image overlays in each pixel allow easy visualization of
presence or absence of enhancement.
 Also water density images may be used as virtual unenhanced images
to allow the detection of calcification within a renal mass.
 Limitations: Virtual unenhanced images are noisier than real
unenhanced images.
 Because of material decomposition algorithms used, calcification in
renal lesions is less conspicuous on virtual unenhanced images than on
real images.
 Smaller amounts of fat in renal masses are difficult to detect on virtual
images and can be measured only on conventional thin section CT
images. 51
52
Characterization of renal stones:
 Different types of renal calculi; calcium based stones- 70-
80%,struvite stones- 5-15%, uric acid stones 5-10%, and
cystine stones 1-2.5%.
 Knowledge about the composition of stones may guide
decisions about theire management and shape
expectations concerning the effectiveness of therapy.
 Uric acid calculi can be managed with oral medications
that facilitate dissolution, struvite calculi are amenable to
ESWL, whereas calcium oxalate monohydrate and
cystine calculi are resistant to fragementation with
lithotripsy.
 at dual energy, the change in attenuation between high
and low energy scans can be used to differentiate types
of calculi, some of which might have a similar attenuation
when scanned at single energy level.
53
54
Ct urography:
 With the ability to generate virtual unenhanced
images from contrast enhanced dual energy CT
image datasets, dual energy CT urography can
lessen the need for an unenhanced scanning
phase.
 But small stones may be less well depicted on
virtual images than on actual unenhanced images.
55
WHAT WE HAVE
56
 Siemens Somatom
Definition AS+
 SSDECT
 Data domain
decomposition
reconstruction.
 Specialized DECT
application in syngo.via
57
58
59
60
LIMITATIONS
 Restriction of FOV ( with DSCT)
 High radiation dose
 Addition of a tin filter helps to decrease
 Increase in radiation dose can be justified when
unenhanced images are eliminated from protocols,
which may result in dose saving.
 Noise in the 80 kVp images
 Evaluations of patients with a high BMI.
 Noise constraints may result in a suboptimal image
quality.
61
CONCLUSION
 Volumetric DECT acquisitions enables the emergence of
new applications with potential benefits.
 Major advantages of DECT are material decomposition,
separation of iodine from the image and prevention of
misregistration particularly in thorax and abdomen, and
renal mass and stone characterization in the urinary
system.
 The use of iterative reconstruction techniques can
facilitate the wider use of DECT applications by
decreasing the noise and the radiation dose.
 These technologies may eventually lead to better
detection and characterization of lesions in the body and
objective evaluation of iodine uptake by various organs,
leading to DECT becoming an alternative of PET-CT.
62
FIND MORE AT:
 Johnson TR; Dual energy CT: general principles
 Muşturay Karçaaltıncaba, Aykut Aktaş; Dual-energy
CT revisited with multidetector CT: review of
principles and clinical applications
 Johnson TR, Kraus B, et.al.; Material differentiation
by Dual energy CT: initial experience
 Kaza RK, Plat FJ et.al.; Dual-Energy CT with
Single- and Dual-Source Scanners: Current
Applications in Evaluating the Genitourinary Tract
 http://www.dsct.com
63
2/01/201564

Más contenido relacionado

La actualidad más candente

La actualidad más candente (20)

BASIC MRI SEQUENCES
BASIC MRI SEQUENCESBASIC MRI SEQUENCES
BASIC MRI SEQUENCES
 
MDCT (2)
MDCT (2)MDCT (2)
MDCT (2)
 
CTDI (Computed Tomography Dose Index
CTDI (Computed Tomography Dose IndexCTDI (Computed Tomography Dose Index
CTDI (Computed Tomography Dose Index
 
Presentation1, mr pulse sequences.
Presentation1, mr pulse sequences.Presentation1, mr pulse sequences.
Presentation1, mr pulse sequences.
 
MRI Parameters for Imaging
MRI Parameters for ImagingMRI Parameters for Imaging
MRI Parameters for Imaging
 
Post processing of computed tomography
Post processing of computed tomographyPost processing of computed tomography
Post processing of computed tomography
 
CT ARTIFACTS.pptx
CT ARTIFACTS.pptxCT ARTIFACTS.pptx
CT ARTIFACTS.pptx
 
Multi slice ct ppt
Multi slice ct pptMulti slice ct ppt
Multi slice ct ppt
 
CT Generations and Artefacts
CT Generations and ArtefactsCT Generations and Artefacts
CT Generations and Artefacts
 
Ct mri urography
Ct mri urographyCt mri urography
Ct mri urography
 
MRI artifacts
MRI artifactsMRI artifacts
MRI artifacts
 
CT Angiography Lower Limb
CT Angiography Lower LimbCT Angiography Lower Limb
CT Angiography Lower Limb
 
APPLICATION OF DUAL ENERGY CT IN EMERGENCY RADIOLOGY
APPLICATION OF DUAL ENERGY CT IN EMERGENCY RADIOLOGYAPPLICATION OF DUAL ENERGY CT IN EMERGENCY RADIOLOGY
APPLICATION OF DUAL ENERGY CT IN EMERGENCY RADIOLOGY
 
Mri artifacts
Mri artifactsMri artifacts
Mri artifacts
 
CT Artifacts
CT ArtifactsCT Artifacts
CT Artifacts
 
CT Physics
CT PhysicsCT Physics
CT Physics
 
Ct protocols of thorax
Ct protocols of thoraxCt protocols of thorax
Ct protocols of thorax
 
Mammography physics and technique
Mammography  physics and techniqueMammography  physics and technique
Mammography physics and technique
 
Portable ct mobile ct
Portable ct mobile ctPortable ct mobile ct
Portable ct mobile ct
 
Ct head protocols
Ct head protocolsCt head protocols
Ct head protocols
 

Destacado

13 Fluid Therapy
13 Fluid Therapy13 Fluid Therapy
13 Fluid Therapy
ghalan
 
14 Valvular Heart Disease
14 Valvular Heart Disease14 Valvular Heart Disease
14 Valvular Heart Disease
ghalan
 
Central nervous system
Central nervous systemCentral nervous system
Central nervous system
ghalan
 
16 Infections Of The Respiratory Tract
16 Infections Of The Respiratory Tract16 Infections Of The Respiratory Tract
16 Infections Of The Respiratory Tract
ghalan
 
22 Purulent Meningitis
22 Purulent Meningitis22 Purulent Meningitis
22 Purulent Meningitis
ghalan
 
6 Neonatal Septicemia
6 Neonatal   Septicemia6 Neonatal   Septicemia
6 Neonatal Septicemia
ghalan
 
2 Primary Of Child Care And Infant Feeding
2 Primary Of Child Care  And Infant Feeding2 Primary Of Child Care  And Infant Feeding
2 Primary Of Child Care And Infant Feeding
ghalan
 
23 Ppt Itp
23 Ppt Itp23 Ppt Itp
23 Ppt Itp
ghalan
 
Introduction skeletal radiology(11月20.)
Introduction   skeletal radiology(11月20.)Introduction   skeletal radiology(11月20.)
Introduction skeletal radiology(11月20.)
ghalan
 
18 Rickets Of Vitamin D Deficiency,Tetany Of Vitamin D Deficiency
18 Rickets Of Vitamin D Deficiency,Tetany Of Vitamin D Deficiency18 Rickets Of Vitamin D Deficiency,Tetany Of Vitamin D Deficiency
18 Rickets Of Vitamin D Deficiency,Tetany Of Vitamin D Deficiency
ghalan
 
Liver,bile duct,pancreas and spleen
Liver,bile duct,pancreas and spleenLiver,bile duct,pancreas and spleen
Liver,bile duct,pancreas and spleen
ghalan
 
12 Tuberculosis Tanweiping
12 Tuberculosis Tanweiping12 Tuberculosis Tanweiping
12 Tuberculosis Tanweiping
ghalan
 

Destacado (20)

Doppler Ultrasonography And Advancements in USG
Doppler Ultrasonography And Advancements in USGDoppler Ultrasonography And Advancements in USG
Doppler Ultrasonography And Advancements in USG
 
13 Fluid Therapy
13 Fluid Therapy13 Fluid Therapy
13 Fluid Therapy
 
14 Valvular Heart Disease
14 Valvular Heart Disease14 Valvular Heart Disease
14 Valvular Heart Disease
 
Central nervous system
Central nervous systemCentral nervous system
Central nervous system
 
Radiographic positioning of humerus and shoulder
Radiographic positioning of humerus and shoulderRadiographic positioning of humerus and shoulder
Radiographic positioning of humerus and shoulder
 
Imaging of shoulder - Dr. Vishal Sankpal
Imaging of shoulder - Dr. Vishal SankpalImaging of shoulder - Dr. Vishal Sankpal
Imaging of shoulder - Dr. Vishal Sankpal
 
Cerebral Ischemia
Cerebral IschemiaCerebral Ischemia
Cerebral Ischemia
 
16 Infections Of The Respiratory Tract
16 Infections Of The Respiratory Tract16 Infections Of The Respiratory Tract
16 Infections Of The Respiratory Tract
 
Radiographic cassettes
Radiographic cassettesRadiographic cassettes
Radiographic cassettes
 
22 Purulent Meningitis
22 Purulent Meningitis22 Purulent Meningitis
22 Purulent Meningitis
 
6 Neonatal Septicemia
6 Neonatal   Septicemia6 Neonatal   Septicemia
6 Neonatal Septicemia
 
2 Primary Of Child Care And Infant Feeding
2 Primary Of Child Care  And Infant Feeding2 Primary Of Child Care  And Infant Feeding
2 Primary Of Child Care And Infant Feeding
 
MRI OF SHOULDER INJURY
MRI OF SHOULDER INJURYMRI OF SHOULDER INJURY
MRI OF SHOULDER INJURY
 
Radiographic evaluation of shoulder
Radiographic evaluation of shoulderRadiographic evaluation of shoulder
Radiographic evaluation of shoulder
 
23 Ppt Itp
23 Ppt Itp23 Ppt Itp
23 Ppt Itp
 
Introduction skeletal radiology(11月20.)
Introduction   skeletal radiology(11月20.)Introduction   skeletal radiology(11月20.)
Introduction skeletal radiology(11月20.)
 
MRI of the shoulder
MRI of the shoulderMRI of the shoulder
MRI of the shoulder
 
18 Rickets Of Vitamin D Deficiency,Tetany Of Vitamin D Deficiency
18 Rickets Of Vitamin D Deficiency,Tetany Of Vitamin D Deficiency18 Rickets Of Vitamin D Deficiency,Tetany Of Vitamin D Deficiency
18 Rickets Of Vitamin D Deficiency,Tetany Of Vitamin D Deficiency
 
Liver,bile duct,pancreas and spleen
Liver,bile duct,pancreas and spleenLiver,bile duct,pancreas and spleen
Liver,bile duct,pancreas and spleen
 
12 Tuberculosis Tanweiping
12 Tuberculosis Tanweiping12 Tuberculosis Tanweiping
12 Tuberculosis Tanweiping
 

Similar a Dual Energy CT

Moshtagh new-approach-ieee-2006
Moshtagh new-approach-ieee-2006Moshtagh new-approach-ieee-2006
Moshtagh new-approach-ieee-2006
imeneii
 
Imaging physics and limitations
Imaging physics and limitationsImaging physics and limitations
Imaging physics and limitations
Rad Tech
 

Similar a Dual Energy CT (20)

MSCT & DECT.pptx
MSCT & DECT.pptxMSCT & DECT.pptx
MSCT & DECT.pptx
 
Quantum dot laser
Quantum dot laserQuantum dot laser
Quantum dot laser
 
Dual Energy CT - SIEMENS
Dual Energy CT - SIEMENSDual Energy CT - SIEMENS
Dual Energy CT - SIEMENS
 
30_4-Jacobs
30_4-Jacobs30_4-Jacobs
30_4-Jacobs
 
Detection of Gamma Radiation
Detection of Gamma RadiationDetection of Gamma Radiation
Detection of Gamma Radiation
 
Optical Absoprtion of Thin Film Semiconductors
Optical Absoprtion of Thin Film SemiconductorsOptical Absoprtion of Thin Film Semiconductors
Optical Absoprtion of Thin Film Semiconductors
 
Moshtagh new-approach-ieee-2006
Moshtagh new-approach-ieee-2006Moshtagh new-approach-ieee-2006
Moshtagh new-approach-ieee-2006
 
Radioisotope Thermoelectric Generator in nanosatellite
Radioisotope Thermoelectric Generator in nanosatellite Radioisotope Thermoelectric Generator in nanosatellite
Radioisotope Thermoelectric Generator in nanosatellite
 
Spectroscopic Techniques
Spectroscopic TechniquesSpectroscopic Techniques
Spectroscopic Techniques
 
Electronic instrumentation in NMT
Electronic instrumentation in NMTElectronic instrumentation in NMT
Electronic instrumentation in NMT
 
Unit 1 ppt notes /BM8702 /RADIOLOGICAL EQUIPMENTS
Unit 1 ppt notes /BM8702 /RADIOLOGICAL EQUIPMENTSUnit 1 ppt notes /BM8702 /RADIOLOGICAL EQUIPMENTS
Unit 1 ppt notes /BM8702 /RADIOLOGICAL EQUIPMENTS
 
EDS.pptx
  EDS.pptx  EDS.pptx
EDS.pptx
 
High-Intensity Discharge Lamps in Centralized Systems: Exploring New Techniqu...
High-Intensity Discharge Lamps in Centralized Systems: Exploring New Techniqu...High-Intensity Discharge Lamps in Centralized Systems: Exploring New Techniqu...
High-Intensity Discharge Lamps in Centralized Systems: Exploring New Techniqu...
 
Electron spectroscopy
Electron spectroscopyElectron spectroscopy
Electron spectroscopy
 
Presentation
PresentationPresentation
Presentation
 
Dual energy case study
Dual energy case studyDual energy case study
Dual energy case study
 
Imaging physics and limitations
Imaging physics and limitationsImaging physics and limitations
Imaging physics and limitations
 
Some possible interpretations from data of the CODALEMA experiment
Some possible interpretations from data of the CODALEMA experimentSome possible interpretations from data of the CODALEMA experiment
Some possible interpretations from data of the CODALEMA experiment
 
Localized Characterization of GaAs/AlGaAs Quantum Well Devices
Localized Characterization of GaAs/AlGaAs Quantum Well DevicesLocalized Characterization of GaAs/AlGaAs Quantum Well Devices
Localized Characterization of GaAs/AlGaAs Quantum Well Devices
 
Dose reduction technique in ct scan
Dose reduction technique in ct scanDose reduction technique in ct scan
Dose reduction technique in ct scan
 

Más de Sudil Paudyal (6)

Cardiac CT
Cardiac CT Cardiac CT
Cardiac CT
 
Darkroom procedures during Radiography
Darkroom procedures during RadiographyDarkroom procedures during Radiography
Darkroom procedures during Radiography
 
MRI Procedure of Brain
MRI Procedure of BrainMRI Procedure of Brain
MRI Procedure of Brain
 
Excretion Urography / Intravenous Urography (IVU)
Excretion Urography / Intravenous Urography (IVU)Excretion Urography / Intravenous Urography (IVU)
Excretion Urography / Intravenous Urography (IVU)
 
Abdomen radiography
Abdomen radiographyAbdomen radiography
Abdomen radiography
 
Portable n mobile unit
Portable n mobile unitPortable n mobile unit
Portable n mobile unit
 

Último

Call Girl In Indore 📞9235973566📞 Just📲 Call Inaaya Indore Call Girls Service ...
Call Girl In Indore 📞9235973566📞 Just📲 Call Inaaya Indore Call Girls Service ...Call Girl In Indore 📞9235973566📞 Just📲 Call Inaaya Indore Call Girls Service ...
Call Girl In Indore 📞9235973566📞 Just📲 Call Inaaya Indore Call Girls Service ...
Sheetaleventcompany
 
Dehradun Call Girls Service {8854095900} ❤️VVIP ROCKY Call Girl in Dehradun U...
Dehradun Call Girls Service {8854095900} ❤️VVIP ROCKY Call Girl in Dehradun U...Dehradun Call Girls Service {8854095900} ❤️VVIP ROCKY Call Girl in Dehradun U...
Dehradun Call Girls Service {8854095900} ❤️VVIP ROCKY Call Girl in Dehradun U...
Sheetaleventcompany
 
👉Chandigarh Call Girl Service📲Niamh 8868886958 📲Book 24hours Now📲👉Sexy Call G...
👉Chandigarh Call Girl Service📲Niamh 8868886958 📲Book 24hours Now📲👉Sexy Call G...👉Chandigarh Call Girl Service📲Niamh 8868886958 📲Book 24hours Now📲👉Sexy Call G...
👉Chandigarh Call Girl Service📲Niamh 8868886958 📲Book 24hours Now📲👉Sexy Call G...
Sheetaleventcompany
 
👉 Chennai Sexy Aunty’s WhatsApp Number 👉📞 7427069034 👉📞 Just📲 Call Ruhi Colle...
👉 Chennai Sexy Aunty’s WhatsApp Number 👉📞 7427069034 👉📞 Just📲 Call Ruhi Colle...👉 Chennai Sexy Aunty’s WhatsApp Number 👉📞 7427069034 👉📞 Just📲 Call Ruhi Colle...
👉 Chennai Sexy Aunty’s WhatsApp Number 👉📞 7427069034 👉📞 Just📲 Call Ruhi Colle...
rajnisinghkjn
 
Control of Local Blood Flow: acute and chronic
Control of Local Blood Flow: acute and chronicControl of Local Blood Flow: acute and chronic
Control of Local Blood Flow: acute and chronic
MedicoseAcademics
 
Nagpur Call Girl Service 📞9xx000xx09📞Just Call Divya📲 Call Girl In Nagpur No💰...
Nagpur Call Girl Service 📞9xx000xx09📞Just Call Divya📲 Call Girl In Nagpur No💰...Nagpur Call Girl Service 📞9xx000xx09📞Just Call Divya📲 Call Girl In Nagpur No💰...
Nagpur Call Girl Service 📞9xx000xx09📞Just Call Divya📲 Call Girl In Nagpur No💰...
Sheetaleventcompany
 
Gorgeous Call Girls Dehradun {8854095900} ❤️VVIP ROCKY Call Girls in Dehradun...
Gorgeous Call Girls Dehradun {8854095900} ❤️VVIP ROCKY Call Girls in Dehradun...Gorgeous Call Girls Dehradun {8854095900} ❤️VVIP ROCKY Call Girls in Dehradun...
Gorgeous Call Girls Dehradun {8854095900} ❤️VVIP ROCKY Call Girls in Dehradun...
Sheetaleventcompany
 

Último (20)

Call Girl In Indore 📞9235973566📞 Just📲 Call Inaaya Indore Call Girls Service ...
Call Girl In Indore 📞9235973566📞 Just📲 Call Inaaya Indore Call Girls Service ...Call Girl In Indore 📞9235973566📞 Just📲 Call Inaaya Indore Call Girls Service ...
Call Girl In Indore 📞9235973566📞 Just📲 Call Inaaya Indore Call Girls Service ...
 
7 steps How to prevent Thalassemia : Dr Sharda Jain & Vandana Gupta
7 steps How to prevent Thalassemia : Dr Sharda Jain & Vandana Gupta7 steps How to prevent Thalassemia : Dr Sharda Jain & Vandana Gupta
7 steps How to prevent Thalassemia : Dr Sharda Jain & Vandana Gupta
 
Dehradun Call Girls Service {8854095900} ❤️VVIP ROCKY Call Girl in Dehradun U...
Dehradun Call Girls Service {8854095900} ❤️VVIP ROCKY Call Girl in Dehradun U...Dehradun Call Girls Service {8854095900} ❤️VVIP ROCKY Call Girl in Dehradun U...
Dehradun Call Girls Service {8854095900} ❤️VVIP ROCKY Call Girl in Dehradun U...
 
❤️Chandigarh Escorts Service☎️9814379184☎️ Call Girl service in Chandigarh☎️ ...
❤️Chandigarh Escorts Service☎️9814379184☎️ Call Girl service in Chandigarh☎️ ...❤️Chandigarh Escorts Service☎️9814379184☎️ Call Girl service in Chandigarh☎️ ...
❤️Chandigarh Escorts Service☎️9814379184☎️ Call Girl service in Chandigarh☎️ ...
 
Genuine Call Girls Hyderabad 9630942363 Book High Profile Call Girl in Hydera...
Genuine Call Girls Hyderabad 9630942363 Book High Profile Call Girl in Hydera...Genuine Call Girls Hyderabad 9630942363 Book High Profile Call Girl in Hydera...
Genuine Call Girls Hyderabad 9630942363 Book High Profile Call Girl in Hydera...
 
VIP Hyderabad Call Girls KPHB 7877925207 ₹5000 To 25K With AC Room 💚😋
VIP Hyderabad Call Girls KPHB 7877925207 ₹5000 To 25K With AC Room 💚😋VIP Hyderabad Call Girls KPHB 7877925207 ₹5000 To 25K With AC Room 💚😋
VIP Hyderabad Call Girls KPHB 7877925207 ₹5000 To 25K With AC Room 💚😋
 
👉Chandigarh Call Girl Service📲Niamh 8868886958 📲Book 24hours Now📲👉Sexy Call G...
👉Chandigarh Call Girl Service📲Niamh 8868886958 📲Book 24hours Now📲👉Sexy Call G...👉Chandigarh Call Girl Service📲Niamh 8868886958 📲Book 24hours Now📲👉Sexy Call G...
👉Chandigarh Call Girl Service📲Niamh 8868886958 📲Book 24hours Now📲👉Sexy Call G...
 
👉 Chennai Sexy Aunty’s WhatsApp Number 👉📞 7427069034 👉📞 Just📲 Call Ruhi Colle...
👉 Chennai Sexy Aunty’s WhatsApp Number 👉📞 7427069034 👉📞 Just📲 Call Ruhi Colle...👉 Chennai Sexy Aunty’s WhatsApp Number 👉📞 7427069034 👉📞 Just📲 Call Ruhi Colle...
👉 Chennai Sexy Aunty’s WhatsApp Number 👉📞 7427069034 👉📞 Just📲 Call Ruhi Colle...
 
❤️Call Girl Service In Chandigarh☎️9814379184☎️ Call Girl in Chandigarh☎️ Cha...
❤️Call Girl Service In Chandigarh☎️9814379184☎️ Call Girl in Chandigarh☎️ Cha...❤️Call Girl Service In Chandigarh☎️9814379184☎️ Call Girl in Chandigarh☎️ Cha...
❤️Call Girl Service In Chandigarh☎️9814379184☎️ Call Girl in Chandigarh☎️ Cha...
 
Kolkata Call Girls Naktala 💯Call Us 🔝 8005736733 🔝 💃 Top Class Call Girl Se...
Kolkata Call Girls Naktala  💯Call Us 🔝 8005736733 🔝 💃  Top Class Call Girl Se...Kolkata Call Girls Naktala  💯Call Us 🔝 8005736733 🔝 💃  Top Class Call Girl Se...
Kolkata Call Girls Naktala 💯Call Us 🔝 8005736733 🔝 💃 Top Class Call Girl Se...
 
💰Call Girl In Bangalore☎️63788-78445💰 Call Girl service in Bangalore☎️Bangalo...
💰Call Girl In Bangalore☎️63788-78445💰 Call Girl service in Bangalore☎️Bangalo...💰Call Girl In Bangalore☎️63788-78445💰 Call Girl service in Bangalore☎️Bangalo...
💰Call Girl In Bangalore☎️63788-78445💰 Call Girl service in Bangalore☎️Bangalo...
 
tongue disease lecture Dr Assadawy legacy
tongue disease lecture Dr Assadawy legacytongue disease lecture Dr Assadawy legacy
tongue disease lecture Dr Assadawy legacy
 
Control of Local Blood Flow: acute and chronic
Control of Local Blood Flow: acute and chronicControl of Local Blood Flow: acute and chronic
Control of Local Blood Flow: acute and chronic
 
Chandigarh Call Girls Service ❤️🍑 9809698092 👄🫦Independent Escort Service Cha...
Chandigarh Call Girls Service ❤️🍑 9809698092 👄🫦Independent Escort Service Cha...Chandigarh Call Girls Service ❤️🍑 9809698092 👄🫦Independent Escort Service Cha...
Chandigarh Call Girls Service ❤️🍑 9809698092 👄🫦Independent Escort Service Cha...
 
Call Girls Shahdol Just Call 8250077686 Top Class Call Girl Service Available
Call Girls Shahdol Just Call 8250077686 Top Class Call Girl Service AvailableCall Girls Shahdol Just Call 8250077686 Top Class Call Girl Service Available
Call Girls Shahdol Just Call 8250077686 Top Class Call Girl Service Available
 
Call Girls Bangalore - 450+ Call Girl Cash Payment 💯Call Us 🔝 6378878445 🔝 💃 ...
Call Girls Bangalore - 450+ Call Girl Cash Payment 💯Call Us 🔝 6378878445 🔝 💃 ...Call Girls Bangalore - 450+ Call Girl Cash Payment 💯Call Us 🔝 6378878445 🔝 💃 ...
Call Girls Bangalore - 450+ Call Girl Cash Payment 💯Call Us 🔝 6378878445 🔝 💃 ...
 
Nagpur Call Girl Service 📞9xx000xx09📞Just Call Divya📲 Call Girl In Nagpur No💰...
Nagpur Call Girl Service 📞9xx000xx09📞Just Call Divya📲 Call Girl In Nagpur No💰...Nagpur Call Girl Service 📞9xx000xx09📞Just Call Divya📲 Call Girl In Nagpur No💰...
Nagpur Call Girl Service 📞9xx000xx09📞Just Call Divya📲 Call Girl In Nagpur No💰...
 
Chandigarh Call Girls Service ❤️🍑 9809698092 👄🫦Independent Escort Service Cha...
Chandigarh Call Girls Service ❤️🍑 9809698092 👄🫦Independent Escort Service Cha...Chandigarh Call Girls Service ❤️🍑 9809698092 👄🫦Independent Escort Service Cha...
Chandigarh Call Girls Service ❤️🍑 9809698092 👄🫦Independent Escort Service Cha...
 
Gorgeous Call Girls Dehradun {8854095900} ❤️VVIP ROCKY Call Girls in Dehradun...
Gorgeous Call Girls Dehradun {8854095900} ❤️VVIP ROCKY Call Girls in Dehradun...Gorgeous Call Girls Dehradun {8854095900} ❤️VVIP ROCKY Call Girls in Dehradun...
Gorgeous Call Girls Dehradun {8854095900} ❤️VVIP ROCKY Call Girls in Dehradun...
 
Circulatory Shock, types and stages, compensatory mechanisms
Circulatory Shock, types and stages, compensatory mechanismsCirculatory Shock, types and stages, compensatory mechanisms
Circulatory Shock, types and stages, compensatory mechanisms
 

Dual Energy CT

  • 1. DUAL ENERGY CT Sudil Paudyal M.Sc.MIT (12) IOM, MMC 1
  • 3. CHALLENGES WITH SINGLE ENERGY CT  Tissue characterization  Lesion detection (small lesion)  Image noise and quality at low kV scanning  Complex scanning protocols  Multiphase imaging  Radiation dose 3
  • 4. ATTENUATION ON CT 4  Material differentiation on CT is based on x-ray attenuation  Attenuation is caused by absorption and scattering of radiation  Two main mechanisms: compton scatter and photoelectric effect  Compton effect is energy independent  Photoelectric effect is strongly energy dependent and its likelihood increases as the energy of incident photon approximates the K-shell binding energy of an electron.  Changing the kV setting results in an alteration of photon energy
  • 5. BASIS OF DECT  Attenuation is energy dependent- at 80 kVp, iodine signal is 2X of 140 kVp  CT numbers donot vary with beam energy for soft tissues but do for high “z” materials  By analyzing absorption properties of different material at different x-ray energies, materials can be distinguished. (basis material decomposition)  Human body is made up of many different elements- mainly carbon, oxygen , hydrogen , nitrogen, phosphorous and calcuim- which are arranged in many different combinations.  Hydrogen, carbon, nitrogen and oxygen have similar k- edges which are well below the energies currently used in DECT (80 kVp and 140 kVp), thus not well appreciated.  The k edges of calcium and iodine are higher than those of soft tissues and although they are lower than those, they are distinguished from soft tissues at DE imaging. 5
  • 6. 6 The settings of 80 and 140 kVp are generally used because they provide maximum difference and least overlap between the spectra with standard tubes.
  • 7. PRINCIPLE OF DECT The principle of dual energy CT is based on differential absorption of energy(Linear attenuation coefficient) at variable KVP settings. For example: Let us consider a substance (A)with K-edge at 60 kv another (B)with K-edge 130 kv, if we imagine multiple combination of A and/or B at 80KVp and 140KVp ,there will be differential attenuation at both these energy settings. The object containing larger amount of substance A will show higher attenuation at 80KVp and lower attenuation at 140 KVp, whereas object containing larger amount of substance B will show higher attenuation at 80KVp and at 140KVp as well. The CT number of blood mixed iodine becomes 1550HU similar to the value of bone at 140 kvp. so it is nearly impossible to determine weather the object of interest is bone or iodine blood mixed structure. If we take another scan of same object with on 80kvp setting , the measures CT number will be different .if the object of interest is made with bone the CT number will be 2200HU and the object is mixture of iodine and blood , the CT number will be 2800HU due to different behavior of linear attenuation co-efficient as a function of energy for different materials.
  • 8. 8
  • 9. TECHNICAL APPROACHES TO DECT  Five approaches : (currently only former three are commercially available)  Sequential acquisition  Rapid voltage switching  DSCT  Layer detectors and  Energy resolving or quantum counting detectors 9
  • 10. SEQUENTIAL ACQUISTION  Requires least hardware effort.  Achieved either as two subsequent helical scans or as a sequence with subsequent rotations at alternating tube voltages and stepwise table feed.  Disadvantage is rather long delay between both acquisitions, causing artifacts from cardiac or respiratory motion or changes in CM opacification.  But, a viable option for clinical applications w/o CM such as metal artifact removal or kidney stone differentiation. 11
  • 11. RAPID VOLTAGE SWITCHING  Tube voltage alternates between a high value (140kV) and a low value (80 kV) and data are collected twice for every projection.  Rotation speed of system must be reduced to account for the acquistion of these additional projections and rise and fall times of voltage modulation.  To account for the higher tube output at 140 kVp, the exposure time ratio is varied between the 80-kVp and the 140-kVp acquisitions to maximize the contrast-to- noise ratio: typically, 65% of the exposure time is used for the 80-kVp acquisition, and 35%, for the 140-kVp acquisition.  A detector with a fast response and a data acquisition system with a fast sampling capability are used to capture the alternating high- and low-energy data. 12
  • 12.  The advantages of dual-energy CT with fast kilovoltage switching are good temporal registration between high- and low-energy datasets, which are obtained nearly simultaneously, and the availability of the full 50-cm field of view for use in image analysis.  Limited photon output at low voltages which results in high noise and necessity to choose a relatively high current and consequently high dose.  So requires additional dose because other dose reduction features(ATCM) or optimized filtration are not possible.  However, because a single x-ray source is used, individual modification of the high- and low-energy x-ray beams is difficult (not yet possible on commercially available scanners), and spectral overlap is increased. 13
  • 13. 14
  • 14. DUAL SOURCE CT  Two tubes running at different voltages and corresponding detectors mounted orthogonally in one gantry.  High-energy scans are obtained at 120 or 140 kVp, and low- energy scans are obtained simultaneously at 80 or 100 kVp.  One detector somewhat smaller than other, resulting in 33 cm FOV.  Nearly twofold investments in hardware but offers important advantages for DECT:  Voltage, current and filter can be chosen independently for both tubes to achieve an optimal contrast .  Although there is an angular offset between both spiral paths, there is no temporal offset in data acquisition because equivalent z-axis positions are scanned at same time.  Disadvantage is cross-scatter radiation, which partially hits the noncorresponding orthogonal detector and requires correction. 15
  • 15. 16
  • 16. LAYER DETECTOR  Uses an energy resolving detector with polychromatic spectrum of one tube.  The sensitivity of two layers is determined by the scintillator material : for eg: consisting of ZnSe or CsI in the top layer and Gd2O2S in the bottom layer.  The scintillator materials determine the spectral resolution and sensitivity profiles of available materials have a rather broad overlap.  Therefore the contrast of spectral information is limited or requires high additional dose.  Not yet available for clinical use. 17
  • 17. QUANTUM COUNTING DETECTOR  Resolve the energy of each individual impacting photon.  Used to differentiate more than two photon energies and is very quantum efficient.  But detector materials eg; CdZnTe get saturated rather quickly, resulting in a rapid drift of the measured signal.  Thus used to scan small animals, but cannot handle a photon flux required for clinical CT. 18
  • 18. 19
  • 19. RADIATION EXPOSURE  Direct comparison of different DECT approaches should include both spectral contrast and dose optimally quantified as CNR per dose.  Comparison for different scanner setups is made based on Monte-Carlo simulations.  Currently a maximum spectral contrast is achieved with a DSCT with optimized voltage, current and filtration.  Technologic strategies that allow dose reduction include; tube current modulation, iterative reconstruction techniques and new detector application- specific integrated circuits (ASICs) integrating photodiode and analog digital converters.  These features offer special benefits for DECT because CNR is improved in both half-dose acquisitions with the two energy spectra so the gain in dose efficieny is even greater than single energy CT for DSCT. 20
  • 20. POSTPROCESSING  Two approaches: 1. Data-domain or projection-space decomposition:  To subtract equivalent projections and apply filtered back projection to reconstruct the difference as spectral information.  i.e. dual energy data sets are reconstructed before images are reconstructed from high- and low-energy sinograms.  Used for material analysis of dual-energy CT images obtained with fast kilovoltage switching.  Projection-space decomposition is preferred because it enables greater flexibility in material decomposition and permits the preprocessing correction of data to minimize beam-hardening artifacts 21
  • 21. 2. Image-domain decomposition:  First reconstruct standard CT images consisting of voxels in HU and then to use postprocessing algorithms to extract specific spectral information from the difference between the corresponding voxels.  Dual-energy datasets are processed after the reconstruction of high- and low-energy images.  Used for material analysis of images obtained with a dual-source or dual-layer dual-energy CT scanner  IRS provides low and high kV images and a series of weighted average images. The average series integrates both acquisitions in a low noise image for immediate evaluation.  DE analysis is then performed on the dual kV series using imaging based algorithms. 22
  • 22.  3 main types of algorithm are in use:  Optimization : First type optimizes images  Results in altered gray level CT images  Monoenergetic images in which the density for each voxel is extrapolated to a certain energy from the two density values at the acquired photon energies, and non linear blending algorithms which combine high iodine contrast and low noise referred to as optimum contrast.  Differentiation : Second type identifies or differentiates certain materials  Define a slope between the density values at both acquired spectra and differentiate material on the basis of the photoelectric effect within a certain density range- that is, colors are assigned on both sides of the slope.  Another possibility is to eliminate certain substances from a dataset by identifying the substance and then filling in for example air density for the corresponding voxels. 23
  • 23. 24 • Quantification: Third type quantifies a substance in the data set. • Use a three material decomposition, quantifying one of three materials. • A slope is defined by the density of two basic components and a second slope is defined by the photoelectric effect of the contrast material being quantified. • The density values measured at both energies are then interpreted as a displacement from the first slope along the second one. • This enhancement is then color coded or is also subtracted from the image.
  • 24. IMAGE RECONSTRUCTION  In fast kV switching, 140 kV images are reconstructed immediately at the scanner console, and are only used to verify the adequacy of anatomic coverage.  To facilitate workflow, 80 kV images are not routinely reconstructed.  Calibration correction are applied to the high and low energy datasets, which are aligned in projection space and transformed into material basis pair projections, which are then used to reconstruct two main types of images:  Material density images, which provide material specific information and  Monochromatic images which provide energy selective information. 25
  • 25.  Generation of material density images is based on the theory of basis material decomposition, which proposes that the attenuation coefficients of any material can be computed as a weighted sum of the attenuation coefficients of two basis materials as long as the k-edge of the material is not within the evaluated energy range.  The two basis materials should have substantially different mass attenuation coefficients; thus the material pairs chosen usually differ greatly in efffective atomic numaber.  Substances other than chosen basis materials are considered to contain combinations of both selected material densities.  Two sets of material density images are then generated each demonstrating the presence or absence of each basis material selected. 26
  • 26.  Two commonly selected dual energy CT basis material pairs are  Iodine and calcium and  Iodine and water  when iodine (high atomic number) is paired with water (low atomic number), two separate sets of images (a set of iodine density images and a set of water density images) are generated.  On the water density image, voxels that show an energy dependent change in attenuation resembiling the attenuation of iodine are removed and represented instead on the iodine density image.  The virtual unenhanced images thus generated from CE dual energy data set can provide information equivalent to that obtainable from unenhanced images.  Iodine density images are used to asses structures for areas of enhancement. Only lesions that contain iodine will show higher density. 27
  • 27. 28
  • 28.  DECT images can be processed to obtain images at any specified single photon energy. Such images are called monochromatic images.  Monochromatic projections can be generated during the processing of material density image data by calcualting the linear attenuation coefficinet of an object.  Because they are generated from projection space data, monochromatic images are less affected by beam hardening artifact and provide more accurate CT numbers than do standard CT images.  These advantages can improve the characterization of renal lesions by decreasing pseudoenhancement in simple renal cysts. 29
  • 29. 30
  • 30.  With DSDECT, images are generated by linear or nonlinear sigmoidal blending of high and low energy image datasets.  Material specific images are generated by measuring the differences in attenuation and either highlighting the pixels corresponding to the selected material or subtracting the pixels corresponding to the other materials.  For abdominal applications, a three material decomposition (soft tissue, fat and iodine) process is usually used to generate the virtual unenhanced images.  A color coded overlay image also can be generated which enables visualization of the distribution of a selected material across entire CT volume. 31
  • 31. 32
  • 32. 33
  • 33. DIFFERENCE BETN VIRTUAL UNENHANCED IMAGE OBTAINED WITH DSDECT AND SSDECT. 34
  • 35. NEURORADIOLOGY  Neurological applications permit the generation of virtual non-contrast images for the detection of brain hemorrhages in patients who undergo CTA.  Also allow the removal of bone and calcium from the carotid and brain CTA.  Possible to detect a brain hemorrhage on virtual non-contrast images.  Comparison of dual energy bone removal to digital subtraction CTA and automatic bone removal reveals superiority of dual energy technique, particularly at the level of skull base.  Radiation dose was also reduced as compared to digital subtraction CTA. 36
  • 36. 37
  • 37. THORAX APPLICATIONS  Lack of misregistration and visualization of lung perfusion and ventilation.  Misregistration avoided due to simultaneous acquisition of 80 and 140 kVp images.  In pt.s with pulmonary thromboembolism, DECT may allow the detection of subtle emboli by revealing perfusion defects.  Assessment of lung perfusion can allow the visualization of pathologies that have been perviously unknown, particularly in pt.s with ILDs, emphysema, asthma or chronic thromboembolic disease and in patients with tumors.  Xenon DECT enables collection of ventilation perfusion CT acquisitions and in future may replace ventilation perfusion scintigraphy.  Superior registration of DECT may demonstrate the presence or lack of enhancement of sub-centimeter and solitary lung nodules. 38
  • 38. 39
  • 39. CARDIAC APPLICATIONS  Dual energy perfusion with or without the adenosine stress test, viability imaging and cardiac iron detection.  To decrease image noise, 100 and 140 kVp acquisitions are preferred.  Addition of an iterative reconstruction technique may allow a better image quality for cardiac applications.  Can be difficult in patients with elevated heart rates due to a worsening of the temporal resolution from 83 to 165 ms in DSCT.  Also for the characterization of plaques, for calcific plaque removal from coronary arteries and for evalutation of coronary stents. 40
  • 40. 41
  • 41. VASCULAR APPLICATIONS  Imaging protocol for aortic aneurysms consists of unenhanced, arterial and venous phase images, which exposes the patient to a high radiation burden because it is repeated every six months after aortic stent grafting.  DE aortic stent graft protocol may obviate the need for unenhanced CT and iodine map images may facilitate the recognition of endoleaks.  Can also permit the faster removal of calcific plaques in large arteries and bony structures in cranial region.  However the use of this technique seems difficult for small sized arteries.  Also no sytdy has demonstrated any advantage of dual energy CTA for peripheral artery applications. 42
  • 42. 43
  • 43. GI AND ABDOMINAL APPLICATIONS  The use of dual energy has revealed that 80 kVp images demonstrate a better contrast than do 140 kVp images.  Useful for evaluation of enhanced liver lesions in the arterial phase in HCC and in hypervascular liver metastases.  Also used for the diagnosis of liver iron and fat, which display opposite spectral patterns.  The measured denisty of a liver increases with decreasing kVp and keV in patients with hepatic iron overload, but the measured density of a liver decreases with decreasing kVp and kev in patients with steatosis. 44
  • 44.  DE cholangiography may facilitate the detection of bile ducts and the measurement of biliary segment dimensions.  Invitro studies have been performed to characterize the dual energy of gall stones and a similar protocol may be used for patients with biliary dilation and a suspected choleduct stone.  The use of 80 kvp data obtainde by DECT may permit a better distinction of pancreatic adenocarcinoma from the adjacent normal parenchyma by increasing the conspicuity of the masses. 45
  • 45. 46
  • 46. DECT COLONOSCOPY  Obviates the non-contrast prone images from diagnostic CT colonoscopy protocols.  Colonic polyps and masses are enhanced approx. 40-50 HU on post contrast images. Thus the enhancement of colonic masses can be differentiated from stool through the use of iodine DECT images and non cathartic DECT colonoscopy may be feasible, esp. in elderly patients. 47
  • 47. 48
  • 48. MSK APPLICATIONS  Most useful MSK application is the differentiation of gout and pseudogout via the diagnosis of uric acid and calcium crystals in the joint space.  Tendon and ligament visualization has been proposed by CT vendors but few studies have evaluated this application.  Metal artifact reduction has been proposed for the fast kVp switching technique, wich emplyos images with a low keV. 49
  • 49. 50
  • 50. URINARY APPLICATIONS Renal mass characterization:  Paired iodine and water density images obtained at contrast enhanced DECT can help distinguish hyper attenuating cysts from enhancing masses without the need for an unenhanced scanning phase.  The greater brightness of renal masses on iodine density images helps distinguish them from non enhancing cysts even when their attenuation measurements on CECT images are similar.  Color coded image overlays in each pixel allow easy visualization of presence or absence of enhancement.  Also water density images may be used as virtual unenhanced images to allow the detection of calcification within a renal mass.  Limitations: Virtual unenhanced images are noisier than real unenhanced images.  Because of material decomposition algorithms used, calcification in renal lesions is less conspicuous on virtual unenhanced images than on real images.  Smaller amounts of fat in renal masses are difficult to detect on virtual images and can be measured only on conventional thin section CT images. 51
  • 51. 52
  • 52. Characterization of renal stones:  Different types of renal calculi; calcium based stones- 70- 80%,struvite stones- 5-15%, uric acid stones 5-10%, and cystine stones 1-2.5%.  Knowledge about the composition of stones may guide decisions about theire management and shape expectations concerning the effectiveness of therapy.  Uric acid calculi can be managed with oral medications that facilitate dissolution, struvite calculi are amenable to ESWL, whereas calcium oxalate monohydrate and cystine calculi are resistant to fragementation with lithotripsy.  at dual energy, the change in attenuation between high and low energy scans can be used to differentiate types of calculi, some of which might have a similar attenuation when scanned at single energy level. 53
  • 53. 54
  • 54. Ct urography:  With the ability to generate virtual unenhanced images from contrast enhanced dual energy CT image datasets, dual energy CT urography can lessen the need for an unenhanced scanning phase.  But small stones may be less well depicted on virtual images than on actual unenhanced images. 55
  • 55. WHAT WE HAVE 56  Siemens Somatom Definition AS+  SSDECT  Data domain decomposition reconstruction.  Specialized DECT application in syngo.via
  • 56. 57
  • 57. 58
  • 58. 59
  • 59. 60
  • 60. LIMITATIONS  Restriction of FOV ( with DSCT)  High radiation dose  Addition of a tin filter helps to decrease  Increase in radiation dose can be justified when unenhanced images are eliminated from protocols, which may result in dose saving.  Noise in the 80 kVp images  Evaluations of patients with a high BMI.  Noise constraints may result in a suboptimal image quality. 61
  • 61. CONCLUSION  Volumetric DECT acquisitions enables the emergence of new applications with potential benefits.  Major advantages of DECT are material decomposition, separation of iodine from the image and prevention of misregistration particularly in thorax and abdomen, and renal mass and stone characterization in the urinary system.  The use of iterative reconstruction techniques can facilitate the wider use of DECT applications by decreasing the noise and the radiation dose.  These technologies may eventually lead to better detection and characterization of lesions in the body and objective evaluation of iodine uptake by various organs, leading to DECT becoming an alternative of PET-CT. 62
  • 62. FIND MORE AT:  Johnson TR; Dual energy CT: general principles  Muşturay Karçaaltıncaba, Aykut Aktaş; Dual-energy CT revisited with multidetector CT: review of principles and clinical applications  Johnson TR, Kraus B, et.al.; Material differentiation by Dual energy CT: initial experience  Kaza RK, Plat FJ et.al.; Dual-Energy CT with Single- and Dual-Source Scanners: Current Applications in Evaluating the Genitourinary Tract  http://www.dsct.com 63